PART 1 - GENERAL
1.1 DESCRIPTION
A. Design, installation and testing shall be in accordance with NFPA 13.
B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation for all portions of project.

1.2 RELATED WORK
A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Section 07 84 00, FIRESTOPPING.
C. Section 09 91 00, PAINTING.

1.3 DESIGN CRITERIA
A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
b. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

1. Qualifications:
 a. Provide a copy of the installing contractors fire sprinkler and state contractor’s license.
 b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
 c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.

2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.

3. Manufacturer’s Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data
sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.

4. Calculation Sheets:

 a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.

5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:

 a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.

 1) One full size (or size as directed by the COR) printed copy.
 2) One complete set in electronic pdf format.
 3) One complete set in AutoCAD format to match the current version used by Fargo VA.

 b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.

 c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.

 d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a
binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE
A. Installer Reliability: The installer shall possess a valid State of North Dakota fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS
A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. National Fire Protection Association (NFPA):
 13-13....................Installation of Sprinkler Systems
 25-14....................Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
 170-15....................Fire Safety Symbols
C. Underwriters Laboratories, Inc. (UL):
 Fire Protection Equipment Directory (2011)
D. Factory Mutual Engineering Corporation (FM):
 Approval Guide

PART 2 - PRODUCTS
2.1 PIPING & FITTINGS
A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 1. Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.)
outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.

B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 3. Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
 4. Plastic piping shall not be permitted.

2.2 VALVES
 A. General:
 1. Valves shall be in accordance with NFPA 13.
 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.

2.3 SPRINKLERS
 A. All sprinklers shall be FM approved quick response.

2.4 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING
 A. Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.5 WALL, FLOOR AND CEILING PLATES
 A. Provide chrome plated steel escutcheon plates.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
 B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. Concealed piping in spaces that have finished ceilings. Sidewall heads may need to be utilized. Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.
 C. Welding: Conform to the requirements and recommendations of NFPA 13.
D. Drains: Provide low point drains, in accordance with NFPA 13. Install drips and drains where necessary and required by NFPA 13.

E. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.

F. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.

G. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.

H. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.

I. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.

J. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

A. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials
required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

--- END ---
PART 1 - GENERAL

1.1 DESCRIPTION

A. The requirements of this Section shall apply to all sections of Division 22.

B. Definitions:

1. Exposed: Piping and equipment exposed to view in finished rooms.

C. Abbreviations/Acronyms:

1. AC: Alternating Current
2. ACR: Air Conditioning and Refrigeration
3. AI: Analog Input
4. AISI: American Iron and Steel Institute
5. AO: Analog Output
6. AWG: American Wire Gauge
7. BACnet: Building Automation and Control Network
8. BAg: Silver-Copper-Zinc Brazing Alloy
9. BAS: Building Automation System
10. CDA: Copper Development Association
11. C: Celsius
12. CLR: Color
13. CO: Carbon Monoxide
14. COR: Contracting Officer’s Representative
15. CRS: Corrosion Resistant Steel
16. CWP: Cold Working Pressure
17. dB(A): Decibels (A weighted)
18. DDC: Direct Digital Control
19. DI: Digital Input
20. DISS: Diameter Index Safety System
21. DO: Digital Output
22. DVD: Digital Video Disc
23. DN: Diameter Nominal
24. DWV: Drainage, Waste and Vent
25. F: Fahrenheit
26. FAR: Federal Acquisition Regulations
27. FED: Federal
28. FG: Fiberglass
29. FNPT: Female National Pipe Thread
30. GPM: Gallons Per Minute
31. Hg: Mercury
32. ID: Inside Diameter
33. IPS: Iron Pipe Size
34. Kg: Kilogram
35. kPa: Kilopascal
36. lb: Pound
37. L/s: Liters Per Second
38. L/min: Liters Per Minute
39. MAWP: Maximum Allowable Working Pressure
40. MAX: Maximum
41. MED: Medical
42. m: Meter
43. MFG: Manufacturer
44. mg: Milligram
45. mg/L: Milligrams per Liter
46. ml: Milliliter
47. mm: Millimeter
48. MIN: Minimum
49. NF: Oil Free Dry (Nitrogen)
50. NPTF: National Pipe Thread Female
51. NPS: Nominal Pipe Size
52. NPT: Nominal Pipe Thread
53. OXY: Oxygen
54. PLC: Programmable Logic Controllers
55. PP: Polypropylene
56. PPM: Parts per Million
57. PSIG: Pounds per Square Inch
58. PVC: Polyvinyl Chloride
59. RPM: Revolutions Per Minute
60. SCFM: Standard Cubic Feet Per Minute
61. SPEC: Specification
62. STD: Standard
63. T/P: Temperature and Pressure
64. USDA: U.S. Department of Agriculture
65. V: Volt
66. VAC: Vacuum
67. VA: Veterans Administration
1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
D. Section 07 84 00, FIRESTOPPING.
E. Section 09 91 00, PAINTING.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society of Mechanical Engineers (ASME):
 ASME Boiler and Pressure Vessel Code – BPVC Section IX-2013....Welding, Brazing, and Fusing Qualifications

C. American Society for Testing and Materials (ASTM):
 E84-2013a..............Standard Test Method for Surface Burning Characteristics of Building Materials

D. International Code Council, (ICC):
 IBC-2012.................International Building Code
 IPC-2012.................International Plumbing Code

E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:
 SP-69-2003..............Pipe Hangers and Supports - Selection and Application

F. Military Specifications (MIL):
 P-21035B..................Paint High Zinc Dust Content, Galvanizing Repair (Metric)

G. National Electrical Manufacturers Association (NEMA):
 MG 1-2011.................Motors and Generators

H. National Fire Protection Association (NFPA):
 51B-2014.................Standard for Fire Prevention During Welding, Cutting and Other Hot Work
 70-2014.................National Electrical Code (NEC)
I. NSF International (NSF):
 61-2012.................Drinking Water System Components – Health Effects
 372-2011..............Drinking Water System Components – Lead Content
J. Department of Veterans Affairs (VA):
 PG-18-10..............Plumbing Design Manual

1.4 SUBMITTALS
A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.
D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
G. Manufacturer's Literature and Data: Manufacturer’s literature shall be submitted under the pertinent section rather than under this section.
 1. Equipment and materials identification.
 2. Firestopping materials.
 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 4. Wall, floor, and ceiling plates.
H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.

I. Maintenance Data and Operating Instructions:

1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.

2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 QUALITY ASSURANCE

A. Products Criteria:

1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.

2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

3. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.

5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.

6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

7. Asbestos products or equipment or materials containing asbestos shall not be used.

8. Bio-Based Materials: For products designated by the USDA’s Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:

1. Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".

2. Comply with provisions of ASME B31 series "Code for Pressure Piping".

3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.

4. All welds shall be stamped according to the provisions of the American Welding Society.

C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
D. Execution (Installation, Construction) Quality:

1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer’s installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.

2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.

3. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.

4. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.

E. Guaranty: Warranty of Construction, FAR clause 52.246-21.

F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word “should” shall be interpreted as “shall”. Reference to the “code official” or “owner” shall be interpreted to mean the COR.

G. Cleanliness of Piping and Equipment Systems:

1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.

2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.

3. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers,
fixture faucets shall be flushed of debris prior to final acceptance.

4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.

2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.

3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.

4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

A. Submit manufacturer’s literature and data updated to include submittal review comments and any equipment substitutions.

B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set
at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version, to match the current version used by Fargo VA, provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the ‘third party testing company’ requirement.

D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

A. Material or equipment containing lead shall not be used.
B. In-line devices such as stops, valves, fittings shall comply with NSF 61 and NSF 372.
C. End-point devices such as lavatory faucets used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements.
B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 1. All components of an assembled unit need not be products of same manufacturer.
 2. Constituent parts that are alike shall be products of a single manufacturer.
 3. Components shall be compatible with each other and with the total assembly for intended service.
 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Valve Tags and Lists:

1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).

2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19-gauge, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. Coordinate the valve tags with the Shops Foreman prior to installation for compliance.

 a. Valve number shall be labeled as follows: M-V-XXX-XXXXX-XXX.

 1) The first letter of the valve tag refers to the building number. M refers to Main Hospital.

 2) V stands for "Valve".

 3) The first grouping of XXX indicates the type of piping. refer to 09 91 00 Painting specifications for labels for different types of piping (i.e. HWH is Hot Water Heating, DC is Domestic Cold Water, DH is Domestic Hot Water and DR is Domestic Recirculating Hot Water).

 4) The second grouping of XXXXX indicates the room number.

 5) The final grouping of XXX refers to the valve number in the room.

3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic-coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.

4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color-coded sticker or thumb tack in ceiling or access door. Additionally provide a hardcopy drawing and AutoCADD copy.
(compatible with current Fargo VA version of CADD) of valve locations.

2.4 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.5 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.6 PIPE SUPPORTS AND RESTRAINTS

A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC). Submittals based on the International Building Code (IBC) requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.

B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.

C. For Attachment to Concrete Construction:
 1. Concrete insert: Type 18, MSS SP-58.
 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.

D. For Attachment to Steel Construction: MSS SP-58.
 1. Welded attachment: Type 22.
 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.

E. For Attachment to Wood Construction: Wood screws or lag bolts.
F. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.

G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.

1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).

2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.

H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.

1. General Types (MSS SP-58):
 a. Standard clevis hanger: Type 1; provide locknut.
 b. Riser clamps: Type 8.
 c. Wall brackets: Types 31, 32 or 33.
 d. Roller supports: Type 41, 43, 44 and 46.
 e. Saddle support: Type 36, 37 or 38.
 f. Turnbuckle: Types 13 or 15.
 g. U-bolt clamp: Type 24.
 h. Copper Tube:
 1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 2) For vertical runs use epoxy painted, copper-coated or plastic-coated riser clamps.
3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.

4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

2. Plumbing Piping (Other Than General Types):
 a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 b. Chrome plated piping: Chrome plated supports.
 c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.

I. Pre-insulated Calcium Silicate Shields:
 1. Provide 360-degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 3. Shield thickness shall match the pipe insulation.
 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

2.7 PIPE PENETRATIONS

A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.

C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.

D. Penetrations are not allowed through beams or ribs.

E. Sheet metal sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.

F. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms. Except in mechanical rooms, sleeves shall be connected with a floor plate.

G. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.

H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.

2.8 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.9 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.

C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.

