SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, heating hot water and drain piping.
 - 2. Glycol-water piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- E. Section 23 07 11, HVAC INSULATION: Piping insulation.
- F. Section 23 23 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants.
- G. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- H. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: VAV and CV units, fan coil units, and radiant ceiling panels.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.

- 5. Valves of all types.
- 6. Strainers.
- 7. All specified hydronic system components.
- 8. Water flow measuring devices.
- 9. Gages.
- 10. Thermometers and test wells.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Air separators.
 - 2. Expansion tanks.
- D. Submit prior to welding of steel piping a certificate of welder's certification. The certificate shall be current and not more than one year old.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings in the same size as contract documents.
 - One complete set of drawings in electronic format (Autocad version compatible with the version currently in use at the Fargo VA Medical Center).

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

B1.20.1-83.....Pipe Threads, General Purpose (Inch) B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-98.....Malleable Iron Threaded Fittings B16.4-98.....Gray Iron Threaded Fittings B16.5-03.....Pipe Flanges and Flanged Fittings B16.9-03.....Factory-Made Wrought Buttwelding Fittings B16.11-05.....Forged Fittings, Socket-Welding and Threaded

B16.14-91 and Lockn	uts with	
Pipe Threads		
B16.22-01Wrought Copper and Copper Alloy Solder-	Joint	
Pressure Fittings		
B16.23-02Cast Copper Alloy Solder Joint Drainage		
Fittings		
B16.24-01Cast Copper Alloy Pipe Flanges and Flan	ged	
Fittings, Class 150, 300, 400, 600, 900	, 1500	
and 2500		
B16.39-98Malleable Iron Threaded Pipe Unions, Cl	asses	
150, 250, and 300		
B16.42-98Buctile Iron Pipe Flanges and Flanged F	ittings:	
Classes 150 and 300		
B31.1-01Power Piping		
B31.9-04Building Services Piping		
B40.100-05Pressure Gauges and Gauge Attachments		
C.American National Standards Institute, Inc. (ANSI):		
B16.1 00Cast Iron Pipe Flanges and Flanged Fitt	ings,	
Class 25, 125 and 250		
B16.3 00Malleable Iron Threaded Fittings Classe	s 150	
and 300		
B16.5 03Pipe Flanges and Flanged Fittings NPS $lash$	through	
NPS 24		
B16.9 03Factory Made Wrought Butt Welding Fitti:	ngs	
B16.11 01Forged Fittings, Socket Welding and Thr	eaded	
B16.14 91 Ferrous Pipe Plugs, Bushings and Locknu	ts with	
Pipe Threads		
B16.18-01Cast Copper Alloy Solder joint Pressure		
fittings		
B16.22 00Wrought Copper and Bronze Solder Joint	Pressure	
Fittings		
B16.24 01Cast Copper Alloy Pipe Fittings and Fla	nged	
Fittings: Class 150, 300, 400, 600, 900	, 1500	
and 2500		
B31.1 01Power Piping		
D.American Society for Testing and Materials (ASTM):		
A47/A47M-99 (2004)Ferritic Malleable Iron Castings		

A53/A53M-06	Standard Specification for Pipe, Steel, Black
	and Hot-Dipped, Zinc-Coated, Welded and
	Seamless
A106/A106M-06	Standard Specification for Seamless Carbon
	Steel Pipe for High-Temperature Service
A126-04	Standard Specification for Gray Iron Castings.
	for Valves, Flanges, and Pipe Fittings
A181/A181M-01	Standard Specification for Carbon Steel
	Forgings, for General-Purpose Piping
A183-03	Standard Specification for Carbon Steel Track.
	Bolts and Nuts
A216/A216M-04	Standard Specification for Steel Castings,
	Carbon, Suitable for Fusion Welding, for High
	Temperature Service
A234/A234M 04	Piping Fittings of Wrought Carbon Steel and
	Alloy Steel for Moderate and High Temperature
	Service
A307-04	Standard Specification for Carbon Steel Bolts
	and Studs, 60,000 PSI Tensile Strength
A536-84 (2004)	Standard Specification for Ductile Iron Castings
A 615/A 615M-04	Deformed and Plain Carbon Steel Bars for
	Concrete Reinforcement
A653/A 653M-04	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy Coated (Galvannealed) By the Hot-Dip
	Process
вз2-04	Standard Specification for Solder Metal
в61-02	Standard Specification for Steam or Valve Bronze
	Castings
в62-02	Standard Specification for Composition Bronze or
	Ounce Metal Castings
B88-03	Standard Specification for Seamless Copper Water
	Tube
B209 04	Aluminum and Aluminum Alloy Sheet and Plate
C177 97	Standard Test Method for Steady State Heat Flux
	Measurements and Thermal Transmission Properties
	by Means of the Guarded Hot Plate Apparatus
C478-03	Precast Reinforced Concrete Manhole Sections

C533 03 Calcium Silicate Block and Pipe Thermal Insulation C552 03 Cellular Glass Thermal Insulation C591-01 Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation E. American Water Works Association (AWWA): C110/03.....Ductile Iron and Grey Iron Fittings for Water C203 00.....Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied F. American Welding Society (AWS): A5.8/A5.8M-04.....Specification for Filler Metals for Brazing and Braze Welding B2.1-02.....Standard Welding Procedure Specification G. Copper Development Association, Inc. (CDA): CDA A4015-95.....Copper Tube Handbook H. Expansion Joint Manufacturer's Association, Inc. (EJMA): EMJA-2003..... Expansion Joint Manufacturer's Association Standards, Eighth Edition I. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-05.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-03.....Bronze Gate, Globe, Angle and Check Valves SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends J. Tubular Exchanger Manufacturers Association: TEMA 8th Edition, 2000 K. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

HVAC Duct Construction Standards, 2nd Edition 1997

1.6 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

- 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES
 - A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Chilled Water (above ground), Heating Hot Water, and Glycol-Water Piping:
 - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Cooling Coil Condensate Drain or Duct/Humidifier Drain Piping:
 - 1. From air handling units: Copper water tube, ASTM B88, Type M.
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.
- C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

- A. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints. Mechanical couplings and fittings are optional for water piping only.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
- B. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.50 mm (2 inches) and Smaller: Screwed or welded. Mechanical couplings are optional for water piping only.
 - Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.

- 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
- 4. Unions: ASME B16.39.
- Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:

- Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C.65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing shall not be acceptable.
- B. All values of the same type shall be products of a single manufacturer. Provide gate and globe values with packing that can be replaced with the value under full working pressure.

- C. Gate Valves:
 - 1. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.
 - 2. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. a. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- D. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - Body: Cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
 - Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- E. Ball Valves: Brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig)working pressure rating. Screwed or solder connections. Provide stem extension to allow operation without interfering with pipe insulation.
- F. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size and be of the following type.

1. Ball valve as specified herein with memory stop.

2.8 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.

2.9 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for water service.
- B. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations.

- C.100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.
- D. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.
- E. Field-built guides may be used if detailed on the contract drawings.

2.10 HYDRONIC SYSTEM COMPONENTS

- A. Tangential Air Separator: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1.
- B. Closed Expansion Tank: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, steel, rust-proof coated. Provide gage glass, with protection guard, and angle valves with tapped openings for drain (bottom) and plugged vent (top). Provide Form No. U-1.
 - Vertical floor-mounted expansion tank: Provide gage glass, system or drain connection (bottom) and air charging (top) tappings. Provide gate valve and necessary adapters for charging system. Tank support shall consist of floor mounted base ring with drain access opening or four angle iron legs with base plates.
- C. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Pipe air outlet to drain.

2.11 WATER FILTERS AND POT CHEMICAL FEEDERS

A. See section 23 25 00, HVAC WATER TREATMENT, Article 2.2, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.12 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale, metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.

- A. Organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges may be slightly greater than shown to meet manufacturer's standard. Required ranges in degrees C (F):

Chilled Water and Glycol-
Water 0 to 38 degrees C
(32-100 degrees F)Hot Water and Glycol-Water -1 to
116 degrees C (30 to 240 degrees
F).

2.14 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.

- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- F.Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual air vent at all piping system high points and drain valves at all low points.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D.125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the VA Project Engineer. Tests may be either of those below, or a combination, as approved by the VA Project Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure for a minimum of 1 hour. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.
- D. All tests shall be witnessed by the VA COTR at the beginning and end of any tests.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool

pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the VA Project Engineer.

3.5 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the VA Project Engineer, for instructing VA operating personnel.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A.Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.
 - 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at

design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.

- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI): AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI):
 ANSI B15.1-00(R2008).....Safety Standard for Mechanical Power
 Transmission Apparatus
 ANSI B16.1-05....Cast Iron Pipe Flanges and Flanged Fittings,
 Class 25, 125, 250 and 800
- D. American Society for Testing and Materials (ASTM):

A48-03 (2008).....Standard Specification for Gray Iron Castings

23 21 23 - 2

B62-2009.....Standard Specification for Composition Bronze or Ounce Metal Castings

E. Maintenance and Operating Manuals in accordance with Section 01 00 00, General Requirements.

1.6 DEFINITIONS

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the VA Project Engineer.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - 2. Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1½ times the designed pressure.
 - 3. Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be Open Drip Proof and operate at 1750 rpm unless noted otherwise.
 - d. Heating pumps shall be suitable for handling water to 225°F.
 - e. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.
 - f. Pump Connections: Flanged.
 - g. Pump shall be factory tested.
 - h. Performance: As scheduled on the Contract Drawings.

23 21 23 - 3

- 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip-proof motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION paragraph, Variable Speed Motor Controllers. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.
- B. In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 850 kPa (125 psig), ANSI B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - Casing Drain and Gage Taps: 15 mm (1/2-inch) plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, AISI Type 1045 or stainless steel.
 - Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10.Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- C. Base Mounted Pumps:
 - 1. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - 2. Impeller Wear Rings: Bronze.
 - 3. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, ANSI B15.1, bolted to the baseplate.
 - 4. Bearings (Double-Suction pumps): Regreaseable ball or roller type.
 - 5. Provide lip seal and slinger outboard of each bearing.
 - Base: Cast iron or fabricated steel for common mounting to a concrete base.
 - 7. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Provide suction diffuser as follows:
 - a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter

openings for pump protection. Provide taps for strainer blowdown and gage connections.

- b. Provide adjustable foot support for suction piping.
- c. Strainer free area: Not less than five times the suction piping.
- d. Provide disposable start-up strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam and condensate piping inside buildings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Piping insulation: Section 23 07 11, HVAC INSULATION.
- C. Water treatment for closed systems: Section 23 25 00, HVAC WATER TREATMENT.
- D. Heating Coils and Humidifiers: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS and SECTION 23 31 00, HVAC DUCTS AND CASING.
- E. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Gages.
- C. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Institute Standard (ANSI): B1.20.1-01.....Pipe Threads, General Purpose (Inch)

C.	American Society of Mech	nanical Engineers (ASME):
	B16.1-2005	.Cast Iron Pipe Flanges and Flanged Fittings
	B16.3-2006	Malleable Iron Threaded Fittings.
	B16.9-2007	.Factory-Made Wrought Buttwelding Fittings
	B16.11-2005	.Forged Fittings, Socket-Welding and Threaded
	B16.14-91	.Ferrous Pipe Plugs, Bushings, and Locknuts with
		Pipe Threads
	B16.22-2001	.Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.23-2002	.Cast Copper Alloy Solder Joint Drainage Fittings
	B16.24-2006	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings, Class 150, 300, 400, 600, 900, 1500
		and 2500
	B16.39-98	.Malleable Iron Threaded Pipe Unions, Classes
		150, 250, and 300
	В31.1-2007	.Power Piping
	В31.9-2008	.Building Services Piping
	В40.100-2005	.Pressure Gauges and Gauge Attachments
	Boiler and Pressure Vess	sel Code: SEC VIII D1-2001, Pressure Vessels,
		Division 1
D.	American Society for Tes	sting and Materials (ASTM):
	A47-99	.Ferritic Malleable Iron Castings
	A53-2007	.Pipe, Steel, Black and Hot-Dipped, Zinc-Coated,
		Welded and Seamless
	A106-2008	.Seamless Carbon Steel Pipe for High-Temperature
		Service
	A126-2004	.Standard Specification for Gray Iron Castings
		for Valves, Flanges, and Pipe Fittings
	A181-2006	.Carbon Steel Forgings, for General-Purpose
		Piping
	A183-2003	.Carbon Steel Track Bolts and Nuts
	A216-2008	.Standard Specification for Steel Castings,
		Carbon, Suitable for Fusion Welding, for High
		Temperature Service
	A285-01	.Pressure Vessel Plates, Carbon Steel, Low-and-
		Intermediate-Tensile Strength
	A307-2007	Carbon Steel Bolts and Studs, 60,000 PSI Tensile
		Strength
	A516-2006	.Pressure Vessel Plates, Carbon Steel, for
		Moderate-and- Lower Temperature Service
	A536-84(2004)e1	.Standard Specification for Ductile Iron Castings

B32-2008.....Solder Metal B61-2008.....Steam or Valve Bronze Castings B62-2009..... Composition Bronze or Ounce Metal Castings B88-2003.....Seamless Copper Water Tube E. American Welding Society (AWS): A5.8-2004......Filler Metals for Brazing and Braze Welding B2.1-00..........Welding Procedure and Performance Qualifications F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-70-98.....Cast Iron Gate Valves, Flanged and Threaded Ends SP-71-97.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-97.....Bronze Gate, Globe, Angle and Check Valves SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends G. Military Specifications (Mil. Spec.):

- MIL-S-901D-1989.....Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems
- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate Piping:
 - Concealed above ceiling, in wall or chase: Steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, schedule 80.
 - All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.

2.3 FITTINGS FOR STEEL PIPE

A. 50 mm (2 inches) and Smaller: Screwed or welded.

- 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
- 2. Forged steel, socket welding or threaded: ASME B16.11.
- 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
- 4. Unions: ASME B16.39.
- 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B.65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and thredolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C.Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.

B.50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.

- C.65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E.Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer. Provide gate and globe valves with packing that can be replaced with the valve under full working pressure.
- C. Shut-off Valves
 - Ball Valves: Brass or bronze body with chrome-plated ball with full port and Teflon seat at 4140 kPa (600 psig) working pressure rating. Screwed or solder connections. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Gate Valves:
 - a.50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150
 lb.), wedge disc, rising stem, union bonnet.
 - b.65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 - High pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 250 psig at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - All other services: MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 - 65 mm (2-1/2 inches) and larger: Flanged cast steel or 1723 kPa (250 psig) cast iron.
 - 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).

3. Mechanical coupled pipe: Grooved end, ductile iron.

- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 65 mm (2-1/2 inches) and larger: Flanged, iron body.
 - 2. 50 mm (2 inches) and smaller: Cast iron or bronze.
- D.Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.9 STEAM SYSTEM COMPONENTS

- A. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be rated for the pressure upstream of the PRV supplying the system.
 - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
 - 4. Ball valves and seats: Suitable hardened corrosion resistant alloy.
 - 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
 - 6. Floats: Stainless steel.
 - 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
 - Furnish and install a gate valve, an offset type strainer and a union ahead of each steam trap and a union and gate valve on leaving side of trap.
- B. Steam Humidifiers:

- Steam separator type that discharges steam into the air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer; modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap.
- 2. Steam Separator: Stainless steel or cast iron.
- 3. Distribution Manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:

a. Duct section height exceeds 900 mm (36 inches).

- b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
- c. If within 900 mm (3 feet) upstream of fan, damper or prefilter.
- d. If within 3000 mm (10 feet) upstream of afterfilter.

2.10 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C.Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam to 103 kPa(15	0 to 207 kPa (30 psig).
psig)	

2.11 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- F.Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around piping penetrating floors or walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound for corrosion protection.
- C.125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.4 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the VA Project Engineer. Tests may be either of those below, or a combination, as approved by the VA Project Engineer. Tests shall be witnessed by the VA Project Engineer in their entirety.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 23 00 REFRIGERANT PIPING AND CONDENSING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field refrigerant piping for direct expansion HVAC systems.
- B. Refrigerant piping shall be sized, selected, and designed by the equipment manufacturer in strict accordance with the manufacturer's published instructions and in coordination with the installing contractor to obtain all field line length measurements.
- C. Definitions:
 - Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
 - Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Requirements for piping insulation.
- C. Section 23 81 23, COMPUTER ROOM AIR-CONDITIONERS AND VARIABLE REFRIGERANT VOLUME AIR-CONDITIONING: Piping requirements for split system units.
- D. Section 23 21 13, HYDRONIC PIPING: Requirements for water and drain piping and valves.

1.3 QUALITY ASSURANCE

- A.Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.

- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Sufficient information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e.Filter-driers
 - f.Flexible metal hose
 - g. Pipe and equipment supports
 - h.Refrigerant and oil
 - i. Pipe/conduit roof penetration cover
 - j. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D.Design Manual: Furnish two copies of design manual of refrigerant valves and accessories in hardcopy and PDF formats.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (ARI):
 - 495-05..... Liquid Receivers
 - 730-05.....Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers
 - 750-01..... Thermostatic Refrigerant Expansion Valves

760-01.....Solenoid Valves for Use with Volatile Refrigerants

C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE):

15-04.....Safety Standard for Refrigeration Systems (ANSI) 17-98 (RA2003).....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI) 63.1-95 (RA 01).....Method of Testing Liquid Line Refrigerant Driers (ANSI) D. American National Standards Institute (ANSI): A13.1-96 (REAF 2002)....Scheme for Identification of Piping Systems Z535.1-02.....Safety Color Code E. American Society of Mechanical Engineers (ASME): B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) B16.24-2001.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI) B31.5-2001 (ADA 2004)...Refrigeration Piping and Heat Transfer Components (ANSI) B40.100-05.....Pressure Gauges and Gauge Attachments F. American Society for Testing and Materials (ASTM) A126-04..... Gray Iron Castings for Valves, Flanges, and Pipe Fittings B32-04.....for Solder Metal B88-03.....Standard Specification for Seamless Copper Water Tube B88M-05.....Standard Specification for Seamless Copper Water Tube (Metric) B280-03..... Standard Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service G. American Welding Society, Inc. (AWS): Brazing Handbook A5.8/A5.8M-04.....Standard Specification for Filler Metals for Brazing and Braze Welding H. Federal Specifications (Fed. Spec.) Fed. Spec. GG I. Underwriters Laboratories (U.L.): U.L.207-01 (Rev.2004)...Standard for Refrigerant-Containing Components and Accessories, Nonelectrical U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer.
 - 1. At the contractor's option, ASTM B210 seamless drawn aluminum tubing, cleaned and capped in accordance with ASTM B280, and complying with ASME B31.5, with REFLOK steel fittings may be used. If aluminum tubing is substituted, the joints must be made without the use of heat. Any joint fitting must be UL or ETL listed and tested per UL-207 for joining refrigeration tubing using either copper or aluminum tubing.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L), or refrigerant tube ASTM B280.
- C. Fittings, Valves and Accessories:
 - 1. Solder joints: Wrought copper fittings, ASME B16.22.
 - a. Solder, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
 - b. Solder, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
 - 2. Steel fittings: ASTM wrought steel fittings.
 - a.Refrigerant piping Welded Joints.
 - 3. Flanges and flanged fittings: ASME B16.24.
 - 4. At the contractor's option, ETL tested and listed to UL 207 REFLOK fittings for joining copper to copper, aluminum to aluminum or aluminum to copper may be used. Fittings shall have dielectric coating to allow connection of dissimilar metals. Fittings shall be certified to a working pressure of 600 psi.
 - 5. Refrigeration Valves:
 - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, backseating.
 - b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
 - c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, twoposition, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally open holding coil.

- d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- 6. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.
- 8. Refrigerant Filter-Dryers: UL listed, in-line type. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
- 9. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
- 10.Water Piping Valves and Accessories: Refer to specification Section 23 21 13, HYDRONIC PIPING.

2.2 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.3 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.4 PIPE/CONDUIT ROOF PENETRATION COVER

A. Prefabricated Roof Curb: Galvanized steel or extruded aluminum 300 mm (12 inches) overall height, continuous welded corner seams, treated wood nailer, 38 mm (1-1/2 inch) thick, 48 kg/cu.m (3 lb/cu.ft.) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

- B. Penetration Cover: Galvanized sheet metal with flanged removable top. Provide 38 mm (1-1/2 inch) thick mineral fiber board insulation.
- C. Flashing Sleeves: Provide sheet metal sleeves for conduit and pipe penetrations of the penetration cover. Seal watertight penetrations.

2.5 PIPE INSULATION FOR DX HVAC SYSTEMS

A. Refer to specification Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

2.6 AIR COOLED CONDENSING UNITS: (2-5 TONS)

- A. Condensing units shall be furnished with weatherproof cabinets constructed of galvanized steel on the inside and outside and coated with baked-on enamel. Units shall have all operating components assembled on a common base. Cabinet shall be furnished with a wraparound louvered grille to protect the condenser coil fins from damage.
- B. Units shall include hermetically sealed, scroll compressor, copper tube, aluminum fin condenser coil, condenser fan and motor, refrigerant reservoir, charging valves, all controls, crankcase heaters, low pressure cutouts, and a holding charge of R-410A.
- C. Units shall be factory wired with a single point power connection.
- D. Condensing units shall be furnished according to the schedule on the drawings.

2.7 AIR COOLED CONDENSING UNITS (10-39 TONS):

- A. Provide and install as shown on the plans factory-assembled, air-cooled, scroll compressor condensing units in the size and quantity specified. Each unit shall consist of a hermetic tandem scroll compressor set, aircooled condenser section, control system and all components necessary for controlled unit operation.
- B. Condensing units shall be furnished according to the schedule on the drawings.
- C.Condensing units shall be furnished for operation using the refrigerant(R-410A).
- D. Condensing units shall be furnished with weatherproof cabinets constructed of heavy gauge steel, galvanized on the inside and outside and coated with baked-on enamel. Units shall have all operating components assembled on a common base. Units shall include compressors, condenser coil, condenser fan and motor, refrigerant reservoir, charging valves, all controls, crankcase heaters, low pressure cutouts, and a refrigerant holding charge.

- E. Compressors shall be digital offloading, sealed hermetic scroll type with crankcase oil heater and suction strainer. Compressor shall have a forced-feed lubrication system with integral oil pump and oil charge. The compressor motor shall be refrigerant gas cooled, high torque, hermetic induction type, two-pole, with inherent thermal protection on all three phases and shall be mounted on RIS vibration isolator pads. Digital offloading shall allow the compressor to modulate output to match the system load.
- F. Condenser coils shall consist of seamless copper tubes mechanically bonded into aluminum plate-type fins. The fins shall have full drawn collars to completely cover the tubes. A sub-cooling coil shall be an integral part of the main condenser coil. Condenser fans shall be propeller type arranged for vertical air discharge and individually driven by direct-drive fan motors. Provide low sound condenser fan package. They shall be equipped with a heavy-gauge fan guard. Fan motors shall be TEAO, direct-drive. The condenser coil shall be protected by a full-area, epoxy-coated, wire mesh screen. Units shall be provided with hail screen or other approved method of protecting the condenser coil fins from hail damage.
- G.Refrigerant Circuit: Capped connections shall be provided for field connection of refrigerant piping.
- H.Condensing unit shall be provided with low ambient operation equipment to allow operation to 40° F.
- I. Unit shall have single point power connection. Field power connections, control interlock terminals and unit control system shall be enclosed in a weather tight enclosure. Power and starting components shall include factory fusing of fan motors and control circuit, starting contactors, compressor sequence start timer, compressor overload protection on all three phases, and factory installed control power transformer with GFI outlet on unit exterior.
- J. An advanced DDC microprocessor unit controller provides the operating and protection functions. The controller shall be capable of receiving a 4 to 20 mA signal for demand limiting and be remotely enabled with a digital input. The controller shall take pre-emptive limiting action in case of high discharge pressure or low evaporator pressure.

2.8 AIR COOLED CONDENSER UNIT (FOR FREEZER/COOLER COMPRESSORS)

A. Air cooled condensers shall include easily serviceable motor reducing coil damage, quiet edge fan blade, galvanized steel housing, direct drive fan motors, high efficiency condenser coils, three-phase high efficiency motors with ball bearings and internal overload protection, floating tube coil design, internal baffles between fan cells, coated steel fan guards, UL listed, and weatherproof control panel with factory mounted door interrupt disconnect switch.

- B. Options for the air cooled condenser shall include multiple circuits, fan-cycle control panels, hinged fan panels, side access panels, sealtite wiring, quiet fan blades, and side access panels for coils.
- C. Provide pressure sensors from the fan cycle controls to the discharge of each compressor for head pressure sensing as well as head pressure control valves. Any compressor connected to the outdoor condenser shall be capable of activating the fan to maintain compressor head pressure.
- D. Provide pressure controls for each compressor to cycle the fan off when all compressors are turned off. Provide all wiring in conduit as required between the compressors and outdoor unit.
- E. Provide all valves and accessories listed above for each condenser and its associated refrigerant piping. Accessories shall include (but not limited to) driers, filters, hand valves,
- 2.9 PIPE INSULATION FOR WALK-IN COOLERS AND FREEZERS REFRIGERATORS
 - A. Flexible elastomeric: Refer to specification Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
 - 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
 - 4. Use copper tubing in protective conduit when installed below ground.
 - 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.
- B. Joint Construction:
 - 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.

- a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
- b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
- c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
- d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- At the contractor's option, REFLOK fittings may be substituted for brazing of copper tubing. If REFLOK fittings are used to join tubing (copper or aluminum), brazing and nitrogen purge will be eliminated.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than 45 kg (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around piping penetrating floors or walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

3.2 PIPE AND TUBING INSULATION

- A.Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION and Section 23 07 11.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).

 Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

A. Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

3.5 FIELD TESTS

- A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of VA Project Engineer. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - Every refrigerant-containing part of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group Al refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum. The test shall be run for a minimum of two hours.
- B. Test Medium: A suitable dry gas such as nitrogen shall be used for pressure testing. The means used to build up test pressure as described above shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.
- C. Tests shall be witnessed by the VA COTR at the beginning and end of any tests.

3.6 SYSTEM TEST AND CHARGING

A. System Test and Charging: As recommended by the equipment manufacturer or as follows:

- Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
- 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
- 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL REQUIREMENTS.
- B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- C. Piping and valves: Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A.Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 2service calls and written status reports. Minimum service during construction/start-up shall be 4 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Glycol-water system materials, equipment, and installation.

- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

70-05..... Code (NEC)

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C.Refer to Section 23 21 13, HYDRONIC PIPING PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved proprietary compound suitable for make-up quality and make-up rate and which will prevent bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B.pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees

Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

D. Sidestream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with stainless steel core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 13.8 kPa (2 psig) at design flow rate when clean, and maximum pressure drop of 172 kPa (25 psig) when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 GLYCOL-WATER SYSTEM

A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.

Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 30% propylene-glycol for chilled water systems and 50 percent propylene-glycol for glycol hot water systems (35% propylene glycol for chilled water systems for Building 13).

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

A.Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the technical representative.
- C.Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient

- 2. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E.Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Duct Insulation: Section 23 07 11, HVAC INSULATION
- E. Duct Mounted Coils: Section 23 82 16, AIR COILS.
- F. Supply Air Fans: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- G.Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- H.Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- K. Smoke Detectors: Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

- A.Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

23 31 00 - 1

- C.Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes as specified.
- E. Duct accessories exposed to the air stream, such as dampers of all types and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - c.Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Access sections.
 - d. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - 7. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other

Structures

C. American Society for Testing and Materials (ASTM):

	A167-99(2009)	Standard Specification for Stainless and
		Heat-Resisting Chromium-Nickel Steel Plate,
		Sheet, and Strip
	A653-09	.Standard Specification for Steel Sheet,
		Zinc-Coated (Galvanized) or Zinc-Iron Alloy
		coated (Galvannealed) by the Hot-Dip process
	A1011-09a	Standard Specification for Steel, Sheet and
		Strip, Hot rolled, Carbon, structural, High-
		Strength Low-Alloy, High Strength Low-Alloy with
		Improved Formability, and Ultra-High Strength
	B209-07	Standard Specification for Aluminum and
		Aluminum-Alloy Sheet and Plate
	C1071-05e1	Standard Specification for Fibrous Glass Duct
		Lining Insulation (Thermal and Sound Absorbing
		Material)
	E84-09a	.Standard Test Method for Surface Burning
		Characteristics of Building Materials
D.National Fire Protection Association (NFPA):		
	90A-09	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
E. Sheet Metal and Air Conditioning Contractors National Association		
	(SMACNA):	
	2nd Edition - 2005	.HVAC Duct Construction Standards, Metal and
		Flexible
	1st Edition - 1985	.HVAC Air Duct Leakage Test Manual

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C.Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.

- 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
- Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
- 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - > 75 mm to 100 mm (3 inch to 4 inch)
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Provide a welded stainless steel duct section for housing the ductmounted humidifiers and cooling coils. Ductwork shall be at least 2 feet long on the upstream side and 3 feet long on the downstream side. Slope the ductwork against the direction of airflow and provide drain connections. Route condensate piping from the nearest drain pan to the nearest drain.
- E. Duct for Negative Pressure Up to 750 Pa (3 inch W.G.): Provide for exhaust duct between grilles and exhaust fan inlet.
 - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints.
 - 2. Rectangular Duct: Galvanized steel, minimum 1.0 mm (20 gage), Pittsburgh lock seam, companion angle joints 32 mm by 3.2 mm (1-1/4 by 1/8 inch) minimum at not more than 2.4 m (8 feet) spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles.
- F. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction,

maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.

- 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a.Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the VA ProjectEngineer.
- G. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- H. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- I. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- 2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS
 - A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service).
 - 3. Each duct mounted smoke detector.

- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any barrier. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.

- 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
- Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.6 FLEXIBLE DUCT CONNECTIONS

A. Where duct connections are made to fans, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.7 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with mineral fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long mineral fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.8 FIRESTOPPING MATERIAL

A. Refer to Section 07 84 00, FIRESTOPPING.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers at locations indicated and where ducts penetrate rated walls, floors, shafts and where required by the VA Project Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers to the VA Project Engineer.

- E. Seal openings around duct penetrations of floors and partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition. Support ducts as per SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by VA Project Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork) included in this project.

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the VA Project Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the VA Project Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the VA Project Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A.Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- F. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A.Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Performance Criteria:
 - The fan schedule shows cubic meters per minute (CFM) and design static pressure. Scheduled fan motors, 0.37 kW (1/2 horsepower) and larger, are sized for design cubic meters per minute (CFM) at 110 percent design static pressure, but not to exceed 185 Pa (3/4-inch) additional pressure.
 - 2. Provide fans and motors capable of stable operation at design conditions and at 110 percent pressure as stated above.
 - 3. Lower than design pressure drop of approved individual components may allow use of a smaller fan motor and still provide the safety factor. When submitted as a deviation a smaller motor may be approved in the interest of energy conservation. The contractor shall be responsible for making necessary changes to the electrical system.
 - 4. Select fan operating point as follows:

- a. Forward curved and axial fans: Right hand side of peak pressure point.
- b. Airfoil, backward inclined or tubular: Near the peak of static efficiency.
- F. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - 3. In-line centrifugal fans.
 - 4. Up-blast kitchen hood exhaust fans.
 - 5. Utility fans and vent sets.
 - 6. Prefabricated roof curbs.
 - 7. Power roof and wall ventilators.
- C. Certified sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E.Belt guards.
- F. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- G. Certified fan performance curves for each fan showing cubic meters per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation and at 110 percent of design static pressure. Include product application data to indicate the effect of capacity control devices such as inlet vane dampers on flow, pressure and kW (horsepower).

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Anti-Friction Bearing Manufacturers Association, Inc. (AFBMA): 9-00.....Load Ratings and Fatigue Life for Ball Bearings
- C. Air Movement and Control Association International, Inc. (AMCA):
 - 99-86.....Standards Handbook
 - 210-01.....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating
 - 261-98.....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually

300-96.....Reverberant Room Method for Sound Testing of Fans D. American Society for Testing and Materials (ASTM): B117-03.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-02....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D359-02....Standard Test Methods for Measuring Adhesion by Tape Test G152-01....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-01....Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials

E. Underwriters Laboratories, Inc. (UL):

181-96..... Factory Made Air Ducts and Air Connectors

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

A. Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B.Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2") wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 40,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.

- 5. Belts: Oil resistant, non-sparking and non-static. Furnish one additional complete set of belts for each belt-driven fan.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys, so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for controller/motor combination requirements.
- C. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and B, provide inlet and outlet flanges, bolted access door and arrangement 1, 4 or 9 supports as required.
- D. Up-Blast Kitchen Hood Exhaust Fans: Roof Mounted centrifugal, arrangement 9, vertical up-blast, mounting bracket and curb cap, sheet metal weather cover for motor and drive and drain threaded outlet wind band discharge cap with gravity dampers, grease trap with drain connection, insulating heat baffle hinged access kit, and bolted access door, in addition to requirements of paragraphs A and B.
- E. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and B, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.

2.3 PREFABRICATED ROOF CURBS/EXTENSIONS

- A. Construction: Galvanized steel, with continuous welded corner seams, two inch wall thickness, treated wood nailer, 38 mm (1-1/2 inch) thick, 48 kg per cubic meter (3 pound) density rigid mineral fiberboard insulation with metal liner, built-in cant strip, (except for gypsum or tectum decks). For surface insulated roof deck provide raised cant strip to start at the upper surface of the insulation.
- B. Curb Height: 450 mm (18 inches) above finished roof, and curb height for up-blast kitchen hood exhaust fan shall be 450 mm (18 inches) above finished roof surface or as required to comply with NFPA 96.

