SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies demolition and removal of portions of buildings and utilities.

1.2 RELATED WORK:

- A. Safety Requirements: GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- E. Infection Control: Section 01 00 00, GENERAL REQUIREMENTS, INFECTION PREVENTION MEASURES.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- D. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - Maintain at least one stairway in each structure in usable condition to highest remaining floor. Keep stairway free of obstructions and debris until that level of structure has been removed.
 - 2. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for

immediate use. Instruct all possible users in use of fire extinguishers.

- 3. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- E. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Contracting Officer's Representative (COR). The Contractor shall coordinate the work of this section with all other work. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have an approved Structural Engineer's design (at no additional cost to the Government) and the COR's approval.
- F. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, INFECTION PREVENTION MEASURES.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove items as indicated in the drawings.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by COR. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. Remove and legally dispose of all materials. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. .

3.2 CLEAN-UP:

A. On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to COR. Clean-up shall include off the Medical Center Property disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies structural steel shown and classified by Section2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Painting: Section 09 91 00, PAINTING.

1.3 QUALITY ASSURANCE:

- A. Fabricator and erector shall maintain a program of quality assurance in conformance with Section 8, Code of Standard Practice for Steel Buildings and Bridges. Work shall be fabricated in an AISC certified Category Std fabrication plant.
- B. Before authorizing the commencement of steel erection, the controlling contractor shall ensure that the steel erector is provided with the written notification required by 29 CFR 1926.752. Provide copy of this notification to the Project Engineer.

1.4 TOLERANCES:

A. Fabrication tolerances for structural steel shall be held within limits established by ASTM A6, by AISC 303, Sections 6 and 7, Code of Standard Practice for Buildings and Bridges, except as follows:

1.5 DESIGN:

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the drawings, supplementing where necessary. The details shown on the drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and the members. Promptly notify the COR of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the Project Engineer. Submit structural calculations prepared and sealed by a qualified engineer registered in the state where the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS:

A. AISC 360: Specification for Structural Steel Buildings

B. AISC 303: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete
- C. Certificates:
 - 1. Structural steel.
 - 2. Steel for all connections.
 - 3. Welding materials.
 - 4. Shop coat primer paint.
- D. Test Reports:
 - 1. Welders' qualifying tests.
- E. Design Calculations and Drawings:
 - 1. Connection calculations.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Institute of Steel Construction (AISC):
 - 1. AISC 360-10 Specification for Structural Steel Buildings
 - 3. AISC 303-10 Code of Standard Practice for Steel Buildings and Bridges
- C. American National Standards Institute (ANSI): B18.22.1-65(R2008)....Plain Washers B18.22M-81(R2000)....Metric Plain Washers
- D. American Society for Testing and Materials (ASTM):
- A36/A36M-08.....Standard Specification for Carbon Structural Steel
 - A53/A53M-10.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123/A123M-09....Standard Specification for Zinc (Hot-Dip
 - Galvanized) Coatings on Iron and Steel Products A283/A283M-03(R2007)....Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates
 - A307-10.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength
 - A325-10.....Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
 - A490-12.....Standard Specification for Heat-Treated Steel Structural Bolts 150 ksi Minimum Tensile Strength

- E. American Welding Society (AWS): D1.1/D1.1M-10....Structural Welding Code-Steel
- F. Research Council on Structural Connections (RCSC) of The Engineering Foundation:

Specification for Structural Joints Using ASTM A325 or A490 Bolts

- G. Military Specifications (Mil. Spec.): MIL-P-21035.....Paint, High Zinc Dust Content, Galvanizing, Repair
- H. Occupational Safety and Health Administration (OSHA):

29 CFR Part 1926-2001...Safety Standards for Steel Erection

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Structural Steel: ASTM A36.
- B. Steel Pipe: ASTM A53, Grade B.
- C. Bolts, Nuts and Washers:
 - 1. High-strength bolts, including nuts and washers: ASTM A325.
 - 2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.
 - 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- D. Zinc Coating: ASTM A123.
- E. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD):

- A. Welding: Welding in accordance with AWS D1.1. Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.
- B. High-Strength Bolts: High-strength bolts tightened to a bolt tension not less than 70% of their minimum tensile strength. Tightening done with properly calibrated wrenches, by turn-of-nut method or by use of direct tension indicators (bolts or washers). Tighten bolts in connections identified as slip-critical using Direct Tension Indicators. Twist-off torque bolts are not an acceptable alternate fastener for slip critical connections.

3.2 FABRICATION:

A. Fabrication in accordance with Chapter M, AISC 360.

3.3 SHOP PAINTING:

- A. General: Shop paint steel with primer in accordance with AISC 303, Section 6.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.

- C. Do not apply paint to following:
 - 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
 - 2. Top flange of members which will have shear connector studs applied.
- D. Zinc Coated (Hot Dip Galvanized) per ASTM A123 (after fabrication): Touch-up after erection: Clean and wire brush any abraded and other spots worn through zinc coating, including threaded portions of bolts and welds and touch-up with galvanizing repair paint.

3.4 ERECTION:

A. General: Erection in accordance with AISC 303, Section 7B. Temporary Supports: Temporary support of structural steel frames during erection in accordance with AISC 303, Section 7

3.5 FIELD PAINTING:

- A. After erection, touch-up steel surfaces specified to be shop painted. After welding is completed, clean and prime areas not painted due to field welding.
- B. Finish painting of steel surfaces is specified in Section 09 91 00, PAINTING. Touch-up existing steel damaged, abraded, or chipped due to new construction and welding operations.

- - - E N D - - -

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.

1.2 RELATED WORK

A. Prime and finish painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.

1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.6.1-97.....Wood Screws B18.2.2-87(R2005).....Square and Hex Nuts
- C. American Society for Testing and Materials (ASTM):

A36/A36M-12.....Structural Steel A53-12.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-12.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products F468-06(R2012).....Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws and Studs for General Use F593-13.....Stainless Steel Bolts, Hex Cap Screws, and Studs F1667-11.....Driven Fasteners: Nails, Spikes and Staples D. American Welding Society (AWS): D1.1-10.....Structural Welding Code Steel D1.3-08.....Structural Welding Code Sheet Steel E. National Association of Architectural Metal Manufacturers (NAAMM) AMP 500-06.....Metal Finishes Manual F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings: SP 1-04.....No. 1, Solvent Cleaning SP 2-04.....No. 2, Hand Tool Cleaning SP 3-04.....No. 3, Power Tool Cleaning PART 2 - PRODUCTS 2.1 MATERIALS A. Structural Steel: ASTM A36. B. Steel Pipe: ASTM A53. 1. Galvanized for exterior locations. 2. Type S, Grade A unless specified otherwise. 3. NPS (inside diameter) as shown. C. Primer Paint: As specified in Section 09 91 00, PAINTING. D. Modular Channel Units: 1. Factory fabricated, channel shaped, cold formed sheet steel shapes, complete with fittings bolts and nuts required for assembly. 2. Form channel within turned pyramid shaped clamping ridges on each side. 3. Provide case hardened steel nuts with serrated grooves in the top edges designed to be inserted in the channel at any point and be given a quarter turn so as to engage the channel clamping ridges.

4. Factory finish channels and parts with oven baked primer when exposed to view. Channels fabricated of ASTM A525, G90 galvanized steel may have primer omitted in concealed locations. Finish screws and nuts with zinc coating.

2.2 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.

B. Fasteners:

- 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
- 2. Screws: ASME B18.6.1.
- 3. Washers: ASTM F436, type to suit material and anchorage.
- 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

2.3 FABRICATION GENERAL

- A. Material
 - Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
 - Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections
 - Except as otherwise specified, connections may be made by welding, riveting or bolting.
 - 2. Field riveting will not be approved.

- 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
- 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.
- 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
- Use rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
- Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
 - Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
 - 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
 - Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:
 - a. Fabricate items to design shown.
 - b. Furnish members in longest lengths commercially available within the limits shown and specified.
 - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.

- d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
- e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
- f. Prepare members for the installation and fitting of hardware.
- g. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
- 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
 - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
 - d. Finish welded joints to match finish of adjacent surface.
- 3. Joining:
 - a. Miter or butt members at corners.
 - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 4. Cutting and Fitting:
 - Accurately cut, machine and fit joints, corners, copes, and miters.
 - b. Fit removable members to be easily removed.
 - c. Design and construct field connections in the most practical place for appearance and ease of installation.
 - d. Fit pieces together as required.
 - e. Fabricate connections for ease of assembly and disassembly without use of special tools.
 - f. Joints firm when assembled.
 - g. Conceal joining, fitting and welding on exposed work as far as practical.
 - h. Do not show rivets and screws prominently on the exposed face.
 - i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.

F. Finish:

- 1. Finish exposed surfaces in accordance with NAAMM AMP 500 Metal Finishes Manual.
- 2. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to have prime paint.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
 - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
 - 2) Non ferrous metals: Comply with MAAMM-500 series.
- G. Protection:
 - Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.4 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - Use clip angles or make provisions for welding hangers and braces to overhead construction.
 - 3. Field connections may be welded or bolted.
- B. For Wall Mounted Items:
 - 1. For items supported by metal stud partitions.
 - 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick.
 - 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported.
 - 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- C. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.
- D. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.

3.2 INSTALLATION OF SUPPORTS

- A. Anchorage to structure.
 - Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown.
 - Secure supports to concrete inserts by bolting or continuous welding as shown.
 - Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise.
 - 4. Secure steel plate or hat channels to studs as detailed.
- B. Supports for Wall Mounted items:
 - 1. Locate center of support at anchorage point of supported item.
 - 2. Locate supports where required for items shown.

3.3 CLEAN AND ADJUSTING

A. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

PART 1 - GENERAL

1.1 DESCRIPTION:

A. Section specifies wood blocking and furring.

1.2 SUMBITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings showing framing connection details, fasteners, connections and dimensions.

1.3 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 150 mm (6 inches) above grade and cover with well ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.4 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.2.1-96(R2005).....Square and Hex Bolts and Screws B18.2.2-87.....Square and Hex Nuts B18.6.1-97.....Wood Screws B18.6.4-98 (R2005) Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws C. American Society for Testing And Materials (ASTM): A47-99(R2009) Ferritic Malleable Iron Castings A48-03(R2008).....Gray Iron Castings A653/A653M-10.....Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process C954-10.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Studs from 0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in thickness

C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Metal Studs D143-09.....Small Clear Specimens of Timber, Method of Testing D1760-01.....Pressure Treatment of Timber Products F844-07.....Washers, Steel, Plan (Flat) Unhardened for General Use F1667-08.....Nails, Spikes, and Staples D. Federal Specifications (Fed. Spec.): MM-L-736C.....Lumber; Hardwood E. Commercial Item Description (CID): A-A-55615..... And Lag Bolt Self Threading Anchors) F. U.S. Department of Commerce Product Standard (PS) PS 1-95..... Construction and Industrial Plywood PS 20-05..... American Softwood Lumber Standard

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - Furring, blocking, nailers and similar items 100 mm (4 inches) and narrower Standard Grade; and, members 150 mm (6 inches) and wider, Number 2 Grade.
- C. Sizes:
 - 1. Conforming to Prod. Std., PS20.
 - Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.

- D. Moisture Content:
 - 1. At time of delivery and maintained at the site.
 - Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - 3. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- E. Fire Retardant Treatment:
 - 1. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.
- F. Preservative Treatment:
 - Treat wood members exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 600 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members used in connection with roofing and flashing materials.
 - 3. Treat other members specified as preservative treated (PT).
 - Preservative treat by the pressure method complying with ASTM D1760, except any process involving the use of Chromated Copper arsenate (CCA) for pressure treating wood is not permitted.

2.2 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ANSI B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - Extend at least 200 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D, A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Use 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers
 - 1. ASTM F844.
 - Use zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ANSI B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- E. Nails:
 - Size and type best suited for purpose unless noted otherwise. Use aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.

- b. Concrete: Type I, Style 11.
- c. Barbed: Type I, Style 26.
- d. Underlayment: Type I, Style 25.
- e. Masonry: Type I, Style 27.
- f. Use special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.

PART 3 - EXECUTION

3.1 INSTALLATION OF MISCELLANEOUS WOOD MEMBERS:

- A. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Use longest lengths practicable.
 - 3. Use fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 600 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 125 mm (5 inches) in width.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies thermal insulation for buildings.

1.2 RELATED WORK

A. Safing insulation: Section 07 84 00, FIRESTOPPING.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES .
- B. Manufacturer's Literature and Data:
 - 1. Insulation, each type used
 - 2. Adhesive, each type used.
 - 3. Tape
- C. Certificates: Stating the type, thickness and "R" value (thermal resistance) of the insulation to be installed.