D. Structural systems necessary for pipe support shall be coordinated to permit proper installation.

E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

F. Cutting Holes:

1. Holes shall be located to avoid structural members such as beams or grade beams.

2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.

3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer
type drill will not be allowed, except as permitted by COR where working area space is limited.

G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.

H. Protection and Cleaning:
1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer’s recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

I. Valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices.

J. Work in Existing Building:
1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.

3.2 TEMPORARY PIPING
A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain,
operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.

C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels.

B. The use of chain pipe supports, wire or strap hangers, wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.

C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.

D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.

E. Overhead Supports:
 1. The basic structural system of the building is designed to sustain the loads imposed by piping to be supported overhead.
 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3.4 PLUMBING SYSTEMS DEMOLITION

A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the a Structural Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.

B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel
will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

D. The Contractor shall remove all material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

3.5 CLEANING AND PAINTING

A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.

B. In addition, the following special conditions apply:

1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific
tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.

2. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.

3. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.6 IDENTIFICATION SIGNS

A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.

B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.

C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.7 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.8 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.

B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize
control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.9 OPERATION AND MAINTENANCE MANUALS

A. All new and temporary equipment and all elements of each assembly shall be included.

B. Data sheet on each device listing model, size, capacity and other information shall be included.

C. Manufacturer’s installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.

D. Emergency procedures for shutdown and startup of systems.

3.10 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer’s technical representative for one hour to instruct VA Personnel in operation and maintenance of the system.

--- END ---

--- ---
SECTION 22 07 11
PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

A. Field applied insulation for thermal efficiency and condensation control for the following:
 1. Plumbing piping and equipment.
 2. Re-insulation of plumbing piping and equipment after replacement of any part of existing insulation system (insulation, vapor retarder jacket, protective coverings/jacket) damaged during construction.

B. Definitions:
 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
 4. Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 7. FSK: Foil-scrim-Kraft facing.
 8. Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
 9. Density: kg/m³ - kilograms per cubic meter (Pcf - pounds per cubic foot).
 a. Flat surface: Watts per square meter (BTU per hour per square foot).
b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.

11. Thermal Conductivity (k): Watts per meter, per degree K (BTU - inch thickness, per hour, per square foot, per degree F temperature difference).

12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of 0.02 perms.

13. HWR: Hot water recirculating.

14. CW: Cold water.

15. SW: Soft water.

16. HW: Hot water.

17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.

D. Section 07 84 00, FIRESTOPPING.

E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

B. American Society for Testing and Materials (ASTM):

 B209-2014..............Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

 C450-2008 (R2014)........Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging
Adjunct to C450...........Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc.

C533-2013..............Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

C534/C534M-2014........Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C680-2014..............Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs

C612-2014..............Standard Specification for Mineral Fiber Block and Board Thermal Insulation

C1126-2014..............Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation

C1136-2012..............Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation

D1668/D1668M-1997a (2014)e1 Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing

E2231-2015..............Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics
C. International Code Council, (ICC):
 IMC-2012...............International Mechanical Code

D. Military Specifications (Mil. Spec.):
 MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation
 MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation
 MIL-C-20079H-1987.......Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

E. National Fire Protection Association (NFPA):

F. Underwriters Laboratories, Inc (UL):
 723-2008 (R2013).......Standard for Test for Surface Burning Characteristics of Building Materials
 1887-2004 (R2013).......Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics

G. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; http://www.pipeinsulation.net

1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Information and material submitted under this section shall be marked “SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION”, with applicable paragraph identification.

C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

D. Shop Drawings:
 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 a. Insulation materials: Specify each type used and state surface burning characteristics.
b. Insulation facings and jackets: Each type used and state surface burning characteristics.

c. Insulation accessory materials: Each type used.

d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.

e. Make reference to applicable specification paragraph numbers for coordination.

f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

B. Criteria:

1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

 4.3.3.1 Pipe and duct insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

 4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

 4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

 4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.

2. Test methods: ASTM E84, UL 723, and ASTM E2231.

3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal
conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.

D. Bio-Based Materials: For products designated by the USDA’s Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Submit manufacturer’s literature and data updated to include submittal review comments and any equipment substitutions.

B. The installing contractor shall maintain as-built drawings and shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version compatible with current version used by Fargo VA provided on compact disk or DVD.

C. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.
PART 2 - PRODUCTS

2.1 MINERAL FIBER

A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride pre-molded fitting covering.

B. No fiberglass insulation products shall be allowed. Even though fiberglass meets ASTM and other standards, it shall not be allowed.

2.2 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.

B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

C. Pipe fitting insulation covering (jackets): Fitting covering shall be pre-molded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.

2.3 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Pre-molded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
Nominal Pipe Size and Accessories Material (Insert Blocks)

<table>
<thead>
<tr>
<th>Nominal Pipe Size mm (inches)</th>
<th>Insert Blocks mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up through 125 (5)</td>
<td>150 (6) long</td>
</tr>
<tr>
<td>150 (6)</td>
<td></td>
</tr>
<tr>
<td>200 (8), 250 (10), 300 (12)</td>
<td>225 (9) long</td>
</tr>
<tr>
<td>350 (14), 400 (16)</td>
<td>300 (12) long</td>
</tr>
<tr>
<td>450 through 600 (18 through 24)</td>
<td>350 (14) long</td>
</tr>
</tbody>
</table>

B. Warm or hot pipe supports: Pre-molded pipe insulation (180-degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.4 Adhesive, Mastic, Cement

C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.

E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.

F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.

G. Other: Insulation manufacturers' published recommendations.

2.5 Mechanical Fasteners

A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.

B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.

C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.6 REINFORCEMENT AND FINISHES

A. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.7 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.8 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer’s Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full-length section will fit.

C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).

D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and
below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.

F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.

G. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.

H. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

I. Firestop Pipe insulation:
 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 a. All floor penetrations.
 b. All wall penetrations.

J. Provide PVC jackets over insulation as follows:
 1. Piping exposed in building, within 1829 mm (6 feet) of the floor.
 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
3.2 INSULATION INSTALLATION

A. Molded Mineral Fiber Pipe and Tubing Covering:

1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

2. Contractor's options for fitting, flange and valve insulation:
 a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 b. Factory pre-molded, one-piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).

3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

3.3 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

<p>| Insulation Thickness Millimeters (Inches) | Nominal Pipe Size Millimeters (Inches) |</p>
<table>
<thead>
<tr>
<th>Operating Temperature Range/Service</th>
<th>Insulation Material</th>
<th>Less than 25 (1)</th>
<th>25 – 32 (1 – 1½)</th>
<th>38 – 75 (1½ – 3)</th>
<th>100 (4) and Greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>38–60 degrees C (100–140 degrees F) (Domestic Hot Water Supply and Return)</td>
<td>Mineral Fiber (Above ground piping only)</td>
<td>38 (1.5)</td>
<td>38 (1.5)</td>
<td>50 (2.0)</td>
<td>50 (2.0)</td>
</tr>
</tbody>
</table>

--- END ---
PART 1 - GENERAL

1.1 DESCRIPTION
A. Domestic water systems, including piping, equipment and all necessary
 accessories as designated in this section.
B. A complete listing of all acronyms and abbreviations are included in
 Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK
A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 07 84 00, FIRESTOPPING.
D. Section 09 91 00, PAINTING.
E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
F. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS
A. The publications listed below form a part of this specification to the
 extent referenced. The publications are referenced in the text by the
 basic designation only.
B. American Society of Mechanical Engineers (ASME):
 A13.1-2007 (R2013)......Scheme for Identification of Piping Systems
 B16.12-2009 (R2014)......Cast Iron Threaded Drainage Fittings
 B16.15-2013Cast Copper Alloy Threaded Fittings: Classes
 125 and 250
 B16.18-2012.............Cast Copper Alloy Solder Joint Pressure
 Fittings
 B16.22-2013.............Wrought Copper and Copper Alloy Solder-Joint
 Pressure Fittings
 B16.51-2013.............Copper and Copper Alloy Press-Connect Fittings
 ASME Boiler and Pressure Vessel Code -
 BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications
C. American Society of Sanitary Engineers (ASSE):
 1010-2004.............Performance Requirements for Water Hammer
 Arresters
D. American Society for Testing and Materials (ASTM):
 Iron Castings
A183-2014.................Standard Specification for Carbon Steel Track Bolts and Nuts
B32-2008 (R2014)............Standard Specification for Solder Metal
B61-2008 (R2013)............Standard Specification for Steam or Valve Bronze Castings
B62-2009.................Standard Specification for Composition Bronze or Ounce Metal Castings
B75/B75M-2011............Standard Specification for Seamless Copper Tube
B88-2014.................Standard Specification for Seamless Copper Water Tube
B584-2014.................Standard Specification for Copper Alloy Sand Castings for General Applications
B687-1999 (R2011)............Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples
C919-2012.................Standard Practice for Use of Sealants in Acoustical Applications
E1120-2008.................Standard Specification for Liquid Chlorine
E1229-2008.................Standard Specification for Calcium Hypochlorite

E. American Water Works Association (AWWA):
C110-2012..................Ductile-Iron and Gray-Iron Fittings
C151-2009..................Ductile Iron Pipe, Centrifugally Cast
C153-2011..................Ductile-Iron Compact Fittings
C203-2008..................Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot Applied
C213-2007..................Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines
C651-2014..................Disinfecting Water Mains

F. American Welding Society (AWS):
A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and Braze Welding

G. International Code Council (ICC):
IPC-2012..................International Plumbing Code
H. Manufacturers Specification Society (MSS):
 SP-72-2010a.............Ball Valves with Flanged or Butt-Welding Ends for General Service
 SP-110-2010.............Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends
I. NSF International (NSF):
 61-2014a................Drinking Water System Components - Health Effects
 372-2011..............Drinking Water System Components - Lead Content
J. Plumbing and Drainage Institute (PDI):
 PDI-WH 201-2010........Water Hammer Arrestors

1.4 SUBMITTALS
A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
B. Information and material submitted under this section shall be marked “SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS”, with applicable paragraph identification.
C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 1. All items listed in Part 2 - Products.
D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 1. Include complete list indicating all components of the systems.
 2. Include complete diagrams of the internal wiring for each item of equipment.
 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE
A. A certificate shall be submitted prior to welding of steel piping showing the Welder’s certification. The certificate shall be current and no more than one-year old. Welder’s qualifications shall be in accordance with ASME BPVC Section IX.
B. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.