2.4 ROOF OR WALL POWER VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades.
- C. Construction: Steel or aluminum, completely weatherproof, for curb or wall mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block with B-10 average life of 200,000 hours.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C.Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify proper operation of motor, drive system and fan wheel.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS: Ducts and flexible connectors.
- C. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- D. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: Flow rates adjusting and balancing.
- E. Section 23 82 16, AIR COILS: Heating and Cooling Coils pressure ratings.

1.3 QUALITY ASSURANCE

A.Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air flow control valves.
- C.Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI):

880-08..... Air Terminals Addendum to ARI 888-98

incorporated into standard posted 15th December 2002

C. National Fire Protection Association (NFPA):

90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems

D.Underwriters Laboratories, Inc. (UL): 181-08.....Standard for Factory-Made Air Ducts and Air Connectors

E. American Society for Testing and Materials (ASTM):

C 665-06.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

A. In accordance with the GENERAL CONDITIONS.

PART 2 - PRODUCTS

2.1 GENERAL

- A.Coils:
 - 1. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c.Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR FLOW CONTROL VALVE (AFCV)

- A. Airflow control device shall be a pressure independent type air flow control valve.
- B. Pressure independent over a 150 Pa-750 Pa (0.6 inch WG 3.0 inch WG) drop across valve.
- C. Volume control accurate to plus or minus 5% of airflow over an airflow turndown range of 16 to 1. No minimum entrance or exit duct diameters shall be required to ensure accuracy or pressure independence.
- D. Response time to change in command signal and duct static pressure within three seconds.
- E. 16 gauge spun aluminum valve body and control device with continuous welded seam and 316 stainless steel shaft and shaft support brackets. Pressure independent springs shall be stainless steel. Shaft bearing surfaces shall be Teflon. Supply valves shall be insulated with 3/8" flexible closed cell polyethylene that has a density of 2 lb/ft² and flame/smoke rating of 25/50.
- F. Constant volume units:
 - 1. Actuator to be factory mounted to the valve.
 - 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
 - Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
 - 4. The maximum and minimum airflows shall be as scheduled.
- G. Variable volume units:
 - 1. Actuator to be factory mounted to the valve.
 - Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
 - Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
- H. Certification:
 - Control device: factory calibrated to airflows detailed on plans using NIST traceable air stations and instrumentation having a combined accuracy of plus or minus 1% of signal over the entire range of measurement.
 - Electronic airflow control devices: further calibrated and their accuracy verified to plus or minus 5% of signal at a minimum of eight different airflows across the full operating range of the device.

- 3. All airflow control devices: individually marked with device specific, factory calibration data to include: tag number, serial number, model number, eight point characterization information (for electronic devices), and quality control inspection numbers.
- I. Room Controllers
 - Provide advanced pressure monitor for each room supplied with flow control valves. Room controllers shall accurately measure and indicate the true pressure differential between two or three rooms. The mechanical contractor shall provide all wiring and transformers required for installation.
 - 2. Room controller shall include 4.3" color touch screen display. Features shall include one-touch room mode change, message banner for room condition indication, password protection, visual/audible alarming at local and remote locations, valve flow alarming, door status indicator, positive/negative/neutral setpoints, high speed differential pressure output, mode switches for alarm setpoints of negative/positive/neutral rooms, resistant to spray washdown, and resistant to decontamination chemicals.
 - 3. The controller shall be setup to read "Room Pressure Failure" on the left banner display with a red background when the room pressure is not meeting required parameters for the current mode. The controller shall be setup to read "Room Pressure Normal" with a green background if the room pressure is meeting required parameters for the current mode.
 - 4. Room controller shall be capable of sensing at a 0.5% (\pm 0.25%) full scale accuracy and with a display resolution up to 0.0001" W.C.
 - Provide pressure pickup ports installed in each side of the room walls for monitoring room pressure and connect to the room controller. Additionally, provide door contacts for indication.
 - 6. Coordinate with the Temperature Controls contractor for temperature control of the space. Temperature control of the space will have the ability of increasing the airflow to the space for cooling and modulating a hot water control valve associated with a terminal reheat coil for heating. Airflow set points will also be based on occupancy of the space as an increased airflow is required during the occupied mode versus a standby set point when the space is not occupied. Room thermostat shall be provided by the air flow control valve supplier and installed by the Temperature Controls contractor.

The control valve shall be furnished by the temperature controls contractor and installed by the mechanical contractor.

- 7. Provide Bacnet card/operation for reporting all available points to the ECC. An alarm contact shall be provided and monitored by the building automation system to alarm if the space pressure relationship is not in compliance with design. An analog signal shall be sent to the building automation system for space pressure monitoring and allow for overriding airflow rates to maintain pressure relationships.
- 8. All wiring associated with the Isolation Room Variable Air Volume boxes and local controller will be provided/installed by the Temperature Controls Contractor. Coordinate with the Temperature Controls Contractor for BACnet control requirements, etc. when ordering equipment.
- 9. The equipment and controls being provided under this section shall be provided with a 3 year warranty. The warranty shall cover airflow sensors and flow transducers provided under this section.

2.3 VISUAL ROOM AIRFLOW DIRECTION MONITOR:

- A. Room airflow direction indicator shall indicate the status of the directional airflow into or out of the concerned space.
- B. The primary element of the airflow direction indicator shall incorporate a means of stopping airflow through the element when the room door is closed and the room is under proper negative or positive pressure. This shall be accomplished via endcap design, where the indicating sphere closes off the tube endcap during proper room pressure.
- C. The visual component shall carry a lifetime warranty against breakage on the tube, endcaps, indicating sphere, backplate and clear dome covers. All other components including the electric components shall be industrial grade and warrantied for one year.
- D. For safety purposes, the indicator shall be installed with a tilt described in the installation documents. The indicator shall display a self-check for failure each time the airlock or door is opened. This is accomplished by the indicating sphere rolling to its failsafe position (corridor for negative rooms, inside room for positive rooms) when the door to the room is opened. The indicating sphere should go back to its proper position (in the room for negative rooms, in the corridor for positive rooms) when the door is closed.

- E. Each indicator installed shall have a small, framed sign or engraved plate sign next to it describing the intent and operation of the indicator.
- F. Refer to the plans to see if the wall is to be rated. Also see manufacturer's Technical Bulletin "ADI and Fire-Rated Walls". If firerating is required, provide the fire-rating via proper means. See manufacturer's Detail for Fire-Rated Wall Installations which uses 3-1/2" EMT SLEEVE.
- G. The alarm unit shall incorporate a visual indicator equal to Baulintube manufactured by Airflow Direction Incorporated.
- H. The unit shall come with an adhesive backed, laminated 3.5"x3.5" wall label describing the operation of the airflow direction indicator.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls as per manufacturer's instructions.

3.2 OPERATIONAL TEST

A.Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air outlets and inlets and gravity intake hoods.

1.2 RELATED WORK

- A. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- C. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A.Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th

Edition

- C. American Society of Civil Engineers (ASCE):
 - ASCE7-98......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):

A167-99.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

A653-01Standard Specification for Steel Sheet,		
Zinc-Coated (Galvanized) or Zinc-Iron Alloy		
coated (Galvannealed) by the Hot-Dip process		
A1011-02Standard Specification for Steel Sheet and Strip		
Hot rolled Carbon structural, High-Strength Low-		
Alloy and High Strength Low-Alloy with Improved		
Formability		
B209-01and Specification for Aluminum and		
Aluminum-Alloy Sheet and Plate		
E84-01Burning		
Characteristics of Building Materials		
E.National Fire Protection Association (NFPA):		
90A-99of Air		
Conditioning and Ventilating Systems		
96-01		
Commercial Cooking Operations		
F.Underwriters Laboratories, Inc. (UL):		
33-96		
Fire Protection Service		

PART 2 - PRODUCTS

2.1 GRAVITY TYPE AIR INTAKE/EXHAUST HOODS

- A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 13 mm (1/2 inch) mesh aluminum or galvanized welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.
- B. See hood schedule on the drawings. Sizes shown on the drawings designate throat size. Area of hood perimeter opening shall be not less than the throat area. Provide intake hoods with optional 12-inch base in lieu of the standard 5-inch base. Additionally, provide a 12-inch, 22 gauge aluminum shroud around the bottom of the hood.

2.2 PREFABRICATED ROOF CURBS

A. Galvanized steel or extruded aluminum 36-inches for intake hoods with 12-inch extension (42-inches total), continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.3 EQUIPMENT SUPPORTS

A. Refer to Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.4 AIR OUTLETS AND INLETS

- A.Materials:
 - 1. Steel or aluminum. Provide manufacturer's standard gasket.
 - Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver plaque (with standard white powder coat finish): Round neck, surface mounting unless shown otherwise on the drawings.
 - 2. Provide additional supply diffusers as scheduled.
 - Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c.Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.

- b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- 3. Provide additional return and exhaust grilles as scheduled.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by VA Project Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

A.Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION

- - - E N D - - -

SECTION 23 40 00 HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.
- C. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to VA Project Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with preconditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
 - 2. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of

service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.

- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, and rated efficiency.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Side access housings.
 - 3. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):
 - 52.2-2007......Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME):

NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications

D. Underwriters Laboratories, Inc. (UL): 900; Revision 15 July 2009 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

HVAC Filter Types Table 2.2C					
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type	
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway	

2.2 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER AND FINAL) CARTRIDGE FILTERS (12"/4"; MERV 14/11; UL 900 CLASS 2):

- A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-

Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	11
Gross Media Area (Sq. Ft.)	197	197
Dust Holding Capacity (Grams)	486	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x4
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500
Final Resistance (inches w.g.)	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.27

2.3 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - 1. Filter housing shall be single-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track with woven nylon pile seal, universal filter holding frame, insulated dual-access doors with closed cell neoprene gaskets, static pressure tap, 1-1/2" mounting flanges for duct connections on inlet and outlet, support legs, filter gaskets and seals. In-line housing depth shall not exceed 5.5". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep pre-filter. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant, positive pressure trip lock latches and replaceable door hinges. The housing shall include a pneumatic fitting in two locations to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter. Provide MERV 8 2-inch pre-filters in the housing as part of the installation. See requirements for filters in previous paragraphs.

- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

2.4 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage). Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.5 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install supports, filters and gages in accordance with manufacturer's instructions.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the VA Project Engineer.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Scroll air-cooled chillers complete with accessories.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 21 23, HYDRONIC PUMPS.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- G. Section 26 29 11, MOTOR CONTROLLERS.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.
- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and comply with the following.
- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.
- D. Refer to paragraph, WARRANTY, Section 01 00 00, GENERAL REQUIREMENTS, except as noted below:
 - 1. Provide a 4-year chiller, motor, and compressor warranty to include materials, parts and labor.
- E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard

F. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-01.....Refrigerating and Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment 495-1999 (R2002).....Refrigerant Liquid Receivers 550/590-03.....Standard for Water Chilling Packages Using the Vapor Compression Cycle C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): ANSI/ASHRASE-15-2007....Safety Standard for Mechanical Refrigeration Systems GDL 3-1996.....Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems D. American Society of Mechanical Engineers (ASME): 2007 Vessel Code, Section VIII, "Pressure Vessels - Division 1" E. American Society of Testing Materials (ASTM): C 534/ C 534M-2008.....Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C 612-04..... Mineral-fiber Block and Board Thermal Insulation F. National Electrical Manufacturing Association (NEMA): Maximum) G. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code H. Underwriters Laboratories, Inc. (UL): 1995-2005..... Heating and Cooling Equipment 1.6 SUBMITTALS A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. B. Manufacturer's Literature and Data. 1. Scroll chillers, including motor starters, control panels, and vibration isolators, and remote condenser data shall include the following: a. Rated capacity.

- b. Pressure drop.
- c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard.
- d. Refrigerant
- e. Fan performance (Air-Cooled Chillers only.)
- f. Accessories.
- g. Installation instructions.
- h. Start up procedures.
- Wiring diagrams, including factory-installed and field-installed wiring.
- j. Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment.
- k. Refrigerant vapor detectors and monitors.
- Dimensioned plan and elevation view, including required clearances, and location of all field piping and electrical connections.
- m. Summaries of all auxiliary utility requirements such as: electricity, water, air, etc. Summary shall indicate quality and quantity of each required utility.
- n. Diagram of control system indicating points for field interface and field connection. Diagram shall fully depict field and factory wiring.
- o. Manufacturer's certified performance data at full load plus IPLV or NPLV.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Chillers shall be delivered to the job site completely assembled and charged with refrigerant R410a and be shipped on skids with a weather resistant cover.
- F. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.

PART 2 - PRODUCTS

2.1 SCROLL AIR-COOLED WATER CHILLERS

A. General: Factory-assembled and-tested scroll water chillers, complete with evaporator, compressors, motor, starters, integral condenser, and controls mounted on a welded steel base. The chiller unit shall consist of two compressors minimum, but not more than eight, mounted on a single welded steel base. Where compressors are paralleled, not more than two shall be so connected and not less than two independent refrigerant circuits shall be provided. Chiller shall be capable of operating with the following refrigerant: HCFC-410a.

- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings.
- C. Capacity of a single air-cooled chiller shall not exceed 250 Tons (Standard AHRI Conditions).
- D. Applicable Standard: Chillers shall be rated and certified according to AHRI 550/590, and shall be stamped in compliance with AHRI certification.
- E. Acoustics: Sound pressure levels shall not exceed the scheduled levels. The manufacturer shall provide sound treatment if required to comply with the specified maximum levels. Testing shall be in accordance with AHRI requirements.
- F. Compressor (Scroll Type): Three dimensional, positive-displacement, hermetically sealed design, with suction and discharge valves, crankcase oil heater and suction strainer. Compressor shall be mounted on vibration isolators. Rotating parts shall be factory balanced. Lubrication system shall consist of reversible, positive displacement pump, strainer, oil level sight glass, and oil charging valve. Capacity control shall be by on-off compressor cycling of single and multiple compressors.
- G. Refrigerants Circuit: Each circuit shall contain include an expansion valve, refrigerant charging connections, hot-gas muffler, compressor suction and discharge shutoff valves, replaceable-core filter drier, sight glass with moisture indicator, liquid-line solenoid valve and insulated suction line.
- H. Refrigerant and Oil: Sufficient volume of dehydrated refrigerant and lubricating oil shall be provided to permit maximum unit capacity operation before and during tests. Replace refrigerant charge lost during the warranty period, due to equipment failure, without cost to the Government.
- I. Condenser:
 - 1. Air-cooled integral condenser as shown on the drawings and specified hereinafter.

- 2. Integral Condenser: Condenser coils shall be extended surface fin and tube type, seamless copper tubes with aluminum fins. For corrosion protection, see Paragraph 2.7 below. Condenser coils shall be factory air tested at 3105 kPa (450 psig). Condenser fans shall be propeller type, directly connected to motor shaft. Fans shall be statically and dynamically balanced, with wire safety guards. Condenser fan motors with permanently lubricated ball bearings and three-phase thermal overload protection. Unit shall start -18°C (0°F) with external damper assemblies. Units shall have full height hail guards and grilles factory mounted to prevent damage to coil surfaces.
- J. Evaporator: Shell and tube design with seamless copper tubes roller expanded into tube sheets. Designed, tested, and stamped in accordance with applicable portions of ASME Boiler and Pressure Vessel Code, Section VIII, for working pressure produced by the water system, but not less than 1035 kPa (15 psig). Refrigerant side working pressure shall comply with ASHRAE Standard 15. Shell shall be constructed of carbon steel. For the waterside of liquid cooler the performance shall be based on a water velocity not less than 1 m/s (3 fps) with a maximum water velocity of 3 m/s (10 fps) and a fouling factor 0.0000176 m² degrees C (0.0001 hr. sq. ft.) degrees F/Btu. Evaporator for packaged air-cooled chiller units designed for outdoor installation shall be protected against freeze-up in ambient temperature down to -30 degrees C (-20 degrees F) by a resistance heater cable under insulation with thermostat set to operate below 3 degrees C (37 degrees F) ambient.
- K. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 20 mm (0.75 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.
- L. Refrigerant Receiver: Provide a liquid receiver for chiller units when system refrigerant charge exceeds 80 percent of condenser refrigerant volume. Liquid receivers shall be horizontal-type, designed, fitted, and rated in conformance with AHRI 495. Receiver shall be constructed and tested in conformance with Section VIII D1 of the ASME Boiler and Pressure Vessel Code. Each receiver shall have a storage capacity not less than 20 percent in excess of that required for fully charged system. Each receiver shall be equipped with inlet, outlet drop pipes, drain plug, purging valve, and relief devices as required by ASHRAE Standard 15.