1.4 STORAGE AND HANDLING:

- A. Store insulation materials in weathertight enclosure.
- B. Protect insulation from damage from handling, weather and construction operations before, during, and after installation.

1.5 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): C665-06.....Mineral Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL:

A. Where "R" value is not specified for insulation, use the thickness shown on the drawings.

2.2 EXTERIOR FRAMING OR FURRING INSULATION:

- A. Batt or Blanket: Optional.
- B. Mineral Fiber: ASTM C665, Type II, Class C, Category I where framing is faced with gypsum board.
- C. Mineral Fiber: ASTM C665, Type III, Class A where framing is not faced with gypsum board.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install batt or blanket insulation with tight joints and filling framing void completely. Seal cuts, tears, and unlapped joints with tape.
- B. Fit insulation tight against adjoining construction and penetrations, unless specified otherwise.

- - - E N D - - -

SECTION 07 53 23 ETHYLENE-PROPYLENE-DIENE-MONOMER ROOFING

PART 1 GENERAL

1.1 DESCRIPTION

A. Ethylene Propylene Diene Monomer (EPDM) sheet roofing adhered and ballasted to roof deck.

1.2 RELATED WORK

- A. Treated wood framing, blocking, and nailers: Section 06 10 00, ROUGH CARPENTRY.
- B. Metal cap flashings, copings, fascias, and expansion joints: Section 07 60 00, FLASHING AND SHEET METAL.
- C. Mechanical equipment supports: Section 23 34 00, HVAC FANS and Section 23 31 00, HVAC DUCTS AND CASINGS, Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 QUALITY ASSURANCE

A. Approved applicator by the membrane roofing system manufacturer, and certified by the manufacturer as having the necessary expertise to install the specific system.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Applicators approval certification by manufacturer.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Deliver, store, and handle materials as specified by manufacturer.
- B. Store volatile materials separate from other materials with separation to prevent fire from damaging the work, or other materials.

1.6 WARRANTY

A. Roofing work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

B209-07.....Aluminum and Aluminum-Alloy Sheet and Plate D751-06....Coated Fabrics

D2103-10.....Polyethylene Film and Sheeting

D2240-05(R2010).....Rubber Property - Durometer Hardness D3884-09.....Abrasive Resistance of Textile Fabrics (Rotary Platform, Double-Head Method) D4637-10..... EPDM Sheet Used in Single-Ply Roof Membrane D4586-07.....Asphalt Roof Cement, Asbestos Free E108-10.....Fire Tests of Roof Coverings G21-09.....Resistance of Synthetic Polymeric Materials to Fungi C. National Roofing Contractors Association (NRCA): Fifth Edition - 05..... The NRCA Roofing and Waterproofing Manual. D. Federal Specifications (Fed. Spec.) FF-S-107C(2).....Screws, Tapping and Drive FF-S-111D(1).....Screw, Wood UU-B-790A.....Building Paper, Vegetable Fiber (Kraft, Waterproofed, Water Repellent and Fire Resistant) E. Factory Mutual Engineering and Research Corporation (FM): Annual Issue......Approval Guide Building Materials F. Underwriters Laboratories, Inc (UL): Annual Issue.....Building Materials Directory Annual Issue......Fire Resistance Directory G. Warnock Hersey (WH): Annual Issue.....Certification Listings

PART 2 - PRODUCTS

2.1 EPDM SHEET ROOFING

- A. Conform to ASTM D4637, Type I, Grade 1, black color; verify and match existing.
- B. Additional Properties:

PROPERTY	TEST METHOD	REQUIREMENT
Shore A Hardness	ASTM D2240	55 to 75 Durometer
Water Vapor Permeance	ASTM E96	Minimum 0.14 perms Water Method
Fungi Resistance	ASTM G21	After 21 days, no sustained growth or discoloration.
Fire Resistance	ASTM E108 Class A	No Combustion Beyond Flame/Heat Source

- C. Thickness:
 - 1. Use 1.5 mm (0.060-inch) thick sheet for mechanically anchored system.

- D. Pipe Boots:
 - Molded EDPM designed for flashing of round penetrations, 200 mm (8 inch) minimum height.
 - 2. Color same as roof membrane.

2.2 EPDM FLASHING SHEET

- A. Conform to ASTM D4637, Type I, Grade 1, Class U, unreinforced, color, same as roof membrane modified as specified for flashing.
- B. Self curing EPDM flashing, adaptable to irregular shapes and surfaces.
- C. Minimum thickness 1.5 mm (0.060-inch).

2.3 MISCELLANEOUS ROOFING MEMBRANE MATERIALS

- A. Sheet roofing manufacturers specified products.
- B. Splice Adhesive: For roofing and flashing sheet.
- C. Lap Sealant: Liquid EPDM rubber for roofing sheet exposed lap edge.
- D. Bonding Adhesives: Neoprene, compatible with roofing membrane, flashing membrane, insulation, metals, concrete, and masonry for bonding roofing and flashing sheet to substrate.
- E. Fastener Sealer: One part elastomeric adhesive sealant.
- F. Temporary Closure Sealers (Night Sealant): Polyurethane two part sealer.
- G. Primers, Splice Tapes, Cleaners, and Butyl Rubber Seals: As specified by roof membrane manufacturer.
- H. Asphalt Roof Cement: ASTM D4586.

2.4 FASTENERS

- A. Pipe Compression Clamp or Drawband:
 - 1. Stainless steel or cadmium plated steel drawband.
 - 2. Worm drive clamp device.
- B. Surface mounted base flashing clamp strip:
 - Stainless steel strip, ASTM A167, type 302 or 304, dead soft temper, minimum 0.5 mm (0.018-inch) thick.
 - 2. Aluminum strip: ASTM B209 24 mm (.094-inch) thick.
 - 3. For exposed location, form strips with 6 mm (1/4 inch) wide top edge bent out 45 degrees (for sealant) from 40 mm (1-1/2 inch) wide material; 2400 mm (8 feet) maximum length with slotted 6 mm x 10 mm (1/4 by 3/8-inch) holes punched at 200 mm (8 inch) centers, centered between bend and bottom edges.
 - 4. For locations covered by cap flashings, form strips 30 mm (1-1/4 inch) wide, 2400 mm (8 feet) maximum length with slotted holes 6 mm x 10 mm (1/4 by 3/8 inch) punched at 200 mm (8 inch) centers, centered on strip width.

2.5 BALLAST

A. Reuse existing ballast.

PART 3 - EXECUTION

3.1 GENERAL

- A. Phased construction is not permitted. The complete installation of roofing system is required in the same day except for area where temporary protection is required when work is stopped. Complete installation includes pavers and ballast for ballasted systems.
- B. Dry out surfaces, including the flutes of metal deck, that become wet from any cause during progress of the work before roofing work is resumed.
- C. Apply materials only to dry substrates.
- D. Except for temporary protection specified, do not apply materials during damp or rainy weather, during excessive wind conditions, nor while moisture (dew, snow, fog, ice, or frost) is present in any amount in or on the materials.
 - Do not apply materials to substrate having temperature of 4°C (40 degrees F) or less, or when materials applied with the roof require higher application temperature.
 - 2. Do not apply materials when the temperature is below 4°C (40 degrees F).
- E. Temporary Protection:
 - Install temporary protection consisting of a temporary seal and water cut-offs at the end of each day's work and when work is halted for an indefinite period or work is stopped when precipitation is imminent.
 - 2. Temporarily seal exposed surfaces of insulation within the roofing membrane.
 - 3. Do not leave insulation surfaces or edges exposed.
 - Use polyethylene film or building paper to separate roof sheet from bituminous materials.
 - 5. Apply the temporary seal and water cut off by extending the roof membrane beyond the insulation and securely embedding the edge of the roof membrane in 6 mm (1/4 inch) thick by 50 mm (2 inches) wide strip of temporary closure sealant (night sealant) and weight edge with sandbags, to prevent displacement; space sandbags not over 2400 mm (8 foot) centers. Check daily to insure temporary seal remains watertight. Reseal open areas and weight down.
 - Before the work resumes, cut off and discard portions of the roof membrane in contact with roof cement or bituminous materials.
 - a. Cut not less than 150 mm (6 inches) back from bituminous coated edges or surfaces.
 - b. Remove temporary polyethylene film or building paper.
 - 7. Remove and discard sandbags contaminated with bituminous products.

- For roof areas that are to remain intact and that are subject to foot traffic and damage, provide temporary wood walkways with notches in sleepers to permit free drainage.
- Provide 2 mm (6 mil) polyethylene sheeting or building paper cover over roofing membrane under temporary wood walkways and adjacent areas. Round all edges and corners of wood bearing on roof surface.

3.2 PREPARATION

- A. Remove dirt, debris, and surface moisture. Cover or fill voids greater than 6 mm (1/4 inch) wide to provide solid support for roof membrane.
- B. Install separation sheet over bituminous material on deck surface lapping edges and ends 150 mm (6 inches) or as recommended by roof membrane manufacturer.
 - 1. Do not install of separation sheet beyond what can be covered by roofing membrane each day.
 - 2. Use polyethylene, or building paper, that will be compatible with seaming method.
 - 3. Insure separation sheet completely isolates bituminous materials from EPDM roofing membrane.
 - 4. Turn up at penetrations, or other surfaces where bituminous materials occur, to cover bituminous product.
 - 5. Turn down over edges of blocking at perimeters to cover blocking.

3.3 INSTALLATION OF ROOFING AND FLASHING

- A. Do not allow the membrane to come in contact with surfaces contaminated with asphalt, coal tar, oil, grease, or other substances which are not compatible with EPDM roofing membrane.
- B. Position the membrane so it is free of buckles and wrinkles.
- C. Roll sheet out on deck; inspect for defects as sheet is being rolled out and remove defective areas:
 - 1. Allow 30 minutes for relaxing before proceeding.
 - 2. Lap edges and ends of sheets 75 mm (3 inches) or more as recommended by the manufacturer. Clean lap surfaces as specified by manufacturer.
 - 3. Adhesively splice laps. Apply pressure as required. Seam strength of laps as required by ASTM D4637.
 - 4. Check seams to ensure continuous adhesion and correct defects.
 - 5. Finish edges of laps with a continuous beveled bead of lap sealant to sheet edges to provide smooth transition as specified by manufacturer.
 - 6. Finish seams as the membrane is being installed (same day).
 - 7. Anchor perimeter to deck or wall as specified.
- D. Adhered System:

- Apply bonding adhesive in quantities required by roof membrane manufacturer.
- Fold sheet back on itself, clean and coat the bottom side of the membrane and the top of the deck with adhesive. Do not coat the lap joint area.
- After adhesive has set according to adhesive manufacturer's application instruction, roll the membrane into the adhesive in manner that minimizes voids and wrinkles.
- 4. Repeat for other half of sheet. Cut voids and wrinkles to lay flat and clean for repair patch over cut area.
- E. Install flashings as the membrane is being installed (same day). If the flashing cannot be completely installed in one day, complete the installation until the flashing is in a watertight condition and provide temporary covers or seals.
- F. Installing EPDM Base Flashing and Pipe Flashing:
 - Install EPDM flashing membranes to pipes, walls or curbs to a height not less than 200 mm (8 inches) above roof surfaces and 100 mm (4 inches) on roof membranes. Install in accordance with NRCA manual:
 - a. Adhere flashing to pipe, wall or curb with bonding adhesive.
 - b. Form inside and outside corners of EPDM flashing membrane in accordance with NRCA manual (Fifth Edition). Form pipe flashing in accordance with NRCA manual (Fifth Edition).
 - c. Lap ends not less than 100 mm (4 inches).
 - d. Adhesively splice flashing membranes together and flashing membranes to roof membranes. Finish exposed edges with sealant as specified.
 - Anchor top of flashing to walls or curbs with fasteners spaced not over 150 mm (6 inches) on center. Use surface mounted fastening strip with sealant on ducts. Use pipe clamps on pipes or other round penetrations.
 - 3. Apply sealant to top edge of flashing.
- G. Repairs to membrane and flashings:
 - Remove sections of EPDM sheet roofing or flashing that is creased wrinkled or fishmouthed.
 - 2. Cover removed areas, cuts and damaged areas with a patch extending 100 mm (4 inches) beyond damaged, cut, or removed area. Adhesively splice to roof membrane or flashing. Finish edge of lap with sealant as specified.