C. Bio-Based Materials: For products designated by the USDA’s Bio-PREFERRED Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-PREFERRED Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Submit manufacturer’s literature and data updated to include submittal review comments and any equipment substitutions.

B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD and inserted into a three-ring binder. All aspects of system operation and maintenance procedures shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version compatible with current version used by Fargo VA provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the ‘third party testing company’ requirement.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing lead are prohibited.

2.3 ABOVE GROUND (INTERIOR) WATER PIPING

A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
B. Fittings for Copper Tube:

1. Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.

2. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical press-connect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.

3. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.

C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.

D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.

E. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.4 EXPOSED WATER PIPING

A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.

2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.

4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
B. Unfinished Rooms and Mechanical Rooms: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.5 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General: Comply with the International Plumbing Code and the following:

1. Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.

2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.

3. All pipe runs shall be laid out to avoid interference with other work/trades.

4. Install union and shut-off valve on pressure piping at connections to equipment.

5. Pipe Hangers, Supports and Accessories:

a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.

b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.

c. Floor, Wall and Ceiling Plates, Supports, Hangers:

1) Solid or split unplated cast iron.

2) All plates shall be provided with set screws.

3) Pipe Hangers: Height adjustable clevis type.

4) Adjustable Floor Rests and Base Flanges: Steel.

5) Concrete Inserts: "Universal" or continuous slotted type.

6) Hanger Rods: Mild, low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.

8) Rollers: Cast iron.

9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.

10) Hangers and supports utilized with insulated pipe and tubing shall have 180-degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, center-ribbed shields shall be used.

11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.

6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

7. Penetrations:
 a. Firestopping: Where pipes pass through partitions, walls or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
 b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer’s installation instructions. The
tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer’s requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.

B. Domestic Water piping shall conform to the following:

1. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.

2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

A. General: Test system either in its entirety or in sections.

B. Potable Water System: Test after installation of piping, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments. VA shall witness the pressure at the start and end of the test.

C. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.

D. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

--- END ---

22 11 00 - 8
PART 1 - GENERAL

1.1 DESCRIPTION
A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK
A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 07 84 00, FIRESTOPPING.
D. Section 09 91 00, PAINTING.
E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
F. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS
A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Mechanical Engineers (ASME):
 A13.1-2007................Scheme for the Identification of Piping Systems
 A112.36.2M-1991(R 2012).Cleanouts
 B1.20.1-2013..........Pipe Threads, General Purpose (Inch)
 B16.1-2010.............Gray Iron Pipe Flanges and Flanged Fittings
 B16.4-2011.............Standard for Grey Iron Threaded Fittings
 Classes 125 and 250
 B16.15-2013............Cast Copper Alloy Threaded Fittings, Classes
 125 and 250
 B16.16-2012............Cast Copper Alloy Solder Joint Pressure
 Fittings
 B16.21-2011............Nonmetallic Flat Gaskets for Pipe Flanges
 B16.22-2013............Wrought Copper and Copper Alloy Solder-Joint
 Pressure Fittings
 B16.23-2011............Cast Copper Alloy Solder Joint Drainage
 Fittings: DWV
 B16.24-2001 (R2006).....Cast Copper Alloy Pipe Flanges and Flanged
 Fittings

22 13 00 - 1
B16.29-2012...........Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings: DWV
B16.39-2009...........Malleable Iron Threaded Pipe Unions Classes
 150, 250, and 300
B18.2.1-2012...........Square, Hex, Heavy Hex, and Askew Head Bolts
 and Hex, Heavy Hex, Hex Flange, Lobed Head, and
 Lag Screws (Inch Series)
C. American Society of Sanitary Engineers (ASSE):
 1001-2008.............Performance Requirements for Atmospheric Type
 Vacuum Breakers
 1079-2012.............Performance Requirements for Dielectric Pipe
 Unions
D. American Society for Testing and Materials (ASTM):
 A53/A53M-2012.........Standard Specification for Pipe, Steel, Black
 And Hot-Dipped, Zinc-coated, Welded and
 Seamless
 A74-2013a..............Standard Specification for Cast Iron Soil Pipe
 and Fittings
 A888-2013a.............Standard Specification for Hubless Cast Iron
 Soil Pipe and Fittings for Sanitary and Storm
 Drain, Waste, and Vent Piping Applications
 B32-2008..............Standard Specification for Solder Metal
 Pipe, Standard Sizes
 B75-2011..............Standard Specification for Seamless Copper Tube
 B88-2009..............Standard Specification for Seamless Copper
 Water Tube
 B687-1999 (R 2011).....Standard Specification for Brass, Copper, and
 Chromium-Plated Pipe Nipples
 B813-2010.............Standard Specification for Liquid and Paste
 Fluxes for Soldering of Copper and Copper Alloy
 Tube
 by Soldering of Copper and Copper Alloy Tube
 and Fittings
 C564-2012.............Standard Specification for Rubber Gaskets for
 Cast Iron Soil Pipe and Fittings
1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Information and material submitted under this section shall be marked “SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING”, with applicable paragraph identification.

C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 1. Piping.
 2. Cleanouts.
 3. Penetration Sleeves.
4. Pipe Fittings.
5. Traps.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA’s Bio-
Preferred Program, provide products that meet or exceed USDA
recommendations for bio-based content, so long as products meet all
performance requirements in this specifications section. For more
information regarding the product categories covered by the Bio-
Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. The installing contractor shall maintain as-built drawings of each
completed phase for verification; and, shall provide the complete set
at the time of final systems certification testing. As-built drawings
are to be provided, and a copy of them on Auto-Cad version compatible
with current version used by Fargo VA provided on compact disk or DVD.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

A. Cast iron waste, drain, and vent pipe and fittings.
 1. Cast iron waste, drain, and vent pipe and fittings shall be used for
 the following applications:
 a. Interior waste and vent piping above grade.
 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or no-
 hub or hubless).
 3. The material for all pipe and fittings shall be cast iron soil pipe
 and fittings and shall conform to the requirements of CISPI 301,
 ASTM A888, or ASTM A74.
 4. Cast iron pipe and fittings shall be made from a minimum of 95
 percent post-consumer recycled material.
 5. Joints for hubless pipe and fittings shall conform to the
 manufacturer’s installation instructions. Couplings for hubless
 joints shall conform to CISPI 310. Joints for hub and spigot pipe
 shall be installed with compression gaskets conforming to the
 requirements of ASTM C564.

2.2 EXPOSED WASTE PIPING

A. Chrome plated brass piping of full iron pipe size shall be used in
 finished rooms for exposed waste piping connecting fixtures, casework
and cabinets when not concealed by apron including those furnished by
the Government or specified in other sections.
1. The pipe shall meet ASTM B43, regular weight.
2. The fittings shall conform to ASME B16.15.
4. Unions shall be brass or bronze with chrome finish. Unions 65 mm
 (2-1/2 inches) and larger shall be flange type with approved
gaskets.

2.3 SPECIALTY PIPE FITTINGS
A. Transition pipe couplings shall join piping with small differences in
 outside diameters or different materials. End connections shall be of
 the same size and compatible with the pipes being joined. The
 transition coupling shall be elastomeric, sleeve type reducing or
 transition pattern and include shear and corrosion resistant metal,
 tension band and tightening mechanism on each end. The transition
 coupling sleeve coupling shall be of the following material:
 1. For cast iron soil pipes, the sleeve material shall be rubber
 conforming to ASTM C564.

2.4 CLEANOUTS
A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches);
 and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be
 easily accessible and shall be gastight and watertight. Minimum
 clearance of 600 mm (24 inches) shall be provided for clearing a
 clogged sanitary line.
B. Where the piping is concealed, a fixture trap or a fixture with
 integral trap, readily removable without disturbing concealed pipe,
 shall be accepted as a cleanout equivalent providing the opening to be
 used as a cleanout opening is the size required.

2.5 TRAPS
A. Traps shall be provided on all sanitary branch waste connections from
 fixtures or equipment not provided with traps. Exposed brass shall be
 polished brass chrome plated with nipple and set screw escutcheons.
 Concealed traps may be rough cast brass or same material as the piping
 they are connected to. Slip joints are not permitted on sewer side of
 trap. Traps shall correspond to fittings on cast iron soil pipe or
 steel pipe respectively, and size shall be as required by connected
 service or fixture.
PART 3 - EXECUTION

3.1 PIPE INSTALLATION

A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.

B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.

C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.

D. All pipe runs shall be laid out to avoid interference with other work.

E. The piping shall be installed above accessible ceilings where possible.

F. The piping shall be installed to permit valve servicing or operation.

G. The piping shall be installed free of sags and bends.

H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

I. Cast iron piping shall be installed according to CISPI’s “Cast Iron Soil Pipe and Fittings Handbook,” Chapter IV, “Installation of Cast Iron Soil Pipe and Fittings”

J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI’s “Cast Iron Soil Pipe and Fittings Handbook” for compression joints.

B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI’s “Cast Iron Soil Pipe and Fittings Handbook” for lead and oakum calked joints.
C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI’s “Cast Iron Soil Pipe and Fittings Handbook” for hubless piping coupling joints.

D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

3.3 SPECIALTY PIPE FITTINGS

A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.

B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.

B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.

C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.

D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
1. Solid or split unplated cast iron.
2. All plates shall be provided with set screws.
3. Height adjustable clevis type pipe hangers.
4. Adjustable floor rests and base flanges shall be steel.
5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
6. Riser clamps shall be malleable iron or steel.
7. Rollers shall be cast iron.
8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
J. Penetrations:
1. Fire Stopping: Where pipes pass through walls or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
3.5 TESTS

A. Sanitary waste and drain systems shall be tested either in its entirety or in sections. All tests shall be witnessed by VA.

B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.

1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 feet) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 feet) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.

3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.

4. Final Tests: Either one of the following tests may be used.

 a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.

 b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.
PART 1 - GENERAL

1.1 DESCRIPTION

A. Central Laboratory and Healthcare Gas Systems: Consisting of oxygen, vacuum, and compressed air services; complete, ready for operation, including all necessary piping, fittings, valves, cabinets, station outlets, rough-ins, gages, alarms including low voltage wiring. Match existing station outlet and inlet terminal connections.