- M. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls inNEMA 4 enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.
 - 1. Following shall display as a minimum on the panel:
 - a. Date and time.
 - b. Outdoor air temperature.
 - c. Operating and alarm status.
 - d. Entering and leaving water temperature-chilled water.
 - e. Operating set points-temperature and pressure.
 - f. Refrigerant temperature and pressure.
 - g. Operating hours.
 - h. Number of starts.
 - i. Current limit set point.
 - j. Maximum motor amperage (percent).
 - 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Condenser water temperature.
 - c. Entering and leaving chilled water temperature and control set points.
 - d. Automatic lead-lag switch.
 - 3. Safety Functions: Following conditions shall shut down the chiller and require manual reset to start:
 - a. Loss of chilled water flow.
 - b. Low chilled water temperature.
 - c. Compressor motor current-overload protection.
 - d. Freeze protection (for air-cooled chillers).
 - e. Starter fault.
 - f. High or low oil pressure.

- N. The chiller control panel shall provide leaving chilled water temperature reset based on signal from Energy Control Center (ECC).
- O. Provide contacts for remote start/stop, alarm for abnormal operation or shutdown, and for Engineering Control Center (ECC).
- P. Chiller control panel shall either reside on BACnet interworking using ARCNET or MS/TP physical data link layer protocol for communication with building automation control system.
- Q. Auxiliary hydronic system and the chiller(s) shall be interlocked to provide time delay and start sequencing as indicated on control drawings.
- R. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT. Starting torque of motors shall be suitable for driven machines.
- S. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide a starter in NEMA I enclosure, designed for floor or unit mounted chiller using multiple compressors, with the lead compressor starting at its minimum capacity may be provided with across-the-line starter. See Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for additional requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller on concrete base with isolation pads or vibration isolators.
 - Concrete base is specified in Section 03 30 00, CAST-IN-PLACE CONCRETE

- 2. Anchor chiller to concrete base according to manufacturer's written instructions.
- 3. Charge the chiller with refrigerant, if not factory charged.
- 4. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
- 5. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc. Also arrange piping to allow for dismantling to permit head removal and tube cleaning.
- B. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.
- C. Piping Connections:
 - Make piping connections to the chiller for chilled water, condenser water, and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service. Provide for as long a time as is necessary to ensure proper operation of the unit, but in no case for less than two full working days. During the period of start-up, the start-up technician shall instruct the owner's representative in proper care and operation of the unit.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the VA that the equipment operate and perform as intended.
 - 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
 - 2. Check bearing lubrication and oil levels.
 - 3. Verify proper motor rotation.

- 4. Verify pumps associated with chillers are installed and operational.
- 5. Verify thermometers and gages are installed.
- 6. Verify purge system, if installed, is functional and relief piping is routed outdoor.
- 7. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
- 8. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.
- 9. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
- 10.Prepare a written report outlining the results of tests and inspections, and submit it to the VA.
- D. Engage manufacturer's certified factory trained representative to provide training for 4 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment.

- - - E N D - - -

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of housed-centrifugal fan with V-belt drive, multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Sound and vibration requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- C. Piping and duct insulation: Section 23 07 11, HVAC INSULATION.
- D. Piping and valves: Section 23 21 13/23 22 13, HYDRONIC PIPING, STEAM AND CONDENSATE HEATING PIPING.
- E. Heating and cooling coils and pressure requirements: Section 23 82 16, AIR COILS.
- F. Return and exhaust fans: Section 23 34 00, HVAC FANS.
- G. Requirements for flexible duct connectors and air leakage: Section 23 31 00, HVAC DUCTS AND CASINGS.
- H.Air filters and filters' efficiency: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. HVAC controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J.Testing, adjusting and balancing of air and water flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- K. Types of motors: Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- L. Types of motor starters: Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- M.General Commissioning: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- N. HVAC Commissioning: Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS

1.3 QUALITY ASSURANCE

A.Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

- B. Air Handling Units Certification: Certify air-handling units in accordance with ARI 430.
 - Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: ARI 430, ARI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - Submittals for AHUs shall include fans, drives, motors, coils, humidifiers, mixing box with outside/return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical

disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).

- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions.
- Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing. Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for

replacement through available access without adversely affecting other sections.

- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning and Refrigeration Institute (ARI): 410-01..... Standard for Forced-Circulation Air-Heating and Air-Cooling Coils
- 430-09.....Air Moving and Conditioning Association (AMCA):
- 210-07..... Fans for Rating
- D. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE):

170-2008.....Ventilation of Health Care Facilities

- E. American Society for Testing and Materials (ASTM):
 - ASTM B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus
 - ASTM D1654-08.....Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
 - ASTM D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus
 - ASTM D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test
- F. Military Specifications (Mil. Spec.): DOD-P-21035B-2003.....Paint, High Zinc Dust Content, Galvanizing Repair
- G. National Fire Protection Association (NFPA): NFPA 90A.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009

H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

- A.General:
 - 1. AHUS shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.
 - 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
 - 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
 - 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative

cannot be provided, the manufacturer shall provide a factory representative.

- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.

B.Base:

- Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.
- AHUs shall be completely self supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.
- 3. The AHU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C.Casing (including wall, floor and roof):
 - General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Outer Panel	0.8 mm (22 Gage) Minimum
Inner Panel	0.8 mm (22 Gage) Minimum
Insulation	Foam

Thickness	50 mm (2 inch) Minimum
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum
Total R Value	2.3 m ² .K/W (13.0 ft ² . ^o F.hr/Btu)
	Minimum

3. Casing Construction (Contractor's Option):

Outer Panel	1.3 mm (18 Gage) Minimum
Inner Panel	1.0 mm (20 Gage) Minimum
Insulation	Fiberglass
Thickness	50 mm (2 inch) Minimum
Density	24 kg/m ³ (1.5 lb/ft ³) Minimum
Total R Value	1.4 m ² .K/W (8.0 ft ² .°F.hr/Btu)
	Minimum

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- All fan sections shall be constructed with perforated sound baffles on the interior of the unit.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, and coil sections shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.

- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- D. Floor:
 - 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.

- An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
- Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Housed Centrifugal Fan Sections:
 - 1. Fans shall be minimum Class II construction, forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B (10) life of not less than 50,000 hours and an L (50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
 - 2. Refer to the drawings schedules for air handlers provided with fan wall systems.
 - 3. The fanwall shall consist of multiple, direct driven, arrangement 4, plenum fans constructed per AMCA requirements for the duty specified, Class II or class III as required. All fans shall be selected to deliver the specified airflow quantity at the specified operating Total Static Pressure and specified fan/motor speed. The Fan Wall Array shall be selected to operate at a system Total Static Pressure that does not exceed 90% of the specified fan's peak static pressure producing capability at the specified fan/motor speed. Each fan/motor cube shall include an 11 gauge, G90U Galvanized steel intake wall, 14 gauge spun steel fan inlet funnel, and an 10 gauge G90 Galvanized steel motor support plate and structure. All fanwall components shall be powder coated to match the unit color and to provide superior corrosion and abrasion resistance. All motors shall be standard pedestal mounted type, TEFC or TEAO, T-frame motors selected at the specified operating voltage, RPM, and efficiency as specified or as scheduled elsewhere. All motors shall include isolated bearings or shaft grounding. Each fan/motor cartridge shall be dynamically balanced to meet AMCA standard 204-96, category BV-5, to meet or exceed Grade .55 indicating .022", or less, per second peak, filter in residual unbalance. All fan and motor assemblies shall be balanced

in three orthogonal planes and copies of the balancing reports for each fan/motor assembly shall be provided with the unit O&M manuals.

- 4. The fanwall array shall be provided with coplanar acoustical silencers that reduce the bare fan discharge sound power levels by a minimum of 15 db re 10⁻¹² watts throughout the eight octave bands with center frequencies of 125, 250, 500, 1000, 2000, 4000, and 8000 HZ when compared to the same unit without the silencers. The silencers shall not increase the scheduled fan total static pressure, nor shall it increase the airway tunnel length of the Air Handling Unit when compared to the same unit without the coplanar silencer array. Modeled airflow acoustical performance shall be based on factory testing of multiple fan arrays. Submitted sound data based on extrapolation of a single fan for multiple fan arrays will not be accepted for review and will be rejected.
- 5. The fan array shall consist of multiple fan and motor "cubes", spaced in the air way tunnel cross section to provide a uniform air flow and velocity profile across the entire air way tunnel cross section and components contained therein. Each fan cube shall be individually wired to a separate VFD. Wire sizing shall be determined, and installed, in accordance with applicable NEC standards and local code requirements. The fanwall array shall produce a uniform air flow profile and velocity profile within the airway tunnel of the air handling unit not to exceed the specified cooling coil and/or filter bank face velocity when measured at a point 24" from the intake side of the fanwall array intake plenum wall, and at a distance of 48" from the discharge side of the fanwall intake plenum wall. Submittals for units with less than the scheduled quantity of fans for multiple fan arrays shall submit CFD modeling of the air flow profile which indicates uniform velocity and flow across all internal components without increasing the length or changing the aspect ratio of the unit casing as designed.
- 6. Provide integral backdraft damper for each fan in the array. Dampers shall be capable of preventing backflow through an idle fan and improves the flow characteristics of airflow when a fan is running. Leakage rate of backdraft dampers shall be no higher than 2 cfm/sq. ft at one inch of static pressure.
- 7. Provide internally vibration spring isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide spring vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND

VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements.

- 8. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- H. Plenum Fans Single
 - General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
 - 2. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed.

After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- 3. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- I.Fan Motor, Drive, and Mounting Assembly (Plenum Fans)
 - Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- J. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 2.8 cubic meters/min/square meter (9 CFM per square foot) at 995 Pa (4 inch WG).
- K. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing

temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.

- 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- L. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements.
 - 1. Water Coils, Including Glycol-Water.
 - Integral Face and Bypass Steam Coils: Provide integral vertical face and bypass dampers. Bypass damper shall include face-mounted actuator, heavy-duty steam manifold with separate circuits, rigid structural framework and connecting flanges, and integrated dampers between the coils.
- M. Humidifier: When included in design, coordinate the humidification requirements with section 23 22 13 Steam and Condensate Heating Piping. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware. See drawings for details and minimum requirements for humidifiers. All humidifier drain pans shall be piped to the nearest drain.
- N. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- O. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, and any section over 300mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction

box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.

- 2. Install compatible 100 watt bulb in each light fixture.
- 3. Provide a convenience duplex receptacle next to the light switch.
- 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- B. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 81 23

COMPUTER-ROOM AIR-CONDITIONERS AND VARIABLE REFRIGERANT VOLUME SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies variable refrigerant volume (VRV) and cooling split systems air conditioning units.
- B. Definitions:
 - Energy Efficiency Ratio (EER): A ratio calculated by dividing the cooling capacity in Btuh by the power input in watts at any given set of rating conditions, expressed in Watts (Btu/h) per watt.
 - Coefficient of Performance (COP): A ratio calculated by dividing the change in heating or cooling capacity (Btu/h) to the energy consumed by the system (kW), expressed in Btu/kWh.
 - 3. Unitary (ARI): Consists of one or more factory-made assemblies, which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Requirements and for ducts and piping insulation.
- D. Section 23 23 00, REFRIGERANT PIPING: Requirements for field refrigerant piping.
- E. Section 23 21 13, HYDRONIC PIPING: Requirements for condensate piping and fittings.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Requirements for sheet metal ducts and fittings.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- H. Section 23 05 93: TESTING, ADJUSTING, AND BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.

1.3 QUALITY ASSURANCE

- A.Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. The system must be installed by a factory trained contractor/dealer. The bidders shall be required to submit training certification proof with bid documents. The mechanical contractor's installation price shall be based on the systems installation requirements. The

mechanical contractor bids with complete knowledge of the HVAC system requirements. Untrained contractors who wish to bid this project may contact the supplier to arrange training prior to bid day. Factory authorized service must be provided.

C. Factory start-up and training shall be provided on site at the Fargo VA Medical Center. This shall include all controls, indoor units, and outdoor units. Start-up and training shall take place prior to completion of project so that all the systems are in operation and in working order prior to turning equipment over to the owner.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data, rated capacities operating characteristics, required specialties and accessories.
 - 1. VRV Indoor Air Conditioning Unit
 - 2. Pump Package
 - 3. Dry Cooler
 - 4. Air/Water Cooled Condensing Unit
- C. Submit detailed equipment assemblies with dimensions, operating weights, required clearances.
- D. Submit wiring diagrams for power, alarm and controls.
- E.Certification: Submit, simultaneously with shop drawings, a proof of certification:
 - 1. That variable refrigerant volume and computer room air-conditioning units have been certified by ARI.
- F. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER) and coefficient of performance (COP).

1.5 GUARANTEE

A. The unit shall be guaranteed against all performance issues as well as all mechanical defects in material, arts or workmanship and shall be repaired or replaced at the Contractor's expense within the period of one year from final acceptance. Contractor shall adhere to a four hour service response time to troubles during the guarantee period.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed Spec):

(00-A-374C-95	Air-Conditioners with Remote Condensing Units or
		Remote Air-cooled and Water-Cooled Condenser
		Units, Unitary
5	TT-C-490D-94	.Cleaning Methods for Ferrous Surfaces and
		Pretreatments for Organic Coatings
C. <i>I</i>	Air-Conditioning and Re	frigeration Institute (ARI) Standards:
	210/240-08	.Performance Rating of Unitary Air-Conditioning
		and Air-Source Heat Pump Equipment
	340/360-07	.Performance Rating of Commercial and Industrial
		Unitary Air Conditioning and Heat Pump Equipment
4	410-01	.Forced-Circulation Air-Cooling and Air-Heating
		Coils
2	460-2005	.Remote Mechanical-Draft Air-Cooled Refrigerant
		Condensers
Į	520-04	.Positive Displacement Condensing Units
I	AHRI-DCPP	.Directory of Certified Product Performance -
		Applied Directory of Certified Products
D. <i>1</i>	Air Movement and Control	l Association (AMCA):
	210-07	Laboratory Methods of Testing Fans for
		Aerodynamic Performance Rating (ANSI)
4	410-96	Recommended Safety Practices for Users and
		Installers of Industrial and Commercial Fans
E. <i>1</i>	American Society of Heat	ting, Refrigerating, and Air-Conditioning
Ι	Engineers Inc. (ASHRAE)	:
-	15-04	.Safety Standard for Refrigeration Systems (ANSI)
0	90.1-10	.Energy Standard for Buildings except Low-Rise
		Residential Buildings (ANSI Approved; IESNA Co-
		sponsored)
4	2008 Handbook	.HVAC Systems and Equipment
	2010 Handbook	-
ĩ		.Gravimetric and Dust-Spot Procedures for Testing
		Air-Cleaning Devices used in General Ventilation
		for Removing Particulate Matter
		ting and Materials (ASTM):
I	B117-09	.Standard Practice for Operating Salt Spray (Fog)
		Apparatus
		ufacturer's Association (NEMA):
		.Motors and Generators (ANSI)
		n Association (NFPA) Publications:
		National Electrical Code
0	90A-09	.Standard for the Installation of Air-
		Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 VARIABLE REFRIGERANT VOLUME AIR-CONDITIONING SYSTEM

- A. The variable capacity, air conditioning system shall be a Variable Refrigerant Volume Series (cooling only model) split system as specified. The system shall consist of multiple evaporators, joints and headers, a two pipe refrigeration distribution system using PID control, and outdoor unit. The outdoor unit is a direct expansion (DX), aircooled, multi-zone air-conditioning system with variable speed driven compressors using R-410A refrigerant. The outdoor unit may connect an indoor evaporator capacity up to 200% of the outdoor condensing unit capacity. All zones are each capable of operating separately with individual temperature control.
- B. The outdoor unit shall be interconnected to indoor unit models in accordance with manufacturers engineering data book detailing each available indoor unit. The indoor units shall be connected to the outdoor utilizing manufacturer's specified piping joints and headers.
- C. Quality Assurance:
 - 1. The units shall be listed by Electrical Laboratories (ETL) and bear the cETL label.
 - 2. All wiring shall be in accordance with the National Electric Code (NEC).
 - 3. The system will be produced in an ISO 9001 and ISO 14001 facility, which are standards set by the International Standard Organization (ISO). The system shall be factory tested for safety and function.

4. The outdoor unit will be factory charged with R-410A.

- D. Equipment Options Included:
 - Autocharging Each system shall have a refrigerant auto-charging function.
 - Charge Checking Each system shall have a refrigerant charge checking function.
 - Defrost Heating Each system shall maintain continuous heating during defrost operation.
 - 4. Independent Control Each fan coil shall use a dedicated electronic expansion valve for independent control.
 - 5. VFD Inverter Control Each condensing unit shall use a high efficiency, variable speed "inverter" compressor coupled with inverter fan motors for superior part load performance.
 - 6. Compressor capacity shall be modulated automatically to maintain a constant suction pressure, while varying the refrigerant volume for the needs of the cooling or heating loads.