3.4 INSTALLATION OF BALLAST SYSTEM

A. Install as soon as roof membrane is laid.

3.5 FIELD QUALITY CONTROL

- A. Examine and probe seams in the membrane and flashing in the presence of the COR and Membrane Manufacturer's Inspector.
- B. Probe the edges of welded seams with a blunt tipped instrument. Use sufficient hand pressure to detect marginal bonds, voids, skips, and fishmouths.
- C. Cut 100 mm (4 inch) wide by 300 mm (12 inch) long samples through the seams where directed by the COR.
 - 1. Cut one sample for every 450 m (1500 linear feet) of seams.
 - 2. Cut the samples perpendicular to the longitudinal direction of the seams.
 - 3. Failure of the samples to maintain the standard of quality within a reasonable tolerance of the approved samples will be cause for rejection of the work.
- D. Repair areas of welded seams where samples have been taken or marginal bond voids or skips occur.
- E. Repair fishmouths and wrinkles by cutting to lay flat and installing patch over cut area extending 100 mm (4 inches) beyond cut.

- - - E N D - - -

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for wall and roof flashing are specified in this section.

1.2 RELATED WORK

A. Joint Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. American Architectural Manufacturers Association (AAMA): AAMA 621.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) and Zinc-Aluminum Coated Steel Substrates
 C. ASTM International (ASTM):
- A653/A653M-11.....Steel Sheet Zinc-Coated (Galvanized) or Zinc Alloy Coated (Galvanized) by the Hot- Dip Process D4586-07.....Asphalt Roof Cement, Asbestos Free

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

A. Galvanized Sheet: ASTM, A653.

2.2 FLASHING ACCESSORIES

A. Fasteners:

- 1. Use galvanized steel or stainless steel for galvanized steel.
- 2. Nails:
 - a. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 - b. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
- B. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- C. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Thickness of galvanized steel is 24 gauge unless otherwise indicated in drawings.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - 1. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 2. Flat and lap joints shall be made in direction of flow.
- B. Drips:
 - Form drips at lower edge of sheet metal counter-flashings (cap flashings), by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
 - Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:

- 1. Steel and Galvanized Steel:
 - a. Manufacturer's finish:
 - 1) Fluorocarbon Finish: AAMA 621, high performance organic coating.
 - 2) Color: Match existing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
 - Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
 - 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
 - 5. Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
 - Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
 - Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
 - 8. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
 - E N D - -

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION

- A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Closure of openings in walls and floors against penetration of gases or smoke.

1.2 RELATED WORK

A. Sealants and application: Section 07 92 00, JOINT SEALANTS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- C. List of FM, UL, or WH classification number of systems installed.
- D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 WARRANTY

A. Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years.

1.6 QUALITY ASSURANCE

A. FM, UL, or WH or other approved laboratory tested products will be acceptable.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

E84-10.....Surface Burning Characteristics of Building Materials

E814-11.....Fire Tests of Through-Penetration Fire Stops

- C. Factory Mutual Engineering and Research Corporation (FM): Annual Issue Approval Guide Building Materials
- D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory Annual Issue Fire Resistance Directory 1479-10.....Fire Tests of Through-Penetration Firestops
- E. Warnock Hersey (WH): Annual Issue Certification Listings

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier.
- D. Firestop sealants used for firestopping or smoke sealing shall have following properties:
 - 1. Contain no flammable or toxic solvents.
 - Have no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties:
 - Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
 - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant.
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- H. Materials to be asbestos free.
- I. Materials shall be red in color.
- J. Material ID: <FR STOP>

PART 3 - EXECUTION

3.1 EXAMINATION

A. Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.

C. Where work will be performed at existing walls, Contractor shall be responsible for ensuring that all penetration, new, resulting from demo, or existing, are property firestopped. The Contractor shall have VA COR verify seals as work is done or completed prior to ceiling tile or systems being reinstalled.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the COR.
- C. Clean up spills of liquid type materials.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK:

A. Firestopping penetrations: Section 07 84 00, FIRESTOPPING.

1.3 QUALITY CONTROL:

- A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in jointsealant installations with a record of successful in-service performance.
- B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
- C. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color where required to match adjacent material.
- D. Manufacturer's Literature and Data:
 - 1. Caulking compound
 - 2. Primers
 - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other.

1.5 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 °C (40 °F).

- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.6 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32° C (90° F) or less than 5° C (40° F).

1.7 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Back-up Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.8 WARRANTY:

- A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years.
- B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Society for Testing and Materials (ASTM): C509-06.....Elastomeric Cellular Preformed Gasket and Sealing Material.

```
C612-10..... Mineral Fiber Block and Board Thermal
                           Insulation.
     C717-10.....Standard Terminology of Building Seals and
                           Sealants.
     C834-10....Latex Sealants.
     C919-08.....Use of Sealants in Acoustical Applications.
     C920-10.....Elastomeric Joint Sealants.
     C1021-08.....Laboratories Engaged in Testing of Building
                           Sealants.
     C1193-09.....Standard Guide for Use of Joint Sealants.
     C1330-02 (R2007).....Cylindrical Sealant Backing for Use with Cold
                           Liquid Applied Sealants.
     D1056-07.....Specification for Flexible Cellular Materials-
                           Sponge or Expanded Rubber.
     E84-09.....Surface Burning Characteristics of Building
                           Materials.
  C. Sealant, Waterproofing and Restoration Institute (SWRI).
     The Professionals' Guide
PART 2 - PRODUCTS
2.1 SEALANTS:
  A. S-1:
     1. ASTM C920, polyurethane or polysulfide.
     2. Type M.
     3. Class 25.
     4. Grade NS.
     5. Shore A hardness of 20-40
  B. S-2:
     1. ASTM C920, polyurethane or polysulfide.
```

- 2. Type M.
- 3. Class 25.
- 4. Grade P.
- 5. Shore A hardness of 25-40.
- C. S-6:
 - 1. ASTM C920, silicone, neutral cure.
 - 2. Type S.
 - 3. Class: Joint movement range of plus 100 percent to minus 50 percent.
 - 4. Grade NS.
 - 5. Shore A hardness of 15-20.

- 6. Minimum elongation of 1200 percent.
- D. S-9:
 - 1. ASTM C920 silicone.
 - 2. Type S.
 - 3. Class 25.
 - 4. Grade NS.
 - 5. Shore A hardness of 25-30.
 - 6. Non-yellowing, mildew resistant.

2.2 CAULKING COMPOUND:

- A. C-1: ASTM C834, acrylic latex, paintable.
- B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber, paintable.

2.3 COLOR:

- A. Sealants used with exposed masonry shall match color of mortar joints.
- B. Sealants used with unpainted concrete shall match color of adjacent concrete.
- C. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise.
- D. Caulking shall be light gray or white, unless specified otherwise.

2.4 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint

where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiber board: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

A. As recommended by manufacturer of caulking or sealant material.

B. Stain free type.

2.7 CLEANERS-NON POUROUS SURFACES:

A. Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI.
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.

- Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.

B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).
 - Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - Do not use sealant type listed by manufacture as not suitable for use in locations specified.
 - Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 5. Avoid dropping or smearing compound on adjacent surfaces.
 - 6. Fill joints solidly with compound and finish compound smooth.
 - 7. Tool joints to concave surface unless shown or specified otherwise.
 - 8. Apply compounds with nozzle size to fit joint width.
 - 9. Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.

3.6 FIELD QUALITY CONTROL:

- A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates as recommended by sealant manufacturer:
 - Extent of Testing: Test completed elastomeric sealant joints as follows:
 - a. Perform one test for each 300 m (1000 feet) of joint length thereafter or one test per each floor per elevation.
- B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.

C. Leave adjacent surfaces in a clean and unstained condition.

3.8 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Metal to Masonry or Stone: Type S-1
 - 3. Masonry to Masonry or Stone: Type S-1
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6
- C. Sanitary Joints:
 - 1. Pipe Penetrations: Type S-9
- D. Interior Caulking:
 - Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1 and C-2.
 - Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1 and C-2.
 - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1 and C-2.
 - 4. Exposed Isolation Joints at Top of Full Height Walls: Types C-1 and C-2.

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

A. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Finishing materials.
 - 2. Gypsum board, each type.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

A. In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

A. In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM):

C11-08.....Terminology Relating to Gypsum and Related Building Materials and Systems

C475-02.....Joint Compound and Joint Tape for Finishing Gypsum Board

C840-08..... Application and Finishing of Gypsum Board

C954-07.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. (0.84mm) to 0.112 in. (2.84mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-05....Accessories for Gypsum Wallboard and Gypsum Veneer Base C1396-06....Gypsum Board E84-08....Surface Burning Characteristics of Building Materials

- C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory
- D. Inchcape Testing Services (ITS):
 Latest Editions.....Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, fire rated, 16 mm (5/8 inch) thick. Shall contain a minimum of 20 percent recycled gypsum.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X, fire rated.
 - 2. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Gypsum cores shall contain maximum percentage of post industrial recycled gypsum content available in the area (a minimum of 95 percent post industrial recycled gypsum content). Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.3 FINISHING MATERIALS AND LAMINATING ADHESIVE

A. ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- D. Bring gypsum board into contact, but do not force into place.
- E. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.

3.2 CAVITY SHAFT WALL

- A. Conform to UL Design No. U438 or FM WALL CONSTRUCTION 12-2/HR (Nonbearing for two-hour fire rating.
- B. Cut coreboard (liner) panels 25 mm (one inch) less than floor-to-ceiling height, and erect vertically between J-runners on shaft side.
 - 1. Where shaft walls exceed 4300 mm (14 feet) in height, position panel end joints within upper and lower third points of wall.
 - 2. Stagger joints top and bottom in adjacent panels.
- C. Gypsum Board:
 - 1. Two hour wall:
 - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 600 mm (24 inches) on center.
 - b. Use laminating adhesive between plies in accordance with UL or FM if required by fire test.
 - c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of sufficient length to secure to framing staggered from those in base, spaced 300 mm (12 inches) on center.
 - One hour wall with one layer on finish side of wall: Apply face layer of gypsum board vertically. Attach to studs with screws of sufficient length to secure to framing, spaced 300 mm (12 inches) on center in field and along edges.
 - 3. Where coreboard is covered with face layer of gypsum board, stagger joints of face layer from those in the coreboard base.

D. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.

3.3 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the construction. Sanding is not required of non decorated surfaces.

3.4 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide fire protection equivalent to the rated construction.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1- GENERAL

1.1 DESCRIPTION

- A. Metal ceiling suspension system for acoustical ceilings.
- B. Acoustical units.

1.2 RELATED WORK

A. Color, pattern, and location of each type of acoustical unit: Match adjacent materials.

1.3 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - Acoustical units, each type, with label indicating conformance to specification requirements, including units specified to match existing.
 - 2. Colored markers for units providing access if existing markers need replacement.
- C. Manufacturer's Literature and Data:
 - Ceiling suspension system, each type, showing complete details of installation, including suspension system specified to match existing and upward access system details for concealed grid systems.
 - 2. Acoustical units, each type
- D. Manufacturer's Certificates: Acoustical units, each type, in accordance with specification requirements.

1.4 DEFINITIONS

- A. Standard definitions as defined in ASTM C634.
- B. Terminology as defined in ASTM E1264.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A641/A641M-03.....Zinc-coated (Galvanized) Carbon Steel Wire A653/A653M-07....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process C423-07....Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

C634-02 (E2007)......Standard Terminology Relating to Environmental Acoustics C635-04.....Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings C636-06.....Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels E84-07....Surface Burning Characteristics of Building Materials E119-07.....Fire Tests of Building Construction and Materials E413-04.....Classification for Rating Sound Insulation. E580-06.....Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Seismic Restraint

E1264-(R2005).....Classification for Acoustical Ceiling Products

PART 2- PRODUCTS

2.1 METAL SUSPENSION SYSTEM

- A. ASTM C635, heavy-duty system, except as otherwise specified.
 - Ceiling suspension system members may be fabricated from either of the following unless specified otherwise.
 a. Extruded aluminum.
 - Use same construction for cross runners as main runners. Use of lighter-duty sections for cross runners is not acceptable.
 - 3. Use aluminum suspension in kitchens.
- B. Exposed grid suspension system for support of lay-in panels:
 - 1. Exposed grid width not less than 22 mm (7/8 inch) with not less than 8 mm (5/16 inch) panel bearing surface.
 - Fabricate wall molding and other special molding from the same material with same exposed width and finish as the exposed grid members.
 - On exposed metal surfaces apply baked-on enamel flat texture finish in color to match adjacent acoustical units.

2.2 PERIMETER SEAL

- A. Vinyl, polyethylene or polyurethane open cell sponge material having density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
- B. Thickness as required to fill voids between back of wall molding and finish wall.
- C. Not less than 9 mm (3/8 inch) wide strip.

2.3 WIRE

- A. ASTM A641.
- B. For wire hangers: Minimum diameter 2.68 mm (0.1055 inch).
- C. For bracing wires: Minimum diameter 3.43 mm (0.1350 inch).