B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
C. Section 07 84 00, FIRESTOPPING.
D. Section 07 92 00, JOINT SEALANTS.
E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
F. SECTION 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society of Mechanical Engineers (ASME):
 A13.1-2007 (R2013)......Scheme for the Identification of Piping Systems
 B16.15-2013..............Cast Copper Alloy Threaded Fittings: Classes 125 and 250
 B16.22-2013..............Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings
 B16.50-2013..............Wrought Copper and Copper Alloy Braze-Joint Pressure Fittings
 BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications

C. American Society of Sanitary Engineers (ASSE):
 6000 Series-2012...........Professional Qualifications Standard for Medical Gas Systems Personnel

D. American Society for Testing and Materials (ASTM):
B819-2000 (R2011)........Standard Specification for Seamless Copper Tube for Medical Gas Systems

E. American Welding Society (AWS):
A5.8M/A5.8-2011........Specification for Filler Metals for Brazing and Braze Welding
B2.2/B2.2M-2010.........Specification for Brazing Procedure and Performance Qualification

F. Compressed Gas Association (CGA):
C-9-2013.................Standard Color Marking of Compressed Gas Containers for Medical Use
G-4.1-2009..............Cleaning Equipment for Oxygen Service
P-9-2008.................The Inert Gases: Argon, Nitrogen, and Helium
V-1-2013.................Standard for Compressed Gas Cylinder Valve Outlet and Inlet Connections

G. Manufacturing Standardization Society (MSS):
SP-72-2010a.............Ball Valves With Flanged or Butt-Welding Ends For General Service
SP-110-2010.............Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

H. National Electrical Manufacturers Association (NEMA):
ICS 6-1993 (R2001, R2006) Industrial Control and Systems Enclosures

I. National Fire Protection Association (NFPA):
99-2015...............Health Care Facilities Code

1.4 SUBMITTALS
A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Information and material submitted under this section shall be marked “SUBMITTED UNDER SECTION 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES”, with applicable paragraph identification.

C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 1. Piping.
 2. Valves.
D. Certification: The completed systems have been installed, tested, purged, analyzed and verified in accordance with the requirements of this specification. Certification shall be submitted to COR.

1.5 QUALITY ASSURANCE

A. Materials and Installation: In accordance with NFPA 99 and as specified.

B. Equipment Installer: Show technical qualifications and previous experience in installing laboratory and healthcare equipment on three similar projects. Submit names, phone numbers, and addresses of referenced projects. Installers shall meet the qualifications of ASSE Standard Series 6000.

C. Laboratory and healthcare System Testing Organization: The testing shall be conducted by a third-party testing agency technically competent and experienced in the field of laboratory and healthcare pipeline testing. Testing and systems verification shall be performed by personnel meeting the qualifications of ASSE Standard Series 6000. Such testing shall be performed by a party other than the installing contractor.

D. Provide the names of three projects where testing of medical or laboratory gases systems has been performed by the testing agency. Include the name of the project, names of such persons at that project who supervised the work for the project owner, or who accepted the report for the project owner, and a written statement that the projects listed required work of similar scope to that set forth in this specification.

E. Submit the testing agency's detailed procedure which shall be followed in the testing of this project. Include details of the testing sequence, procedures for cross connection tests, outlet function tests, alarm tests, purity tests, etc., as required by this specification. For purity test procedures, include data on test methods, types of equipment to be used, calibration sources and method references.

F. Certification: Provide COR documentation 10 working days prior to submitting request for final inspection to include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits allowed by this specification.
G. "Hot taps" are prohibited for operating medical oxygen systems. Methods for connection and extension of active and pressurized medical gas systems without subsequent medical gas testing and verification are prohibited.

H. Bio-Based Materials: For products designated by the USDA’s Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. The installing contractor shall maintain as-built drawings and shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version compatible with current version used by Fargo VA provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the ‘third party testing company’ requirement.

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

A. Copper Tubing: Type "K", ASTM B819, seamless copper tube, hard drawn temper, with wrought copper fittings conforming to ASME B16.22 or brazing fittings complying with ASME B16.50. Size designated reflecting nominal inside diameter. All tubing and fittings shall be labeled "ACR/OXY", "OXY", "OXY/MED", "ACR/MED", or "MED".

B. Brazing Alloy: AWS A5.8M/A5.8, Classification BCuP, greater than 538 degrees C (1000 degrees F) melting temperature. Flux is strictly prohibited for copper-to-copper connections.

C. Threaded Joints: Polytetrafluoroethylene (Teflon) tape.

D. Memory metal couplings: Temperature and pressure rating shall not be less than that of a brazed joint in accordance with NFPA 99, paragraph 5.1.10.6.1.

E. Apply piping identification labels at the time of installation in accordance with NFPA 99. Apply supplementary color identification in accordance with CGA Pamphlet C-9.

F. Special Fittings: The following special fittings shall be permitted to be used in lieu of brazed joints:
1. Memory-metal couplings having temperature and pressure ratings joints not less than that of a brazed joint.
2. Listed or approved metallic gas tube fittings that, when made up, provide a permanent joint having the mechanical, thermal, and sealing integrity of a brazed joint.
3. Dielectric fittings where required by the manufacturer of special medical equipment to electrically isolate the equipment from the piping distribution system.
4. Axially swaged, elastic strain preload fittings providing metal to metal seal having pressure and temperature ratings not less than that of a brazed joint and when complete are permanent and non-separable.

2.2 STATION OUTLET ROUGH-IN (RELOCATED EXISTING)

A. Anchor flush mounted rough-in securely to wall construction.
B. Modular Cover Plate: Verify die cast back plate, two-piece 0.85 mm (22 gage) stainless steel or 1.6 mm (16 gage) chromium plated metal, with mounting flanges on all four sides, secured to rough-in with stainless steel or chromium plated countersunk screws.
C. Cover Plate for PBPU: One-piece with construction and material as indicated for modular cover plate.
D. Verify permanent, metal or plastic, identification plates securely fastened at each outlet and inlet opening, with inscription for appropriate service using color coded letters and background. Metal plates shall have letters embossed on baked-on enamel background. Color coding for identification plates is as follows:

<table>
<thead>
<tr>
<th>SERVICE LABEL</th>
<th>IDENTIFICATION PLATE COLORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXYGEN</td>
<td>White letters on green background and vice versa</td>
</tr>
<tr>
<td>MEDICAL AIR</td>
<td>Black letters on yellow</td>
</tr>
</tbody>
</table>

2.3 AREA ALARM PANEL (RELOCATED EXISTING)

A. Anchor flush mounted rough-in securely to wall construction.
B. Extend wiring from existing location to new location.

PART 3 - EXECUTION

3.1 INSTALLATION

A. In accordance with NFPA 99. Run buried oxygen piping in PVC protective pipe for entire length including enclosure of fittings and changes of direction.
B. Install cast escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

C. Open ends of tube shall be capped or plugged at all times or otherwise sealed until final assembly to prevent infiltration of any foreign matter.

D. Cut piping square and accurately with a tube cutter (sawing is prohibited) to measurements determined at place of installation. Ream tube to remove burrs, being careful not to expand tube, and so no chips of copper remain in the tube. Work into place without springing or forcing. Bottom tube in socket so there are no gaps between tube and fitting. Exercise care in handling equipment and tools used in cutting or reaming of tube to prevent oil or grease being introduced into tubing. Where contamination has occurred, material is no longer suitable for oxygen service.

E. Spacing of hangers: NFPA 99.

F. Rigidly support valves and other equipment to prevent strain on tube or joints.

G. While being brazed, joints shall be continuously purged with oil free nitrogen. The flow of purged gas shall be maintained until joint is cool to touch.

H. Do not bend tubing. Use fittings.

I. Apply pipe labeling during installation process and not after installation is completed. Size of legend letters shall be in accordance with ASME A13.1.

J. After initial leakage testing is completed, allow piping to remain pressurized with testing gas until testing agency performs final tests.

K. Penetrations:
 1. Fire Stopping: Where pipes pass through walls or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with intumescent materials only. Completely fill and seal clearances between raceways and openings with the fire stopping material.
 2. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
3.2 STARTUP AND TESTING

A. Initial Tests: Blow down and high and low-pressure leakage tests as required by NFPA 99 with documentation.

B. Laboratory and/or healthcare testing agency shall perform the following:

1. Perform and document all cross-connection tests, labeling verification, supply system operation, and valve and alarm operation tests as required by, and in accordance with NFPA 99 and the procedures set forth in pre-qualification documentation.

2. Verify that the systems, as installed, meet or exceed the requirements of NFPA 99, this specification, and that the systems operate as required.

3. Piping purge test: For each positive pressure gas system, verify cleanliness of piping system. Filter a minimum of 1000 liters (35 cubic feet) of gas through a clean white 0.45 micron filter at a minimum velocity of 100 liters per minute (3.5 SCFM). Filter shall show no discoloration, and shall accrue no more than 0.1 mg (0.0000035 ounces) of matter. Test each zone at the outlet most remote from the source. Perform test with the use of an inert gas as described in CGA P-9.

4. Piping purity test: For each positive pressure system, verify purity of piping system. Test each zone at the most remote outlet for dew point, carbon monoxide, total hydrocarbons (as methane), and halogenated hydrocarbons, and compare with source gas. The two tests shall in no case exceed variation as specified in paragraph, “Maximum Allowable Variation”. Perform test with the use of an inert gas as described in CGA P-9.

5. Outlet and inlet flow test:
 a. Test all outlets for flow. Perform test with the use of an inert gas as described in CGA P-9.
 b. Oxygen, nitrous oxide and air outlets shall deliver 100 Lpm (3.5 SCFM) with a pressure drop of no more than 34 kPa (5 psig), and static pressure of 345 kPa (50 psig).
 c. Nitrogen outlets shall deliver 565 Lpm (20 SCFM) with a pressure drop of no more than 34 kPa (5 psig), and static pressure of 1448 kPa (210 psig).
d. Needle valve air outlets shall deliver 1.5 SCFM with a pressure drop of no more than five psig, and static pressure of 345 kPa (50 psig).

6. Analysis Test:
 a. Analyze each pressure gas source and outlet for concentration of gas, by volume.
 b. Make analysis with instruments designed to measure the specific gas dispensed.
 c. Allowable concentrations are within the following:
 1) Laboratory air 19.5 percent to 23.5 percent oxygen.
 2) Oxygen >=97% plus oxygen
 3) Medical air 19.5% to 23.5% oxygen

7. Maximum Allowable Variation: Between comparative test results required are as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dew point</td>
<td>2 degrees C (35 degrees F)</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>2 mg/L (ppm)</td>
</tr>
<tr>
<td>Total hydrocarbons as methane</td>
<td>1 mg/L (ppm)</td>
</tr>
<tr>
<td>Halogenated hydrocarbons</td>
<td>2 mg/L (ppm)</td>
</tr>
</tbody>
</table>

3.3 CONNECTION TO EXISTING LABORATORY GAS SYSTEM:

A. Contactor shall test the existing system for hydrocarbons, dew point, etc. per NFPA 99. If problems are present, the COR would notify the facility of the results. The facility would then make the necessary repairs and/or maintenance prior to connecting to new system.