- 7. Indoor fan coil units shall use PID control to control superheat and maintain the temperature setpoint within $+/-1^{\circ}F$.
- 8. Design Layout:
 - a. Systems shall be capable of up to 540 ft (640 ft equivalent) of linear piping between the condensing unit and furthest located fan coil unit.
 - b. Systems shall be capable of up to 3,280 ft total "one-way" piping in the piping network.
 - c.Systems shall have a vertical (height) separation of up to 295 ft between the condensing unit and the fan coil units.
 - d.Systems shall be capable of 295 ft from the first REFNET/branch point.
 - e. The outdoor unit shall connect an indoor evaporator capacity up to 200% of the outdoor condensing unit capacity.
 - f. Condensing units MUST be supported with a fan/fan motor ESP up to 0.32" WG as standard to allow connection of discharge ductwork and to prevent discharge air short circuiting. Outdoor Units that cannot meet these static pressure requirements will not be accepted.
- 9. Wiring Systems shall use 16 AWG, 2 wire, multi-stranded, non-shielded and non-polarized daisy chain control wiring.
- 10.Space Saving Each system shall have a condensing unit module footprint as small as 3' 5/8" x 2' 6/18" (7.66 sq ft).
- 11.Low Sound Levels Each system shall use indoor and outdoor units with quiet operation as low as 25 dB(A).
- E. Warranty:
 - 1. The VRV system shall be started/commissioned by the factory authorized representative. The manufacturer shall carry 1 year labor warranty on the system. The units shall have a manufacturer's warranty for a period of one (1) year from date of installation. The units shall have a limited labor warranty for a period of one (1) year from date of installation. The compressors shall have a warranty of six (6) years from date of installation. During the stated period, should any part fail due to defects in material and workmanship, it shall be repaired or replaced at the discretion of manufacturer.

F. Performance:

- The outdoor unit shall perform as indicated below.
 a.Cooling: indoor temp. of 80°F DB, 67°F WB and outdoor temp. of 95°F DB.
- 2. The operating range in cooling will be 23°F DB ~ 110°F DB.

- 3. The system shall be capable of refrigerant piping up to 540 actual feet or 620 equivalent feet from the outdoor unit to the furthest indoor unit, a total combined liquid line length of 3,280 feet of piping between the condensing and fan coil units with 295 feet maximum vertical difference, without any oil traps.
- G. Outdoor Unit
 - The outdoor unit shall be factory assembled and pre-wired with all necessary electronic and refrigerant controls. The refrigeration circuit of the condensing unit shall consist of scroll compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports and refrigerant regulator.
 - 2. High/low pressure gas line, liquid and suction lines must be individually insulated between the outdoor and indoor units.
 - 3. The outdoor unit can be wired and piped with outdoor unit access from the left, right, rear or bottom.
 - 4. The connection ratio of indoor units to outdoor unit shall be permitted up to 200%.
 - 5. Each outdoor system shall be able to support the connection of up to 41 indoor units dependant on the model of the outdoor unit.
 - 6. The sound pressure level standard shall be that value as listed in the engineering manual for the specified models at 3 feet from the front of the unit. The outdoor unit shall be capable of operating automatically at further reduced noise during night time.
 - 7. The system will automatically restart operation after a power failure and will not cause any settings to be lost, thus eliminating the need for reprogramming.
 - 8. The unit shall incorporate an auto-charging feature and a refrigerant charge check function.
 - 9. The outdoor unit shall be modular in design and should allow for side-by-side installation with minimum spacing.
 - 10.The following safety devices shall be included on the condensing unit; high pressure switch, control circuit fuses, crankcase heaters, fusible plug, high pressure switch, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
 - 11.To ensure the liquid refrigerant does not flash when supplying to the various fan coil units, the circuit shall be provided with a subcooling feature.
 - 12.0il recovery cycle shall be automatic occurring 2 hours after start of operation and then every 8 hours of operation.

- 13. The outdoor unit shall be capable of heating operation at 0°F dry bulb ambient temperature without additional low ambient controls.
- 14. The system shall continue to provide heat to the indoor units in heating operation while in the defrost mode.
- 15.Unit Cabinet:
 - a. The outdoor unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed mild steel panels coated with a baked enamel finish.
- 16.Fan:
 - a. The condensing unit shall consist of one or more propeller type, direct-drive 350 and 750 W fan motors that have multiple speed operation via a DC (digitally commutating) inverter.
 - b. The condensing unit fan motor shall have multiple speed operation of the DC (digitally commutating) inverter type motor. A field setting switch to a maximum 0.32 in. WG pressure is available to accommodate field applied duct for indoor mounting of condensing units. Units not capable of obtaining this ESP will not be accepted.
 - c. The fan shall be a vertical discharge configuration with a nominal airflow maximum range of 6,700 CFM to 14,120 CFM dependant on model specified.
 - d. Nominal sound pressure levels shall be as model number specified in factory catalogs.
 - e. The fan motor shall have inherent protection and permanently lubricated bearings and be mounted.
 - f. The fan motor shall be provided with a fan guard to prevent contact with moving parts.
 - g.Night setback control of the fan motor for low noise operation by way of automatically limiting the maximum speed shall be a standard feature. Operation sound level shall be selectable from 3 steps as shown below:

Operation Sound (dB)	Night Mode Sound Pressure Level (dB)	
Step 1 max.	55	
Step 2 max.	50	
Step 3 max.	45	

- 17.Condenser Coil:
 - a. The condenser coil shall be manufactured from copper tubes expanded into aluminum fins to form a mechanical bond.

- b. The heat exchanger coil shall be of a waffle louver fin and rifled bore tube design to ensure high efficiency performance.
- c. The heat exchanger on the condensing units shall be manufactured from Hi-X seamless copper tube with N-shape internal grooves mechanically bonded on to aluminum fins to an e-Pass Design.
- d. The fins are to be covered with an anti-corrosion acrylic resin and hydrophilic film type E1.
- e. The pipe plates shall be treated with powdered polyester resin for corrosion prevention. The thickness of the coating must be between 2.0 to 3.0 microns.
- 18.Compressor:
 - a. The inverter scroll compressors shall be variable speed (PAM inverter) controlled which is capable of changing the speed to follow the variations in total cooling and heating load as determined by the suction gas pressure as measured in the condensing unit. In addition, samplings of evaporator and condenser temperatures shall be made so that the high/low pressures detected are read every 20 seconds and calculated. With each reading, the compressor capacity (INV frequency or STD ON/OFF) shall be controlled to eliminate deviation from target value.
 - b. The inverter driven compressor in each condensing unit shall be of highly efficient reluctance DC (digitally commutating), hermetically sealed scroll "G-type" with a maximum speed of 6,480 rpm.
 - c. Neodymium magnets shall be adopted in the rotor construction to yield a higher torque and efficiency in the compressor instead of the normal ferrite magnet type. At complete stop of the compressor, the neodymium magnets will position the rotor into the optimum position for a low torque start.
 - d. The capacity control range shall be as low as 6% to 100%.
 - e. Each non-inverter compressor shall also be of the hermetically sealed scroll type.
 - f. Each compressor shall be equipped with a crankcase heater, high pressure safety switch, and internal thermal overload protector.
 - g. Oil separators shall be standard with the equipment together with an intelligent oil management system.
 - h. The compressor shall be spring mounted to avoid the transmission of vibration.
 - i. Units sized 8-12 ton shall contain a minimum of 2 compressors, 14-16 ton units shall contain a minimum of 3 compressors and 18-20 ton shall contain a minimum of 4 compressors. In the event of

compressor failure the remaining compressors shall continue to operate and provide heating or cooling as required at a proportionally reduced capacity. The microprocessor and associated controls shall be designed to specifically address this condition.

Tonnage	Number of Compressors	Compressor Types
14	3	(1 inverter + 1 fixed) + 1 inverter

j. In the case of multiple condenser modules, conjoined operation hours of the compressors shall be balanced by means of the Duty Cycling Function, ensuring sequential starting of each module at each start/stop cycle, completion of oil return, completion of defrost or every 8 hours.

19.Electrical:

- a. The power supply to the outdoor unit shall be 208-230 volts, 3 phase, 60 hertz +/- 10%.
- b. The control voltage between the indoor and outdoor unit shall be 16VDC non-shielded, stranded 2 conductor cable.
- c. The control wiring shall be a two-wire multiplex transmission system, making it possible to connect multiple indoor units to one outdoor unit with one 2-cable wire, thus simplifying the wiring operation.
- d. All controls wiring required to connection all system components together shall be installed by this contractor.
- e. The control wiring lengths shall be as shown below.

	Outdoor to Indoor Unit	Outdoor to Central Controller	Indoor Unit to Remote Control
Control Wiring Length	6,665 ft	3,330 ft	1,665 ft
Wire Type	16 AWG, 2 wire, non-polarity, no stranded		non-shielded,

- H. Wall Mounted Unit
 - 1. General: some indoor units shall be a wall mounted fan coil unit (see schedule), operable with refrigerant R-410A, equipped with an electronic expansion valve, for installation onto a wall within a conditioned space. This compact design with finished white casing shall be available from 7,500 Btu/h to 24,000 Btu/h capacities. Computerized PID control shall be used to control superheat to deliver a comfortable room temperature condition. The unit shall be equipped with a programmed drying mechanism that dehumidifies while

inhibiting changes in room temperature when used with remote control. A mildew-proof, polystyrene air filter and condensate drain pan shall be included as standard equipment. The indoor units sound pressure shall range from 32 dB(A) to 35 dB(A) at low speed measured at 3.3 feet below and from the unit.

- 2. The indoor unit shall be completely factory assembled and tested. Included in the unit is factory wiring, piping, electronic proportional expansion valve, control circuit board, fan motor thermal protector, flare connections, condensate drain pan, selfdiagnostics, auto-restart function, 3-minute fused time delay, and test run switch. The unit shall have an auto-swing louver which ensures efficient air distribution, which closes automatically when the unit stops. The remote controller shall be able to set five (5) steps of discharge angle. The front grille shall be easily removed for washing. The discharge angle shall automatically set at the same angle as the previous operation upon restart. The drain pipe can be fitted to from either left or right sides.
- 3. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.
- 4. Both refrigerant lines shall be insulated from the outdoor unit.
- 5. Return air shall be directed through a resin net mold resistant filter.
- The indoor units shall be equipped with a condensate pan. The pan shall be piped to the nearest drain.
- 7. The indoor units shall be equipped with a return air thermistor.
- The indoor unit will be separately powered with 208~230V/1phase/60Hz.
- 9. The voltage range will be 253 volts maximum and 187 volts minimum.
- 10.Unit Cabinet:
 - a. The cabinet shall be affixed to a factory supplied wall mounting template and located in the conditioned space.
 - b. The cabinet shall be constructed with sound absorbing foamed polystyrene and polyethylene insulation.
- 11.Fan:
 - a. The fan shall be a direct-drive cross-flow fan, statically and dynamically balanced impeller with high and low fan speeds available.
 - b. The fan motor shall operate on 208/230 volts, 1 phase, 60 hertz with a motor output range 0.054 to 0.058 HP.
 - c. The airflow rate shall be available in high and low settings.
 - d. The fan motor shall be thermally protected.

12.Coil:

- a. Coils shall be of the direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.
- b. The coil shall be of a waffle louver fin and high heat exchanger, rifled bore tube design to ensure highly efficient performance.
- c. The coil shall be a 2-row cross fin copper evaporator coil with 14 fpi design completely factory tested.
- d. The refrigerant connections shall be flare connections and the condensate will be 11/16 inch outside diameter PVC.
- e. A thermistor will be located on the liquid and gas line.
- f.A condensate pan shall be located in the unit.
- 13.Electrical:
 - a. A separate power supply will be required of 208/230 volts, 1
 phase, 60 hertz. The acceptable voltage range shall be 187 to 253
 volts.
 - b. Transmission (control) wiring between the indoor and outdoor unit shall be a maximum of 3,280 feet (total 6,560 feet).
 - c. Transmission (control) wiring between the indoor unit and remote controller shall be a maximum distance of 1,640 feet.
- 14.Control:
 - a. The unit shall have controls provided by manufacturer to perform input functions necessary to operate the system.
 - b. Temperature setpoints shall initially set with a cooling setpoint of 2 degrees above the primary system existing room setpoint. The unit shall be locked out below this temperature so that it does not operate unless the primary system cannot handle the room load.
 - c. The unit shall be compatible with interfacing with connection to LonWorks networks or interfacing with connection to BMS system.
- 15. Individual Zone Controller Simplified Wired Remote Controller
 - a. The simplified wired remote controller shall be able to control 1 group (maximum of 16 fan coil units). Provide zone controller for each space as indicated as a thermostat for each space.
 - b. The simplified wired remote controller shall have the following features:

	Start/Stop
OPERATION	Operation Mode
	Temperature Setting
	60°F – 90°F Set Point Range
	Fan Speed
MONITORING	Status
	Malfunction Flashing
	Malfunction Content
	Operation Mode
	Temperature Setting
	Permit/Prohibit Selection
	Fan Speed
	Field Setting Mode
CONTROL MANAGEMENT	Group Setting
	Auto Re-Start

- 16.Accessories:
 - a. Provide condensate pump for units according to the drawing schedules.
- I. 4-Way Ceiling Cassette Unit (2'x2')
 - 1. General: Some indoor units shall be a ceiling cassette fan coil unit (see schedule), operable with R-410A refrigerant, equipped with an electronic expansion valve, for installation into the ceiling cavity equipped with an air panel grill. It shall be a four-way air distribution type, white, impact resistant with a washable decoration panel. The supply air is distributed via motorized louvers which can be horizontally and vertically adjusted from 0° to 90°. Computerized PID control shall be used to control superheat to deliver a comfortable room temperature condition. The unit shall be equipped with a programmed drying mechanism that dehumidifies while limiting changes in room temperature when used with remote control. The indoor units sound pressure shall range from 29 dB(A) to 34 dB(A) at low speed measured at 5 feet below the unit.
 - 2. Indoor Unit:
 - a. The indoor unit shall be completely factory assembled and tested. Included in the unit is factory wiring, piping, electronic proportional expansion valve, control circuit board, fan motor thermal protector, flare connections, condensate drain pan, condensate drain pump, condensate safety shutoff and alarm, selfdiagnostics, auto-restart function, 3-minute fused time delay, and test run switch.
 - b. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.
 - c. Both refrigerant lines shall be insulated from the outdoor unit.

- d. The 4-way supply air flow can be field modified to 3-way and 2-way airflow to accommodate various installation configurations including corner installations.
- e.Return air shall be through the concentric panel, which includes a resin net mold resistant filter.
- f. The indoor units shall be equipped with a condensate pan and condensate pump. The condensate pump provides up to 21" of lift and has a built in safety shutoff and alarm. The pan shall be piped to the nearest drain.
- g. The indoor units shall be equipped with a return air thermistor.
- h. All electrical components are reached through the decoration panel, which reduces the required side service access.
- i. The indoor unit will be separately powered with 208~230V/1phase/60Hz.
- j. The voltage range will be 253 volts maximum and 187 volts minimum.
- 3. Unit Cabinet:
 - a. The cabinet shall be space saving and shall be located into the ceiling.
 - b. Three auto-swing positions shall be provided to choose, which include standard, draft prevention and ceiling stain prevention.
 - c. The airflow of the unit shall have the ability to shut down one or two sides allowing for simpler corner installation.
 - d. Fresh air intake shall be possible by way of direct duct installation to the side of the indoor unit cabinet.
 - e. A branch duct knockout shall exist for branch ducting supply air.
 - f. The cabinet shall be constructed with sound absorbing foamed polystyrene and polyethylene insulation.
- 4. Fan:
 - a. The fan shall be direct-drive turbo fan type with statically and dynamically balanced impeller with high and low fan speeds.
 - b. The fan motor shall operate on 208/230 volts, 1 phase, 60 hertz with a motor output range from 0.06 to 0.12 HP.
 - c. The airflow rate shall be adjustable in high and low settings.
 - d. The fan motor shall be thermally protected.
- 5. Filter:
 - a. The return air shall be filtered by means of a washable long-life filter with mildew proof resin.
- 6. Coil:
 - a. Coils shall be of the direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.