2.4 ANCHORS AND INSERTS

- A. Use anchors or inserts to support twice the loads imposed by hangers attached thereto.
- B. Hanger Inserts:
 - Fabricate inserts from steel, zinc-coated (galvanized after fabrication).
 - 2. Nailing type option for wood forms:
 - a. Upper portion designed for anchorage in concrete and positioning lower portion below surface of concrete approximately 25 mm (one inch).
 - b. Lower portion provided with not less than 8 mm (5/16 inch) hole to permit attachment of hangers.
 - 3. Flush ceiling insert type:
 - a. Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
 - b. Insert opening inside shell approximately 16 mm (5/8 inch) wide by9 mm (3/8 inch) high over top of wire.
 - c. Wire 5 mm (3/16 inch) diameter with length to provide positive hooked anchorage in concrete.
- C. Clips:
 - 1. Galvanized steel.
 - Designed to clamp to steel beam or bar joists, or secure framing member together.
 - 3. Designed to rigidly secure framing members together.
 - Designed to sustain twice the loads imposed by hangers or items supported.
- D. Tile Splines: ASTM C635.

2.5 CARRYING CHANNELS FOR SECONDARY FRAMING

- A. Fabricate from cold-rolled or hot-rolled steel, black asphaltic paint finish, free of rust. Do not use ceiling grid pieces for carrying channels, or secondary support framing.
- B. Weighing not less than the following, per 300 m (per thousand linear feet):

Size mm	Size	Cold-rolled		Hot-rolled	
	Inches	Kg	Pound	Kg	Pound
38	1 1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

2.6 ACOUSTICAL UNITS

- A. General:
 - Ceiling Tile shall meet minimum 37% bio-based content in accordance with USDA Bio-Preferred Product requirements.
 - 2. ASTM E1264, weighing 3.6 kg/m^2 (3/4 psf) minimum for mineral fiber panels or tile.
 - 3. Class A Flame Spread: ASTM 84
 - 4. Minimum NRC (Noise Reduction Coefficient): 0.55 unless specified otherwise: ASTM C423.
 - 5. Minimum CAC (Ceiling Attenuation Class): 40-44 range unless specified otherwise: ASTM E413.
 - Manufacturers standard finish, minimum Light Reflectance (LR) coefficient of 0.75 on the exposed surfaces.
 - 7. Lay-in panels: Size 2 feet square or 2 feet by 4 feet, with square or reveal edges.
 - 8. Provide an addition 25% of each type of panel for replacement of existing damaged or stained tiles.
- B. Type III Units Mineral base with water-based painted finish less than 10 g/l VOC, Form 2 Water felted, minimum 16 mm (5/8 inch) thick.
 Mineral base to contain minimum 65 percent recycled content.
 1. Basis of Design: Fissured Square Lay-in #756A by Armstrong
 2. Locations: Provide in Rooms 2E-44, 2E-45, 2E-46, and 2E-48.
- C. PVC Ceiling Panels: Virgin grade polyvinyl chloride (PVC), 0.76 to 0.81 mm thick.

Basis of Design: Genesis Printed Pro by Acoustic Ceiling Products.
 Locations: All areas indicated to have ceiling tiles, except the rooms noted above.

- D. Legend:
 - 1. Type I: 2x2 or 2x4 square lay-in fissured. Size to match existing.
 - 2. Type II: 2x2 tegular lay-in fissured.
 - 3. Type III: 2x4 square lay-in PVC panels.

2.3 ACCESS IDENTIFICATION

- A. Markers:
 - 1. Match any existing identification on replaced units.

- 2. Use colored markers with pressure sensitive adhesive on one side.
- Make colored markers of paper of plastic, 6 to 9 mm (1/4 to 3/8 inch) in diameter.
- B. Use markers of the same diameter throughout building.
- C. Color Code: Use following color markers for service identification: Color.....Service Red.....Sprinkler System: Valves and Controls Green....Domestic Water: Valves and Controls Yellow.....Chilled Water and Heating Water Red with white text...Ductwork: Fire Dampers Blue.....Ductwork: Dampers and Controls White with black text...VAV Boxes Black......Gas: Laboratory, Medical, Air and Vacuum

PART 3 EXECUTION

3.1 CEILING TREATMENT

- A. Lay out acoustical units so that the suspensions system falls in the same location as existing.
- B. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- C. Perimeter Seal:
 - 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.

3.2 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General:
 - 1. Install metal suspension system for acoustical tile and lay-in panels in accordance with ASTM C636, except as specified otherwise.
 - Use direct or indirect hung suspension system or combination thereof as defined in ASTM C635.
 - 3. Support a maximum area of 1.48 \mbox{m}^2 (16 sf) of ceiling per hanger.
 - Prevent deflection in excess of 1/360 of span of cross runner and main runner.
 - 5. Provide extra hangers, minimum of one hanger at each corner of each item of mechanical, electrical and miscellaneous equipment supported by ceiling suspension system not having separate support or hangers.

- 6. Provide not less than 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown,
- 7. Use main runners not less than 1200 mm (48 inches) in length.
- 8. Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Anchorage to Structure:
 - 1. Steel:
 - a. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels for attachment of hanger wires.
 - Size and space carrying channels to insure that the maximum deflection specified will not be exceeded.
 - (2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
 - b. Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fire proofing is installed. Weld or use steel clips to attach to beam to develop full strength of carrying channel.
 - c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.
- B. Direct Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - Support main runners by hanger wires attached directly to the structure overhead.
 - Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- C. Indirect Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - 2. Space carrying channels for indirect hung suspension system not more than 1200 mm (4 feet) on center. Space hangers for carrying channels not more than 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.

4. Do not use ceiling grid pieces for indirect suspension system.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Install lay-in acoustic panels in exposed grid with not less than 6 mm (1/4 inch) bearing at edges on supports.
 - 1. Install tile to lay level and in full contact with exposed grid.
 - 2. Replace cracked, broken, stained, dirty, or tile not cut for minimum bearing.
- C. Tile in concealed grid upward access suspension system:
 - Install acoustical tile with joints close, straight and true to line, and with exposed surfaces level and flush at joints.
 - 2. Make corners and arises full, and without worn or broken places.
 - Locate acoustical units providing access as specified under Article, ACCESS.
- D. Markers:
 - 1. Match any existing markers on replaced units.
 - Install markers of color code specified to identify the various concealed piping, mechanical, and plumbing systems.
 - 3. Attach colored markers to exposed grid.

3.4 CLEAN-UP AND COMPLETION

- A. Replace damaged, discolored, dirty, cracked and broken acoustical units.
- B. Leave finished work free from defects.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:

Before work is started, or sample panels are prepared, submit manufacturer's literature, MSDS information, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- C. Sample of identity markers if used.
- D. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. MSDS information sheets for all products.

1.3 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
 - 6. VA project number.
 - 7. VA project title.
 - 8. VA contract number
- B. In addition to manufacturer's label, provide a label legibly printed as following:

- 1. Federal Specification Number, where applicable, and name of material.
- 2. Surface upon which material is to be applied.
- 3. If paint or other coating, state coat types; prime, body or finish.
- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIS)

ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

- C. American National Standards Institute (ANSI):
 A13.1-07.....Scheme for the Identification of Piping Systems
- D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil
- E. Federal Specifications (Fed Spec):
- TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP)
- F. Master Painters Institute (MPI):
 - No. 4-12.....Interior/ Exterior Latex Block Filler
 - No. 45-12.....Interior Primer Sealer
 - No. 47-12.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK)
 - No. 50-12.....Interior Latex Primer Sealer
 - No. 51-12.....Interior Alkyd, Eggshell, MPI Gloss Level 3
 - No. 52-12.....Interior Latex, MPI Gloss Level 3 (LE)
 - No. 53-12......Interior Latex, Flat, MPI Gloss Level 1 (LE)
 - No. 54-12.....Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)
- PART 2 PRODUCTS

2.1 MATERIALS

- A. Interior/Exterior Latex Block Filler: MPI 4.
- B. Interior Primer Sealer: MPI 45.
- C. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- D. Interior Latex Primer Sealer: MPI 50.

- E. Interior Alkyd, Eggshell: MPI 51
- F. Interior Latex, MPI Gloss Level 3 (LE): MPI 52.
- G. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53.
- H. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
 - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
 - 6. Use high performance acrylic paints in place of alkyd paints, where possible.
 - VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.

- Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
- Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the COR and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - Do not paint in direct sunlight or on surfaces that the sun will soon warm.
 - 5. Apply only on clean, dry and frost free surfaces except as follows:
 - Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.

3.2 SURFACE PREPARATION

- A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.
- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.

- C. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- D. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
- E. Gypsum Plaster and Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.

- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.
- F. Apply by brush or roller.
- G. Do not spray paint.
- H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- E. Gypsum Board:
 - Surfaces scheduled to have MPI 53 (Interior Latex, Flat), MPI Gloss Level 1 LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) finish: Use MPI

53 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).

- 2. Primer: MPI 50(Interior Latex Primer Sealer).
- F. Gypsum Plaster and Veneer Plaster:
 - 1. MPI 45 (Interior Primer Sealer), except use MPI 50 (Interior Latex Primer Sealer) when an alkyd flat finish is specified.
 - 2. Surfaces scheduled to have MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) finish: Use MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 LE)) MPI 52 Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).
- G. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
 - 2. Prime exterior surface as specified for exterior finishes.
- H. Cement Plaster or Stucco, Concrete Masonry, Brick Masonry, and Cement Board Interior Surfaces of Ceilings and Walls:
 - MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 LE)) MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).

3.6 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
- C. Gypsum Board:
 - 1. One coat of MPI 45 (Interior Primer Sealer) plus two coats of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).
- D. Plaster:
 - 1. Two coats of MPI 51 (Interior Alkyd, Eggshell) (AK)).
- E. Masonry and Concrete Walls:
 - 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces.
 - Two coats of MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 (LE)) or MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)) or MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)).

3.7 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Sand or dull glossy surfaces prior to painting.
- H. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.8 PAINT COLOR

- A. Color and gloss of finish coats is to match adjacent finishes.
- B. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- C. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.9 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. Paint various systems specified in Division 23 HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, and Division 27 -COMMUNICATIONS.
- C. Paint after tests have been completed.
- D. Omit prime coat from factory prime-coated items.
- E. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe

tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.

- F. Color:
 - 1. Paint colors to match existing.
- G. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Interior Locations:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items:
 - Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports.

3.10 IDENTITY PAINTING SCHEDULE

- A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels.
 - Legend may be identified using 2.1 G options or by stencil applications.
 - Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows:

COLOR OF

- a. High Pressure 414 kPa (60 psig) and above.
- b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
- c. Low Pressure 103 kPa (14 psig) and below.
- d. Add Fuel oil grade numbers.

COLOR OF

6. Legend name in full or in abbreviated form as follows:

		COHOIC OI	COHOIC OI	COHOIC OI	
	PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	BBREVIATIONS
Blow-o	ff		Yellow	Black	Blow-off
Chille	d Water Suppl	-У	Green	White	Ch. Wtr Sup
Chille	d Water Retur	'n	Green	White	Ch. Wtr Ret
Drain 3	Line		Green	White	Drain

COLOR OF

LECEND

Medium Pressure Steam	Yellow	Black	M. P. Stm*
Medium Pressure Condensate Return	Yellow	Black	M.P. Ret*
Low Pressure Steam	Yellow	Black	L.P. Stm*
Low Pressure Condensate Return	Yellow	Black	L.P. Ret*
Hot Water Heating Supply	Yellow	Black	H. W. Htg Sup
Hot Water Heating Return	Yellow	Black	H. W. Htg Ret
Gravity Condensate Return	Yellow	Black	Gravity Cond Ret
Pumped Condensate Return	Yellow	Black	Pumped Cond Ret
Fire Protection Water			
Sprinkler	Red	White	Auto Spr
Sprinkler	Red	White	Drain

- B. Fire and Smoke Partitions:
 - Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
 - Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition.

4. Use semigloss paint of color that contrasts with color of substrate.

- C. Identify columns in pipe basements and interstitial space:
 - 1. Apply stenciled number and letters to correspond with grid numbering and lettering shown.
 - Paint numbers and letters 100 mm (4 inches) high, locate 450 mm (18 inches) below overhead structural slab.
 - Apply on four sides of interior columns and on inside face only of exterior wall columns.
 - 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.11 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 21 00 60 FIRE PROTECTION DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the demolition and removal of fire protection piping, heads and accessories in existing building.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual Sections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify field measurements and piping and head arrangements are as shown on drawings.
- B. Verify that abandoned equipment serve only abandoned facilities.
- C. Demolition drawings are based on casual field observation and existing record documents. The demolition drawings are diagrammatic and show the general scope of demolition work and do not show all the construction detail of the original record drawings. Report discrepancies to the VA Project Engineer before disturbing existing installations.
- D. The contractor shall visit the existing building and grounds and review the existing building record drawings for details of existing installation to familiarize himself/herself with existing conditions prior to submitting bid. No allowance will be made subsequently, in this connection, on behalf of the contractor for any error or negligence on his part.
- E. Beginning of demolition means the contractor accepts existing conditions.