B. Time for shutdown of the existing laboratory and healthcare system shall be coordinated at least 10 work days prior to shutdown with the COR and VA Medical Center.

C. Shut off all oxygen zone valves and gas riser valves if the section to be connected cannot be totally isolated from the remainder of the system.

D. Prior to any work being done, check the new pipeline for particulate or other forms of contamination per NFPA 99.

E. Ensure that the correct type of pipe tubing and fittings are being used.
F. Make a spot check of the existing pipelines in the facility to determine the level of cleanness present.

G. Reduce the pressure to zero and make the tie-in as quickly as possible. A nitrogen purge is not required since this would require another opening in the pipe.

H. After the tie-in is made and allowed to cool, slowly bleed the source gas back into the pipeline. Test the work area for leaks with soapy water and repair any leaks.

I. After all leaks, if any, are repaired and the line is fully recharged, perform blow down and testing. Open the zone that is closest to the main to the system, access the closest outlet to the work, and blow the main through the outlet. After the outlet blows clear into a white cloth, make an additional check at a zone most distant from the work. Perform all required NFPA 99 tests after connection.

--- END ---
PART 1 - GENERAL

1.1 DESCRIPTION
A. The requirements of this Section apply to all sections of Division 23.

B. Definitions:
 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 2. Option or optional: Contractor's choice of an alternate material or method.
 3. PE: Project Engineer
 4. COR: Contracting Officer’s Representative.

1.2 RELATED WORK
A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
C. Section 09 91 00, PAINTING.
D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE
A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.

B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

C. Products Criteria:
 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory
1. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

2. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent than those specified. Refer any conflicts to the Project Engineer.

3. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.

4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.

5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

6. Asbestos products or equipment or materials containing asbestos shall not be used.

D. Equipment Service Organizations:

1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.

E. Execution (Installation, Construction) Quality:

1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Project Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Project Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.

F. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.
1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.

B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.

C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.

E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.

F. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 1. Equipment and materials identification.
 2. Fire-stopping materials.
 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 4. Wall, floor, and ceiling plates.

G. HVAC Maintenance Data and Operating Instructions:
 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment.

H. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.
1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. Air Conditioning, Heating and Refrigeration Institute (AHRI):
 430-2009...............Central Station Air-Handling Units

C. Air Movement and Control Association (AMCA):
 410-96...............Recommended Safety Practices for Air Moving Devices

D. American Society for Testing and Materials (ASTM):
 E84-10...............Standard Test Method for Surface Burning Characteristics of Building Materials

E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:
 SP-58-2009..............Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation
 SP 69-2003..............Pipe Hangers and Supports-Selection and Application
 SP 127-2001..............Bracing for Piping Systems, Seismic - Wind - Dynamic, Design, Selection, Application

F. National Fire Protection Association (NFPA):
 70-08...............National Electrical Code
 90A-09...............Standard for the Installation of Air Conditioning and Ventilating Systems
 101-09...............Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:
 1. Equipment and material placed on the job site shall remain in the custody of the contractor until phased acceptance, whether or not the Government has reimbursed the contractor for the equipment and material. The contractor is solely responsible for the protection of such equipment and material against any damage.
 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Project Engineer.
Such repair or replacement shall be at no additional cost to the Government.

3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.

4. Existing equipment and piping being worked on by the contractor shall be under the custody and responsibility of the contractor and shall be protected as required for new work.

B. Cleanliness of Piping and Equipment Systems:
 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 3. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS – WORK IN EXISTING BUILDING

A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the Medical Center.

B. Maintenance of Service: Schedule all work to permit continuous service as required by the Medical Center.

C. Phasing of Work: Comply with all requirements shown on drawings or specified.

D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.

E. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary
acceptance and the equipment will then be under the control and operation of Government.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Provide maximum standardization of components to reduce spare part requirements.

B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 1. All components of an assembled unit need not be products of same manufacturer.
 2. Constituent parts that are alike shall be products of a single manufacturer.
 3. Components shall be compatible with each other and with the total assembly for intended service.
 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.

D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with facility maintenance staff. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
B. Control Items: All temperature, pressure, and controllers shall be labeled and the component’s function identified. Identify and label each item as they appear on the control diagrams.

C. Valve Tags and Lists:
1. Piping: All valves shall be provided with valve tags and listed on a valve list.

2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. Coordinate the valve tags with Shops Foreman prior to installation for compliance.
 a. Valve number shall be labeled as follows: M-V-XXX-XXXXX-XXX.
 1) The first letter of the valve tag refers to the building number. M refers to Main Hospital.
 2) V stands for “Valve.”
 3) The first grouping of XXX indicates the type of piping. Refer to 09 91 00 Painting specification for labels for different types of piping (i.e. HWH is Hot Water Heating, DC is Domestic Cold Water, DH is Domestic Hot Water, and DR is Domestic Recirculating Hot Water).
 4) The second grouping of XXXX indicates the room number.
 5) The final grouping of XXX refers to the valve number in the room.

3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook.

4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door. Additionally provide a hardcopy drawing and AutoCADD copy (compatible with current Fargo VA version of CADD) of valve locations.
2.4 **GALVANIZED REPAIR COMPOUND**

A. Mil. Spec. DOD-P-21035B, paint form.

2.5 **HVAC PIPE AND EQUIPMENT SUPPORTS AND RERAINTS**

A. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69.

B. Attachment to Concrete Building Construction:

1. Concrete insert: MSS SP-58, Type 18.

2. Self-drilling expansion shields and machine bolt expansion anchors:

 Permitted in concrete not less than 102 mm (four inches) thick when approved by the Project Engineer for each job condition.

3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Project Engineer for each job condition.

C. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.

D. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.

 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).

 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or pre-insulated calcium silicate shield for insulated piping at each hanger.

E. Supports for Piping Systems:

 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or pre-insulated calcium silicate shields. Provide Type 40 insulation shield or pre-insulated calcium silicate shield at all other types of supports and hangers including those for pre-insulated piping.
2.6 PIPE PENETRATIONS

A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.

B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint and firestop piping penetration.
 2. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration at non-rated walls only. Firestop all penetrations at walls, floors and all corridor walls.

C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges.

D. Sheet Metal Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.

E. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms.

F. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.7 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the Project Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.8 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other
services and utilities. Follow manufacturer’s published recommendations for installation methods not otherwise specified.

B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.

C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.

D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:
 1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Project Engineer where working area space is limited.
 2. Locate holes to avoid interference with structural members such as beams or grade beams.
 3. Do not penetrate membrane waterproofing.

F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.

G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.

H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.

I. Protection and Cleaning:
 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during
installation, in accordance with the manufacturer's recommendations and as approved by the Project Engineer. Damaged or defective items in the opinion of the Project Engineer, shall be replaced.

2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps during installation. Tightly cover and protect fixtures and equipment against dirt, water, chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

K. Work in Existing Building:

1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.

3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Project Engineer. Locate openings so they will not affect structural slabs, columns, ribs or beams.

L. Inaccessible Equipment:

1. Where the Government determines that the contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling
under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.

B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.

C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 PIPE AND EQUIPMENT SUPPORTS

A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Do not drill or burn holes in structural steel.

B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.

C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.

D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.

E. HVAC Vertical Pipe Supports:
 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:
1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

3.4 MECHANICAL DEMOLITION

A. Where work is in an operating facility, provide approved protection from dust and debris at all times for the safety of facility personnel and maintenance of plant operation and environment of the plant.

B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and contractor shall follow all directives of the PE or COR with regard to rigging, safety, fire safety, and maintenance of operations.

C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

3.5 CLEANING AND PAINTING

A. Prior to final inspection and acceptance of the facilities for beneficial use by the Government, the facilities, equipment and systems
shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.

B. In addition, the following special conditions apply:

1. Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.

2. Material And Equipment Not To Be Painted Includes:
 a. Motors, controllers, control switches, and safety switches.
 b. Control and interlock devices.
 c. Control valves and thermostatic elements.
 d. Lubrication devices and grease fittings.
 e. Valve stems and rotating shafts.
 f. Name plates.

3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.

4. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.

5. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.6 IDENTIFICATION SIGNS

A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.

B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.

C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.7 LUBRICATION

A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.

B. Equip all devices with required lubrication fittings or devices.
C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.8 STARTUP AND TEMPORARY OPERATION

A. Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.9 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Project Engineer.

B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

- - - E N D - - -
SECTION 23 05 93
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 1. Planning systematic TAB procedures.
 2. Systems Inspection report.
 3. Duct Air Leakage test report.
 5. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 7. Recording and reporting results.

B. Definitions:
 1. Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 5. Hydronic Systems: Includes chilled water.
 6. Air Systems: Includes all outside air, supply air, return air and relief air systems.
 7. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
C. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
D. Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 QUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10.

B. Qualifications:
1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.

2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Project Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.

3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Project Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:
 a. Shall directly supervise all TAB work.
b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.

c. Would follow all TAB work through its satisfactory completion.

d. Shall provide final markings of settings of all HVAC adjustment devices.

e. Permanently mark location of duct test ports.

5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB

C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. Tab Criteria:

1. One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.

2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.

b. Minimum outside air: 0 percent to plus 10 percent.

c. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.

d. Chilled water coils: Minus 0 percent to plus 5 percent.
3. Systems shall be adjusted for energy efficient operation as described in PART 3.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.

C. For use by the Project Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.

D. Submit Following for Review and Approval:
 1. Duct Air Leakage Test Report.
 2. Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 3. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.

E. Prior to request for Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.

B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 2011HVAC Applications ASHRAE Handbook, Chapter 38, Testing, Adjusting, and Balancing and Chapter 48, Sound and Vibration Control

C. Associated Air Balance Council (AABC):
 2002.................AABC National Standards for Total System Balance

D. National Environmental Balancing Bureau (NEBB):

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing
PART 2 - PRODUCTS

2.1 PLUGS
A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL
A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL
A. Refer to TAB Criteria in Article, Quality Assurance.
B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.4 DUCT AIR LEAKAGE TEST REPORT
TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency’s role and responsibilities in witnessing, recording and reporting of deficiencies.