04 - 11

- b. The coil shall be of a waffle louver fin and high heat exchanger, rifled bore tube design to ensure highly efficient performance.
- c. The coil shall be a 2-row cross fin copper evaporator coil with 17 FPI design completely factory tested.
- d. The refrigerant connections shall be flare connections and the condensate will be 1 -1/32 inch outside diameter PVC.
- e. A condensate pan shall be located under the coil.
- f. A condensate pump with a 21 inch lift shall be located below the coil in the condensate pan with a built in safety alarm.
- g. A thermistor will be located on the liquid and gas line.
- 7. Electrical:
 - a. A separate power supply will be required of 208/230 volts, 1 phase, 60 hertz. The acceptable voltage range shall be 187 to 253 volts.
 - b. Transmission (control) wiring between the indoor and outdoor unit shall be a maximum of 3,280 feet (total 6,560 feet).
 - c.Transmission (control) wiring between the indoor unit and remote controller shall be a maximum distance of 1,640 feet.
- 8. Control:
 - a. The unit shall have controls provided by the unit manufacturer to perform input functions necessary to operate the system.
 - b. Temperature setpoints shall initially set with a cooling setpoint of 2 degrees above the primary system existing room setpoint. The unit shall be locked out below this temperature so that it does not operate unless the primary system cannot handle the room load.
 - c. The unit shall be compatible with interfacing with a BMS system via optional LonWorks or BACnet gateways.
 - d. The unit shall be compatible with an intelligent touch advanced multi-zone controller or an intelligent Manager III customizable BMS. Consult with manufacturer prior to applying controls.
- 9. Individual Zone Controller Simplified Wired Remote Controller
 - a. The simplified wired remote controller shall be able to control 1 group (maximum of 16 fan coil units). Provide zone controller for each space as indicated as a thermostat for each space.
 - b. The simplified wired remote controller shall have the following features:

	Start/Stop
OPERATION	Operation Mode
	Temperature Setting
	60°F – 90°F Set Point Range
	Fan Speed
MONITORING	Status
	Malfunction Flashing
	Malfunction Content
	Operation Mode
	Temperature Setting
	Permit/Prohibit Selection
	Fan Speed
CONTROL MANAGEMENT	Field Setting Mode
	Group Setting
	Auto Re-Start

- J. Multi-Zone Controller Centralized Remote Controller
 - 1. Connect the new indoor units to the existing centralized controller and condensing unit that serves the new units. Provide all wiring as necessary for complete system. Verify that the controls contractor can remotely access new units with existing Bacnet controller and coordinate with the controls contractor to access new units. Provide all wiring as required to connect new fan coil units to the existing Bacnet controller.

2.2 FLOOR-MOUNTED UNITS 24 KW (7 TONS) AND SMALLER

- A. Description: Self-contained, DOE compliant, free-cooling unit, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for vertical floor mounting in upflow or downflow configuration. Unit shall be able to operate in all outdoor conditions including down to -30 degrees. Outdoor units shall also be selected for an ambient temperature of 105 degrees.
- B. Cabinet and Frame: Welded tubular-steel frame with removable steel panels with baked-enamel finish, insulated with 1-inch- (25-mm-) thick duct liner.
- C. Provide isolation pads equal to Super W pads around the entire perimeter of the unit (between the unit and the floor).
- D. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
- E. Supply-Air Fan: Plenum, centrifugal, and direct drive.
- F.Compressor: Hermetic scroll, with oil strainer, internal motor overload protection, resilient suspension system, compressor sound jacket, and crankcase heater. Provide multiple compressors where scheduled.
- G. Refrigeration Circuit: Low-pressure switch, manual-reset high-pressure switch, thermal-expansion valve with external equalizer, sight glass

with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.

- H. Refrigerant: R-410A unless otherwise indicated.
- I. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins, with two circuits, each with solenoid valve.
 - 1. Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1-2004 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
- J. Integral, Water-Cooled Refrigerant Condenser: Brazed-plate type with liquid-line stop valve and head-pressure-actuated, two-way regulating valve.
- K. Cooling Medium: Propylene Glycol solution.
- L. Hydronic Cooling Coil: Seamless copper tubes expanded into aluminum fins with modulating three-way control valve.
 - 1. Cooling Medium: Propylene Glycol solution.
 - Coil assembly shall be mounted over stainless-steel drain pan complying with ASHRAE 62.1-2004 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
- M. Remote Air-Cooled, Glycol-Solution Cooler: Corrosion-resistant cabinet, copper-tube aluminum-fin coil, direct-drive propeller fan with fan guards, and single-phase motors with internal overload protection. Fluid cooler shall be selected for an ambient temperature of 105 degrees.
- N. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- O. Glycol-Solution Pump Package: Weatherproof and vented enclosure of enameled, galvanized steel on structural base frame containing centrifugal pump with mechanical seal.
 - Piping: Interconnecting piping, from suction to discharge, with shutoff valves, flow switches, unions, and pressurized expansion tank with air purge vent and system-charging connection.
 - Glycol: Inhibited propylene glycol and water solution mixed 50:50, suitable for operating temperature of minus 40 deg F (minus 40 deg C).
 - 3. Expansion Tank.
 - 4. Provide multiple pumps where scheduled on plan.
 - 5. Disconnect Switch: Non-automatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.

- P. Electric-Resistance Heating Coil: Finned-tube electric elements with contactor and high-temperature-limit switches.
- Q.Filter: 50-mm (2-inch) thick, disposable, glass-fiber media.
 - 1. Initial Resistance: 0.1 inches wg.
 - 2. Recommended Final Resistance: 1.0 inches wg.
 - 3. Arrestance: 90 percent according to ASHRAE 52.1.
 - 4. MERV Rating: 8, according to ASHRAE 52.2.
- R. Electrode Steam Humidifier: Self-contained, microprocessor-controlled unit with disposable, polypropylene-plastic cylinders and having fieldadjustable steel electrodes and stainless-steel steam dispersion tube.
- S. Plumbing Components and Valve Bodies: Plastic, linked by flexible rubber hosing, with water fill with air gap and solenoid valve incorporating built-in strainer, pressure-reducing and flow-regulating orifice, and drain with integral air gap.
- T. Control: Fully modulating to provide gradual 0 to 100 percent capacity with field-adjustable maximum capacity; with high-water probe.
- U. Drain Cycle: Field-adjustable drain duration and drain interval.
- V. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- W. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature and humidity control modules, time-delay relay, heating contactor, and high-temperature thermostat. Provide solid-state, wall-mounted control panel with start-stop switch, adjustable humidity set point, and adjustable temperature set point. Provide Bacnet cards for general alarm monitoring and connection to the building's Automatic Temperature Controls System. Refer to 230923 for list of points to be monitored from the temperature controls system.

2.3 FAN MOTORS

- A. Default motor characteristics are specified in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- B. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- C. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- D.Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.4 SPECIAL TOOLS

A. If any part of equipment furnished under these specifications requires a special tool for assembly, adjustment, setting, or maintenance, furnish the necessary tools with equipment as a standard accessory to the VA COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Handle and install refrigeration units and accessories in accordance with the instructions and recommendations of the manufacturer.
- B. Coordinate installation of Computer room Air Conditioning Units with existing Computer room access flooring.
- C. Field Refrigerant Piping: As specified in specification Section 23 23 00, REFRIGERANT PIPING.
- D. Field Piping: Glycol Piping, as specified in specification Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- E. Fill glycol system with 35 percent glycol mixture and perform start-up procedures as recommended by the manufacturer.
- F. Electrical System Connections and Equipment Ground: As specified in Division 26 Sections.
- G. This contractor shall provide all control wiring required between indoor units thermostats and indoor unit; indoor units and outdoor units; outdoor units and central controller; and central controller and Bacnet Device.

3.2 CONNECTIONS

- A. Coordinate piping installations and specialty arrangements with schematics on drawings and with requirements specified in piping systems. If drawings are explicit enough, these requirements may be reduced or omitted.
- B. Piping installation requirements are specified in other Division 23 Sections.
- C. Install piping adjacent to machine to allow service and maintenance.
- D. Drainage Connections: Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.
- E. Condenser-Water Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Provide shutoff valves in water inlet and outlet piping on water-cooled units.
- F. Refrigerant Piping: Comply with applicable requirements in Section 23 23 00, REFRIGERANT PIPING. Provide shutoff valves and piping.

3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:

- 2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. After startup service and performance test, change filters.

3.4 INSTRUCTIONS

A. Provide services of manufacturer's technical representative for four hours (split up into separate sessions and days as required to coordinate with VA staff) to instruct VA personnel in operation and maintenance of VRV air conditioning equipment.

3.5 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the VA Project Engineer and Commissioning Agent. Provide a minimum of 14 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours (split up into separate sessions and days as required to coordinate with VA staff) to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Fan-coil units, cabinet unit heaters and radiant wall panels.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- C. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- F. Section 23 82 16, AIR COILS: Additional coil requirements.
- G. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- H. Section 01 09 00 GENERAL COMMISSIONING REQUIREMENTS
- I.Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cabinet unit heaters.
 - 2. Radiant wall panels.
- C.Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI):

440-08.....Performance Rating of Room Fan Coils

National Fire Protection Association (NFPA):

90A-09.....Standard for the Installation of Air

Conditioning and Ventilating Systems

70-11.....National Electrical Code

C. Underwriters Laboratories, Inc. (UL):

181-08.....Standard for Factory-Made Air Ducts and Air Connectors

1995-05..... Heating and Cooling Equipment

1.5 GUARANTY

A. In accordance with FAR clause 52.246-21

PART 2 - PRODUCTS

2.1 FAN-COIL UNITS

- A. Capacity Certification: AHRI 440.
- B. Safety Compliance: NEC compliant and UL listed.
- C. Noise Levels: Operating at full cooling capacity, sound power level shall not exceed by more than 5 dB the numerical value of sound pressure levels associated with noise criteria specified in Section 23 05 51, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. Select units at intermediate speed, for compliance with the noise criteria.
- D. Chassis: Galvanized steel, acoustically and thermally insulated to attenuate noise and prevent condensation.
- E. Cabinet: Minimum 1.3 mm (18 gage) steel reinforced and braced. Arrange components and provide adequate space for installation of piping package and control valves. Finish shall be factory-baked enamel in manufacturer's standard color on all exposed surfaces. Provide mixing box as scheduled.
 - 1. Horizontal Unit: Provide Concealed type as shown. Provide spring vibration isolator hangers for horizontal units as recommended by the manufacturer.
 - a. Concealed Units:

Provide fully enclosed cabinet with inlet and outlet duct collars.

- F. Fans: Centrifugal, forward curved, double width type wheels, galvanized steel or polyester resin construction, statically and dynamically balanced, direct driven.
 - Motors: Premium efficiency, 3-speed permanent split capacitor type with integral thermal overload protection, for operation at not more than 1200 RPM.
- G. Cooling and Heating Coils:
 - 1. Hydronic (heating): Copper tubes, 10 mm (three-eighths inch) minimum inside diameter, not less than 4.3 mm (0.017 inch) thick with copper or aluminum fins. Coils shall be pressure tested for bursting and strength in accordance with Underwriters Laboratories, Inc., requirements for pressure tested coils, and shall be designed to provide adequate heat transfer capacity. Provide manual air vent at high point of each coil and drain at each low point.
- H. Piping Package: Factory furnished with unit by the manufacturer or field-installed by the contractor to fit control valves provided by the controls supplier.
- I. Drain pans: Furnish galvanized steel with solderless drain connections and molded polystyrene foam insulating liner:
- J. Air Filter: Manufacturer's standard throwaway type, not less than 50 mm (2 inch) thick, MERV 8, supported to be concealed from sight and be tight fitting to prevent air by-pass. Filters shall have slide out frames and be easily replaced without removing enclosure or any part thereof.

2.2 CABINET UNIT HEATERS

- A. General: Vertical or horizontal type for steam, hot water or electric heating medium, as indicated.
- B. Cabinet: Not less than 1.3 mm (18 gage) steel with front panel for vertical units and hinged front panel for horizontal units. Finish on exposed cabinet shall be factory-baked enamel in manufacturer's standard color as selected by the Architect. Provide 76 mm (3-inch) high sub-base for vertical floor mounted units.
- C.Fan: Centrifugal blower, direct driven by a single phase, two-speed, electric motor with inherent overload protection. Provide resilient motor/fan mount.

- D.Filter: Manufacturer's standard, one inch thick, throwaway type MERV 7 filters.
- E. Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psi) steam working pressure.
- F. Controls: Thermostat and controls provided by the temperature controls contractor.

2.3 RADIANT WALL PANELS

- A.Ratings: Certified under the I=B=R program of the Gas Appliance Manufacturer's Association.
- B. Enclosures: One-piece all-welded construction with integral heavy-gauge (0.09" minimum) all-welded perforated top grille designed for wall mounting. Provide baked enamel finish in standard manufacturer's colors as selected by the Architect. Provide color chart for use during shop drawings. End plates and corner pieces shall be die-formed with round edges and fit flush with enclosure surface. Where continuous wall-to-wall installations are shown on the drawings provide all fillers, flex connectors, corner fittings, sleeves, end caps and other accessories, which shall have the same profile as the basic unit.
- C.Units shall be 2-inches deep, 11-1/2-inches tall, and include 3/4" piping connections.
- D. Hydronic Heating Elements: Flattened water tubes welded to headers at each end and 3/4" connections. Elements shall be positively positioned front-to-back with provisions for silent horizontal expansion and contraction.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 14 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for two hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Heating, cooling, and dehumidification coils for air handling unit and duct applications.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS
- C. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- D. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- F. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS

1.3 QUALITY ASSURANCE

- A.Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D.Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 36 00, AIR TERMINAL UNITS or Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. Air Conditioning and Refrigeration Institute (AHRI):

Directory of Certified Applied Air Conditioning Products

AHRI 410-01.....Forced-Circulation Air-Cooling and Air-Heating

Coils

C. American Society for Testing and Materials (ASTM):

B75/75M-02.....Standard Specifications for Seamless Copper Tube D. National Fire Protection Association (NFPA):

70-11.....National Electric Code

E. National Electric Manufacturers Association (NEMA):

250-11.....Enclosures for Electrical Equipment (1,000 Volts Maximum)

F. Underwriters Laboratories, Inc. (UL): 1996-09.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

A. Conform to ASTM B75 and AHRI 410.

- B. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- C.Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- F. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- G. Pressures kPa (PSIG):

Pressure	Steam Coil	Refrigerant Coil	Water Coil
Test	1725 (250)	2070 (300)	2070 (300)
Working	520 (75)	1725 (250)	1380 (200)

- H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- I. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- J. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- K. Integral Face and Bypass Type Steam Coil:
 - 1. Exempt from ARI Test and Certification.

- 2. Conform to ASTM B75 and ARI 410.
- 3. Casing: 1.9 mm (14 gage) galvanized steel with corrosion resistant paint.
- 4. Tubes and Bypasses: Vertical or horizontal.
- 5. Each heating coil shall consist of built-in series of finned heating elements and bypasses with interlocking dampers controlled by electronic actuator. Dampers are arranges so as to completely enclose and isolate the heating coil passes when no temperature rise is required. Each coil shal be capable of maintaining a constant discharge air temperature regardless of variations in entering air temperatures with full steam pressure at all times. Actuators shall be side mounted.
- 6. Furnish type integral face and bypass coils to heat air using steam as the heating medium. Performance shall be as shown in the schedule. Each heating coil shall consist of built-in series of finned heating elements and bypasses with interlocked dampers controlled by electric damper motor(s) and air stream thermostat. Dampers are to be arranged so as to completely enclose and isolate the heating coil passes when no temperature rise is required. Each coil shall be capable of maintaining a constant discharge air temperature regardless of variations in entering air temperatures with full steam pressure at all times. Actuators are to be sidemounted.
- 7. Proportioning of the air shall be such that the temperature at any point in a plane parallel to the face of the coil two feet (with optional anti-stratification baffles installed) downstream from the leaving air side will not vary more than +/- 5° F from the average discharge air stream temperature.
- 8. Finned heating elements shall be fabricated of seamless return bend type 5/8" o.d. copper tubes of 0.035" wall thickness with rectangular fins of 0.010" thick aluminum. Fins shall not be spaced closer than 12 fins per inch. Each tube shall be secured to the copper headers by a brazed joint with provision for 3/8" inch individual tube expansion and contraction by means of an optional flexible connector. Finned elements shall be factory tested with 500 psig hydrostatic pressure.
- 9. Coil casing and dampers shall be fabricated of heavy gauge galvanized steel and dampers.
- 10.Insulated Headers Headers shall be insulated with one-inch thick, 1.5 pound density mineral fiber insulation then covered with sheet metal to reduce temperature override.

2.2 REHEAT COILS, DUCT MOUNTED

A. The coils shall be continuous circuit booster type for hot water as shown on drawings. Use the same coil material as listed in Paragraphs 2.1.