3.2 PREPARATION

A. Disconnect fire protection systems in areas scheduled for removal. Notify VA Project Engineer of areas to be affected by fire protection demolition work prior to commencing.

3.3 DEMOLITION AND EXTENSION OF EXISTING FIRE PROTECTION WORK

- A. Demolish and remove from site, and extend existing fire protection work under provisions of this division and as indicated on the drawings unless otherwise noted.
- B. Unless otherwise noted on the drawings, all salvage items removed in connection with this contract are to become the property of the

contractor. Salvage items noted to remain the property of the VA shall be delivered to a location to be designated by the VA Project Engineer. Contractor shall remove from construction areas all trash or debris as it accumulates and dispose of it off campus at no additional cost to the VA. All construction areas shall be kept clean, safe, and orderly at all times. At the completion and acceptance for work, contractor shall remove from the site all debris and surplus materials resulting from this work and dispose of them off campus at no additional cost to the VA.

- C. Remove, relocate, and extend existing installations to accommodate new construction as required for proper installation and system operation.
- D. Remove, relocate or provide brackets, hangers, and other accessories as required.
- E. Repair adjacent construction and finishes damaged during demolition and extension work.
- F. Maintain access to existing fire protection installations, which remain active.

3.4 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment, which remain or are to be returned to the VA Project Engineer.
- B. All building surfaces damaged and openings left by new work or the removal or relocation of fire protection systems shall be repaired to original condition and painted by the Contractor.

- - - E N D - - -

SECTION 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

A. Products Criteria:

- Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
- Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.
- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations

of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the VA Project Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.

C. Supports for sprinkler piping shall be in conformance with NFPA 13.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- C. Provide detailed layout drawings of all piping systems. In addition provide details of the following. Final drawings of installed sprinkler systems shall be submitted to the VA in the most current version of AutoCAD that the VA is using.
 - 1. Hangers, inserts, supports, and bracing.
 - 2. Pipe sleeves.
- D. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A36/A36M-2001.....Carbon Structural Steel

A575-96.....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)

E84-2003.....Standard Test Method for Burning Characteristics of Building Materials
E119-2000.....Standard Test Method for Fire Tests of Building Construction and Materials

C. National Fire Protection Association (NFPA):

90A-96.....Installation of Air Conditioning and Ventilating Systems

101-97.....Life Safety Code

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. All exposed pipe or pipe in unfinished areas shall be painted red to match the existing color used on sprinkler pipe currently installed at the Fargo VA Medical Center.

2.2 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.3 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of VA Project Engineer.
- C. Sheet Metal, Plastic, or Moisture-Resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- D. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.4 TOOLS AND LUBRICANTS

A. Furnish, and turn over to the VA Project Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.5 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the VA Project Engineer. Damaged or defective items in the opinion of the VA Project Engineer shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- D. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the VA Project Engineer. Locate openings that will not affect structural slabs, columns, ribs or beams. Do not cut or drill through structural elements.
- E. Switchgear and IRM/HUB Rooms & Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, provide a drip pan below the piping and provide drip pan drain to nearest floor drain.
- F. All exposed pipe or pipe in unfinished areas shall be painted red to match the existing color used on sprinkler pipe currently installed at the Fargo VA Medical Center.
- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 LUBRICATION

A. Field check and lubricate equipment requiring lubrication prior to initial operation.

3.3 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the VA Project Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

- - - E N D - - -

SECTION 21 10 00 WATER-BASED FIRE-SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Modification of the existing sprinkler systems as indicated on the drawings.
- B. Existing piping to be reused, replaced or removed as indicated on the drawings. Removal of piping to include all hangers and supports.
- C. Relocation of all existing sprinklers and piping in remodeled area where required for coordination with new mechanical systems. Work to include all necessary piping modifications, new sprinklers and new sprinkler escutcheons.
- D. Painting of exposed piping and supports to follow Section 09 91 00, PAINTING. All exposed pipe or pipe in unfinished areas shall be painted red to match the existing color used on sprinkler pipe currently installed at the Fargo VA Medical Center.

1.2 RELATED WORK

- A. Treatment of penetrations through rated enclosures: Section 07 84 00, FIRESTOPPING.
- B. Painting of exposed pipe: Section 09 91 00, PAINTING.
- C. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION.
- D. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 DESIGN CRITERIA

A. The design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system shall be in accordance with the required advisory provisions of NFPA 13, 14, 20, 25, 75, and 82.

1.4 QUALIFICATIONS:

- A. Designer's Qualifications: Design work and shop drawings shall be prepared by a licensed engineer practicing in the field of Fire Protection Engineering or a NICET (National Institute for Certification in Engineering Technologies) Level III sprinkler technician.
- B. Installer's Qualifications: The installer shall possess a valid State fire protection contractor's license. The installer shall provide documentation of having successfully completed three projects of similar size and scope.
- C. On-site emergency service within four hours notification.

1.5 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sprinkler design shall be done by a certified professional. All plans shall be stamped by qualified P.E.
- C. Emergency service point of contact name and 24 hour emergency telephone number.
- D. Manufacturer's Literature and Data:
 - 1. Pipe and fittings.
 - 2. Drips
 - 3. Sprinklers-each type, temperature and model
 - 4. Pipe Hangers and Supports

1.6 AS-BUILT DOCUMENTATION

- A. A Mylar as-built drawing and two blueline copies shall be provided for each drawing. One copy of final AutoCAD drawing files shall also be provided on CD-ROM, DVD+R, or DVD+RW.
- B. Two sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions. Adobe PDF copies of the literature and data shall also be provided.
- C. Two sets of operation and maintenance data updated to include submittal review comments and any equipment substitutions including one copy of NFPA 25. Adobe PDF copies of the operation and maintenance data shall also be provided.
- D. Manufacturers literature, reports and operation and maintenance data shall be in a labeled 3-ring binder. PDF copies of the O&M manuals shall also be provided.

1.7 WARRANTY

- A. All work performed and materials and equipment furnished under this contract shall be free from defects for a period of one year from date of acceptance by the government.
- B. All new piping and equipment incorporated into the new system shall be hydrostatically tested and warranted as new.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA) 13-2010.....Installation of Sprinkler Systems

25-2011.....Inspection, Testing and Maintenance of water Based Fire Protection Systems

70-2011..... National Electrical Code

72-2010.....National Fire Alarm Code

170-2009.....Standards for Fire Safety Symbols

C.Underwriters Laboratories Inc. (UL)

2011..... Eire Protection Equipment Directory

- D. Factory Mutual Engineering Corporation (FM)
 2010.....Approval Guide
- E. Contractor shall provide all necessary test equipment, parts and labor to perform required maintenance.
- F.All inspections, testing and maintenance work required by NFPA 25, NFPA 20, NFPA 13 and recommended by the equipment manufacturer shall be provided. Work shall include operation of sprinkler system alarm and supervisory devices.
- G. Non-included Work: Maintenance service shall not include the performance of any work due to improper use, accidents or negligence for what the contractor is not responsible.

PART 2 - PRODUCTS

2.1 GENERAL

A. All devices and equipment shall be Underwriters Laboratories Inc. listed for their intended purpose. All sprinklers shall be Factory Mutual approved.

2.2 PIPING AND FITTINGS

- A. Fire Protection water supply within the building up to sprinkler system isolation valves shall be black steel, schedule 10 minimum.
- B. Sprinkler piping downstream of the isolation valve on wet-pipe systems shall be black steel, schedule 10 minimum.
- C. Threaded or flanged fittings shall be ANSIB1 6.3 cast iron, class 125 minimum. Threaded fittings are not permitted on pipe with wall thickness less than schedule 40.
- D. Slip type or clamp-on type rubber gasketed fittings shall be listed for each piping application.
- E. Piping Materials Standards:
 - 1. Ferrous piping follow ASTM A 795 Standard
 - 2. Welded and seamless steel pipe follow ANSI/ASTM A 53
 - 3. Wrought steel pipe follow ANSI/ASME B36.10M
 - 4. Electric resistance welded steel pipe follow ASTM A 135

- 5. Seamless copper tube follow ASTM B 75
- 6. Seamless copper water tube follow ASTM B 88
- 7. Wrought seamless copper and copper alloy tube follow ASTM B 251
- Fluxes for soldering applications of copper and copper alloy tube follow ASTM B 813
- 9. Brazing filler metal follow AWS A5.8
- 10. Solder metal, 95-5 follow ASTM B 32
- 11. Alloy material follow ASTM B 446
- F. Fitting Materials Standards:
 - 1. Cast iron threaded fitting, Class 125 and 250 follow ASME B16.4
 - 2. Cast iron pipe flanges and flanged fittings follow ASME B16.1
 - 3. Malleable iron threaded fittings, Class 150 and 300 steel follow ASME B16.3
 - 4. Factory made wrought steel buttweld fittings follow ASME B16.9
 - Buttwelding ends for pipe, valves, flanges, and fitting follow ASME B16.25
 - Wrought copper and copper alloy solder joint pressure fittings follow ASME B16.22
 - 7. Cast copper alloy solder joint pressure fitting follow ASME B16.18
- G. Pipe Identification All pipe, including specially listed pipe allowed by NFPA 13, shall be marked continuously along its length by the manufacturer in such a way as to properly identify the type of pipe. Pipe identification shall include the manufacturer's name, model designation, or schedule.
- H. All exposed pipe or pipe in unfinished areas shall be painted red to match the existing color used on sprinkler pipe currently installed at the Fargo VA Medical Center.

2.3 SPRINKLERS

A. Quick response sprinklers shall be standard type except as noted below. The maximum distance from the deflector to finished ceiling shall be 50 mm (2 in.) for pendent sprinklers. Pendent sprinklers in finished areas shall be provided with semi-recessed adjustable screwed escutcheons and installed within the center one-third of their adjustment. The sprinkler shall be installed in the flush position with the element exposed below the ceiling line. At the specified locations, provide the following type of sprinklers. All sprinklers except "institutional" type sprinklers shall be FM approved. Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval, and the following:

LOCATION	TYPE
Mechanical Equipment Rooms, Electrical & Electrical Switch Gear Rooms	Quick Response, Upright or Telephone Closets, Transformer Vaults Pendent Brass [93 °C (200 °F)]
All Areas Not Listed Above	Quick Response, Recessed Pendent, Sidewall, Chrome Plated [66-74 °C (150-165 °F)]

- B. Do not use quick response sprinklers in the same sprinkler zone with other sprinklers types. In sprinklered light hazard patient zones that are expanded into fully sprinklered zones, revise the existing system to contain quick response sprinklers.
- C. Sprinklers to be installed as per NFPA 13.

2.4 TOOLS AND REPLACEMENT PARTS

A. Provide any special tools or replacement parts to the owner that are not readily available.

2.5 WALL, FLOOR AND CEILING PLATES

- A. Exposed piping passing through walls, floors or ceilings shall be provided with chrome colored escutcheon plates.
- B. Comply with NFPA 101 Fire Barrier Penetration codes.
- C. Firestop all walls and floor penetrations.

2.6 HANGERS

- A. Hangers shall be designed to support five times the weight of the water filled pipe plus 250 Lb (114Kg) at each point of piping support.
- B. These points of support shall be adequate to support the system.
- C. The spacing between hangers shall not exceed the value given for the type of pipe as indicated in NFPA 13 tables.
- D. Hanger components shall be ferrous.
- E. Detailed calculations shall be submitted, when required by the reviewing authority, showing stress developed in hangers, piping, fittings and safety factors allowed.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Drains, Test Pipes and Accessories:

- Provide a drain at base of risers, drain connection on valved sections, and drains at other locations for complete drainage of the system. Provide valve in drain lines and connect to the central drain riser.
- 2. Provide test pipes in accordance with NFPA 13. Test pipes shall be valved and piped to discharge through proper orifice as specified above for drains.
- B. Conceal all piping, except in pipe basements, stairwells and rooms without ceilings.
- C. Install new piping and sprinklers aligned with natural building and other sprinklers lines.
- D. Locate piping in stairways as near ceiling as possible to prevent tampering by unauthorized personnel. Provide a minimum headroom of 2250 mm (7 ft.-6 in.) for all piping.
- E. Piping arrangement shall avoid contact with other piping and equipment and allow clear access to other equipment or devices requiring access or maintenance.
- F. No other utilities (i.e. piping, ductwork, etc.) above the ceiling shall be allowed to rest on existing or new sprinkler piping and accessories. The contractor shall provide supports for any other utility that touches existing or new sprinkler piping. This shall be checked during on-site above ceiling inspections to make sure this complies.
- G. All exposed pipe or pipe in unfinished areas shall be painted red to match the existing color used on sprinkler pipe currently installed at the Fargo VA Medical Center.
- H. Firestopping shall comply with Section 07 84 00, FIRESTOPPING. All piping and holes through walls or floors shall be sealed on a daily basis.