3.6 TAB REPORTS
A. The TAB contractor shall provide raw data immediately in writing to the Project Engineer if there is a problem in achieving intended results before submitting a formal report.

3.7 TAB PROCEDURES
A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre-constructed conditions.
D. Allow 7 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
E. Air Balance and Equipment Test: Include air handling unit.
1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer’s recommended pressure drop.

2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.

4. Record final measurements for air handling equipment performance data sheets.

F. Water Balance and Equipment Test: Include coils:

1. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.

2. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for cooling coil. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units. Make air and water temperature measurements at the same time.

3.8 MARKING OF SETTINGS

A. Following approval of TAB final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Project Engineer.

3.9 IDENTIFICATION OF TEST PORTS

A. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.
PART 1 - GENERAL

1.1 DESCRIPTION

A. Field applied insulation for thermal efficiency and condensation control for
 1. HVAC piping, ductwork and equipment.

B. Definitions
 1. ASJ: All service jacket, white finish facing or jacket.
 2. Air conditioned space: Space having air temperature and/or humidity
 controlled by mechanical equipment.
 3. Cold: Equipment, ductwork or piping handling media at design
 temperature of 16 degrees C (60 degrees F) or below.
 4. Concealed: Ductwork and piping above ceilings and in chases, and
 pipe spaces.
 5. Exposed: Piping, ductwork, and equipment exposed to view in finished
 areas including mechanical and electrical equipment rooms or exposed
 to outdoor weather. Attics and crawl spaces where air handling units
 are located are considered to be mechanical rooms. Shafts, chases,
 unfinished attics, crawl spaces and pipe basements are not
 considered finished areas.
 6. FSK: Foil-scrim-kraft facing.
 7. Hot: HVAC Ductwork handling air at design temperature above 16
 degrees C (60 degrees F); HVAC equipment or piping handling media
 above 41 degrees C (105 degrees F).
 8. Density: kg/m3 - kilograms per cubic meter (Pcf - pounds per cubic
 foot).
 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size
 to fan coil units or reheat coils for terminal units.
 a. Flat surface: Watt per square meter (BTU per hour per square
 foot).
 b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear
 foot).
 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch
 thickness, per hour, per square foot, per degree F temperature
 difference).
12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

13. GC: Chilled glycol-water supply.
14. GCR: Chilled glycol-water return.

1.2 RELATED WORK
A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Section 07 84 00, FIRESTOPPING.
C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
D. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE
A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
B. Criteria:
 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 4.3.3.1 Pipe insulation and coverings, duct coverings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
 4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

2. Test methods: ASTM E84, UL 723, or NFPA 255.

3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal
insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Shop Drawings:

1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 a. Insulation materials: Specify each type used and state surface burning characteristics.
 b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 c. Insulation accessory materials: Each type used.
 d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

1. Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/blanket; 150 mm (6 inches) long, full diameter for round types.
2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).
3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.
1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

C. Military Specifications (Mil. Spec.):
 MIL-A-3316C (2)-90......Adhesives, Fire-Resistant, Thermal Insulation
 MIL-A-24179A (1)-87.....Adhesive, Flexible Unicellular-Plastic
 Thermal Insulation
 MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and
 Water-Resistant, Vapor-Barrier
 MIL-C-20079H-87.........Cloth, Glass; Tape, Textile Glass; and Thread,
 Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):
 A167-99(2004)..........Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet, and Strip
 B209-07.................Standard Specification for Aluminum and
 Aluminum-Alloy Sheet and Plate
 C411-05..................Standard test method for Hot-Surface
 Performance of High-Temperature Thermal
 Insulation
 C533-09..................Standard Specification for Calcium Silicate
 Block and Pipe Thermal Insulation
 C534-08..................Standard Specification for Preformed Flexible
 Elastomeric Cellular Thermal Insulation in
 Sheet and Tubular Form
 Insulation
 C553-08..................Standard Specification for Mineral Fiber
 Blanket Thermal Insulation for Commercial and
 Industrial Applications
C612-10..................Standard Specification for Mineral Fiber Block and Board Thermal Insulation
C1126-04..................Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation
C1136-10..................Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
E84-10.....................Standard Test Method for Surface Burning Characteristics of Building Materials
E136-09b...................Standard Test Methods for Behavior of Materials in a Vertical Tube Furnace at 750 degrees C (1380 F)

E. National Fire Protection Association (NFPA):
90A-09.....................Standard for the Installation of Air Conditioning and Ventilating Systems
96-08.....................Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations
101-09.....................Life Safety Code
251-06.....................Standard methods of Tests of Fire Endurance of Building Construction Materials
255-06.....................Standard Method of tests of Surface Burning Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):
723.........................UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

G. Manufacturer’s Standardization Society of the Valve and Fitting Industry (MSS):
SP58-2009..................Pipe Hangers and Supports Materials, Design, and Manufacture
PART 2 - PRODUCTS

2.1 MINERAL FIBER

A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, \(k = 0.037 \) (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride pre-molded fitting covering.

2.2 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance of 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

D. Pipe fitting insulation covering (jackets): Fitting covering shall be pre-molded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.3 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Pre-molded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m² (3.0 pcf).
Nominal Pipe Size and Accessories Material (Insert Blocks)

<table>
<thead>
<tr>
<th>Nominal Pipe Size mm (inches)</th>
<th>Insert Blocks mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up through 125 (5)</td>
<td>150 (6) long</td>
</tr>
</tbody>
</table>

B. Warm or hot pipe supports: Pre-molded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]) or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.4 ADHESIVE, MASTIC, CEMENT

C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.

D. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.

E. Other: Insulation manufacturers' published recommendations.

2.5 MECHANICAL FASTENERS

A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.

B. Staples: Outward clinching galvanized steel.

C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.

D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.6 REINFORCEMENT AND FINISHES

A. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.
2.7 FIRESTOPPING MATERIAL
A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.8 FLAME AND SMOKE
A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS
A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Project Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full-length section will fit.
C. Insulation materials shall be installed in a first-class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
E. HVAC work not to be insulated:
 1. Existing air handling units.
F. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
G. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
H. Firestop Pipe and Duct insulation:
1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.

2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 a. All floor penetrations.
 b. All wall penetrations.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:
 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 2. Plain board:
 a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics:
 a. 1-1/2 inch thick insulation faced with ASJ (white all service jacket): Supply air duct.
 b. 1-1/2 inch thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 c. Outside air intake ducts: one inch thick insulation faced with ASJ.

B. Flexible Mineral Fiber Blanket:
 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder
penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.

2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.

3. Concealed supply air ductwork.
 a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.

4. Concealed return air duct:
 a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 b. Concealed return air ductwork in other locations need not be insulated.

5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.

C. Molded Mineral Fiber Pipe and Tubing Covering:

1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

2. Contractor’s options for fitting, flange and valve insulation:
 a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 b. Factory pre-molded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121
degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.

c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.

d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).

3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

D. Flexible Elastomeric Cellular Thermal Insulation:

1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.

2. Pipe and tubing insulation:
 a. Use proper size material. Do not stretch or strain insulation.
 b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.

3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.

4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.

6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 a. Chilled water pumps
 b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 d. Piping inside refrigerators and freezers: Provide heat tape under insulation.

7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.3 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

<table>
<thead>
<tr>
<th>Operating Temperature Service</th>
<th>Insulation Thickness Millimeters (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Pipe Size Millimeters (Inches)</td>
<td>Less than 25 (1)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)</td>
<td>Mineral Fiber</td>
</tr>
<tr>
<td></td>
<td>(Above ground piping only)</td>
</tr>
</tbody>
</table>

--- END ---
PART 1 - GENERAL

1.1 DESCRIPTION

A. Provide an updated control valve to function with the existing direct-digital control system as indicated on the project documents and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.

1. The direct-digital control system shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center.

2. The direct-digital control system shall be native BACnet. All new devices and components shall be listed by BACnet Testing Laboratories. All new devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.

3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.

4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure
of the ECC shall have no effect on the field controllers, including those involved with global strategies.

B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:

1. Control valves.

C. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:

1. Fire alarm systems. If zoned fire alarm is required by the project-specific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.

D. Responsibility Table:

<table>
<thead>
<tr>
<th>Work/Item/System</th>
<th>Furnish</th>
<th>Install</th>
<th>Low Voltage Wiring</th>
<th>Line Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control system low voltage and communication wiring</td>
<td>23 09 23</td>
<td>23 09 23</td>
<td>23 09 23</td>
<td>N/A</td>
</tr>
<tr>
<td>LAN conduits and raceway</td>
<td>23 09 23</td>
<td>23 09 23</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Manual valves</td>
<td>23</td>
<td>23</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Automatic valves</td>
<td>23 09 23</td>
<td>23</td>
<td>23 09 23</td>
<td>23 09 23</td>
</tr>
<tr>
<td>Fire Alarm shutdown relay interlock wiring</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>Control system monitoring of fire alarm smoke control relay</td>
<td>28</td>
<td>28</td>
<td>23 09 23</td>
<td>28</td>
</tr>
</tbody>
</table>

E. This facility’s existing direct-digital control system and its ECC is located at the mechanical shop (BAS room). The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
F. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK
A. Section 23 21 13, Hydronic Piping.
B. Section 23 31 00, HVAC Ducts and Casings.

1.3 DEFINITION
A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
C. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.

L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).

M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.

N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.

O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.

P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls.

Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap.

R. Device: A control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.

S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.

T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.

V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.

X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.

Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.

Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.

AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.

BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.

CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.

DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.

FF. GIF: Abbreviation of Graphic interchange format.

GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.

HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.

II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI), digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc., whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.

JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to “sockets” without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.

LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.

MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.

OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.

PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.

RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.

SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.

TT. Operating system (OS): Software, which controls the execution of computer application programs.

UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.

VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.

WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners—any device can initiate and respond to communication with other devices.

XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.

YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.

ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.

AAA. Router: A component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.

BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.

CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:
1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.

2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer’s latest standard design and have been tested and proven in actual use.

3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.

4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.

5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.