2.3 DEHUMIDIFICATION COILS

- A. The existing air handlers (AHU-64 & 65) noted on plan shall be equipped with dehumidifier heat pipes supplied by Heat Pipe Technology or equal to pre-cool the return/outside air and reheat the supply air in a wraparound configuration. The pre-cool heat pipe module shall be located immediately before the cooling coil and the reheat module of the Heat Pipe shall be located immediately after the cooling coil. Heat pipe circuits are made up of multiple tubes feeding one common liquid and one common gas line for maximum performance. Single tube circuits where gas and liquid travel in the same tube in opposite directions are not acceptable. Both Heat Pipe modules shall be inside the equipment cabinet. The interconnecting piping between the Heat Pipe modules shall be located within the assembled access/coil/access sections if possible. If not, the piping shall be external, but enclosed within a removable, insulated enclosure. When possible, all interconnecting piping shall be located at the end of the cooling coil opposite from the coil header and piping connections.
- B. The heat pipe supplier shall have a minimum of 5 years of experience designing and installing heat pipes specifically for dehumidification applications.
- C. The tubes shall be copper only, of specific design for heat pipe application, permanently expanded onto the fin collar to form a firm, rigid, and complete pressure contact at all operating conditions. Aluminum tubes will not be allowed.
- D. The fin surface shall be continuous plate type aluminum fins of specific design to produce maximum heat transfer efficiency for heat pipe applications. Airside pressure loss shall be as specified. Fin density and the number of rows of tubes shall be as specified.
- E. Heat transfer fluid shall be classified as Safety Group A1 in ASHRAE Standard 34-2010. Refrigerant used shall be R410a.
- F. Heat pipe capacities and sizes shall be as scheduled on the drawings.
- G. Frames and mounting structure shall be minimum 20 gauge stainless steel.
- H. Heat pipe interconnecting piping and circuitry shall be as specified by Heat Pipe Technology design or equal. Each circuit shall be individually processed, charged, hermetically sealed, and tested.

2.4 WATER COILS, INCLUDING GLYCOL-WATER

A. Use the same coil material as listed in Paragraphs 2.1.

B. Drainable Type (Self Draining, Self Venting); Manufacturer standard: 1. Heating or preheat.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the A/E, VA Project Engineer and Commissioning Agent. Provide a minimum of 14 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for two hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 - Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that

maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the Project Engineer a minimum of 15 working days prior to the manufacturer's performing the factory tests.
 - Two copies of certified test reports shall be furnished to the Project Engineer two weeks prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall

include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - Damaged equipment shall be repaired or replaced, as determined by the Project Engineer.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.

F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description

including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the Project Engineer in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION "
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, VA contract number, VA project number, VA project title, specification number and applicable paragraphs and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.

- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish two copies, electronic PDF format and in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, VA contract number, VA project number, VA project title, specification number and applicable paragraphs. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the Project Engineer at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 05 12 ELECTRICAL DEMOLITION

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Electrical demolition.
- B. Construction phasing.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify field measurements and circuiting arrangements are as shown on Drawings.
- B. Verify that abandoned wiring and equipment serve only abandoned facilities.
- C. Demolition drawings are based on casual field observation and existing record documents.
- D. Report discrepancies to Project Engineer before disturbing existing installation.
- E. Beginning of demolition means installer accepts existing conditions.

3.2 PREPARATION

- A. Disconnect electrical systems in walls, floors, and ceilings to be removed.
- B. Provide temporary wiring and connections to maintain existing systems in service during construction.
- C. Existing Electrical Switchgear, Panels and Equipment: Disable system only to make switchovers and connections. Minimize outage duration.
 - Obtain permission from Owner at least 2 weeks before disabling panels and equipment.
 - Make temporary connections to maintain service in areas adjacent to work area.

3.3 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Remove, relocate, and extend existing installations to accommodate new construction.
- B. Remove abandoned wiring to source of supply.

26 05 12 - 1

- C. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.
- D. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets which are not removed.
- F. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.
- G. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.
- H. Repair adjacent construction and finishes damaged during demolition and extension work.
- Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.
- J. Install junction boxes in walls, ceilings or floors if required to continue circuiting.
- K. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified.

3.4 CONSTRUCTION PHASING

- A. All work shall be phased to create minimal electrical service disruption to the daily operations of the hospital. Provide temporary connections to branch circuit devices, light fixtures, panelboards, motor starters, MCC's, etc. during switchover operations to keep downtime to any piece of equipment or areas of the building to a minimum.
- B. Switchover work may need to be completed outside of normal work hours to keep disruption to hospital operations minimized.
- C. Phasing schedules are to be submitted to VA project engineer at least two weeks prior to any power outages for approval. Outages are to be scheduled at least two weeks prior to the outage date with the VA project engineer.

3.5 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment which remain or are to be reused.
- B. Panelboards and Switchboards: Provide typed circuit directory showing

revised circuiting arrangement.

3.6 MATERIAL DISPOSAL

- A. Material and equipment deemed salvageable by the Owner shall remain the property of Owner. Contractor shall dismantle these items to manageable size and deliver to designated storage area on site. The Owner shall have first right of refusal on all material and equipment.
- B. All other materials and equipment shall become property of Contractor and must be removed from site and disposed of by approved method.

END OF SECTION

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Ducts for medium-voltage cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Medium-voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
 - 2. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.
 - b. Field Test Reports: Submit field test reports for approval.

- c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
- d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install and test cables, splices, and terminations shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the approved splices and terminations.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 B3-01 (2007).....Standard Specification for Soft or Annealed Copper Wire
 C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 48-09.....Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded Insulation Rated 2.5 kV through 500 kV
 386-95.....Separable Insulated Connector Systems for Power Distribution Systems above 600 V

400-01.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems 400.2-04.....Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) 400.3-06.....Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment 404-00.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V D. National Electrical Manufacturers Association (NEMA): WC 71-99.....Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy WC 74-06......5-46 KV Shielded Power Cable for Use in the Transmission and Distribution of Electric Energy E. National Fire Protection Association (NFPA): F. Underwriters Laboratories (UL):

1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:

1. 25,000 V cable shall be used on 25,000 V distribution systems.

- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.

- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.
- C. Splices:
 - Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - 2. Class 3 terminations for outdoor use: Kit with stress cone and compression-type connector.
 - 3. Load-break terminations for indoor and outdoor use: 200 A load break premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.

5. Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arc-proof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and per manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into pullboxes and vaults where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep pullboxes and vaults dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A ring at least 150 mm (6 inches) above ground shall be used around the entrance to keep surface water from entering the pullbox. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND PULLBOX

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the pullbox opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in pullboxes shall be firmly supported within the pullbox.Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be accomplished by qualified workers trained to perform medium-voltage equipment installations. Use tools as recommended or provided by the manufacturer. All manufacturer's instructions shall be followed.
- C. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and electrical inspections.
- B. Test equipment, labor, and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the Project Engineer
- C. Visual Inspection:
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
 - 4. Verify installation of fireproofing tape and identification tags.

- D. Electrical Tests:
 - Acceptance tests shall be performed on new and service-aged cables as specified herein.
 - 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:
 - Maintenance tests shall be performed on service-aged cable interconnected to new cable.
 - After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
 - Test data shall include megohm readings and leakage current readings. Cables shall not be energized until insulation-resistance test results have been approved by the Project Engineer . Test voltages and minimum acceptable resistance values shall be:

Voltage Class	Test Voltage	Min. Insulation Resistance
5kV	2,500 VDC	1,000 megohms
15kV	2,500 VDC	5,000 megohms
25kV	5,000 VDC	20,000 megohms
35kV	15,000 VDC	100,000 megohms

- 2. Submit a field test report to the Project Engineer that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- G. Online Partial Discharge Test: Comply with IEEE 400 and 400.3. Test all new and service-aged cables. Perform tests after cables have passed the insulation-resistance test, and after successful energization.
 - Testing shall use a time or frequency domain detection process, incorporating radio frequency current transformer sensors with a partial discharge detection range of 10 kHz to 300 MHz.
 - 2. Submit a field test report to the Project Engineer that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and numerically and graphically identifies the

magnitude of partial discharge detected for each cable section tested. The report shall provide conclusions and recommendations for corrective action.

H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the Project Engineer.

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.

```
B. American Society of Testing Material (ASTM):

D2301-10.....Standard Specification for Vinyl Chloride

Plastic Pressure-Sensitive Electrical

Insulating Tape

D2304-10.....Test Method for Thermal Endurance of Rigid

Electrical Insulating Materials

D3005-10.....Low-Temperature Resistant Vinyl Chloride

Plastic Pressure-Sensitive Electrical

Insulating Tape
```

C. National Electrical Manufacturers Association (NEMA): WC 70-09..... Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-10.....Thermoset-Insulated Wires and Cables 83-08.....Thermoplastic-Insulated Wires and Cables 467-07.....Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-09......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables 514B-04.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2
- D. Color Code:
 - No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.

 For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

208/120 V	Phase	480/277 V	
Black	А	Brown	
Red	В	Orange	
Blue	С	Yellow	
White	Neutral	Gray *	
* or white with colored (other than green) tracer.			

5. Conductors shall be color-coded as follows:

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper conductors.
 - The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper conductors.

- Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
- 3. Splice and insulation shall be product of the same manufacturer.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors. Mechanical type terminations are NOT allowed on feeder conductors, provide crimp type connections.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors. Provide irreversible compression type termination ONLY on all feeder conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No.22 AWG. Low voltage control wiring (48 volts and lower) may also utilize cables that include twisted pairs of conductors within an overall jacket.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.

- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment/devices to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system so that the malfunctions in any system will not affect other systems., except where otherwise shown on the drawings.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000V DC for 600 V rated cable. Apply test for one minute or until

reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.

c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- KD. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- E.. Section 26 24 19, MOTOR CONTROL CENTERS: Motor control centers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07....Standard Specification for Soft or Annealed

Copper Wire

- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-83.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12.....National Electrical Safety Code 99-12.....Health Care Facilities E. Underwriters Laboratories, Inc. (UL): 44-10Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2.

2.2 GROUND CONNECTIONS

- A. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

26 05 26 - 2

4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- C. For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

3.2 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.

- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- E. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.

3.3 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:

- A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (UL):
 - 1-05.....Flexible Metal Conduit
 - 50-95..... Enclosures for Electrical Equipment
 - 467-07.....Grounding and Bonding Equipment
 - 514A-04.....Metallic Outlet Boxes

514B-04.....Conduit, Tubing, and Cable Fittings

797-07.....Electrical Metallic Tubing

E. National Electrical Manufacturers Association (NEMA): FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.75 in [19 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 2. Flexible galvanized steel conduit: Shall conform to UL 1.
- C. Conduit Fittings:
 - 1. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel materials are acceptable.
 - c. Setscrew couplings and connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 2. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- D. Conduit Supports:
 - Parts and hardware: Zinc-coat or provide equivalent corrosion protection.

- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
- Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cutting or drilling holes through structural elements such as beams or columns shall not be allowed.
 Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the Project Engineer.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through partitions, walls, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.

- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
 - Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Project Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors 600 V and below: EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.

- Align and run conduit parallel or perpendicular to the building lines.
- 3. Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture.
- 4. Tightening setscrews with pliers is prohibited.
- 5. Route all conduit above ceilings and in finished spaces.
- 6. Flexible metal conduit may only be used as indicated in paragraph 3 and within existing walls to serve devices that are required to be cut into the surface. VA Project Engineer shall approve the use of flexible metal conduit for this application prior to the installation.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- F. If conduit is routed through areas without ceilings, it shall be routed as high as possible and in no case lower than any other utilities. Exact route and location shall be approved in advance by the VA Project Engineer.

3.5 MOTORS AND VIBRATING EQUIPMENT

A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:

- 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
- 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- L. The use of combination type box and conduit hangers similar to 'Caddy' combo box/conduit hangers that utilize wires or rods for support is prohibited. Utilize steel channel that is directly attached to the wall, ceiling structure or other structural elements to support conduits.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.

- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1" or "Nurse Call."
- G. On all branch circuit junction box covers, identify the circuits with black marker. Provide stenciled labels where junction boxes are installed in exposed finished areas. All control wiring shall be stenciled as to the type of system installed within. In addition, the covers on all temperature controls related junction boxes shall be painted blue and covers on all fire alarm related junction boxes shall be painted red.
- H. The use of combination type box and conduit hangers similar to 'Caddy' combo box/conduit hangers that utilize wires or rods for support is prohibited. Utilize steel channel that is directly attached to the wall, ceiling structure or other structural elements to support boxes.
- Provide support for all outlet boxes installed within steel studs on both sides of the outlet box, not just on the stud side of the box.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on pullboxes, ducts, and hardware.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the Project Engineer for approval prior to construction.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

12-01-12

B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-11/318M-11.....Building Code Requirements for Structural Concrete & Commentary SP-66-04.....ACI Detailing Manual C. American National Standards Institute (ANSI): 77-10..... Underground Enclosure Integrity D. American Society for Testing and Materials (ASTM): C858-10e1.....Underground Precast Concrete Utility Structures E. National Electrical Manufacturers Association (NEMA): TC 2-03.....Electrical Polyvinyl Chloride (PVC) Conduit TC 3-04.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing TC 6 & 8-03.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations TC 9-04......Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation F. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12.....National Electrical Safety Code G. Underwriters Laboratories, Inc. (UL): 6-07.....Electrical Rigid Metal Conduit-Steel 467-07.....Grounding and Bonding Equipment 651-11.....Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings 651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit 651B-07.....Continuous Length HDPE Conduit

PART 2 - PRODUCTS

2.1 PULLBOXES

A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 8loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.

B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom

2.2 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. NEMA TC6 & 8 and TC9 plastic utilities duct UL 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.
- C. Ducts (direct-burial):
 - 1. Plastic duct:
 - a. Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 75 $^\circ$ C (167 $^\circ$ F) rated conductors.
 - Rigid metal conduit: UL6 and NEMA RN1 galvanized rigid metal, halflap wrapped with 10 mil PVC tape.

2.3 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.5 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install pullboxes level and plumb.
 - Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inches)

sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.

B. Access: Ensure the top of frames and covers are flush with finished grade.

3.2 TRENCHING

- A. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- B. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- C. Cut the trenches neatly and uniformly.
- D. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 foot) intervals to establish the grade and route of the duct bank.
 - Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- E. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the Project Engineer.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - Join and terminate ducts with fittings recommended by the manufacturer.

- 3. Slope ducts to drain towards vaults and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inch) in 30 M (100 feet).
- 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
- 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
- 6. Install insulated grounding bushings on the conduit terminations.
- 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
- 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).b. For power and signal services, not less than 150 mm (6 inches).
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.

- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
 - Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
 - 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
 - Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
 - 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.

26 05 41 - 6

- 8. Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between vaults or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- 10. Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Project Engineer.
- C. Direct-Burial Ducts:
 - Install direct-burial ducts only where shown on the drawings. Provide direct-burial ducts only for low-voltage power and lighting branch circuits.
 - 2. Tops of ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - 3. Do not kink the ducts. Compaction shall not deform the ducts.
- D. Connections to Existing Vaults: For duct connections to existing vaults, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- E. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- F. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in

each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the Project Engineer at no cost to the Government.
 - 4. Mandrel pulls shall be witnessed by the Project Engineer.

---END---

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit two copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts. Provide both hard copy and electronic Adobe PDF copy.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.

26 24 16 - 1

b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-08....Enclosures for Electrical Equipment (1,000V Maximum)
- D. National Fire Protection Association (NFPA):

70E-12.....Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL): 50-95.....Enclosures for Electrical Equipment 67-09....Panelboards 489-09....Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.

- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
 - Keyed to match existing panelboards within the facility. Key shall be a Square D NSR251 only.
- B. Trims:
 - 1. Hinged "door-in-door" type.
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
 - 4. Inner and outer doors shall open left to right.
 - 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
 - 10.For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly and provide new typed directory.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.

- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Project Engineer. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates.
- G. Label each panelboard with the system voltage, and feeder sizes as shown on the riser diagram in 1/2 inch block lettering on the inside cover of the cabinet door. Include the words "LIFE SAFETY BRANCH", "CRITICAL BRANCH", or "EQUIPMENT SYSTEM" as applicable and the panel designation in 1/2 inch block letters on the inside of the cabinet doors.
- H. Provide ARC flash identification per NFPA 70E and the existing labeling system at the VAMC Fargo. Exact orientation and information required on the labels will be provided to the contractor. Coordinate label requirements with the Project Engineer prior to printing labels.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.

f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts. Provide both hard copy and electronic Adobe PDF copy.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent

26 27 26 - 1

```
referenced. Publications are referenced in the text by basic designation only.
```

- B. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 WD 1-10......General Color Requirements for Wiring Devices
 WD 6-08Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):

5-11....Surface Metal Raceways and Fittings
20-10....General-Use Snap Switches
231-07....Power Outlets
467-07....Grounding and Bonding Equipment
498-07....Attachment Plugs and Receptacles
943-11...Ground-Fault Circuit-Interrupters
1449-07...Surge Protective Devices
1472-96...Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, with green dot symbol, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation. The ungrounded pole of each receptacle shall be provided with a separate terminal.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. Bodies shall be red in color with green dot symbol. Wall plates shall be red with the word "EMERGENCY" engraved iin 6 mm, (1/4 inch) white letters.