3.2 TEST

A. Automatic Sprinkler System: NFPA 13 and 25.

- - - END - - -

SECTION 23 00 60 HVAC DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the demolition and removal of diffusers, ductwork, ductwork insulation and accessories in existing building.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify field measurements and existing ductwork arrangements are as shown on drawings.
- B. Verify that abandoned equipment serve only abandoned facilities.
- C. Demolition drawings are based on casual field observation and existing record documents. The demolition drawings are diagrammatic and show the general scope of demolition work and do not show all the construction detail of the original record drawings. Report discrepancies to the VA Project Engineer before disturbing existing installations.
- D. The contractor shall visit the existing building and grounds and review the existing building record drawings for details of existing installation to familiarize himself with existing conditions prior to submitting bid. No allowance will be made subsequently, in this connection, on behalf of the contractor for any error or negligence on his part.
- E. Beginning of demolition means the contractor accepts existing conditions.

3.2 PREPARATION

A. Disconnect mechanical systems in areas scheduled for removal. Notify the VA Project Engineer of areas to be affected by mechanical demolition work prior to commencing.

3.3 DEMOLITION AND EXTENSION OF EXISTING MECHANICAL WORK

- A. Demolish and remove from site, and extend existing mechanical work under provisions of this division and as indicated on the drawings unless otherwise noted.
- B. Unless otherwise noted on the drawings, all salvage items removed in connection with this contract are to become the property of the contractor. Salvage items noted to remain the property of the VA shall

be delivered to a location to be designated by the VA Project Engineer. Contractor shall remove from construction areas all trash or debris as it accumulates and dispose of it off campus at no additional cost to the VA. All construction areas shall be kept clean, safe, and orderly at all times. At the completion and acceptance for work, contractor shall remove from the site all debris and surplus materials resulting from this work and dispose of them off campus at no additional cost to the VA.

- C. Remove, relocate, and extend existing installations to accommodate new construction as required for proper installation and system operation.
- D. Remove all accessories above grade.
- E. Seal all existing roof penetrations, which will not be reused.
- F. Remove, relocate or provide brackets, hangers, and other accessories as required.
- G. Repair adjacent construction and finishes damaged during demolition and extension work.
- H. Maintain access to existing mechanical installations, which remain active.
- I. The contractor shall remove diffusers, ductwork, and their appurtenances no longer required unless otherwise noted. The mixing boxes shall be refurbished and reused as noted in drawings.

3.4 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment, which remain or are to be returned to the VA Project Engineer.
- B. All building surfaces damaged and openings left by new work or the removal or relocation of mechanical equipment, shall be repaired to original condition and painted by the contractor.
- C. All ductwork identified as remaining shall be reinsulated with ductwrap per specification section 23 07 11.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. PE: VA Project Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 07 84 00, FIRESTOPPING
- D. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations
- E. Section 07 92 00, JOINT SEALANTS
- F. Section 09 91 00, PAINTING
- G. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- H. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- I. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- J. Section 23 07 11, HVAC Insulation
- K. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- L. Section 23 21 13, HYDRONIC PIPING
- M. Section 23 21 23, HYDRONIC PUMPS
- O. Section 23 23 00, REFRIGERANT PIPING
- P. Section 23 25 00, HVAC WATER TREATMENT
- Q. Section 23 31 00, HVAC DUCTS and CASINGS
- R. Section 23 34 00, HVAC FANS
- S. Section 23 36 00, AIR TERMINAL UNITS
- T. Section 23 37 00, AIR OUTLETS and INLETS
- U. Section 23 40 00, HVAC AIR CLEANING DEVICES
- V. Section 23 64 00, PACKAGED WATER CHILLERS
- W. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS

- X. Section 23 81 23, COMPUTER-ROOM AIR-CONDITIONERS AND VARIABLE REFRIGERANT VOLUME SYSTEMS
- Y. Section 23 82 00, CONVECTION HEATING and COOLING UNITS
- Z. Section 23 82 16, AIR COILS
- AA.Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training
- BB.Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutionalclass and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC or steam boiler plant construction, as applicable.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions.
 - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

- 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Contracting Officers Technical Representative (COTR).
- Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the PE/COTR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the PE/COTR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.

2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation.
- F. Samples: Samples will not be required, except for insulation or where materials offered differ from specification requirements. Samples shall be accompanied by full description of characteristics different from specification. The Contractor may submit samples of additional material at the Contractor's option.
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the VA Project Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.

- H. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (ARI): 430-99.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2004.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007.....Drives Using Classical V-Belts and Sheaves IP-21-1991(1997)....Drives Using Double-V (Hexagonal) Belts IP-22-2007.....Drives Using Narrow V-Belts and Sheaves
- E. Air Movement and Control Association (AMCA): 410-96......Recommended Safety Practices for Air Moving

Devices

- F. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section I-2007.....Power Boilers Section IX-2007.....Welding and Brazing Qualifications Code for Pressure Piping: B31.1-2004....Power Piping, with Amendments G. American Society for Testing and Materials (ASTM): A36/A36M-05....Carbon Structural Steel A575-96(2002)....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002)
 - E84-07.....Standard Test Method for Burning Characteristics of Building Materials
 - E119-07.....Standard Test Method for Fire Tests of Building Construction and Materials

H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2002.....Pipe Hangers and Supports-Materials, Design and Manufacture SP 69-2003.....Pipe Hangers and Supports-Selection and Application

SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application

- I. National Electrical Manufacturers Association (NEMA): MG-1-2006 Motors and Generators
- J. National Fire Protection Association (NFPA): 70-08.....National Electrical Code 90A-02....Installation of Air Conditioning and Ventilating Systems

101-06.....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the PE/COTR. Such repair or replacement shall be at no additional cost to the Government.
- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

B. Cleanliness of Piping and Equipment Systems:

- Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
- Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the Medical Center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the Medical Center.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the VA Project Engineer during periods when the demands are not critical to the operation of the Medical Center. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least two weeks advance notice to the VA Project Engineer.
- D. Phasing of Work: Comply with all requirements shown on drawings or specified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.

- 3. Components shall be compatible with each other and with the total assembly for intended service.
- Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - Provide adjustable-pitch or fixed-pitch drive as follows:
 a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.

b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.

- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C.V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E.Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled. The mechanical contractor shall provide all motor starters for all motors that are not listed with variable speed controllers.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be energy efficient type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E.Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 30,000 AIC. Provide AC input line reactors (3% impedance) on incoming power line. Provide output line reactors on line between drive and motor where the distance between the breaker and motor exceeds 50 feet.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:

- 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. Coordinate the valve tags with the Shops Foreman prior to installation for compliance.
 - a. Valve number shall be labeled as follows: M-V-XXX-XXXX-XXX.
 - The first letter of the valve tag refers to the building number. M refers to Main Hospital.
 - 2) V stands for "Valve."
 - 3) The first grouping of XXX indicates the type of piping. Refer to 09 91 00 Painting specification for labels for different types of piping (i.e. HWH is Hot Water Heating, DC is Domestic Cold Water, DH is Domestic Hot Water, and DR is Domestic Recirculating Hot Water).
 - 4) The second grouping of XXXXX indicates the room number.
 - 5) The final grouping of XXX refers to the valve number in the room.
- 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. Additionally, provide a hardcopy drawing and AutoCADD copy (version compatible with Fargo VA current version of CADD) of valve locations.

2.9 FIRESTOPPING

- A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.
- 2.10 GALVANIZED REPAIR COMPOUND
 - A. Mil. Spec. DOD-P-21035B, paint form.

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - Pipe/duct pedestals: Piping shall be supported by a polyethylene, or vulcanized recycled rubber block with an integral strut channel for receiving standard clamps and/or support accessories. Piping shall be

placed at the same elevation where running parallel. Pipe supports shall be installed according to manufacturer's recommendations. Supports shall be installed to allow for expansion and contraction and shall not be adhered to roof surface.

- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the VA Project Engineer for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the VA Project Engineer for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F.Attachment to existing structure: Support from existing floor/roof frame.
- G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.

- I. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f.Turnbuckle: Types 13 or 15. Preinsulate.
 - g.U-bolt clamp: Type 24.
 - h.Copper Tube:
 - 1) Hangers, clamps and other support material in contact with tubing shall be copper to prevent electrolysis.
 - 2) For vertical runs use copper riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - 3. Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars. 1)
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.

- a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
- b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through structural members.
- D. Sheet Metal, Plastic, or Moisture-Resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Galvanized Steel or an Alternate Black Iron Pipe with Asphalt Coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms. Except in mechanical rooms, connect sleeve with floor plate.
- F. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- G. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- H. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight

I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.13 DUCT PENETRATIONS

smoke, and gases.

A. Provide firestopping for openings through barriers, floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.14 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the PE/COTR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.15 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.16 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the

floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.

- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by PE/COTR where working area space is limited.
 - Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by PE/COTR.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the VA Project Engineer. Damaged or defective items in the opinion of the VA Project Engineer, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or

staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

- K. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the VA Project Engineer. Locate openings that will not affect structural slabs, columns, ribs or beams.
- L. Switchgear/Electrical Equipment and IRM/HUB Rooms and Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, drip pans shall be installed below piping to protect electrical and telephone switchgear. Provide a drain line from the drain pan to the nearest floor drain or mop basin. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
 - 1. For air handler replacements, provide temporary fans along with HEPA filter mounted directly in the supply duct for temporary operation

during installation of the new unit. Provide temporary additional heat or cooling in the mechanical room as required to maintain a room temperature of 55-60 degrees.

- 2. All unit disconnections and downtimes shall be scheduled with the owner a minimum of 4 weeks in advance and carefully coordinated.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F.Rigging plan and methods shall be referred to PE/COTR for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Do not drill or burn holes in structural steel.

- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C.Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the PE/COTR and after the contractor has had a structural engineer review and stamp the design. Such access shall be provided without additional cost or time to the Government.

- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the PE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to PE/COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks.

Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.

- Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 3. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A.Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices.
- C. Provide any specialized grease gun(s) with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 -

3.11 STARTUP AND TEMPORARY OPERATION

A. Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS, and submit the test reports and records to the PE/COTR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.13 INSTRUCTIONS TO VA PERSONNEL

A. Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

---END OF SECTION---

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one Section of Division 26.
- B. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.
- C. Other sections specifying motor driven equipment in Division 23.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 21 23, HYDRONIC PUMPS.
- F. Section 23 34 00, HVAC FANS.
- G. Section 23 64 00, PACKAGED WATER CHILLERS.
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Section 23 81 23, COMPUTER-ROOM AIR-CONDITIONERS AND VARIABLE REFRIGERANT VOLUME SYSTEMS.
- J. Section 23 23 00, REFRIGERANT PIPING.
- K. Section 23 82 00, CONVECTION HEATING and COOLING UNITS.
- L. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 SUBMITTALS:

- A. In accordance with Section, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, horsepower, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and application data.

1.4 APPLICABLE PUBLICATIONS:

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA):

MG 1-98.....Motors and Generators

MG 2-01.....Safety Standard and Guide for Selection,

Installation and Use of Electric Motors and Generators

C. National Fire Protection Association (NFPA):

70-02.....National Electrical Code (NEC)

- D. Institute of Electrical and Electronics Engineers (IEEE):
 - 112-04.....Standard Test Procedure for Polyphase Induction Motors and Generators
- E.American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2007.....Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - Contractor's Option Electrically Commutated Motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
- Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time-delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - 2. Three phase:

a. Motors connected to 208-volt systems: 200 volts.