6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as
required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:
1. All work shall conform to the applicable Codes and Standards.
2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

A. The system shall conform to the following:
1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

<table>
<thead>
<tr>
<th>Measured Variable</th>
<th>Reported Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space temperature</td>
<td>±0.5°C (±1°F)</td>
</tr>
<tr>
<td>Ducted air temperature</td>
<td>±0.5°C (±1°F)</td>
</tr>
<tr>
<td>Outdoor air temperature</td>
<td>±1.0°C (±2°F)</td>
</tr>
<tr>
<td>Dew Point</td>
<td>±1.5°C (±3°F)</td>
</tr>
<tr>
<td>Water temperature</td>
<td>±0.5°C (±1°F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>±2% RH</td>
</tr>
</tbody>
</table>

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

<table>
<thead>
<tr>
<th>Controlled Variable</th>
<th>Control Accuracy</th>
<th>Range of Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pressure</td>
<td>±50 Pa (±0.2 in. w.g.)</td>
<td>0-1.5 kPa (0-6 in. w.g.)</td>
</tr>
<tr>
<td>Space Temperature</td>
<td>±1.0°C (±2.0°F)</td>
<td></td>
</tr>
<tr>
<td>Duct Temperature</td>
<td>±1.5°C (±3°F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>±5% RH</td>
<td></td>
</tr>
</tbody>
</table>

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.

B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.

C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility’s building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the
qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.

D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

B. Manufacturer’s literature and data for all components including the following:

1. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature sensors and transmitters.

2. Control valves schedule, including the size and pressure drop.

3. Catalog cut sheets of all equipment used. This includes, but is not limited to, software (by manufacturer and by third parties), DDC controllers, peripherals, and auxiliary control devices such as actuators, and control valves.

4. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.

5. Color prints of proposed graphics with a list of points for display.

6. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.

C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.

D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.

E. As Built Control Drawings:

1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.

F. Operation and Maintenance (O/M) Manuals):
1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
2. Include the following documentation:
 a. General description and specifications for all components.
 h. Licenses, guaranty, and other pertaining documents for all equipment and systems.

G. Submit Performance Report to Project Engineer prior to final inspection.

1.8 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)
A. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
B. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.9 APPLICABLE PUBLICATIONS
A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):
 Standard 135-10............BACNET Building Automation and Control Networks
C. American Society of Mechanical Engineers (ASME):
 B16.18-01...............Cast Copper Alloy Solder Joint Pressure Fittings.
 B16.22-01...............Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
D. American Society of Testing Materials (ASTM):
 B32-08...................Standard Specification for Solder Metal
 B88-09...................Standard Specifications for Seamless Copper Water Tube
 B88M-09..................Standard Specification for Seamless Copper Water Tube (Metric)
 B280-08..................Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service
E. Federal Communication Commission (FCC):
F. Institute of Electrical and Electronic Engineers (IEEE):
PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.

2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.

3. The networks shall, at minimum, comprise, as necessary, the following:
 a. A fixed ECC and a portable operator’s terminal.
 b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
e. Addressable elements, sensors, transducers and end devices.
f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
g. Other components required for a complete and working Control Systems as specified.

B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.

C. Network Architecture

1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.

D. Third Party Interfaces:

1. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

E. Servers:

1. Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
2. Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual
nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).

4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.

1. The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.

B. Each controller shall have a communication port for connection to an operator interface.

C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.

1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.

2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute specified control system operation. An authorized operator shall be able to edit cross-controller links by typing a standard object address.
D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.

E. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)
A. The existing ECC shall be utilized for this project.

2.5 BACNET PROTOCOL ANALYZER
A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.6 NETWORK AND DEVICE NAMING CONVENTION
A. Network Numbers
 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC’s or VA campus’ assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 a. FFF = Facility code (see below)
 b. NN = 00-99 This allows up to 100 networks per facility or building

B. Device Instances
 1. BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 a. FFP and N are as above and
 b. DD = 00-99, this allows up to 100 devices per network.
2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.

3. Facility code assignments:

4. 000-400 Building/facility number

5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.

C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a “B” followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP.1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1.STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.7 BACNET DEVICES

A. All BACnet Devices – controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.

1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed
as conforming to the B-BC Device Profile. The Device’s PICS shall be submitted.

2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device’s PICS shall be submitted.

3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device’s PICS shall be submitted.

4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device’s PICS shall be submitted.

5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device’s PICS shall be submitted.

6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device’s PICS shall be submitted.

2.8 CONTROLLERS

A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on “System Performance.” Each of these controllers shall meet the following requirements.

1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.

2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.

3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.

4. Controllers that perform scheduling shall have a real-time clock.

5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 a. Assume a predetermined failure mode, and
b. Generate an alarm notification.

6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.

7. Communication.
 a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator’s terminal.

8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.

9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.

10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.

11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.

1. Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.

2. Each B-ASC will contain sufficient I/O capacity to control the target system.

3. Communication.
a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.

b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator’s tool. This connection shall be extended to a space temperature sensor port where shown.

4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.

5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.

6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

7. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.

C. Direct Digital Controller Software

1. The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Microsoft Windows or version currently in use by Fargo VA OI&T Department.

2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.

3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.

4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical
processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

5. All DDC control loops shall be able to utilize any of the following control modes:
 a. Two position (on-off, slow-fast) control.
 b. Proportional control.
 c. Proportional plus integral (PI) control.
 d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 e. Automatic tuning of control loops.

6. System Security: Operator access shall be secured using individual password and operator’s name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.

7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator’s terminal, when it is necessary, to access directly the programmable unit.
 a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to
exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.

b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.

c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.

d. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
1) Time, day.
2) Commands such as on, off, auto.
3) Time delays between successive commands.
4) Manual overriding of each schedule.
5) Allow operator intervention.

e. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator’s response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.

f. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.

g. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.11 SENSORS (AIR AND WATER)

A. Sensors’ measurements shall be read back to the DDC system, and shall be visible by the ECC.

B. Temperature Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.

1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.

b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.

c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.

1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system’s diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.

d. Wire: Twisted, shielded-pair cable.

e. Output Signal: 4-20 ma.

C. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

A. General:

1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.

3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.

4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
5. Label system’s cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.

6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.

B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.

C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 6e, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket.

1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.

D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have brushed aluminum finish, setpoint range and temperature display and external adjustment:

1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
a. Public Space Thermostat: Public space thermostat shall have a
thermistor sensor and shall not have a visible means of set point
adjustment. Adjustment shall be via the digital controller to
which it is connected.

b. Battery replacement without program loss.

B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof
housing with fixed temperature switching point and single pole, double
throw switch.

C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing
element for each 0.093 square meter (one square foot) of coil area. A
freezing condition at any increment of 300 mm (one foot) anywhere along
the sensing element shall be sufficient to operate the thermostatic
element. Freezestats shall be manually-reset.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

A. Fail Safe Operation: Control valves and dampers shall provide "fail
safe" operation in either the normally open or normally closed position
as required for freeze, moisture, and smoke or fire protection.

B. Spring Ranges: Range as required for system sequencing and to provide
tight shut-off.

C. Control Valves:
 1. Valves shall be rated for a minimum of 150 percent of system
 operating pressure at the valve location but not less than 900 kPa
 (125 psig).
 2. Valves 50 mm (2 inches) and smaller shall be bronze body with
 threaded or flare connections.
 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body
 with flanged connections.
 4. Brass or bronze seats except for valves controlling media above 100
degrees C (210 degrees F), which shall have stainless steel seats.
 5. Flow characteristics:
 a. Three way modulating valves shall be globe pattern. Position
 versus flow relation shall be linear relation for steam or equal
 percentage for water flow control.
 b. Two-way modulating valves shall be globe pattern. Position
 versus flow relation shall be linear for steam and equal
 percentage for water flow control.
 c. Two-way 2-position valves shall be ball or gate type.
 6. Maximum pressure drop:
a. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.

7. Two position water valves shall be line size.

D. Valve Operators and Relays:

1. Electric operator shall provide full modulating control of valves. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

a. Minimum valve close-off pressure shall be equal to the system pump’s dead-head pressure, minimum 50 psig for valves smaller than 4 inches.

3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Project Engineer for resolution before proceeding for installation.

2. Install equipment, piping, wiring, conduit parallel to or at right angles to building lines.

3. Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.

4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.

5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.

7. Install equipment level and plum.

A. Electrical Wiring Installation:

1. All wiring cabling shall be installed in conduits. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

2. Install analog signal and communication cables in conduit. Install digital communication cables in conduit.

3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.

1. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.

5. Install all system components in accordance with local Building Code and National Electric Code.

 a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.

 b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.

 c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.

 d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.

7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.

8. Grounding: ground electrical systems per manufacturer’s written requirements for proper and safe operation.

C. Install Sensors and Controls:

1. Temperature Sensors:
 a. Install all sensors and instrumentation according to manufacturer’s written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 b. Calibrate sensors to accuracy specified, if not factory calibrated.
 c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors from contact with metal casings and coils using insulated standoffs.
 f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 g. All pipe mounted temperature sensors shall be installed in wells.
 h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Actuators:
a. Mount and link damper and valve actuators according to manufacturer’s written instructions.

b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.

c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

D. Installation of network:

1. Ethernet:
 a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 6e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.

2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.

E. Installation of digital controllers and programming:

1. Provide a separate digital control panel for each major piece of equipment, such as air handling unit. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.

2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.

3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.

4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.

5. Provide graphics for each piece of equipment and floor plan in the building. This includes each air handling unit. These graphics shall show all points dynamically as specified in the point list.
3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Validation

1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer’s agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner’s representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to ensure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Engineer or VA’s representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.

2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.

3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.

----- END -----
PART 1 - GENERAL

1.1 DESCRIPTION
A. Water piping to connect HVAC equipment, including the following:
 1. Chilled water and drain piping.

1.2 RELATED WORK
A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
E. Section 23 25 00, HVAC WATER TREATMENT.
F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE
A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Submit prior to welding of steel piping a certificate of Welder’s certification. The certificate shall be current and not more than one year old.
C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS
A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:
 1. Pipe and equipment supports.
 2. Pipe and tubing, with specification, class or type, and schedule.
 3. Pipe fittings, including miscellaneous adapters and special fittings.
 4. Flanges, gaskets and bolting.
 5. Valves of all types.
 7. All specified hydronic system components.
 8. Gages.
 9. Thermometers and test wells.
C. Submit the welder’s qualifications in the form of a current (less than one year old) and formal certificate.

D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

E. As-Built Piping Diagrams: Provide drawing as follows for chilled water system and equipment:
1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
2. One complete set of reproducible drawings.
3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.