- 4. All receptacles shall be labeled with the panel name and circuit number. Example : 12S1-5. The labels shall be self-adhesive type with clear background and black lettering, 3/16 inch high text.
- 5. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings. The rocker type switch is not acceptable and will not be approved.
- Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
- 2. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel . Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right.
- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device. Label all receptacles and switch plates with the panel name and circuit number serving it. Example: 10S1-5. Labels to be self adhesive type with clear background and black letters, 3/16 inch high letters.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Healthcare Occupancy Tests:
 - a. Test hospital grade receptacles for retention force per NFPA 99. ----END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise, shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit two copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for

ordering replacement parts. Provide hard copy and electronic Adobe PDF copy.

- 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
- Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
- Elementary schematic diagrams shall be provided for clarity of operation.
- Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-92......Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-02.....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
- C. International Code Council (ICC): IBC-12.....International Building Code
- D. National Electrical Manufacturers Association (NEMA): ICS 1-08.....Industrial Control and Systems: General Requirements ICS 1.1-09.....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-05.....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-05.....Industrial Control and Systems: Terminal Blocks
 - ICS 6-06.....Industrial Control and Systems: Enclosures

ICS 7-06.....Industrial Control and Systems: Adjustable-Speed Drives

ICS 7.1-06.....Safety Standards for Construction and Guide for Selection, Installation, and Operation of

Adjustable-Speed Drive Systems

MG 1 Part 31.....Inverter Fed Polyphase Motor Standards

- E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- F. Underwriters Laboratories Inc. (UL): 508A-07.....Industrial Control Panels 508C-07....Power Conversion Equipment UL 1449-06....Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker disconnecting means, with external operating handle with lock-open and lock-closed padlocking positions and ON-OFF position indicator.
- 1. Circuit Breakers:
 - a. Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.
 - b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
 - c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.

- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Electronic type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 5. Electronic overload relays shall utilize internal current transformers and electro-mechanical components. The relays shall have ambient temperature compensation, single-phase protection, manual or automatic reset, and trip classes of 10, 15, 20 and 30. The relay shall provide fault cause indication, including jam/stall, ground fault, phase loss, and overload.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with

transient protection. Time-delay relay is not required where H-O-A switch is not required.

- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width

12-01-12

modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.

- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 1000 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +104°F Minimum -10°F
 - 3. Relative Humidity: 100%
 - 4. VSMC Location: Non-Air conditioned space
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.

- a. Incorrect phase sequence.
- b. Single phasing.
- c. Overvoltage in excess of 10 percent.
- d. Undervoltage in excess of 15 percent.
- e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
- f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
- g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- 10. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - Typical monitoring functions shall include but not be limited to:
 a. Output frequency (Hz).

- b. Motor speed and status (run, stop, fault).
- c. Output voltage and current.
- 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until

motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify Project Engineerbefore increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the Project Engineer.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts. Provide hard copies and electronic Adobe PDF copies.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
- Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-07.....Low Voltage Cartridge Fuses

KS 1-06..... Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum)

- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL): 98-07.....Enclosed and Dead-Front Switches 248-00....Low Voltage Fuses 489-09.....Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.

- External operating handle shall indicate open and closed positions, and have lock-open and lock-closed padlocking provisions.
- 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
- 6. Fuse holders for the sizes and types of fuses specified.
- Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
- 8. Ground lugs for each ground conductor.
- 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Service Entrance: Class L, time delay.
- C. Feeders: Class RK1, time delayD. Motor Branch Circuits: Class RK1, time delay.
- E. Other Branch Circuits: Class RK1, time delay.
- F. Control Circuits: Class CC, time delay.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.

B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B.Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean the enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Project Engineer.

---END---

SECTION 27 10 05 COMPUTER NETWORK AND TELEPHONE WIRING SYSTEM

PART 1 - GENERAL

1.1 SECTION INCLUDES

This section includes the furnishing and installation of the following:

- A. Raceway distribution system.
- B. Computer and telephone wiring.
- C. Workstation communications outlets.
- D. Patch panels.
- F. Horizontal cabling patch panels.
- G. Premise testing.
- H. Equipment.

1.2 RELATED SECTIONS

- A. Section 26 05 11 Requirements for Electrical Installations
- B. Section 26 05 33 Raceway and Boxes for Electrical Systems
- C. Section 26 27 26 Wiring Devices.

1.3 REFERENCES

- A. ANSI/TIA/EIA 568A B.1, B.2, B3 Commercial Building Telecommunications Cabling Standard.
- B. ANSI/TIA/EIA 569A Commercial Building Standard Telecommunications Pathways and Spaces.
- C. ANSI/TIA/EIA 606 Administration Standard for the Telecommunications Infrastructure of Commercial Buildings.
- D. NFPA 70 National Electrical Code.
- E. BICSI TDMM (Building Industry Consulting Service International, Telecommunications Distribution Methods Manual and Telecommunications Cabling Installation Manual).

1.4 PROJECT RECORD DOCUMENTS

- A. Submit record documents under provisions of Section 26 05 11.
- B. As-built record drawings to be provided to Owner/Engineer before final payment.

1.5 SHOP DRAWINGS

- A. Submit in accordance with Section 01 33 23.
- B. Submit conductors, jacks, and patch panels.

1.6 SYSTEM DESCRIPTION

A. Horizontal and workstation pathways conform to ANSI/EIA/TIA 569A, using raceway and patch panels as indicated.

27 10 05 - 1

- B. Premise Wiring: Horizontal and workstation complete from communication room to each outlet, using conductors and other equipment as specified.
- C. All premise wiring to be of one manufacturer.

1.7 QUALITY ASSURANCE

A. Perform work in accordance with BICSI TDMM and ANSI/EIA/TIA standards.

1.8 QUALIFICATIONS

- A. Installer: Company specializing in installing data communications wiring with minimum of three years project experience and BICSI certified as an installer at start of installation.
- B. Installer: Must submit documentation of qualifications before start of installation.

1.9 REGULATORY REQUIREMENTS

- A. Conform to requirements of NFPA 70 and applicable building codes.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc., as suitable for purpose specified and indicated.

1.10 MAINTENANCE/WARRANTY

- A. Manufacturer shall warranty and provide maintenance service for 15 years minimum on the network system and a lifetime for products used in the system.
- B. Submit documentation stating warranty at project closeout.

1.11 COPPER CONDUCTOR CABLE TESTING

- A. Contractor shall perform and document all conductor tests. Return one copy of testing report to the Engineer and one copy to the Owner.
- B. All Category 6 Enhanced conductors shall be tested and certified for ANSI/EIA/TIA, 568A, TSB-67 standards and ANSI/TIA/EIA-TSB-95.
- C. All copper station runs must be tested after final installation and termination. All data cable runs shall be documented with a hard copy printout of the test results. This printout shall be bound and delivered to the Owner prior to final payment.
- D. The Owner requires that the Scope/HP Wirescope 350 Level III, or approved equal tester be utilized for all copper data testing.
- E. The Owner requires that the company/individual testing the cable be manufacturer certified for products provided.

PART 2 - PRODUCTS

2.1 CONDUIT AND OUTLETS

- A. As specified in Section 26 05 33 Conduit Systems.
- B. Conduit Size: Minimum 3/4 inch with larger sizes where noted on Drawings.

C. Four-inch square box with single gang plaster ring.

2.2 OUTLET COVER PLATES

- A. As specified in Section 26 27 26 Wiring Devices.
- B. Cover Plate: Ivory.

2.3 WORKSTATION COMMUNICATIONS OUTLETS

- A. Connector modules shall be equal to Panduit CJ6X88TGEI to match existing Fargo VAMC standard.
 - 1. ANSI/TIA/EIA-T568B wiring configuration.
 - Category 6 Enhanced (500 MHz) power sum connector. Modular faceplates shall be Panduit Mini-Com Executive Series faceplates.
 - One, two, four and six-port single gang and 10-port double gang faceplates as required. Panduit part numbers CFPE1-IW, CFPE2-IW, CFPE4-IW, CFPE6-IW, and CFPE10IW-2G.
 - Standard Color: Orange for data connectors, ivory for telephone connectors.
 - See Drawings for quantity of connector modules and modular faceplates.
 - 5. Modular Furniture Faceplates: Provide Panduit CFFPL4BL four module space modular furniture snap-in faceplate with labels for installation in modular furniture where shown on the drawings. Faceplate to be compatible with the brand of modular furniture.

2.4 COPPER CONDUCTOR

- A. Manufacturer: Equal to General Genspeed 6000E.
 - 1. Category 6 Enhanced.
 - 2. Four twisted pair non-shielded.
 - 3. 23 gauge solid copper conductors.
 - 4. U.L. listed MPP/CMP.
 - 5. Conductor Resistance: 9.38 ohms/100m nom. @ 20 degrees C.
 - 6. Impedance:
 - a. 100±15 ohms 1-100 MHz.
 - b. 100±22 ohms 101-250 MHz.
 - c. 100±32 ohms 250-500 MHz.
 - 7. ACR based on Power Sum NEXT
 - a. >= 15.8 dB/100m @ 200 MHz.
 - b. >= 10.7 dB/100m @ 250 MHz.
 - 8. Delay Skew <= 35 ns/100m.
 - 9. NVP = 70% speed of light.

10. Plenum rated cable.

2.5 CROSS CONNECTION EQUIPMENT

- Patch Panels for Copper Data Cabling: Sized to fit EIA standard 19 inch wide equipment racks; 0.09 inch thick aluminum; cabling terminated on Type 110 insulation displacement connectors; printed circuit board interface.
 - a. Equal to Panduit CPP48WBLY 48-port all metal modular patch panel frames, populated with Panduit CJ6X88TGEI modular connectors (as listed in 2.3) Category 6 enhanced power sum connectors.
 - Capacity: Provide ports sufficient for cables to be terminated plus 25 percent spare.
 - c. Labels: Factory installed laminated plastic nameplates above each port, numbered consecutively; comply with TIA/EIA-606 using encoded identifiers.
 - Provide incoming cable strain relief and routing guides on back of panel.
 - e. Equal to Chatsworth 30530-719, HORZ MGR DBL UNIV 2U 19 IN, horizontal wire management panels shall be provided between pairs of CPP48 patch panel frames for front and rear patch cable management and as necessary above and/or below network electronics. Equal to Panduit type WMPV22E, VTR CBL MGT 4X FRT/REAR 22RU vertical wire management panels shall be provided on the left and right sides of each rack.

2.6 FIRESTOP

- A. Provide a firestop system with an "F" rating as determined by UL 1479 or ASTM E814 which is equal to the time rating of construction being penetrated.
 - For penetrations by non-combustible items including steel pipe, copper pipe, rigid steel conduit, and electrical metallic tubing (EMT), the following are acceptable:
 - a. Hilti FS 601 elastomeric firestop sealant or Fs 605 HP firestop sealant.
 - b. 3M fire barrier CP25.
 - c. Nelson CLK firestop sealant.
 - d. Or Approved Equal.
 - For fire-rated construction joints and other gaps, the following may be used:

27 10 05 - 4

- a. Hilti FS 601.
- b. 3M fire barrier CP25.
- c. Nelson CLK firestop sealant.
- d. Or Approved Equal.
- 3. For penetrations by combustible items (penetrants consumed by high heat and flame) including insulated metal pipe, PVC jacketed, flexible cable, or cable bundles, and plastic pipe (closed piping systems), the following are acceptable:
 - a. Hilti FS 611A intumescent firestop sealant.
 - b. 3M fire barrier CP 25.
 - c. 3M fire barrier FS-195 wrap strip.
 - d. Nelson FSP firestop putty, PCS pipe choke system.
 - e. Or Approved Equal.
- 4. For large complex penetrations made to accommodate cable trays, multiple steel and copper pipes, electrical busways or raceways, the following are acceptable:
 - a. Hilti FS 635, trowelable firestop compound.
 - b. 3M fire barrier CS-195 composite sheet.
 - c. Nelson CPS composite sheet, CMP firestop compound.
 - d. Or Approved Equal.

2.7 COMPUTER CABLE SUPPORT HANGERS

- A. J-hooks shall be equal to Erico Caddy Fastener type CableCat.
 - Erico Caddy Fastener type CableCat Cat21 J-hook shall be used for up to 50 4-pair communication cables.
 - Manufacturer guidelines shall be used for supporting/mounting CableCats.
 - 3. Cable shall be supported at no greater than four-foot intervals.
 - 4. Utilize cable hooks only to span across corridors or rooms to route cables to cable tray as shown on the plans.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Support raceways under the provisions of Section 26 05 11.
- B. Install cable from all computer and telephone outlets to rack or backboard.
- C. Install modular outlets at all locations shown on the Drawings. Terminate wiring at both ends.
- D. Provide cable supports as required in a neat workmanlike manner.

- E. Color coding of wiring is to be consistent between connector modules and connector blocks.
- F. All cabling shall consist of 4 pair, 1 cable per jack.
- G. Install cable in accordance with manufacturer's instructions and in accordance with ANSI/EIA/TIA 568A standards. Cable maximum bend radius shall not exceed four (4) times the outside cable diameter.
- H. Bridged taps/splices are not allowed as part of the horizontal wiring system.
- I. Each workstation jack shall be provided with its own UTP cable continuous (without splice) from jack to computer rack or telephone backboard.
- J. All penetrations through fire barrier walls or floors shall consist of a conduit sleeve and shall be sealed with an industry approved fire barrier caulk or compound reamed and bushed.
- K. All vertical/horizontal sleeves shall be sized according to station count passing through each. Sized for maximum 60 percent fill.
- L. Install cable support hooks a maximum of 4'-0" on center above ceiling.
- M. All vertical/horizontal raceways shall be sized according to station count passing through each. Sized for maximum 60 percent fill.
- N. Install a 3/4 inch conduit, minimum from each workstation outlet continuous to the nearest cable tray location in the corridor ceiling.
- O. Terminate all data cabling on data rack patch panels and all telephone cables on 110 blocks on the telephone backboard.

3.2 GANGING WORKSTATION JACKS

A. Where indicated, workstation jacks may be ganged under a common one gang wall plate. Where the plans show multiple outlets at one location they may be ganged into one wall plate.

3.3 LABELING

- A. All horizontal cabling shall be labeled at both ends with permanent tag indication from which jack the cable originated.
- B. Machine labels shall be installed on each workstation jack faceplate and at the patch panels.
- C. All labels shall be a machine label in conformance with ANSI/EIA/TIA 606.
- D. Numbering of workstation jacks shall be consistent and match existing Fargo Veterans Administration standard.
- E. Labeling to be verified with Engineer and Owner.
- 3.4 CUTTING, PATCHING AND FINISHING

- A. Perform all cutting, patching and finishing required for installation of electrical work. Restore surfaces to original condition.
- B. Cutting, patching and finishing work is subject to the direction and approval of the Engineer.

- - - E N D - - -

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of new fire alarm equipment to the existing fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Project Engineer or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.
- D. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

A. Additions to the fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- D. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD compatible with the version in use at Fargo VAMC and include all contractors information. Layering shall be by VA criteria. The contractor shall be responsible for

verifying all critical dimensions shown on the drawings provided by VA.

- 2. Floor plans: Provide updated locations of all new devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed Wiring Diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD release compatible with that currently used at Fargo VAMC. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system. The as-builts shall be added to the overall fire alarm system asbuilts for the facility and submitted as an update to the entire facility as-builts.

1.5 APPLICABLE PUBLICATIONS

Α.	The publications listed below (including amendments, addenda,
	revisions, supplements and errata) form a part of this specification to
	the extent referenced. The publications are referenced in text by the
	basic designation only and the latest editions of these publications
	shall be applicable.
в.	National Fire Protection Association (NFPA):
	NFPA 13 Standard for the Installation of Sprinkler
	Systems, 2010 edition
	NFPA 14 Standard for the Installation of Standpipes and
	Hose Systems, 2010 edition
	NFPA 20 Standard for the Installation of Stationary
	Pumps for Fire Protection, 2010 edition
	NFPA 70National Electrical Code (NEC), 2010 edition
	NFPA 72National Fire Alarm Code, 2010 edition
	NFPA 90A Standard for the Installation of Air
	Conditioning and Ventilating Systems, 2009
	edition
	NFPA 101Life Safety Code, 2009 edition
С.	Underwriters Laboratories, Inc. (UL): Fire Protection Equipment
	Directory
D.	Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
Ε.	American National Standards Institute (ANSI):
	S3.41Signal, 1990

edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new unless indicated on the drawings, and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 26 05 33 RACEWAY AND BBOXES FOR ELECTRICAL SYSTEMS and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.

B. Wire:

- Wiring shall be in accordance with NEC article 760 and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
- Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
- 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser.

Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position. Keys shall match existing Fargo VA fire alarm equipment keys.

2.4 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Duct smoke detectors with all appurtenances 2
- B. Spare and replacement parts shall be in original packaging and submitted to the Project Engineer.

2.5 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the Project Engineer.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES, Section 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.

- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.

3.2 TYPICAL OPERATION

A. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.

- Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

- - END - -