F. Number of phases shall be as follows:

- 1. Motors, less than 373 W (1/2 HP): Single phase.
- 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
- 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 40°C (104°F), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:

- Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
- 2. Assemblies of motors, starters, controls, and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficie	ncies	Minimum Premium Efficiencies					
	Open Drip	-Proof		Totally Enclosed Fan-Cooled					
Rating	1200	1800	3600	Rating	1200	1800	3600		
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM		
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%		
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%		
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%		
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%		
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%		
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%		
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%		
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%		
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%		
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%		
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%		
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%		
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%		
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%		
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%		
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%		
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%		
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%		
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%		

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200

RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with VA Project Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for two hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

---END OF SECTION---

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

A. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment.
- C. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Requirements for optional Air Handling Unit internal vibration isolation.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- E. SECTION 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: requirements for sound and vibration tests.
- F. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for Ggrilles.
- G. SECTION 23 21 23, HYDRONIC PUMPS: vibration isolation requirements for pumps.
- H. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A.Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Noise Criteria:
 - Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Corridors(Public)	40

Kitchens	50
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Patient Rooms	35

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Vibration Criteria:
 - 1. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers

c. Thrust restraints

2. Bases.

C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):

2009Fundamentals Handbook, Chapter 7, Sound and Vibration

C. American Society for Testing and Materials (ASTM):

A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010).....Standard Test Method for Rubber Property -

Durometer Hardness

D. Manufacturers Standardization (MSS): SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC): 2009 IBC.....International Building Code.
- I. Department of Veterans Affairs (VA): H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolators, including springs, exposed to weather shall be hot dip galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E.Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 2. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
 - 3. Pads (Type D): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch) and a minimum size of 4" wide and 3/4" thick.
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.

- Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 2. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- C. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.3 BASES

- A. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- B. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide neoprene waffle pads with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.4 SOUND ATTENUATING UNITS

A. Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps,

compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.

- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -

11-10

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	0	N GRAD	E	20FT FLOOR SPAN		30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN			
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
OUTDOOR AIR CONDENSERS															
UP THROUGH 1-1/2 HP		D	0.8		D	0.8		D	1.5		D	1.5		D	
2 HP AND OVER:															
500 - 750 RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM & OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
CENTRIFUGAL FANS															
UP TO 50 HP:															
UP TO 200 RPM	В	S	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300 RPM	В	S	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500 RPM	В	S	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM & OVER	В	S	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5
AIR HANDLING UNIT PA	ACKAGES	S AND S	USPEND	ED INL	INE FAN	IS									
SUSPENDED INLINE FANS:															
UP THRU 5 HP					Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5

EQUIPMENT	ON GRADE			20FT FLOOR SPAN		30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN				
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0
FLOOR MOUNTED:															
UP THRU 5 HP	В	D		В	D	1.0	В	D	1.0	В	D	1.0	В	D	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM	В	D		В	D	1.5	В	D	2.5	В	D	2.5	В	D	2.5
501 RPM & OVER	В	D		В	D	0.8	В	D	0.8	В	D	1.5	В	D	2.0
CONDENSING UNITS															
ALL		SP	0.25		SP	0.75		SP	1.5	СВ	SP	1.5			NA
IN-LINE CENTRIFUGAL	AND VA	NE AXI	AL FAN	S, FLOO	OR MOUN	TED:									
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of 2007 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - NEBB: National Environmental Balancing Bureau. Hydronic Systems: Includes chilled water, heating hot water, and glycol-water systems.
 - a. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - b. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.
- C. Section 23 07 11, HVAC INSULATION: Piping and Equipment Insulation.
- D. Section 23 64 00, PACKAGED WATER CHILLERS: Testing Refrigeration Equipment.

- E. Section 23 36 00, AIR TERMINAL UNITS: Terminal Units Performance.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.
- H. Section 23 82 16, AIR COILS
- I. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS
- J. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS
- K. Section 23 34 00, HVAC FANS
- L. Section 23 21 23, HYDRONIC PUMPS
- M. Section 23 37 00, AIR OUTLETS AND INLETS
- N. Section 23 81 23, COMPUTER-ROOM AIR-CONDITIONERS AND VARIABLE REFRIGERANT VOLUME SYSTEMS.
- O. Section 23 21 13, HYDRONIC PIPING
- P. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training
- Q. Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the VA Project Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to contract

completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.

- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the VA Project Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the VA Project Engineer. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and

Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a.Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b.Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Minimum outside air: 0 percent to plus 10 percent.
 - d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - e. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - f. Chilled water pumps: Minus 0 percent to plus 5 percent.
 - g. Chilled water coils: Minus 0 percent to plus 5 percent.
 - h. Dedicated Air Conditioning Unit Coils: Minus 2 percent to plus 5 percent.
 - Systems shall be adjusted for energy efficient operation as described in PART 3.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. Submit Following for Review and Approval:

- 1. Systems inspection report on equipment and installation for conformance with design.
- 2. Duct Air Leakage Test Report.
- 3. Systems Readiness Report.
- 4. Final TAB reports covering flow balance and adjustments and performance tests.
- 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- D. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - 2007HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control
- C.Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes. The plastic plugs shall be caulked in place to completely seal the holes.

2.2 INSULATION REPAIR MATERIAL

A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

A. The TAB Specialist shall review the Contract Plans and specifications and advise the VA Project Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct.

3.4 DUCT AIR LEAKAGE TEST REPORT

A. TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

A. Inspect each system to ensure that it is complete including installation and operation of controls. Submit report to PE in standard format.

B. Verify that all items such as ductwork, piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the VA Project Engineer.

3.6 TAB REPORTS

- A. Submit report for systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the VA Project Engineer if there is a problem in achieving intended results before submitting a formal report.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation and motor loads shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project.
- D. Allow sufficient time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, room diffusers/outlets/inlets, and computer room AC units.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Balance outside air flow rates for each air handler included in this project whether unit is being replaced or getting a controls upgrade. Modify outside air damper or minimum outside air damper in

order to achieve scheduled outside air cfm at maximum supply airflow.

- 5. For each air handler being replaced, test and record the supply and return airflows for all modes of operation prior to replacement. Provide pitot duct traverses as required for airflow testing. Supply and return airflows shall be re-tested and recorded following unit replacement. Final airflow measurements shall be balanced to the originally recorded supply and return airflows or scheduled airflows at a minimum (whichever is higher). Provide additional balancing to increase airflows even higher in coordination with owner.
- 6. Variable Air Volume (VAV) Systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 7. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps and coils:
 - 1. Adjust flow rates for equipment. Set coils to values on equipment submittals, if different from values on contract drawings.
 - Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including compressor units, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the VA Project Engineer. Where vibration readings exceed the allowable tolerance, the contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the VA Project Engineer.

3.9 MARKING OF SETTINGS

A. Following approval of tab final report, the setting of all HVAC adjustment devices including dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the VA Project Engineer.

3.10 IDENTIFICATION OF TEST PORTS

A. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation.All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.11 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for:
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m3 kilograms per cubic meter (Pcf pounds per cubic foot).
 - Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a.Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 14. MPR: Medium pressure steam condensate return.
- 15. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 16. LPR: Low pressure steam condensate gravity return.
- 17. HWH: Hot water heating supply.
- 18. HWHR: Hot water heating return.
- 19. GH: Hot glycol-water heating supply.
- 20. GHR: Hot glycol-water heating return.
- 21. GC: Chilled glycol-water supply.
- 22. GCR: Chilled glycol-water return.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- D. Section 23 21 23, HYDRONIC PUMPS
- E. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- F. Section 23 64 00, PACKAGED WATER CHILLERS: Compressor, evaporator and piping.
- G. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant piping and fittings.
- H. Section 23 21 13, HYDRONIC PIPING: Hot water, chilled water, and glycol piping.
- I. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.
- J. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Requirements for commissioning, systems readiness checklists, and training.

23 07 11 - 2

1.3 QUALITY ASSURANCE

- A.Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4. 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives/cement/mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

	L-P-535E (2)- 99	.Plastic Sheet (Sheeting): Plastic Strip; Poly
		(Vinyl Chloride) and Poly (Vinyl Chloride -
		Vinyl Acetate), Rigid.
(C.Military Specifications	(Mil. Spec.):
	MIL-A-3316C (2)-90	.Adhesives, Fire-Resistant, Thermal Insulation
	MIL-A-24179A (1)-87	.Adhesive, Flexible Unicellular-Plastic
		Thermal Insulation
	MIL-C-19565C (1)-88	.Coating Compounds, Thermal Insulation, Fire-and
		Water-Resistant, Vapor-Barrier
	MIL-C-20079H-87	.Cloth, Glass; Tape, Textile Glass; and Thread,
		Glass and Wire-Reinforced Glass
Ι	D.American Society for Te	sting and Materials (ASTM):
	A167-99(2004)	.Standard Specification for Stainless and
		Heat-Resisting Chromium-Nickel Steel Plate,
		Sheet, and Strip
	В209-07	.Standard Specification for Aluminum and
		Aluminum-Alloy Sheet and Plate
	C411-05	.Standard test method for Hot-Surface
		Performance of High-Temperature Thermal
		Insulation
	C449-07	.Standard Specification for Mineral Fiber
		Hydraulic-Setting Thermal Insulating and
		Finishing Cement
	C533-09	.Standard Specification for Calcium Silicate
		Block and Pipe Thermal Insulation
	C534-08	.Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	.Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)

C612-10	.Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126-04	.Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136-10	.Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-10	.Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-09c	.Standard Test Method for Fire Tests of Building
	Construction and Materials
E136-09b	.Standard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)
E.National Fire Protectio	on Association (NFPA):
90A-09	.Standard for the Installation of Air
	Conditioning and Ventilating Systems
96-08	.Standard s for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
101-09	.Life Safety Code
251-06	.Standard methods of Tests of Fire Endurance of
	Building Construction Materials
255-06	.Standard Method of tests of Surface Burning
	Characteristics of Building Materials
F.Underwriters Laboratori	es, Inc (UL):
723	.UL Standard for Safety Test for Surface Burning
	Characteristics of Building Materials with
	Revision of 09/08
G. Manufacturer's Standard	lization Society of the Valve and Fitting
Industry (MSS):	
SP58-2009	.Pipe Hangers and Supports Materials, Design,

PART 2 - PRODUCTS

2.1 MINERAL FIBER

- A. ASTM C1136 (Board, Block), Class 1 or 2, density 48 kg/m3 (3 pcf), k = 0.033 (0.22) at 24 degrees C (75 degrees F), external insulation for temperatures up to 121 degrees C (250 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Grade 3, Density 24 kg/m3 (1.5 pcf), k = 0.035 (0.24) at 24 degrees C (75 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.033 (0.23) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering. PVC cover shall be provided for exposed insulated piping in all areas where piping is below 8'-0" above the finished floor.
- D. No fiberglass insulation products shall be allowed. Even though fiberglass meets ASTM and other standards, it will not be approved.
- E. The insulation shall not contain any formaldehyde or petroleum products.

2.2 POLYISOCYANURATE CLOSED-CELL RIGID

A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive

closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- E. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Provide PVC
- F. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.5 REMOVABLE INSULATION JACKETS

A. Insulation and Jacket:

- 1. Non-Asbestos mineral wool.
- Temperature maximum of 450°F, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
- 3. Jacket Material: 20 gauge aluminum or galvanized steel.
- Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.
- Provide jackets for all steam valves, strainers, traps, and fittings.

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m3 (3.0 pcf).

Nominal Pipe Size and Accessor	ries Material (Insert Blocks)
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)
Up through 125 (5)	150 (6) long
150 (6)	150 (6) long
200 (8), 250 (10), 300 (12)	225 (9) long
350 (14), 400 (16)	300 (12) long
450 through 600 (18 through 24)	350 (14) long

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m3 (3.0 pcf).

2.7 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C.Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E.Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F.ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.

- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.9 REINFORCEMENT AND FINISHES

- A. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- B. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- C. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- D. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.11 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the VA Project Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and

smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. HVAC work not to be insulated:
 - In hot piping: Unions, flexible connectors, control valves, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 25 mm (1 inches) of uninsulated items.
- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited.
- K. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at floor and barrier through penetrations. Fire stopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Partitions
- L. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.

- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Relief or exhaust air duct.
 - c.Outside air intake ducts: 75 mm (three inch) thick insulation faced with ASJ.
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.

a. Above ceilings: 40 mm (1 ½ inch) thick insulation faced with FSK.

- 4. Concealed return air duct:
 - a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
- Exhaust air branch duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.

- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic.
 - 2. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
 - Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - Install insulation with all joints tightly butted (except expansion) joints in hot applications).
 - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
 - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.

- For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- E. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
 - 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
 - Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 a. Chilled water pumps
 - a. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.

7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service 122-177 degrees C	Insulation Material Mineral Fiber	Less than 25 (1) 50 (2)	25 - 32 (1 - 1 ¹ / ₄) 62 (2.5)	38 - 75 (1½ - 3) 62 (2.5)	100 (4) and Above 87 (3.5)
(251-350 degrees F) (MPS)	(Above ground piping only)				
100-121 degrees C (212-250 degrees F) (MPR, LPS)	Mineral Fiber (Above ground piping only)	38 (1.5)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, HWH, HWHR, GC, GCR, GH, GHR)	Mineral Fiber (Interior Above ground piping only)	25 (1.0)	38 (1.5)	38 (1.5)	50 (2.0)
4-16 degrees C (40-60 degrees F) (GC, GCR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	50 (2.0)
<pre>(40-60 degrees F) (RL and RS for DX refrigeration,, condenser supply and return for Dedicated</pre>	Flexible Elastomeric Cellular Thermal (Above ground piping	12 (0.5)	18 (0.75)	25 (1.0)	38 (1.5)

A/C Units)	only)		

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23. <u>This section shall be removed in its entirety under a Deduct Alternate.</u> <u>Refer to Specification Section 01 00 00 General Requirements for more</u> information.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) hired by the general contractor will manage the commissioning process. The commissioning agent may in no way be related to or otherwise work for the architect, engineer, general contractor, or sub-contractors.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This section includes requirements for commissioning the HVAC systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C.Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A.Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA and A/E prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and A/E, and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected contractor tests. Contractor tests shall be completed prior to scheduling systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Project Engineer and A/E. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA's operation and maintenance personnel is required in cooperation with the VA Project Engineer, A/E, and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Project Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, and a control system server..
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure

of the ECC shall have no effect on the field controllers, including those involved with global strategies.

- 5. The control system shall accommodate the existing Engineering Control Center(s) and the control system shall accommodate at least 3 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1.Control valves.
 - 2.Flow switches.
 - 3.Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - 1. Fire alarm systems. Smoke detectors installed on the supply and return ductwork of air handlers shall be connected to the controls system in order to provide fire alarm shut-downs for air handling equipment.

2.Variable refrigerant volume fan coil units. Provide programming and all wiring required to access new fan coil units from the existing Bacnet controller to access each new unit. The shared points include:

- a. Status alarm and malfunction code. (For each fan coil unit)
- b. Room Temperatures(For each space under this project)
- c. ON/Off Status (For each fan coil unit)
- d. Filter Status and Reset (For each fan coil unit)
- e. Compressor Status (For each condensing unit)
- f. Accumulated Power Consumption (For each fan coil and outdoor unit)

- g. Indoor Fan Status (For each fan coil unit)
- h. Start/Stop Operation (For each fan coil and outdoor unit)
- i. Room Temperature Setting (For each space under this project)
- j. Remote Controller Enable/Disable (For each fan coil unit)

3. Airflow control valves and room pressure sensors/controllers. Refer to 23 36 00 for more information. The BAS operator's workstation shall receive at a minimum the following information from the isolation room pressure controllers (provide all wiring connections as necessary):

- a. Room differential pressure and alarm.
- b. Room differential pressure alarm low limit for negative pressure.
- c.Room Temperature.
- d.Alarm delay.
- e. Supply, return, and exhaust airflow.
- f. Condition banner indication (Room pressure mode).
- g.Room occupancy status.
- h. Door condition and door alarm condition.

4. Unitary HVAC equipment (Computer Room A/C Units) controls. These include:

- a. Discharge air temperature.
- b. Return air temperature.
- c. Minimum and maximum return air temperature in last 24 hours.
- d. Humidity level and setpoint.
- e. Unit On/Off status.
- f. Room temperature and setpoint.
- g. Water temperature.
- h. Status alarm.

5. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.

- a. The following points shall be made available as a minimum to be communicated via the communications interface into the Building Automation System:
 - 1) Fault diagnostics
 - 2) Meter points:
 - 3) Motor power in HP
 - 4) Motor power in kW
 - 5) Motor kW-hr
 - 6) Motor current
 - 7) Motor voltage

- 8) Hours run
- 9) Feedback signal #1
- 10) Feedback signal #2
- 11) DC link voltage
- 12) Thermal load on motor
- 13) Thermal load on VFD
- 14) Heatsink temperature
- 6. The following systems have limited control (as individually noted below) from the ECC:
 - a. Domestic water heating systems: low temperature, high temperature and status alarms.

D. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26

E. This facility's existing direct-digital control system and its ECC is located at the engineering shop. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.

1. Upgrade the existing direct-digital control system's ECC to include all properties and services required by an ASHRAE Standard 135 BACnet B-AWS Profile. The upgraded ECC shall continue to communicate with the existing direct-digital control system's devices. The upgraded ECC shall communicate directly with the new native-BACnet devices over the existing control system's communications network without the use of a gateway. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and site-specific programming to execute the interoperability schedules. The ECC shall be upgraded to the control contractor's current software.

- F. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company (G & R Controls - Siemens, Trane, or Direct Digital Control) - see plan for specific controls required in certain areas (i.e. Trane controls only in Building 13). This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control systemspecific commissioning/verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work. The Control System Integrator shall be removed under Deduct Alternate. Refer to Specification Section 01 00 00 General Requirements for more information. If the deduct alternate is accepted, each controls contractor shall be responsible for its own ECC, system graphics and expansion. All of the items in the "Control System Integrator" column (of the responsibility table on the next page) would turn into the responsibility of the controls contractor (Section 23 09 23 Contractor) if the alternate is accepted.
 - 1. The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.

3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
4. Responsibility Table:

Item/Task	Section 23 09 23	Control system	VA
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 31 00, HVAC Ducts and Casings.
- C. Section 23 64 00, Packaged Water Chillers.
- D. Section 23 73 00, Indoor Central-Station Air-Handling Units.
- E. Section 23 81 23, Computer-Room Air-Conditioners and Variable Refrigerant Volume Systems.
- F. Section 26 05 11, Requirements for Electrical Installations.
- G. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables.
- H. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- I. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- J. Section 26 27 26, Wiring Devices.
- K. Section 27 10 05, Computer Network and Telephone Wiring System

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L.Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.

- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are

provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.

- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X.DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.

- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- NN. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- 00. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- PP. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- QQ. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are

- RR. Operating system (OS): Software, which controls the execution of computer application programs.
- SS. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- TT. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- UU. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- VV. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- WW. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- XX. Repeater: A network component that connects two or more physical segments at the physical layer.
- YY. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- ZZ. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AAA. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:

1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.

- Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

A. The system shall conform to the following:

- Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
- Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
- 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]

Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical

connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.

- A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
- 3. Control dampers and control valves schedule, including the size and pressure drop.
- 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
- 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 6. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 8. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.

09-11

- 11. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 13. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D.Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG format for the drawings noted in subparagraphs above. CAD version utilized must be compatible with version currently used at the Fargo VA Medical Center.
- F. Operation and Maintenance (O/M) Manuals):
 - Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS. Provide hardcopy and PDF version on CD or DVD.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.

- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h.Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to VA Project Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. Training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel. Coordinate with the commissioning agent for all training sessions and refer to 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more information.
 - The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 3. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- C. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-08	Standard Specification for Solder Metal
B88-09	Standard Specifications for Seamless Copper
	Water Tube
B88M-09	Standard Specification for Seamless Copper
	Water Tube (Metric)
B280-08	Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	Standard Specification for Polyethylene (PE)
	Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code

90A-09.....of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - b. Addressable elements, sensors, transducers and end devices.
 - c. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - d.Other components required for a complete and working Control Systems as specified.
- B. The specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture

- The controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs. Include any additional servers as needed for system expansion.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration or provide upgrade to all at no extra cost.
 - 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
 - 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar.

These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link/physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- E. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable. After power outages, the system components shall automatically restart.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The controls contractor shall utilize the existing Operator's Workstation in the Mechanical Shop. If the software currently installed on the workstation does not match the controls contractor's software, new software shall be provided. Any workstation upgrades to the existing computer hardware or software shall be completed by this contractor at this time if required.
- B. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- C. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J. After power outages, the system components shall automatically restart.
- D. ECC Software:
 - 1. Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
 - 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
 - Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
 - 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX. Verify operating system preference with owner and IT department before making a selection.
 - 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system

status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.

- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
- Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and

other Windows based software programs, while concurrently on-line system alarms and monitoring information.

- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - a. Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.
 - h. Program editing.
 - i. Operating activity log and system security.
 - j. Transfer data to third party software.
- 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.

- c. Event scheduling.
- d. Dynamic trend definition and presentation.
- e. Program and database editing.
- f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.
- 15. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
 - d.Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
 - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.

- f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
- g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.
- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c.List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g.List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.
 - j.Custom reports.
 - k. System diagnostic reports, including, list of digital controllers
 on the network.
 - 1. List of programs.
- 17. Weather Reports
 - a. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.
- 18. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
- b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.
- 19. Collection and Analysis of Historical Data:
 - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
 - b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
 - c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
 - d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator

shall be able to command points directly on the trend plot by double clicking on the point.

- 20. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
 - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
 - d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
 - e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.

2.5 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.6 NETWORK AND DEVICE NAMING CONVENTION

A. Network Numbers

1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work. 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
where:

a.FFF = Facility code (see below)

b. NN = 00-99 This allows up to 100 networks per facility or building

B. Device Instances

1. BACnet allows 4194305 unique device instances per BACnet internet
work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 a. FFF and N are as above and

b. DD = 00-99, this allows up to 100 devices per network.

- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP.
 STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1.
 STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the

controllers involved so that the BACnet name and the EMCS name are the same.

2.7 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.8 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller

shall share data with its building controller and the other networked advanced application controllers.

- 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad with LCD display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against

electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
 - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
 - Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Microsoft Windows.

- All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
- 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or

via a portable operator's terminal, when it is necessary, to access directly the programmable unit.

- a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air guality.
- b. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature falls below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
- c.Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
- d. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the

associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.

- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to

that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.9 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid (duct-mounted) or averaging type (inside air handlers). Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - Rigid duct temperature sensors shall be provided with ranges of -40 to 240 degrees F.
 - Averaging temperature sensors shall be provided with ranges of 20 to 120 degrees F.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - d. Wire: Twisted, shielded-pair cable.
 - e. Output Signal: 4-20 ma.
 - 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of ± 2 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.

1. 4-20 ma output signal.

- 2. 0 to 5 inches wg for duct static pressure range.
- 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.10 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Section 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the system shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the system equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the system may service.
 - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
 - Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.

- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 10 05.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be multimode or singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 10 05. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.11 THERMOSTATS AND HUMIDISTATS

- A. Thermostats shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
- B. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.

2.12 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.

- Leakage: maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
- Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- 6. Maximum air velocity and pressure drop through free area the dampers:

a. Duct mounted damper: 600 meter per minute (2000 fpm).

b. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).

- D. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. All steam valves shall be rated for the pressures listed above in conjunction with the listed steam pressure of the valve. Steam control valves shall be installed in a manner to limit the amount of heat transmitted to the actuator. Provide extended linkages as required to achieve this.
 - 6. Flow characteristics:
 - a. Three way modulating values shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.

c. Two-way 2-position valves shall be ballor gate type.

- 7. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 8. Two position water valves shall be line size.

E. Damper and Valve Operators and Relays:

- 1. Electronic operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - b. Steam valve actuators shall be mounted in a location to limit the amount of heat transmitted to the unit from the valve and piping. Actuators shall be rated to withstand high ambient room temperatures
- 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Project VA Engineer for resolution before proceeding for installation.
- Install equipment, piping, wiring/conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run conduit concealed under insulation or inside ducts.
- Mount control devices and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 10 05, Computer Network and Telephone Wiring System.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical

specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.

- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c.Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.

- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- D. Installation of network:
 - 1. Ethernet:

Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.

- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:100 Base TX (Category 6e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
- Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each air handling unit, fan, terminal unit, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 AHU SAFETY WIRING

A. The air handler freezestat and fire alarm connections shall be directly wired to the supply and return fan VFD's safety interlock. Freezestat and fire alarm connections wired first through a relay shall not be acceptable. Upon activation of either alarm, both supply and return fan VFD's shall be shut down and a fault message shall appear on the VFD screens. An alarm shall be transmitted to the operator's workstation with either alarm condition.

- When either the fire alarm or freezestat are activated, the outside air damper and humidifier valves shall spring return closed. The cooling valve shall fail closed as well. The heating valve shall modulate to maintain 60 degrees in the air handler casing.
- B. Low pressure static and high pressure static alarms shall be directly wired to the supply and return fan VFD's. A separate relay shall be provided to alarm back at the operator's workstation. During either fault condition, the outside air damper, cooling valve, and humidifier valve shall fail closed. The heating valve shall modulate to maintain 60 degrees in the air handler casing.

3.3 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system. This work shall be performed after functional commissioning tests and remedial action are completed to ensure the system is fully operational for demonstration.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List and Calibration Report.

The Calibration Report shall include the status of all new control equipment in order to verify that every component is operating within its specified range.

C. Demonstration

- System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included (All demonstrations shall be carefully coordinated with the VA in order to minimize disruptions to the hospital and its staff):
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c.Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.

- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h.Demonstrate spreadsheet/curve plot software, and its integration with database.
 - i. Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----