B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI):
B1.20.1-83(R2006)........Pipe Threads, General Purpose (Inch)
B16.4-06..................Gray Iron Threaded Fittings
B16.18-01..................Cast Copper Alloy Solder joint Pressure fittings
B40.100-05...............Pressure Gauges and Gauge Attachments

C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI):
70-2-2006...............Control Valve Seat Leakage

D. American Society of Mechanical Engineers (ASME):
B16.1-98.................Cast Iron Pipe Flanges and Flanged Fittings
B16.3-2006..............Malleable Iron Threaded Fittings: Class 150 and 300
B16.4-2006..............Gray Iron Threaded Fittings: (Class 125 and 250)
B16.5-2003..............Pipe Flanges and Flanged Fittings: NPS \(\frac{1}{2} \) through NPS 24 Metric/Inch Standard
B16.11-05..............Forged Fittings, Socket Welding and Threaded
B16.18-01..............Cast Copper Alloy Solder Joint Pressure Fittings
B16.22-01..............Wrought Copper and Bronze Solder Joint Pressure Fittings
B16.24-06..............Cast Copper Alloy Pipe Flanges and Flanged Fittings
B16.39-06..............Malleable Iron Threaded Pipe Unions
B16.42-06..............Ductile Iron Pipe Flanges and Flanged Fittings
B31.1-08..............Power Piping

E. American Society for Testing and Materials (ASTM):
A47/A47M-99 (2004)........Perritic Malleable Iron Castings
A53/A53M-07..............Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
A183-03..............Standard Specification for Carbon Steel Track Bolts and Nuts
A216/A216M-08..............Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service
A234/A234M-07..............Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
A307-07..............Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength
A653/A 653M-08..............Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) By the Hot-Dip Process
B32-08..............Standard Specification for Solder Metal
B62-02..............Standard Specification for Composition Bronze or Ounce Metal Castings
B88-03..............Standard Specification for Seamless Copper Water Tube
C533-07..............Calcium Silicate Block and Pipe Thermal Insulation
C591-08..............Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation
F477-08 Elastomeric Seals Gaskets) for Joining Plastic Pipe

F. American Water Works Association (AWWA):
C110-08........... Ductile Iron and Grey Iron Fittings for Water
C203-02........... Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied

G. American Welding Society (AWS):

H. Copper Development Association, Inc. (CDA):
CDA A4015-06........ Copper Tube Handbook

I. Expansion Joint Manufacturer’s Association, Inc. (EJMA):
EMJA-2003........... Expansion Joint Manufacturer’s Association Standards, Ninth Edition

J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.:
SP-70-06............ Gray Iron Gate Valves, Flanged and Threaded Ends
SP-71-05............ Gray Iron Swing Check Valves, Flanged and Threaded Ends
SP-80-08............ Bronze Gate, Globe, Angle and Check Valves
SP-85-02............ Cast Iron Globe and Angle Valves, Flanged and Threaded Ends
SP-110-96............ Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends
SP-125-00............ Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves

K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI):
Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities
61-2008............ Drinking Water System Components - Health Effects
PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

A. Chilled Water, Heating Hot Water, and Glycol-Water:
 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40.
 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.

B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.

C. Cooling Coil Condensate Drain Piping:
 1. From air handling units: Copper water tube, ASTM B88, Type M.
 2. From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.

D. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 2. Forged steel, socket welding or threaded: ASME B16.11.
 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.

B. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:
 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.

2.5 DIELECTRIC FITTINGS
A. Provide where copper tubing and ferrous metal pipe are joined.
B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
D. Temperature Rating, 99 degrees C (210 degrees F).
E. Contractor’s option: On pipe sizes 2” and smaller, screwed end brass ball valves may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS
B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES
A. Asbestos packing is not acceptable.
B. All valves of the same type shall be products of a single manufacturer.
D. Shut-Off Valves
 1. Ball Valves (Pipe sizes 2” and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 1. Ball style valve.
 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved
pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.

2.8 WATER FLOW MEASURING DEVICES

A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.

B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.

C. Flow Measuring Device Identification:
 1. Metal tag attached by chain to the device.
 2. Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in l/m (gpm).

D. Portable Water Flow Indicating Meters:
 1. Minimum 150 mm (6 inch) diameter dial, forged brass body, beryllium-copper bellows, designed for 1205 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 2. Bleed and equalizing valves.
 3. Vent and drain hose and two 3000 mm (10 feet) lengths of hose with quick disconnect connections.
 4. Factory fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.

2.9 STRAINERS

A. Y Type.
 1. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.

2.10 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
B. Provide one each of the following test items to the Project Engineer:

1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -- 100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
3. 0 - 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.11 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.

C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.

E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in
overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.

G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.

H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.

I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 1. Control valve bodies and wells for sensors.

J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

K. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder’s qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 LEAK TESTING ABOVEGROUND PIPING
A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Project Engineer. Tests may be either of those below, or a combination, as approved by the Project Engineer. VA shall witness the pressure at the start and end of the test.
B. An operating test at design pressure, and for hot systems, design maximum temperature.
C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS
A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Project Engineer.
2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.

3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.5 WATER TREATMENT

A. Install water treatment equipment and provide water treatment system piping.

B. Close and fill system as soon as possible after final flushing to minimize corrosion.

C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.

D. Utilize this activity, by arrangement with the Project Engineer, for instructing VA operating personnel.

3.8 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- - - E N D - - -
SECTION 23 25 00
HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION
A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following:
 1. Cleaning compounds.
 2. Chemical treatment for closed loop heat transfer systems.

1.2 RELATED WORK
A. Section 01 00 00, GENERAL REQUIREMENTS.
B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
E. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE
A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations.
C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS
A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data including:
 1. Cleaning compounds and recommended procedures for their use.
 2. Chemical treatment for closed systems, including installation and operating instructions.
 3. Glycol-water system materials, equipment, and installation.
C. Water analysis verification.
D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
1.5 APPLICABLE PUBLICATIONS
A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. National Fire Protection Association (NFPA):
 70-2008.................National Electric Code (NEC)

PART 2 - PRODUCTS

2.1 CLEANING COMPENDS
A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
B. All chemicals to be acceptable for discharge to sanitary sewer.
C. Refer to Section 23 21 13, HYDRONIC PIPING for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS
A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

2.3 GLYCOL-WATER SYSTEM
A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors
used are not needed and can cause sludge precipitate that interferes with heat transfer.

B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 35 percent for chilled water system.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION
Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.

B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.

C. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.

D. Do not valve in or operate system pumps until after system has been cleaned.

E. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.

F. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

G. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.

H. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

--- END ---
PART 1 - GENERAL

1.1 DESCRIPTION

A. Ductwork and accessories for HVAC including the following:
 1. Supply air, return air, outside air systems.

B. Definitions:
 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 2. Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

A. Section 07 84 00, FIRESTOPPING.
B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
C. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
D. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
F. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Fire Safety Code: Comply with NFPA 90A.
C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
B. Manufacturer's Literature and Data:
1. Rectangular ducts:
 a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 b. Sealants and gaskets.
 c. Access doors.
2. Round and flat oval duct construction details:
 a. Manufacturer's details for duct fittings.
 b. Sealants and gaskets.
 c. Access sections.
 d. Installation instructions.
3. Volume dampers, back draft dampers.
4. Upper hanger attachments.
5. Flexible ducts and clamps, with manufacturer's installation instructions.
6. Flexible connections.
8. COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS
A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
B. American Society for Testing and Materials (ASTM):
 A653-09 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process
 A1011-09a Standard Specification for Steel, Sheet and Strip, Hot-rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength
 B209-07 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 E84-09a Standard Test Method for Surface Burning Characteristics of Building Materials
C. National Fire Protection Association (NFPA):
 90A-09....................Standard for the Installation of Air Conditioning and Ventilating Systems
 96-08....................Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations
D. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 2nd Edition - 2005......HVAC Duct Construction Standards, Metal and Flexible
E. Underwriters Laboratories, Inc. (UL):
 181-08....................Factory-Made Air Ducts and Air Connectors
 555-06Standard for Fire Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.

B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.

C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.

D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:

B. Duct Pressure Classification:
0 to 50 mm (2 inch)
> 50 mm to 75 mm (2 inch to 3 inch)
> 75 mm to 100 mm (3 inch to 4 inch)
Show pressure classifications on the floor plans.

C. Seal Class: All ductwork shall receive Class A Seal

D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.

1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18-degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.

2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.

3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.

4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.

E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for multi-blade volume dampers.

G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 1. Each duct mounted smoke detector.

B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FLEXIBLE AIR DUCT

A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.

B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.

C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).

D. Application Criteria:
 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.5 FLEXIBLE DUCT CONNECTIONS
A. Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.6 FIRESTOPPING MATERIAL
A. Refer to Section 07 84 00, FIRESTOPPING.

2.7 INSTRUMENT TEST FITTINGS
A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and
accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.

3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.

4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.

C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.

D. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.

E. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors or any wall or partition designated as a fire or smoke barrier, including corridor partitions. Support ducts SMACNA Standards.

F. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.

G. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.
3.2 DUCT LEAKAGE TESTS AND REPAIR

A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.

B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.

C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.

D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.

E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Project Engineer and identify leakage source with excessive leakage.

F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Project Engineer.

G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.

H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -
SECTION 23 37 00
AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION
A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK
A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
B. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE
A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK
 RESULTS FOR HVAC and STEAM GENERATION.
B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS
A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT
 DATA, and SAMPLES.
B. Manufacturer's Literature and Data:
 1. Diffusers, registers, grilles and accessories.
C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05
 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS
A. The publications listed below form a part of this specification to the
 extent referenced. The publications are referenced in the text by the
 basic designation only.
B. Air Diffusion Council Test Code:
 1062 GRD-84..............Certification, Rating, and Test Manual 4th
 Edition
C. National Fire Protection Association (NFPA):
 90A-09.................Standard for the Installation of Air
 Conditioning and Ventilating Systems
D. Underwriters Laboratories, Inc. (UL):
 181-08.................UL Standard for Safety Factory-Made Air Ducts
 and Connectors

PART 2 - PRODUCTS

2.2 EQUIPMENT SUPPORTS
A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM
 GENERATION.

2.3 AIR OUTLETS AND INLETS
A. Materials:
1. Steel or aluminum. Provide manufacturer's standard gasket.
2. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.

B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD.

C. Air Supply Outlets:
1. Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 a. Square, louver plaque (with standard white powder coat finish):
 Round neck, surface mounting unless shown otherwise on the drawings.

D. Return Grilles:
1. Finish: Off-white baked enamel for ceiling mounted units.
2. Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.

B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION