FARGO VA HEALTH CARE SYSTEM DEPARTMENT OF VETERANS AFFAIRS FARGO, NORTH DAKOTA

FARGO EHRM TRAINING AND ADMIN

January 11, 2022

ARCHITECT

FourFront Design, Inc. 517 Seventh Street Rapid City, SD 57701

MECHANICAL ENGINEER

FourFront Design, Inc. 517 Seventh Street Rapid City, SD 57701

MI

TIM DAVID

CUMMINS

NUMBER

4DPROFESSION AU

PA-9846

01/11/21

VORTH DAKOT

S

C

Wet

ENGINEER

ELECTRICAL ENGINEER

FourFront Design, Inc. 517 Seventh Street Rapid City, SD 57701

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
0 01 15	List of Drawing Sheets	05-20
1 00 00	DIVISION 01 - GENERAL REQUIREMENTS	0 5 0 1
01 00 00	General Requirements	05-21
)1 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	03-20
01 33 23	Shop Drawings, Product Data, and Samples	05-17
)1 35 26)1 57 19	Safety Requirements	07-20
	Temporary Environmental Controls	01-21
01 74 19	Construction Waste Management	01-21
01 91 00	General Commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
2 41 00	Demolition	08-17
2 82 11	Traditional Asbestos Abatement	01-21
)2 82 13.13	Glovebag Asbestos Abatement	01-21
)2 83 33.13	Lead-Based Paint Removal and Disposal	01-21
	DIVISION 03 - CONCRETE	01.01
)3 30 53	(Short-Form) Cast-in-Place Concrete	01-21
	DIVISION 04 - MASONRY	
04 05 13	Masonry Mortaring	10-17
04 05 16	Masonry Grouting	01-21
04 20 00	Unit Masonry	08-17
	DIVISION 05 - METALS	
05 50 00	Metal Fabrications	08-18
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	10-17
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 21 13	Thermal Insulation	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	10-17
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-21
08 14 00	Interior Wood Doors	01-21
08 51 13	Aluminum Windows	01-21
08 71 00	Door Hardware	01-21
00 08 80 00	Glazing	01-21
08 90 00	Louvers and Vents	01-21
		UI 21

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 06 00	Schedule for Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 30 13	Ceramic/Porcelain Tiling	01-21
09 51 00	Acoustical Ceilings	12-18
09 65 13	Resilient Base and Accessories	01-21
09 65 19	Resilient Tile Flooring	05-18
09 68 00	Carpeting	01-21
09 91 00	Painting	01-21
	DIVISION 10 - SPECIALTIES	
10 21 13	Toilet Compartments	01-21
10 26 00	Wall and Door Protection	01-21
10 28 00	Toilet, Bath, and Laundry Accessories	01-21
10 44 13	Fire Extinguisher Cabinets	08-18
	DIVISION 12 - FURNISHINGS	
12 24 00	Window Shades	08-17
12 32 00	Manufactured Wood Casework	09-15
12 36 00	Countertops	12-18
12 50 00		12-10
	DIVISION 21- FIRE SUPPRESSION	
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	05-21
22 13 00	Facility Sanitary and Vent Piping	09-20
22 40 00	Plumbing Fixtures	09-15
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC and Steam	02-20
23 05 41	Generation Equipment Noise and Vibration Control for HVAC Piping and	02-20
20 00 11	Equipment	02 20
23 05 42	Noise and Vibration Control	02-20
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	02-20
23 21 23	Hydronic Pumps	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 22 23	Steam Condensate Pumps	04-20

SECTION NO.	DIVISION AND SECTION TITLES	DATE
23 25 00	HVAC Water Treatment	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 40 00	HVAC Air Cleaning Devices	03-20
23 73 00	Indoor Central-Station Air-Handling Units	03-20
23 82 00	Convection Heating and Cooling Units	03-20
23 82 16	Air Coils	03-20
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 05 33	Raceway and Boxes for Electrical Systems	01-18
26 05 73	Overcurrent Protective Device Coordination Study	01-18
26 08 00	Commissioning of Electrical Systems	11-16
26 09 23	Lighting Controls	01-18
26 24 16	Panelboards	01-18
26 27 26	Wiring Devices	01-18
26 29 11	Motor Controllers	01-18
26 29 21	Enclosed Switches and Circuit Breakers	01-17
26 43 13	Surge Protective Devices	01-17
26 51 00	Interior Lighting	01-18
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	09-19
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	10-18
27 08 00	Commissioning of Communications Systems	11-16
27 15 00	Communications Structured Cabling	01-16
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	04-18
28 05 13	Conductors and Cables for Electronic Safety and Security	10-18
28 05 26	Grounding and Bonding for Electronic Safety and Security	09-11
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 08 00	Commissioning of Electronic Safety and Security Systems	11-16
28 13 00	Physical Access Control	10-11
28 31 00	Fire Detection and Alarm	10-11
20 01 00		
	DIVISION 33 - UTILITIES	
33 08 00.01	DVA/USACE Projects Commissioning of Site Utility	08-19
	Systems	
33 10 00	Water Utilities	03-17
33 30 00	Sanitary Sewer Utilities	06-13
33 40 00	Storm Sewer Utilities	12-17
33 46 13	Foundation Drainage	10-11

SECTION NO.	DIVISION AND SECTION TITLES	DATE
33 51 00	Natural-Gas Distribution	10-11
33 63 00	Steam Energy Distribution	09-17
	DIVISION 48 - Electrical Power Generation	
48 14 00	Solar Energy Electrical Power Generation System	10-17
48 15 00	Wind Energy Electrical Power Generation System	10-17
48 16 23	Geothermal Energy Electrical Power Generation System	10-17

SECTION 00 01 15 LIST OF DRAWING SHEETS

-	
Drawing No.	Title
GENERAL	
G0.00	COVER SHEET
G0.01	ABBREVIATIONS, SYMBOLS, LEGENDS AND
	ARCHITECTURAL GENERAL NOTES
G0.02	INFECTION CONTROL RISK ASSESSMENT
G0.03	PARTITION FRAMING DETAILS
G0.04	PHASING PLAN
G1.00	LIFE SAFETY PLAN
	ARCHITECTURAL
AD1.00	DEMOLITION PLAN
A1.00	FLOOR PLAN
A1.05	WALL TYPES AND PLAN DETAILS
A1.10	REFLECTED CEILING PLAN
A3.00	SECTION DETAILS
A5.00	ROOM FINISH SCHEDULE
A5.10	FLOOR FINISH PLAN
A5.15	WALL PROTECTION PLAN AND DETAILS
A5.20	ENLARGED PLANS AND INTERIOR ELEVATIONS
A6.00	DOOR SCHEDULE, ELEVATIONS AND DETAILS
	MECHA1NICAL (HVAC)
M0.00	MECHCANICAL SYMBOLS, ABBREVIATIONS AND GENERAL
	NOTES
M0.01	MECHANICAL DETAILS
M0.02	MECHANICAL SCHEDULES
MD1.00	MECHANICAL DEMOLITION PLAN
MH1.00	MECHANICAL HVAC PLAN
MP1.00	MECHANICAL PIPING PLAN
	PLUMBING
P0.01	PLUMBING SCHEDULES AND DETAILS

PD1.00	PLUMBING DEMOLITION PLAN
P1.00	NEW BELOW FLOOR PLUMBING PLAN
P1.10	NEW ABOVE FLOOR PLUMBING PLAN

VA PROJECT NO: 437-21-225

	ELECTRICAL
E0.00	ELECTRICAL LEGENDS AND ABBREVIATIONS
E0.01	ELECTRICAL DETAILS
E0.02	ELECTRICAL SCHEDULES
E0.03	ELECTRICAL DETAILS
ED1.00	BASEMENT LEVEL - ELECTRICAL DEMOLITION
E1.00	POWER AND COMMUNUICATIONS PLANS
E2.00	LIGHITNG PLANS
E2.01	BASEMENT LIGHTING LEVELS
E2.02	BASEMENT EMERGENCY LIGHTING LEVLS
E3.00	BASEMENT DATA ROUTING PLAN

- - - E N D - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

GENERAL

1.1 SAFETY REQUIREMENTS

- A. Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.
 - All employees of contractor or subcontractors shall have the 10-hour (Non-Supervisory Employees) or 30-hour (Supervisory Employees) OSHA certified Construction Safety course and /or other relevant competency training, as determined by VA.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for "EHRM TRAINING AND ADMIN. SPACE SUPPORT, Fargo VA Health Care System, Fargo, ND" as required by drawings and specifications.
 - 1. Normal working hours for this contract will be from 7:00AM to 4:30PM (local time) Monday through Friday except for weekend and established Federal Holidays. Performing on-site work outside normal working hours will require approval from the Contracting Offices and the COR. Requests shall be submitted via email at least 72 hours prior to the requested date and at no additional cost to the government. Approvals are subject to the availability of onsite staff.
 - Visits to the site by Bidders may be made in accordance with what is listed in the solicitation and at the discretion of the Contracting Officer.
- 3. Offices of FourFront Design Inc, 517 7th Street, Rapid City SD 57701, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM TRAINING AND ADMIN. SPACE SUPPORT 01 00 00 General Requirements-1

Government without affirmations by Contracting Officer's Representative or his duly authorized representative.

- 4. The Key Personnel assigned by the contractor for the performance of work on this contract shall be acceptable to VA in terms of personal and professional conduct and technical knowledge. Should the assignment to this contract of any person by the contractor be deemed to conflict with the interests of VA, or in the event performance is deemed to be unsatisfactory at any time during the life of the contract, the Contracting Officer may notify the contractor and request the person be removed from the assignment. The reason for removal will be documented and a request to receive key personnel replacement within three (3) business days of the notification will be made. Replacement of key personnel qualifications shall be equal to or greater than those of the key personnel being replaced. Employment and staffing difficulties will not be justification for failure to meet established schedules. The contractor is required to submit a resume with qualifications for the proposed replacement which shall be approved by the COR and CO prior to the replacement starting work.
- 5. All employees of general contractor and subcontractors shall comply with the VA security management program.

1.3 STATEMENT OF BID ITEM(S)

ITEM I, GENERAL CONSTRUCTION: BASE BID: This construction project will renovate approximately 8,100 sf of existing space in the basement level of the southwest area of the Fargo VA Health Care System, for use as administration and training space to support the deployment of new Cerner EHRM equipment and software at the Fargo VA and its associated CBOCs and other leased spaces.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - 2. The General Contractor is responsible for assuring that all sub-contractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - 1. General Contractor's employees shall not enter the project site without the appropriate project identification. In addition to the appropriate badge, all employees will be required to carry a valid government issued, photo ID at all times and will present that ID and badge when requested by the appropriate VA staff. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. Before starting work the General Contractor shall give three week's notice to the Contracting Officer's Representative and the Contracting Officer's Representative's Representative so that security arrangements can be provided for the employees.

FARGO VA HEALTHCARE SYSTEM

This notice is separate from any notices required for utility shutdown described later in this section.

- 3. No photography of VA premises is allowed without written permission of the Contracting Officer's Representative. Patients and staff are not to be photographed at any time.
- 4. VA reserves the right to close or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer's Representative.
- C. Key Control:
 - 1. Contractor shall use hardware compatible with the Best Corporation 7 pin figure 8 cores in use at the Fargo VA. The cores to the doors shall be provided by VA and the Fargo VA Locksmith shall issue keys to contractors to use. Keys and cores shall be returned to the Fargo VA Locksmith when project is complete or their work on site is complete. Badges shall be returned to the VA Core or Engineering Service staff located in room BD-50.Contracting Officer's Representative. The General Contractor shall provide door hardware compatible with the Fargo VA Best Corporation 7 pin core and the VA provides the keys and cores for the door. See Section 08 71 00, DOOR HARDWARE and coordinate.
- D. Contracting Officer's Representative Contracting Officer's Representative Contracting Officer's Representative Motor Vehicle Restrictions
 - General Contractor and its employees will park in the shared staging and parking area east of Building 50 or off site on the street.. Contractor to coordinate with COR.

1.6 OPERATIONS AND STORAGE AREAS (FAR 52.236-10)

A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Office's Representative. The Contractor shall

hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.

- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer's Representative's Representative and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. Contracting Officer's Representative
- C. The Contractor shall, under regulations prescribed by the Contracting Officer's Representative's Representatice, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer's Representative. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as shown on the drawings or coordinated with COR in advance Medical Center
- E. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- F. Execute work to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment

and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.

- Do not store materials and equipment in other than assigned areas.
- 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
- G. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the COR or Utility Company involved.
- H. Phasing:
 - 1. The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:
 - 2. To ensure such executions, Contractor shall furnish the COR with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor

shall notify the COR three weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing dates to ensure accomplishment of this work in successive phases mutually agreeable to COR and Contractor, as follows:

- a. Contractor to reference the Phasing Plans provided in the plan document set (Sheet G0.04). This includes information for Phases 1, 2, 3, and 4.
- I. Building(s) No.(s) 9 will be occupied during performance of work; but immediate areas of alterations will be vacated as shown on the plans.
 - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. The contractor shall work with the VA COR for times when other contractors, service companies, etc. need to pass through the construction area (inside or outside) to complete their contracted work for the VA. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc. to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.
- J. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, (seven feet) minimum height, around the construction area indicated on the drawings. Provide gates as required for access with necessary hardware. Padlocks and keys will be provided at each gate by the VA, which will be returned to the VA when the fence is taken down. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 00 00 General Requirements-7

at maximum (15 inches). Bottom of fences shall extend to (one inch) above grade. Remove the fence when directed by COR.

- K. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 Contractor shall maintain in enception condition eviction fine

2. Contractor shall maintain in operating condition existing fire protection and alarm equipment.

- L. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY for additional requirements.
 - Contractor shall submit a request to interrupt any such services to COR, 21 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center

. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.

- Major interruptions of any system must be requested, at least
 21 calendar days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed as soon as practical.
- M. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, shall be removed back to their source. Those which are indicated to be abandoned but are not required to be entirely removed, shall be sealed, capped, or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- N. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times with approval. When single lane traffic is in effect, for any reason resulting from the operation of this construction, the General Contractor will provide for traffic control by trailer mounted traffic signal equipment, stationed at both sides and synchronized via radio or wire for efficient flow of traffic. When required, traffic control will be supplemented with contractor's staff as necessary. As approved by the COR, the contractor may provide manual traffic control for brief times of work.

- Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- O. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR of areas of buildings and site in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer's Representative. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building.
 - Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
 - 3. Shall note any discrepancies between drawings and existing conditions at site.
 - 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 00 00 General Requirements-10

- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workers in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner

as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.

- 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center .
- 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS (FAR 52.236-9)

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees as noted on the contract drawings. The Contractor shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workers, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer's Representative.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from
 FARGO VA HEALTHCARE SYSTEM
 VA PROJECT NO: 437-21-225
 EHRM - TRAINING AND ADMIN. SPACE SUPPORT
 O1 00 00 General Requirements-12

failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer's Representative may have the necessary work performed and charge the cost to the Contractor.

C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workers to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems

(including telephone) which are not scheduled for discontinuance or abandonment.

1.11 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer's Representative. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer's Representative until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer's Representative may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

- B. Establish and plainly mark the addition to the existing building, and such other lines and grades that are reasonably necessary to properly assure that location, orientation, and elevations established for each such structure and/or addition, are in accordance with lines and elevations shown on contract drawings.
- C. Following completion of general mass excavation and before any other permanent work is performed, establish and plainly mark (through use of appropriate batter boards or other means) sufficient additional survey control points or system of points as may be necessary to assure proper alignment, orientation, and grade of all major features of work. Survey shall include, but not be limited to, location of lines and grades of footings,

exterior walls, center lines of columns in both directions, major utilities and elevations of floor slabs:

- Such additional survey control points or system of points thus established shall be checked and certified by a registered land surveyor or registered civil engineer. Furnish such certification to the COR before any work (such as footings, floor slabs, columns, walls, utilities and other major controlling features) is placed.
- D. During progress of work, and particularly as work progresses from floor to floor, Contractor shall have line grades and plumbness of all major form work checked and certified by a registered land surveyor or registered civil engineer as meeting requirements of contract drawings. Furnish such certification to the COR before any major items of concrete work are placed. In addition, Contractor shall also furnish to the COR certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings.
 - 1. Lines of each building and/or addition.
 - Elevations of bottoms of footings and tops of floors of each building and/or addition.
 - 3. Lines and elevations of sewers and of all outside distribution systems.
- E. Upon completion of the work, the Contractor shall furnish the COR one electronic copy and reproducible drawings at the scale of the contract drawings, showing the finished grade on the grid developed for constructing the work. These drawings shall bear the seal of the registered land surveyor or registered civil engineer.
- F. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.12 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications, and clarifications. All underground services provided to the building will be dimensionally located on the plan.
- B. All variations shall be shown clearly legible and in the same general detail as used in the contract drawings. To ensure compliance, as-built drawings shall be made available for the COR review and approval, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) and one hardcopy to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. All illegible, unclear, missed or incorrect entries will be brought to the attention of the Contractor, who will in turn resubmit a corrected set of drawings in a timely response.
- E. Paragraphs A, B, & C shall also apply to all shop drawings.

1.13 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed, and restoration performed by the Contractor at Contractor's expense. When necessary, to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridging.

1.14 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:

- Permission to use each unit or system must be given by COR in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.
- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally

during use; and cleaned, maintained and inspected prior to acceptance by the Government.

- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal as determined by the COR, shall be replaced with identical replacements, at no additional cost to the Government.
- c. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.15 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workers) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.16 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer's Representative, shall install and maintain all necessary temporary connections and distribution lines. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may

smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:

- Obtain heat by connecting to Medical Center heating distribution system.
- D. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the Medical Center electrical distribution system. Electricity for all other uses is available at no cost to the Contractor.
- E. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. The Fargo VA Chief Engineer shall approve of the set up and connection point for the backflow preventer prior to installation. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR discretion) of use of water from Medical Center's system.
- F. Fuel: Unavailable at this location.

1.17 TESTS

- A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation.
- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before

requesting final tests. Final test will not be conducted unless pre-tested.

- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer's Representative. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonable constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.18 INSTRUCTIONS

A. Contractor shall furnish Maintenance and Operating manuals (one hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.

- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style, and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction periods shall be at such times as

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225

01 00 00 General Requirements-21

scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.19 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones.
- B. Photographic documentation elements:
 - Before construction, photograph the adjacent building, adjacent streets, roadways, parkways, driveways, curbs, sidewalks, landscaping, adjacent utilities and adjacent structures surrounding the building and site shall be documented. S ite work or pad preparation is extensive, this documentation may be required immediately before construction and at several pre-determined intervals before building work commences.
 - 2. Construction progress for all trades shall be tracked, but not less than once every thirty (30) calendar days ("Progressions"). Progression documentation shall track both the exterior and interior construction of the building. Exterior Progressions shall track 360 degrees around the site and each building. Interior Progressions shall track interior improvements beginning when stud work commences and continuing until Project completion.
 - 3. As-built condition of pre-foundation utilities and site utilities shall be documented prior to pouring footers, placing concrete and/or backfilling. This process shall

include all underground and in-slab utilities within the building(s) envelope(s) and utility runs in the immediate vicinity of the building(s) envelope(s). This may also include utilities enclosed in slab-on-deck in multi-story buildings.

- 4. As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and preinsulation, sheet rock or dry wall installation. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project.
- 5. As-built conditions of exterior skin and elevations shall be documented with an increased concentration of digital photographs as directed by the COR in order to capture predetermined focal points, such as waterproofing, window flashing.
- 6. As-built finished conditions of the interior of each building including floors, ceilings and walls shall be documented at certificate of occupancy or equivalent, or just prior to occupancy, or both, as directed by the COR. Overlapping photographic techniques shall be used to ensure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings.
- Miscellaneous events that occur during any Contractor site visit, or events captured by the Department of Veterans Affairs independently, shall be dated, labeled.
- Monthly (29 max) exterior progressions (360 degrees around the project) and slideshows (all elevations and building envelope).
- 9. Weekly (21 Max) Site Progressions Photographic documentation capturing the project at different stages of construction. These progressions shall capture underground utilities, excavation, grading, backfill, landscaping and road construction throughout the duration of the project.

- 10. Regular (8 max) interior progressions of all walls of the entire project to begin at time of substantial framed or as directed by the COR through to completion.
- 11. Detailed Exact-Built of all Slabs for all project slab pours just prior to placing concrete or as directed by the COR.
- 12. Detailed Interior exact built overlapping photos of the entire building to include documentation of all mechanical, electrical and plumbing systems in every wall and ceiling, to be conducted after rough-ins are complete, just prior to insulation and or drywall, or as directed by COR.
- 13. Finished detailed Interior exact built overlapping photos of all walls, ceilings, and floors to be scheduled by COR prior to occupancy.
- C. Upon completion of the project, final copies of the documentation (the "Permanent Record") shall be provided in an electronic media format.

1.20

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision

within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDF format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 10 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as

a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised

submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER

FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 -for (PAYMENTS UNDER FIXED PRICE CONSTRUCTION).

- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
 - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.

- 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
- 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

A. Monthly, the contractor shall submit an application and certificate for payment using VA Form 10-6001a reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 -Article 70 Without NAS-CPM/or Article 71 Including NAS-CPMfor (PAYMENTS UNDER FIXED PRICE CONSTRUCTION). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.

B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. The Contractor shall schedule weekly progress meeting with the VA. They will be responsible for an agenda, running the meeting, and meeting minutes.
- **B.** Monthly schedule update meetings will be held on dates mutually agreed to by the COR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/events.
 - Logic and duration revisions required by this section of the specifications.

- 7. Activity/event duration and percent complete shall be updated independently.
- C. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- D. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and COR for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the COR. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the COR within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.
- E. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 32 16.15 Project Schedules-8

VA PROJECT NO: 437-21-225

occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - The schedule does not represent the actual prosecution and progress of the project.

- When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes, and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract

completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.

- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 - 4 (Changes). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or

product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.

- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

- A. The VA will provide the Submittal Exchange site for the use of the General Contractors use of Construction Administration submittals.
- B. The contractor will provide a submittal register which will include a list of items, of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 33 23 Shop Drawings, Product-2

submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents, but which have been omitted from the submittal register.

- C. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- D. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.

- E. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- F. The Contractor shall submit formal monthly updates to the submittal register to be reviewed at the construction meeting. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements. The General Contractor will upload all submittals to the electronic exchange provider as arranged for by the VA. The General Contractor will review all submittals prior to upload, and will not upload any submittal that is incomplete, or should be rejected due to content.

- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain an excessive amount of irrelevant or unnecessary data will be returned without review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. VA Project Name: EHRM Training and Admin Space Support.
 - 2. VA Construction contract number: 36C26319D0045.
 - 3. VA Project Number: 437-21-225.
 - 4. Date of the drawings and revisions.
 - Name, address, and telephone number of subcontractors, suppliers, manufacturers, and any other subcontractor associated with the submittal.
 - 6. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 8. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.

CONTRACTOR	
I	
(Firm Name)	
I construction of the second se	
I construction of the second se	
I construction of the second se	
Approved	
I construction of the second se	
I construction of the second se	
Approved with corrections as noted on submittal data and/or	
attached sheets(s)	
I	
I construction of the second se	
I construction of the second se	
SIGNATURE:	
I construction of the second se	
TITLE:	
I	
DATE:	
I	
I	

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer.
- B. Compile the electronic submittal file as a single, complete document. Name the electronic submittal file specifically according to its contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Additional hard copies of any submittal may be requested at

the discretion of the Contracting Officer, at no additional cost to the $\ensuremath{\mathsf{VA}}$.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

COR may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.

- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 21 working days for submittals.
- E. VA review period is 14 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
 - "Approved": authorizes the Contractor to proceed with the work covered.
 - "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 33 23 Shop Drawings, Product-8

SECTION 01 35 26 SAFETY REQUIREMENTS

- 1.1 APPLICABLE PUBLICATIONS:
 - A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
 - B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning

A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites

- A10.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations
- C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2018.....Standard for Portable Fire Extinguishers

30-2018.....Flammable and Combustible Liquids Code

51B-2019..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work

70-2020.....National Electrical Code

70B-2019.....Recommended Practice for Electrical Equipment Maintenance

70E-2018Standard for Electrical Safety in the Workplace

FARGO V	VA HEALTHCARE	SYSTEM			VA	PROJECT	NO: 437-21-225
EHRM -	TRAINING AND	ADMIN. SPACE	SUPPORT	01 3	35 26	Safety F	Requirements-1

99-2018.....Health Care Facilities Code

241-2019..... Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

```
TJC Manual .....Comprehensive Accreditation and Certification Manual
```

G. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

H. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.

- E. Accident/Incident Criticality Categories:
 - 1. No impact near miss incidents that should be investigated but are not required to be reported to the VA;
 - 2. Minor incident/impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;
 - 3. Moderate incident/impact Any work-related injury or illness that results in:
 - a. Days away from work (any time lost after day of injury/illness onset).
 - b. Restricted work.
 - c. Transfer to another job.
 - d. Medical treatment beyond first aid.
 - e. Loss of consciousness.
 - 4. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
 - 5. Any incident that leads to major equipment damage (greater than \$5000).
- F. These incidents must be investigated and are required to be reported to the VA:
 - 1 Major incident/impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.
- G. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 35 26 Safety Requirements-3

VA PROJECT NO: 437-21-225

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 35 26 Safety Requirements-4

- a. **SIGNATURE SHEET**. Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor:
 - 2) VA Contract number: 36C26319D0045
 - 3) VA Project Number: 437-21-225.
 - 4) VA Project Name: EHRM Training and Admin Space Support.
 - 5) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. **STATEMENT OF SAFETY AND HEALTH POLICY**. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts

specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.

- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
- 6) Lines of authority;
- Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.

4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- 2) Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Contracting Officer Representative:
 - 1) Exposure data (man-hours worked).
 - 2) Accident investigation reports.
 - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;

- 5) Posting of emergency telephone numbers;
- 6) Prevention of alcohol and drug abuse;
- 7) Site sanitation(housekeeping, drinking water, toilets);
- 8) Night operations and lighting;
- 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety;
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Heat/Cold Stress Monitoring;
- 22) Crystalline Silica Monitoring (Assessment);
- 23) Demolition plan (to include engineering survey);
- 24) Formwork and shoring erection and removal;
- 25) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 21 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 35 26 Safety Requirements-8

provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.

E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted

to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.

- The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 21 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

 A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention
 FARGO VA HEALTHCARE SYSTEM
 FARGO VA HEALTHCARE SYSTEM
 VA PROJECT NO: 437-21-225
 EHRM - TRAINING AND ADMIN. SPACE SUPPORT
 O1 35 26 Safety Requirements-10 Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.

- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations). //However, the SSHO has be a separate qualified individual from the Prime Contractor's Superintendent and/or Quality Control Manager with duties only as the SSHO//
- D. The SSHO or an equally qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT O1 35 26 Safety Requirements-11 industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.

- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Contracting Officer Representative that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - 2. The Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
 - 4. A report of the inspection findings with status of abatement will be provided to the Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, , or any weight handling and hoisting equipment accident. Within notification

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 35 26 Safety Requirements-13

VA PROJECT NO: 437-21-225

include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative determine whether a government investigation will be conducted.

- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent) , and provide the report to the Contracting Officer Representative within 5 calendar days of the accident. The Contracting Officer Representative will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 35 26 Safety Requirements-14

VA PROJECT NO: 437-21-225

falling object hazard, then hard hats would be required in accordance with the OSHA regulations.

- 2. Safety glasses unless written authorization is given by the Contracting Officer Representative or Government Designated Authority in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative in circumstances of no foot hazards.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the COR. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. A sample of the required infection control precautions with each class are as follows:

- 4. Class IV requirements:
 - a. During Construction Work:
 - Obtain any required work permits from the Contracting Officer Representative
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.
 - 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
 - 7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area. Shoe covers will be provided by the contractor and will not be provided by the VA.
 - b. Upon Completion:
 - 1) Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.

- Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- Contain construction waste before transport in tightly covered containers.
- Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return any required work permits to the Contracting Officer Representative Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
- Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
- Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the COR and Medical Center) - Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris

- e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.
- C. Products and Materials:
 - 1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
 - 2. Barrier Doors: Self Closing One-hour fire-rated solid core wood in steel frame, painted
 - 3. Dust proof one-hour fire-rated drywall
 - 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
 - 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
 - Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
 - 7. Disinfectant: Hospital-approved disinfectant or equivalent product
 - 8. Portable Ceiling Access Module
 - 9. Provide a digital monitor that will be in operation at all times, and shall sound an alarm when the construction site is not under negative pressure.
- D. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.

- E. A dust control program will be established and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- F. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - 1. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the COR and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects

should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.

- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried immediately. Remove and dispose of porous materials.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- I. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection. If the contractor fails to clean the ducts the VA CO will make arrangements for the ducts to be cleaned and bill this back to the general contractor.
- J. Exterior Construction
 - Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
 - Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
 - 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

4. Contractor shall verify that no exhaust fumes or odors will be allowed to enter the medical center. The contractor will provide exhaust hoses on equipment, vehicles, etc...to move odors away from the building and HVAC intakes. The contractor shall also provide odor absorbing charcoal filters in air handling units to absorb and control odors so there will be no issues in the medical center.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas, and the areas that are described in phasing requirements and adjoining areas. Construct partitions of gypsum board and metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.

- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative or Government Designated Authority.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. In areas under construction where ceilings have been removed have sprinkler turned upright until such time, they are to be reinstalled in the ceiling system. Provide fire watch for impairments more than 4 hours in a 24hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer Representative.

- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR. Obtain permits from COR at least 4 hours in advance . Designate contractor's responsible projectsite fire prevention program manager to permit hot work. //
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- P. Smoking: Smoking is prohibited in all locations of the Medical Facility including outdoor locations.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J - General Environmental Controls, 29 CFR Part 1910 Subpart S - Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c).
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly

suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been reviewed and accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.

E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30- ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2)..

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the COR.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with // Resident COR. Obtain permits from COR at least 4 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toe boards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 35 26 Safety Requirements-27

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. Furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.

- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- 1. Inclusion of "best management practices" and methodologies.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.

- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, topsoil, and landforms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted. Provide erosion control plans, in phases where required.
 - Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - Protection of Landscape: Protect trees, shrubs, vines, grasses, landforms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
 - 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
 - Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local 10 (design year) storm. After each storm, pump

the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.

- b. Reuse or conserve the collected topsoil sediment as directed by the COR. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING.
- c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 7. Manage and control spoil areas on and off Government property to limit spoil to areas shown and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the COR.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 57 19 Temporary Environmental-5

control water pollution by the listed construction activities that are included in this contract.

- Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
- Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
- 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of North Dakotaand Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.

- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00p.m unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 meter (50 feet) (dBA):

EARTHMOVING		MATERIALS HA	NDLING
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	75
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
- D. Techniques to minimize waste generation.
- E. Sorting and separating of waste materials.
- F. Salvage of existing materials and items for reuse or resale.
- G. Recycling of materials that cannot be reused or sold.
- H. At a minimum the following waste categories shall be diverted from landfills:
- I. Soil.
- J. Inerts (eg, concrete, masonry and asphalt).
- K. Clean dimensional wood and palette wood.
- L. Green waste (biodegradable landscaping materials).
- M. Engineered wood products (plywood, particle board and I-joists, etc).
- N. Metal products (eg, steel, wire, copper, etc).
- O. Sheathings
- P. Cardboard, paper and packaging.
- Q. Plastics (eg, ABS, PVC).
- R. Carpet and/or pad.
- S. Gypsum board.
- T. Insulation.
- U. Paint.
- V. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

C. Lead Paint: Section 02 83 33.13, LEAD BASED PAINT REMOVAL AND DISPOSAL.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 25 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

- 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
- 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the CORa written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.

- Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - a) The names and locations of mixed debris reuse and recycling facilities or sites.
 - b) The names and locations of trash disposal landfill facilities or sites.
 - c) Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.
- E. Target waste diversion rate by material and an overall diversion rate.
- F. Final report documenting the results of implementation of the preconstruction waste management plan.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction
 - Green Building Initiative (GBI): Green Globes for New Construction 2019

1.7 RECORDS

A. Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL (GENERAL CONTRACTOR TO PROVIDE COMMISSIONING AGENT) 1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup,

control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the COR as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to

the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.

- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

A. Section 01 00 00 GENERAL REQUIREMENTS.

- в.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- D. Section 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS
- E. Section 07 08 00 FACILITY EXTERIOR CLOSURE COMMISSIONING.
- F. Section 21 08 00 COMMISSIONING OF FIRE PROTECTION SYSTEMS.
- G. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- I. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.
- J. Section 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS.
- K. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. The commissioning activities have been developed to support the United States Green Building Council's (USGBC) LEED ™ rating program and to support delivery of project performance in accordance with the VA requirements developed for the project to support the following credits:
 - Commissioning activities and documentation for the LEED[™] section on "Energy and Atmosphere" and the prerequisite of "Fundamental Building Systems Commissioning."
 - Commissioning activities and documentation for the LEED[™] section on "Energy and Atmosphere" requirements for the "Enhanced Building System Commissioning" credit.
 - Activities and documentation for the LEED[™] section on "Measurement and Verification" requirements for the Measurement and Verification credit.
- D. The commissioning activities have been developed to support the Green Buildings Initiative's Green Globes rating program and to support delivery of project performance in accordance with the VA requirements developed for the project.

1.5 ACRONYMS

List of Ac	List of Acronyms		
Acronym	Meaning		
A/E	Architect / Engineer Design Team		
AHJ	Authority Having Jurisdiction		
ASHRAE	Association Society for Heating Air Condition and		
	Refrigeration Engineers		
BOD	Basis of Design		
BSC	Building Systems Commissioning		
CCTV	Closed Circuit Television		
CD	Construction Documents		
CMMS	Computerized Maintenance Management System		
CO	Contracting Officer (VA)		
COR	Contracting Officer's Representative (see also VA-RE)		
COBie	Construction Operations Building Information Exchange		
CPC	Construction Phase Commissioning		
Cx	Commissioning		
CxA	Commissioning Agent		
CxM	Commissioning Manager		
CxR	Commissioning Representative		
DPC	Design Phase Commissioning		
FPT	Functional Performance Test		
GBI-GG	Green Building Initiative - Green Globes		
HVAC	Heating, Ventilation, and Air Conditioning		
LEED	Leadership in Energy and Environmental Design		
NC	Department of Veterans Affairs National Cemetery		
NCA	Department of Veterans Affairs National Cemetery		
NCA	Administration		
NEBB	National Environmental Balancing Bureau		
0&M	Operations & Maintenance		
OPR	Owner's Project Requirements		
PFC	Pre-Functional Checklist		
PFT	Pre-Functional Test		
SD	Schematic Design		
SO	Site Observation		
TAB	Test Adjust and Balance		
VA	Department of Veterans Affairs		

List of Acronyms	
Acronym	Meaning
VAMC	VA Medical Center
VA CFM	VA Office of Construction and Facilities Management
VACO	VA Central Office
VA PM	VA Project Manager
USGBC	United States Green Building Council

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training. Accuracy: The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines. **Benchmarks:** Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself.. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program. **Calibrate:** The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument. CCTV: Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

COBie: Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

Commissionability: Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

Commissioning Checklists: Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 91 00 General Commissioning-7

the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation). <u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan</u>: A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process</u>: A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report</u>: The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications</u>: The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC)</u>: All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Coordination Drawings</u>: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

Data Logging: The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

Deferred System Test: Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

Design Criteria: A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR. **Design Intent:** The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

Design Narrative: A written description of the proposed design solutions that satisfy the requirements of the OPR.

Design Phase Commissioning (DPC): All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved

issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

Installation Verification: Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process. Lessons Learned Workshop: A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

Maintainability: A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment.

Maintainability also includes components that have readily obtainable repair parts or service.

<u>Manual Test:</u> Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation'). <u>Owner's Project Requirements (OPR):</u> A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

<u>Peer Review:</u> A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

Precision: The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

Pre-Design Phase Commissioning: Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

Pre-Functional Checklist (PFC): A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

Pre-Functional Test (PFT): An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests.

Procedure or Protocol: A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

<u>Range:</u> The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

<u>Resolution</u>: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

Special System Inspections: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

Static Tests: Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

Start Up Tests: Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

<u>Systems Manual</u>: A system-focused composite document that includes all information required for the owners operators to operate the systems. <u>Test Procedure</u>: A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Testing: The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

Training Plan: A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

Unresolved Commissioning Issue: Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

Verification: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

Warranty Phase Commissioning: Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

Warranty Visit: A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:

Systems To Be Commissioned	
Description	
ire	
Standard, special, slab-on-grade, vapor	
barriers, air barriers	
Basement walls, crawl spaces, waterproofing,	
drainage	
Floor construction, roof construction,	
sunshades, connections to adjacent structures	
Exterior walls, exterior windows, exterior	
doors, louvers, grilles and sunscreens,	
Roof system (including parapet), roof openings	
(skylights, pipe chases, ducts, equipment	
curbs, etc.)	
The emphasis on commissioning the above	
building envelope systems is on control of air	
flow, heat flow, noise, infrared, ultraviolet,	
rain penetration, moisture, durability,	
security, reliability, constructability,	
maintainability, and sustainability.	
·	
Barriers	

Systems To Be Commissioned		
System	Description	
Fire Suppression		
Fire Sprinkler Systems	Wet pipe system, dry pipe system, pre-action	
	system, special agent systems	
Plumbing		
Domestic Water	backflow preventers	
Distribution		
Domestic Hot Water	heat exchangers, circulation pumps	
Systems		
HVAC		
Noise and Vibration	Noise and vibration levels for critical	
Control	equipment such as Air Handlers, Chillers,	
	Cooling Towers, Boilers, Generators, etc. will	
	be commissioned as part of the system	
	commissioning	

Systems To Be Commissioned		
System	Description	
Direct Digital Control	Operator Interface Computer, Operator Work	
System**	Station (including graphics, point mapping,	
	trends, alarms), Network Communications	
	Modules and Wiring, Integration Panels. [DDC	
	Control panels will be commissioned with the	
	systems controlled by the panel]	
HVAC Air Handling	Air handling Units, humidifiers, DDC control	
Systems**	panels	
HVAC	General exhaust, toilet exhaust	
Ventilation/Exhaust		
Systems		
HVAC Terminal Unit	VAV Terminal Units, fin-tube radiation	
Systems**		
Humidity Control	Humidifiers, controls, interface with	
Systems	facility DDC	
Hydronic Distribution	DDC control panels, heat exchangers,	
Systems		
Electrical		
Medium-Voltage	Medium-Voltage Switchgear, Medium-Voltage	
Electrical	Switches, Underground ductbank and	
Distribution Systems	distribution, Pad-Mount Transformers, Medium-	
	Voltage Load Interrupter Switches,	
Grounding & Bonding	Witness 3rd party testing, review reports	
Systems		

Systems To Be Commissio	ned
System	Description
Electric Power	Metering, sub-metering, power monitoring
Monitoring Systems	systems, PLC control systems
Electrical System	Review reports, verify field settings
Protective Device	consistent with Study
Study	
Low-Voltage	Normal power distribution system, Life-safety
Distribution System	power distribution system, critical power
	distribution system, equipment power
	distribution system, switchboards,
	distribution panels, panelboards, verify
	breaker testing results (injection current,
	etc)
Lighting & Lighting	Emergency lighting, occupancy sensors,
Control** Systems	lighting control systems, architectural
	dimming systems, theatrical dimming systems,
	exterior lighting and controls
Lightning Protection	Witness 3rd party testing, review reports
System	
Communications	
Structured Cabling	Witness 3rd party testing, review reports
System	
Public Address & Mass	Witness 3rd party testing, review reports
Notification Systems	
Electronic Safety and S	Security
Grounding & Bonding	Witness 3rd party testing, review reports
crounding a bonding	

Systems To Be Commissio	ned
System	Description
Physical Access	Witness 3rd party testing, review reports
Control Systems	
Access Control Systems	Witness 3rd party testing, review reports
Fire Detection and	100% device acceptance testing, battery draw-
Alarm System	down test, verify system monitoring, verify interface with other systems.
Site Utilities	
Water Utilities	City Water Service Entrance, Backflow
	Prevention, Pressure Control, Booster Pumps,
	Irrigation Systems
Sanitary Sewerage	City Sanitary Connection, Waste Treatment
Utilities	Systems
Storm Drainage	City Storm Water Connection, Site Storm Water
Utilities	Distribution
Integrated Systems Test	
Loss of Power Response	Loss of power to building, loss of power to
	campus, restoration of power to building,
	restoration of power to campus.
Fire Alarm Response	Integrated System Response to Fire Alarm
	Condition and Return to Normal
Table Notes	

Systems To Be Commissio	ned
System	Description
** Denotes systems that	LEED requires to be commissioned to comply
with the LEED Fundament	al Commissioning pre-requisite.

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent hired by general contractor.
- B. Members Appointed by Contractor:
 - Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - User: Representatives of the facility user and operation and maintenance personnel.
 - A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.

- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - Participate in meetings to coordinate Systems Functional Performance Testing.
 - Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
 - 8. Provide information to the Commissioning Agent for developing commissioning plan.
 - 9. Participate in training sessions for VA's operation and maintenance personnel.
 - 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 91 00 General Commissioning-20

- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.

- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
 - 3. Identification of systems and equipment to be commissioned.
 - 4. Schedule of Commissioning Coordination meetings.

- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.
 - 3. Time and date of test.
 - Indication of whether the record is for a first test or retest following correction of a problem or issue.
 - 5. Dated signatures of the person performing test and of the witness, if applicable.
 - 6. Individuals present for test.
 - 7. Observations and Issues.
 - 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems,

equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.

- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating an Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.

- e. Identify system, subsystem, and equipment to which the issue applies.
- f. Identify location of system, subsystem, and equipment.
- g. Include information that may be helpful in diagnosing or evaluating the issue.
- h. Note recommended corrective action.
- i. Identify commissioning team member responsible for corrective action.
- j. Identify expected date of correction.
- k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:
 - Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 91 00 General Commissioning-25

- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5, Commissioning Issues Log.
- Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off season test(s) results.
 - Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues.
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.
 - 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:

- 1. The Commissioning Team: A list of commissioning team members by organization.
- 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
- 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
- Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
- 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
- 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
- 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.
- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The

Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.

- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
 - The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.

Spec writer's note: Coordinate the number of days listed in the following paragraphs with the VA COR.

- B. Within XX days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within /XX days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 $^{\circ}$ C (1.0 $^{\circ}$ F) and a resolution of + or - 0.1 $^{\circ}$ C (0.2 $^{\circ}$ F). Pressure sensors shall have an accuracy of + or -2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Ph	ase	CxA =	Commis	sionir	nt	L = Lead	
		COR= Contracting Officer's				P = Participate	
			sentati	ve			A = Approve
Commissioning Roles & Responsibilities		A/E =	Design	Arch	/Engine	eer	R = Review
		PC = P	rime C	ontrad	ctor		O = Optional
		O&M =	Gov ' t	Facili	ity O&M	M	
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	A	Р	P	0	
	Commissioning Meetings	L	A	Р	Р	0	
	Project Progress Meetings	Р	A	Р	L	0	
	Controls Meeting	L	A	P	P	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.	L	A	P	P	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0	
Schedules Duration Schedule for Commissioning Activities		L	A	R	R	N/A	

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 91 00 General Commissioning-35

Construction Ph	ase	CxA =	Commis	sioni	ng Age	nt	L = Lead
		COR=	Contrac	cting (Office	r′s	P = Participate
		Repre	sentati	A = Approve			
Commissioning R	Roles & Responsibilities	A/E =	Desigr	Arch,	/Engin	eer	R = Review
		PC =	Prime C	Contra	ctor		O = Optional
	0&M =	Gov't	Facil	ity O&	М		
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	A	R	R	0	
Document Reviews	TAB Plan Review	L	A	R	R	0	
	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	А	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	A	R	R	N/A	
Site	Witness Factory Testing	P	A	P	L	0	
Observations	Construction Observation Site Visits	L	A	R	R	0	
Functional Test Protocols	Final Pre-Functional Checklists	L	A	R	R	0	
	Final Functional Performance Test Protocols		A	R	R	0	
Technical Activities	Issues Resolution Meetings	Р	A	Ρ	L	0	
110010101020							

Construction E	hase	CxA =	Commis	L = Lead			
		COR= C	Contrac	c's	P = Participate		
		Repres	entati	ve			A = Approve
Commissioning	Roles & Responsibilities				R = Review		
					O = Optional		
		0&M =	Gov ' t	Facili	ty O&N	4	
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Reports and	Status Reports	L	А	R	R	0	
Logs	Maintain Commissioning Issues Log	L	L A R R O				

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Pha	ase	CxA =	Commiss	t	L = Lead				
			Contract	's	P = Participate				
		Repres	sentativ		A = Approve				
Commissioning	A/E =	Design	Arch/	Engine	er	R = Review			
	PC = H	Prime Co	ontrac	tor		O = Optional			
					O&M = Gov't Facility O&M				
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes		
Meetings	Commissioning Meetings	L	A	Р	Р	0			
	Project Progress Meetings	Р	А	Р	L	0			
	Pre-Test Coordination Meeting	L	А	Р	Р	0			
	Lessons Learned and Commissioning Report Review Meeting	L	A	Ρ	Р	0			

Acceptance Phas	e	CxA =	Commiss	t	L = Lead		
Commissioning Roles & Responsibilities			COR= Contracting Officer's Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				<pre>P = Participate A = Approve R = Review O = Optional</pre>
~ .			-	-			
Category	Task Description	CxA	COR	A/E	PC	M&O	Notes
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	Р	Р	0	
Cx Plan & Spec	Maintain/Update Commissioning Plan	L	A	R	R	0	
Schedules	Prepare Functional Test Schedule		A	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner		A	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	A	R	R	R	
	Warranty Review	L	A	R	R	0	
	Review TAB Report		A	R	R	0	
Site	Construction Observation Site Visits	L	A	R	R	0	
Observations	Witness Selected Equipment Startup	L	A	R	R	0	

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 91 00 General Commissioning-38

Acceptance Phas	e	CxA =	Commis	t	L = Lead		
Commissioning Roles & Responsibilities			Contrac sentati Design Prime C Gov't	<pre>P = Participate A = Approve R = Review O = Optional</pre>			
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes
Functional	TAB Verification	L	A	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	A	Ρ	Р	Р	
	Retesting	L	А	P	P	P	
Technical Activities	Issues Resolution Meetings	P	A	P	L	0	
ACCIVICIES	Systems Training	L	S	R	P	P	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	
	Final Commissioning Report	L	A	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase		CxA =	Commiss	nt	L = Lead		
Commissioning Roles & Responsibilities			Contrac Itative Design Prime Co Gov't B	<pre>P = Participate A = Approve R = Review O = Optional</pre>			
Category	Task Description	CxA	COR	A/E	PC	0&M	Notes
Meetings	Post-Occupancy User Review Meeting	L	A	0	Р	P	
Site Observations	Periodic Site Visits	L	A	0	0	Р	
Functional Test Protocols	Deferred and/or seasonal Testing	L	A	0	P	P	
Technical Activities	Issues Resolution Meetings	L	S	0	0	Р	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues				R	Р	
Reports and	Final Commissioning Report Amendment	L	A		R	R	
Logs	Status Reports	L	A		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.

- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
- 4. Execution of Equipment Startup
 - a. Fourweeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning

Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers - Critical, Priority, and Maintenance.
 - Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station located within the engineer's office. Additionally Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.

- 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.
- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the COR and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the COR. Any pre-test trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the COR, prior to the execution of Systems Functional Performance Testing.
 - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted

and plotted at durations listed in the Systems Functional Performance Test Procedure.

- 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.
- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

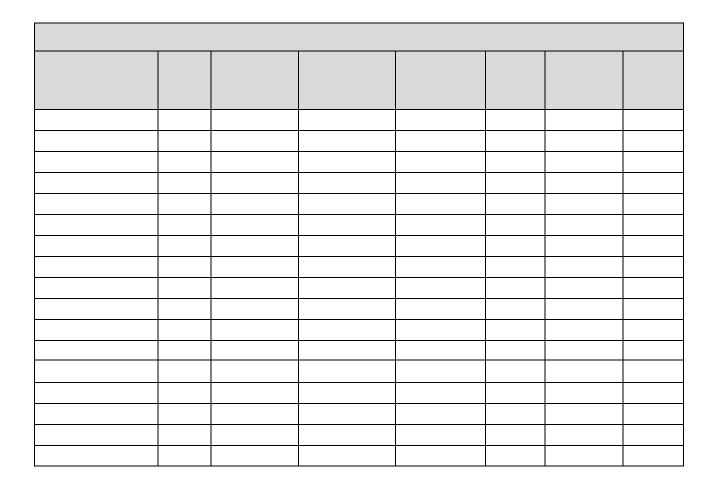
Dual-Path Air I	Dual-Path Air Handling Unit Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
OA Temperature	AI	15 Min	24 hours	3 days	N/A						
RA Temperature	AI	15 Min	24 hours	3 days	N/A						
RA Humidity	AI	15 Min	24 hours	3 days	Р	>60% RH	10 min				
Mixed Air Temp	AI	None	None	None	N/A						
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min				
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A						

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 01 91 00 General Commissioning-45

Dual-Path Air	Handlin	g Unit Tren	ding and Ala	rms			
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A		
RA Pre-Filter Status	AI	None	None	None	N/A		
OA Pre-Filter Status	AI	None	None	None	N/A		
After Filter Status	AI	None	None	None	N/A		
SA Flow	AI	15 Min	24 hours	3 days	С	±10% from SP	10 min
OA Supply Temp	AI	15 Min	24 hours	3 days	Р	±5°F from SP	10 min
RA Supply Temp	AI	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA Flow	AI	15 Min	24 hours	3 days	P	±10% from SP	5 min
RA Flow	AI	15 Min	24 hours	3 days	P	±10% from SP	5 min
Initial UVC Intensity (%)	AI	None	None	None	N/A		
Duct Pressure	AI	15 Min	24 hours	3 days	С	±25% from SP	6 min
CO2 Level	AI	15 Min	24 hours	3 days	Р	±10% from SP	10 min
Supply Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Return Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 Min
High Static Status	DI	COV	24 hours	3 days	Р	True	1 min
Fire Alarm Status	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 1	DI	COV	24 hours	3 days	С	True	10 min
Freeze Stat Level 2	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 3	DI	COV	24 hours	3 days	P	True	1 min
Fire/Smoke Damper Status	DI	COV	24 hours	3 days	Р	Closed	1 min

Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Emergency AHU Shutdown	DI	COV	24 hours	3 days	P	True	1 min
OA Alarm High Static	DI	COV	24 hours	3 days	С	True	10 min 10
Alarm	DI	COV	24 hours	3 days	С	True	min
Power Failure	DI	COV	24 hours	3 days	P	True	1 min
Supply Fan Speed	AO	15 Min	24 hours	3 days	N/A		
Return Fan Speed	AO	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AO	15 Min	24 hours	3 days	N/A		
Supply Fan S/S	DO	COV	24 hours	3 days	N/A		
Return Fan S/S	DO	COV	24 hours	3 days	N/A		
Fire/Smoke Dampers	DO	COV	24 hours	3 days	N/A		
AHU Energy	Calc	1 Hour	30 day	N/A	N/A		

Terminal Unit (VAV, CAV, etc.) Trending and Alarms									
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		


Terminal Unit	Terminal Unit (VAV, CAV, etc.) Trending and Alarms											
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
Space Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min					
Air Flow	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min					
SA Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min					
Local Setpoint	AI	15 Min	12 hours	3 days	М	±10°F from SP	60 min					
Unoccupied Override	DI	COV	12 hours	3 days	М	N/A	12 Hours					
Damper Position	AO	15 Minutes	12 hours	3 days	N/A							
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A							

Domestic Hot Wa	Domestic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Domestic HW Setpoint WH-1	AI	15 Minute	12 Hours	3 days	N/A						
Domestic HW Setpoint WH-2	AI	15 Minute	12 Hours	3 days	N/A						
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	С	> 135 oF	10 Min				
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	Р	±5°F from SP	10 Min				
Dom. Circ. Pump #1 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min				

Domestic Hot Wa	Domestic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Dom. Circ. Pump #1 Start/Stop	DO	COV	12 Hours	3 days	N/A						
Domestic HW Start/Stop	DO	COV	12 Hours	3 days	N/A						

Hydronic Hot Wa	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
System HWS Temperature	AI	15 min	12 hours	3 days	С	±5°F from SP	10 Min
System HWR Temperature	AI	15 min	12 hours	3 days	М	±15°F from SP	300 Min
HX-1 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Leaving Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
System Flow (GPM)	AI	15 min	12 hours	3 days	N/A		
System Differential Pressure	AI	15 min	12 hours	3 days	Р	±10% from SP	8 Min
				3 days			
Steam Station #1 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		

Hydronic Hot Wa	ater Tr	ending and	Alarms				
Point	Туре	Trend Interval	Operationa l Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Steam Station #2 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #2 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		
Steam Station Bypass Valve Position	AO	15 Min	12 Hours	3 days	N/A		

FARGO VA HEALTHCARE SYSTEM FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 91 00 General Commissioning-51

- E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the COR and Commissioning Agent.
 - 1. Point-to-Point checkout documentation;
 - Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
 - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM						
Sensor Calibration Frequency		O&M Calibration Procedure Reference				
Discharge air temperature	Once a year	Volume I Section D.3.aa				
Discharge static pressure	Every 6 months	Volume II Section A.1.c				

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1									
Control Reference	Proportional Constant	Integral Constant	Derivative Constant	Interval					
Heating Valve Output	1000	20	10	2 sec.					

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.
- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional

10-01-15

Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. Purpose of Test Procedures: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
 - 4. Date
 - 5. Project name: EHRM Training and Admin Space Support
 - 6. Project Number: 437-21-225
 - 7. Participating parties
 - 8. A copy of the specification section describing the test requirements
 - 8. A copy of the specific sequence of operations or other specified parameters being verified
 - 10. Formulas used in any calculations
 - 11. Required pretest field measurements
 - 12. Instructions for setting up the test.
 - 13. Special cautions, alarm limits, etc.
 - 14. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
 - 15. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
 - 16. A section for comments.
 - 17. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 91 00 General Commissioning-58

results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.

- Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
- 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
- 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The

Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.

- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT01 91 00 General Commissioning-60

Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.

K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the

Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.

- b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
 - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
 - 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
 - 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.

- Review course materials (including operation and maintenance manuals).
- Review and discuss locations and other facilities required for instruction.
- Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - Qualification Data: Submit qualifications for facilitator and/or instructor.
 - 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
 - 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
 - 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded.

Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

- e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.
- D. Quality Assurance:
 - Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
 - 3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.
- E. Training Coordination:
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
 - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.
- F. Instruction Program:
 - Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.

- b. Intrusion detection systems.
- c. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
- d. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
- e. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
- f. HVAC instrumentation and controls.
- g. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
- h. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
- i. Lighting equipment and controls.
- j. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- k. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.

----- END -----

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- B. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Asbestos Removal: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- F. Lead Paint: Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- G. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- H. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- I. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not

limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.

- D. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - No wall or part of wall shall be permitted to fall outwardly from structures.
 - Maintain at least one stairway in each structure in usable condition to highest remaining floor. Keep stairway free of obstructions and debris until that level of structure has been removed.
 - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- E. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS and Section 01 35 26, SAFETY REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- B. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 02 82 11 TRADITIONAL ASBESTOS ABATEMENT

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

- A. Contract Documents and Related Requirements: Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show or describe the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.
- B. Extent of Work:
 - Below is a brief description of the estimated quantities of asbestos containing materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy themselves of the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
 - Removal, clean-up and disposal of asbestos containing materials

 (ACM) and asbestos/waste contaminated elements or debris in an
 appropriate regulated area for the following approximate quantities;
 - a. For use if concealed ACM is found during construction.
 - b. For use if concealed Thermal System Insulation is found during construction.

с.

C. Related Work:

3. Section 02 41 00, DEMOLITION

- D. Tasks:
 - 1. The work tasks are summarized briefly as follows:
 - a. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and standard operating procedures for asbestos abatement work.
 - b. Abatement activities including removal, / clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
 - c. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.
- E. Contractors Use of Premises:
 - 1. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
 - 2. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings:

1.2 VARIATIONS IN QUANTITY

A. The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are

limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-10 percent) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

- A. If the Contracting Officer; their field representative; the facility Safety Officer/Manager or their designee, or the Certified Industrial Hygienist (CPIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the CPIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities if:
 - 1. Airborne PCM analysis results equal to or greater than 0.01 f/cc above background levels inside the building but outside the regulated area;
 - 2. breach or break in regulated area containment barrier(s);
 - 3. less than -0.02 inch WCG pressure in the regulated area;

- 4. serious injury/death at the site;
- 5. fire/safety emergency at the site;
- 6. respiratory protection system failure;
- 7. power failure or loss or inadequate use of wetting agent;
- 8. any visible emissions observed outside the regulated area; or
- 9. failure to follow project specification requirements.

1.4 DEFINITIONS

- A. General: Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.
- B. Glossary:

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted. Aerosol - Solid or liquid particulate suspended in air.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive air sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 3, Fifth Edition is used to determine the fiber levels in air. For personal samples, area air samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis, the NIOSH Method 7402

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-4

(Issue 2, Fourth Edition) can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester (MCE) membrane for PCM (Phase Contrast Microscopy, 25 mm, 3-piece with 2 inches Static Extension Cowl, 0.8 micron pore size) and MCE for TEM (Transmission Electron Microscopy, 25 mm, 3-piece with 2 inches Static Extension Cowl, 0.45 micron pore size).

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins. Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement air sampling, clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-5

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA).

Barrier - Any surface that isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of 2-layers of 6-mil independently installed plastic sheeting (Polyethylene) secured in place at openings such as doors, windows, penetrations or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work or to secondary barrier.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place. Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Professional Industrial Hygienist (CPIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard,

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-6

floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the Certified Professional Industrial Hygienist (CPIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may report to a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

Disposal bag - Typically 6-mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-7

01-01-21

areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements. **Disturbance** - Asbestos Operations and Maintenance Activities (OSHA Class III) that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag, which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment. Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a
length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air. Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent asbestos as determined using the method specified in 40 CFR 763, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled. High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter. HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers. Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement air sampling, clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise
deteriorated so that the asbestos is no longer likely to be bound with
its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) -EPA's rule to control emissions of asbestos to the environment (40 CFR part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL or Excursion Limit (EL).

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through

HEPA equipped filtration units. OSHA requires maintaining -0.02 inch water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants. Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock. Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for as an eight (8) hour time-weighted average (TWA). For asbestos fibers, the eight (8) hour time-weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit (EL) is 1.0 fibers per cubic centimeter (1 f/cc).

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, fall protection, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or more workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, debris or asbestos-contaminated soil. **Polarized light microscopy (PLM)** - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6-mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator, respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (k) (5).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH shal act as the VA's PIH (CPIH) and Contractor's PIH (CPIH/CIH). Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by

40 CFR 763 Subpart E, Appendix C, Part I; (B)(5).

Assigned protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs. Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-2018.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, decorative, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Representative - The VA official responsible for on-going project work.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area. Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material. Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

C. Referenced Standards Organizations: See Section 01 42 19 REFERENCED STANDARDS.

1.5 APPLICABLE CODES AND REGULATIONS

- A. General Applicability of Codes, Regulations, and Standards:
 - 1. All work under this contract shall be done in strict accordance with all applicable Federal, State, and Local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
 - 2. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
 - 3. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system and/or the Contractor's on-site Field Office. These standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 may be made available electronically.
- B. Asbestos Abatement Contractor Responsibility: The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability

for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE), respiratory protection, and respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State/Local requirements related to failure to comply with the regulations applicable to the work.

- C. Federal Requirements:
 - Federal requirements which govern asbestos abatement include, but are not limited to, the following regulations:
 - a. Occupational Safety and Health Administration (OSHA)
 - 1) Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - Title 29 CFR 1926 Subpart E Personal Protective Equipment and Life Saving Equipment
 - 3) Title 29 CFR 1910.134 Respiratory Protection
 - 4) Title 29 CFR 1926 Construction Industry Standards
 - Title 29 CFR 1926.33 Access to Employee Exposure and Medical Records
 - 6) Title 29 CFR 1926.59 same as 1910.1200 Hazard Communication
 - 7) Title 29 CFR 1926 Subpart C General Safety and Health Provisions and Subpart D - Occupational Health and Environmental Controls
 - b. Environmental Protection Agency (EPA):
 - 40 CFR 61 Subpart M National Emission Standard for Hazardous Air Pollutants - Asbestos.
 - 2) 40 CFR 763 Asbestos Hazard Emergency Response Act (AHERA) and Asbestos Hazard Abatement Reauthorization Act (ASHARA)
 - c. Department of Transportation (DOT)
 - 1) Title 49 CFR 171 180 Transportation
- D. State Requirements:

 State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:

a. North Dakota Department of Environmental Quality
Division of Waste Management - Asbestos Control Program
4201 Normandy Street, Bismarck, ND 58503

- E. Local Requirements:
 - 1. If local requirements are more stringent than federal or state standards, the local standards are to be followed.

F. Standards:

- Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - a. American National Standards Institute (ANSI)/ASSP Z9.2-2018 -Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI/ASSE Z88.2-2015 - Practices for Respiratory Protection.
 - b. Underwriters Laboratories (UL) 586-2009 UL Standard for Safety of HEPA Filter Units, 9th Edition; ANSI Approval 2017-12-19.
- Standards which govern encapsulation work include, but are not limited to the following:
 - a. American Society for Testing and Materials International (ASTM)
- 3. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - a. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - b. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - c. NFPA 101 Life Safety Code
- G. EPA Guidance Documents:
 - EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference.
 - Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
 - 3. Asbestos Waste Management Guidance EPA 530-SW-85-007
 - 4. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001

- 5. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990
- H. Notices:
 - State and Local agencies: Send written notification as required by State and Local regulations prior to beginning any work on ACM as follows:
 - Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.
- I. Permits/Licenses: The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.
- J. Posting and Filing of Regulations: Maintain two (2) copies of applicable Federal, State, and Local regulations. Post one copy of each in the clean room at the regulated area where workers will have daily access to the regulations and keep another hard copy or electronic copy in the Contractor's office.
- K. VA Responsibilities prior to commencement of work:
 - Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
 - 2. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.
- L. Emergency Action Plan and Arrangements:
 - 1. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and

the VA. The Plan shall meet the requirements of 29 CFR 1926, Subpart C, Standard 1926.35 Employee Emergency Action Plans.

- 2. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- 3. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- 4. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- 5. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - a. For non-life-threatening situations employees injured or otherwise incapacitated shall be decontaminated following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - b. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, medical personnel shall remove them from the regulated area if back or neck injury is present, and secure proper medical treatment.
- Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- 7. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.

- 8. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.
- M. Pre-Construction Meeting:
 - Prior to commencing the work, the Contractor shall meet with the VA Certified Professional Industrial Hygienist (CPIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:
 - a. Proof of Contractor licensing.
 - b. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
 - c. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
 - d. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
 - e. Current medical written opinions for all personnel working onsite meeting the requirements of 29 CFR 1926.1101 (m).
 - f. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
 - g. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1) Regulated area preparation procedures;
 - Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d) Multi-Employer Worksites;

- Decontamination area set-up/layout and decontamination procedures for employees;
- 4) Abatement methods/procedures and equipment to be used;
- 5) Personal protective equipment to be used.
- h. At this meeting the Contractor shall provide all submittals as required.
- Procedures for handling, packaging and disposal of asbestos waste.
- j. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

- A. The following are the minimum administrative and supervisory personnel necessary for coordination of the work.
 - 1. Personnel:
 - a. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
 - b. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; last four digits of social security number; qualifications; accreditation card with color picture, if required by state; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
 - c. Minimum qualifications for Contractor and assigned personnel are:
 - 1) The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of Federal (and State or Local as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable state;

01-01-21

has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work.

- 2) The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
- 3) The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
- 4) The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.
- d. All personnel shall be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

A. General - Respiratory Protection Program: The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.134. ANSI Standard Z88.2-2015 provides excellent guidance for

developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c) - Respiratory Protection Program.

- B. Respiratory Protection Program Coordinator: The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years of experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.
- C. Selection and Use of Respirators: The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must be written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit or in the onsite Contractor's office, for reference by employees or authorized visitors.
- D. Minimum Respiratory Protection: Shall be a ½-mask negative pressure air purifying respirator equipped with P100 filters, provided personal air samples in the workplace remain at or below 0.1 f/cc, determined as an 8-hour TWA. Full face powered air purifying respirator equipped with P100 filters shall be required until Contractor demonstrates that personal air samples are at or below 0.1 f/cc, determined as an 8-hour TWA. A higher level of respiratory protection shall be required, if fiber levels exceed 1 f/cc as an 8-hour TWA, inside the regulated work area. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h) and 29 CFR 1910.134 (d) (3) (i) (A) Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.
- E. Medical Written Opinion: No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.
- F. Respirator Fit Test: All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit

tests shall be done for PAPRs which have been put into a motor/blower failure mode.

- G. Respirator Fit Check: The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from entering the regulated area until resolution of the problem.
- H. Maintenance and Care of Respirators: The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.
- I. Supplied Air Systems: If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 - Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

- A. Training of Abatement Personnel: Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k) (9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k) (9) (viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.
- B. Medical Examinations: Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the medical opinion that the person has been evaluated for working in a heat and cold stress

environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

- C. Regulated Area Entry Procedure: The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.
- D. Decontamination Procedure: The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.
 - When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
 - 2. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - a. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - b. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - c. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
 - 3. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus

preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)

- 4. Shower and wash body completely with soap and water. Rinse thoroughly.
- 5. Rinse shower room walls and floor to drain prior to exiting.
- 6. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.
- E. Regulated Area Requirements: The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

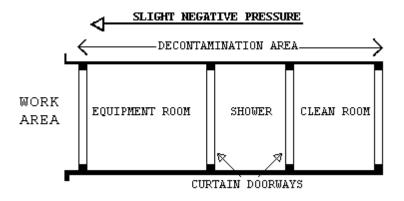
1.9 DECONTAMINATION FACILITIES

- A. Description: Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.
- B. General Requirements: All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6-mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6-mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape or approved equivalent so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.
- C. Temporary Facilities to the PDF and W/EDF: The Competent Person shall provide temporary water service connections to the PDF and W/EDF.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-24

Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70 degrees F throughout the PDF and W/EDF.

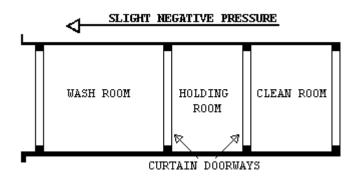
- D. Personnel Decontamination Facility (PDF): The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room which is connected to the regulated area. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.
 - 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6-mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6-mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry and sanitary condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Male/Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both


entry points to the PDF so no male/female can enter or exit the PDF during his/her stay in the PDF.

- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6-mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.
- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The Competent Person shall ensure that most gross contamination is removed from the outside of PPE, suits and respirators in the regulated work area, prior to entering the Equipment Room. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6-mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6-mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-26

an additional loose layer of 6-mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.


4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6mil opaque fire retardant poly.

- E. Waste/Equipment Decontamination Facility (W/EDF):
 - 1. The Competent Person shall provide a W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:
 - a. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
 - b. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2 inches x 4 inches) wood framing or approved equivalent and 3 layers of 6-mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the

Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6-mil fire retardant poly.

- c. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2 inches x 4 inches) wood framing or approved equivalent and 3 layers of 6-mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6-mil fire retardant poly.
- d. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 inches x 4 inches wood framing or approved equivalent and 2 layers of 6-mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6-mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- e. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

F. Waste/Equipment Decontamination Procedures: At the washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-28

station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

- A. General Requirements: Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.
 - 1. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
 - 2. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
 - 3. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
 - 4. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
 - 5. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
 - 6. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include

any combination of moisture resistant duct tape, poly tape, furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or approved equivalent procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.

- 7. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6-mil fire retardant poly.
- Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- 9. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- 10. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- 11. Disposal bags 2 layers of 6-mil poly for asbestos waste shall be pre-printed with labels, markings and address as required by OSHA, EPA and DOT regulations.
- 12. The VA shall be provided an advance copy of the Safety Data Sheets (SDS) as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-start meeting submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- 13. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- 14. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 MONITORING, INSPECTION AND TESTING

- A. General:
 - 1. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the employee exposure to asbestos must not exceed 0.1 fiber per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples inside the building, but outside the regulated area. Inside the building, but outside the regulated area air samples shall be collected in the Clean Room of the PDF, at the approximate location of HEPA exhaust discharge, and at a minimum of three (3) locations in areas immediately outside the regulated work area to satisfy this specification. Additional inspection and testing requirements are also indicated in other parts of this specification.
 - 2. The Contractor's industrial hygienist (CPIH) consultant will perform various services on behalf of the VA. The CPIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the CPIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the CPIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-31

- 3. If fibers counted by the CPIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the COR. An agreement between the CPIH/CIH and the VA/COR shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.
- B. Scope of Services of the CPIH/CIH Consultant:
 - 1. The purpose of the work of the CPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The CPIH/CIH will perform the following tasks:
 - a. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - b. Task 2: Perform representative air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - c. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and

outside the regulated area and all aspects of the operation except personnel monitoring.

- d. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
- e. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
- f. Task 6: Issue certificate of decontamination for each regulated area and project report.
- 2. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- 3. The monitoring and inspection results of the CPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.
- C. Monitoring, Inspection and Testing by Contractor CPIH/CIH: The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytical Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-33

Contractor/Supervisor and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples and have experience in substantially similar projects in size and scope. The analytical laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for personal and area air monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the CPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two (2) personal air samples or 25 percent of representative workforce per shift shall be collected, whichever is greater, in the regulated area; a minimum of three (3) area air samples at locations inside the building but immediately outside the regulated work area; one (1) area air sample shall be collected daily in the Clean Room of the PDF; and one (1) area air sample shall be collected daily at the approximate location of HEPA exhaust discharge. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.3 ASBESTOS HAZARD ABATEMENT PLAN

A. The Contractor shall have an established an Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP shall be submitted for review and approval to

the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAPs are:

- 1. Minimum Personnel Qualifications
- 2. Emergency Action Plan/Contingency Plans and Arrangements
- 3. Security and Safety Procedures
- 4. Respiratory Protection/Personal Protective Equipment Program and Training
- 5. Medical Surveillance Program and Recordkeeping
- Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- 7. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- 8. Negative Pressure Systems Requirements
- 9. Monitoring, Inspections, and Testing
- 10. Removal Procedures for ACM
- 11. Removal of Contaminated Soil (if applicable)
- 12. Encapsulation Procedures for ACM
- 13. Disposal of ACM waste/equipment
- 14. Regulated Area Decontamination/Clean-up
- 15. Regulated Area Visual and Air Clearance
- 16. Project Completion/Closeout

2.4 SUBMITTALS

- A. Pre-Start Meeting Submittals:
 - 1. Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:
 - a. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
 - b. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
 - c. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.

- d. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - Waste water filtration system, shower system, containment barriers.
 - Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
 - Respirators, protective clothing, fall protection and other required personal protective equipment.
 - 5) Fire safety equipment to be used in the regulated area.
- e. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- f. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- g. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. Area or clearance air monitoring shall be conducted in accordance with EPA AHERA protocols.
- h. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date

- 2) List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
- 3) List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- i. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulation. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; medical opinion; and current respirator fit test.
 - 2) Competent Person(s)/Supervisor(s): Number; names; last four digits of social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
 - 3) Workers: Numbers; names; last four digits of social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion

(asbestos surveillance and respirator use); and current respirator fit test.

- j. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAPs incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and standard operating procedures; and copies of monitoring results of the five referenced projects listed and analytical methods used.
- k. Rented equipment must be decontaminated prior to returning to the rental agency.
- Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all SDS and application instructions.
- B. Submittals During Abatement:
 - 1. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; and representative air monitoring and results/TWA's/EL's. Submit this information daily to the VA's representative.
 - The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - a. Removal of any poly barriers.
 - b. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - c. Packaging and removal of ACM waste from regulated area.
 - d. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

C. Submittals at Completion of Abatement: The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.5 ENCAPSULANTS

- A. Types of Encapsulants:
 - 1. The following four types of encapsulants, if used, must comply with performance requirements as stated in paragraph 2.5.2:
 - a. Removal encapsulant used as a wetting agent to remove ACM.
 - b. Bridging encapsulant provides a tough, durable coating on ACM.
 - c. Penetrating encapsulant penetrates/encapsulates ACM at least 13
 mm (1/2 inches).
 - d. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.
- B. Performance Requirements:
 - Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:
 - a. General Requirements for all Encapsulants:
 - 1) ASTM E84: Flame spread of 25; smoke emission of 50.
 - University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4) ASTM E96: Permeability minimum of 0.4 perms.
 - b. Bridging/Penetrating Encapsulants:
 - ASTM E736: Cohesion/Adhesion Test 24 kPa (50 pounds/square foot).
 - ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).

- 3) ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kg-mm (43 in/lb).
- ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- c. Lockdown Encapsulants:
 - ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2) ASTM E736: Bond Strength 48 kPa (100 pounds/square foot) (test compatibility with cementitious and fibrous fireproofing).
 - 3) In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or creating any noxious gaseous or vapors during or after application.
- C. Certificates of Compliance: The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

- A. Site Security:
 - Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and Local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
 - 2. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
 - A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must

record their name, affiliation, time in, and time out for each entry.

- 4. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed and demarcated as an asbestos regulated work area to prevent entry to or exit from the regulated area unless in the event of an emergency. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
- 5. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24-hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- 6. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- 7. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police shall be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.
- B. Signage and Power Management:
 - Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.
 - Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation

including GFCI of temporary power sources and equipment by compliance with all applicable electrical code and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

- 3. Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of independently installed 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil polyethylene disposal bags for staging and eventual disposal as asbestos waste.
- C. Negative Pressure Filtration System:
 - 1. The Contractor shall provide enough HEPA negative air machines to effect \geq - 0.02 inch WCG pressure differential inside the regulated work area. The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to effect \geq - 0.02 inch WCG pressure inside the regulated work area. Provide standby units in the event of machine failure and/or emergency in an adjacent area. HEPA equipped negative air machines shall be discharged outside of the building a minimum of 30 feet from building make-up air, doors, open windows, patients, visitors and staff.
 - 2. NIOSH has done extensive studies and has determined that negative air machines typically operate at ~50 percent efficiency. The contractor shall consider this in their determination of number of units needed to provide \geq - 0.02 inch WCG pressure differential inside the regulated work area. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2 inches pressure drop across the filters.
 - 3. Design and Layout:

- a. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1) Method of supplying power to the units and designation/location of the panels.
 - 2) Description of testing method(s) for correct air volume and pressure differential.
 - 3) If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.
- 4. Negative Air Machines (Hepa Units):
 - a. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30 inches in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
 - b. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
 - c. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97 percent. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions.

Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.

- d. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 µm or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 µm or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- e. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- f. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- g. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- h. It is essential that replacement HEPA filters be tested using an "in-line" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location.

Contractor will provide written documentation of test results for negative air machine units with HEPA filters.

- 5. Pressure Differential: The fully operational negative air system within the regulated area shall continuously maintain a pressure differential > -0.02 inch WCG inside the regulated work area. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(g)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.
- 6. Monitoring: The pressure differential shall be continuously monitored and recorded between the regulated area and the area outside the regulated area with a monitoring device that incorporates a strip chart recorder. The strip chart recorder shall become part of the project log and shall indicate at least > -0.02inch WCG pressure differential inside the regulated work area for the duration of the project.
- 7. Auxiliary Generator: If the building is occupied during abatement, provide an auxiliary gasoline/diesel generator located outside the building in an area protected from the weather. In the event of a power failure of the general power grid and the VAMC emergency power grid, the generator must automatically start and supply power to a minimum of 50 percent of the negative air machines in operation.
- 8. Supplemental Make-Up Air Inlets: Provide, as needed for proper air flow in the regulated area, in a location approved by the VA, openings in the plastic sheeting to allow outside air to flow into the regulated area. Auxiliary makeup air inlets must be located as far from the negative air machines as possible, off the floor near the ceiling, and away from the barriers that separate the regulated area from the occupied clean areas. Cover the inlets with weighted flaps which will seal in the event of failure of the negative pressure system.
- 9. Testing The System: The negative pressure system must be tested before any ACM is disturbed in any way. After the regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-45

pressure system to the VA using smoke tubes and a negative pressure gauge. Verification and documentation of adequate negative pressure differential across each barrier must be done at the start of each work shift.

- 10. Demonstration of the Negative Pressure Filtration System:
 - a. The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following:
 - 1) Plastic barriers and sheeting move lightly in toward the regulated area.
 - 2) Curtains of the decontamination units move in toward regulated area.
 - 3) There is a noticeable movement of air through the decontamination units. Use the smoke tube to demonstrate air movement from the clean room to the shower room to the equipment room to the regulated area.
 - 4) Use smoke tubes to demonstrate air is moving across all areas in which work is to be done. Use a differential pressure gauge to indicate a negative pressure of at > - 0.02 inch across every barrier separating the regulated area from the rest of the building. Modify the system as necessary to meet the above requirements.
- 11. Use of the Negative Pressure Filtration System During Abatement Operations:
 - a. Start units before beginning any disturbance of ACM occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of > -0.02 inch water column gauge, for the duration of the work until a final visual clearance and final air clearance has been successfully completed.
 - b. No negative air units shall be shut down at any time unless authorized by the VA Contracting Officer, verbally and in writing.
 - c. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-46

- d. Abatement work shall begin at a location farthest from the units and proceed towards them. If an electric failure occurs, the Competent Person shall stop all abatement work and immediately begin wetting all exposed asbestos materials for the duration of the power outage. Abatement work shall not resume until power is restored and all units are operating properly again.
- e. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air clearance has been successfully completed for that regulated area.
- 12. Dismantling The System: After completion of the final visual and final air clearance has been obtained by the VPIH/CIH, the units may be shut down. The unit exterior surfaces shall have been completely decontaminated; pre-filters are not to be removed and the units inlet/outlet sealed with 2 layers of 6-mil poly immediately after shut down. No filter removal shall occur at the VA site following successful completion of site clearance. OSHA/EPA/DOT asbestos labels shall be attached to the units.
- D. Containment Barriers and Coverings in the Regulated Area:
 - 1. General: Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, Contractor shall immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 3.1.4.8; FIRESTOPPING.
 - 2. Preparation Prior To Sealing: The Regulated Area: Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects not scheduled for removal remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.
 - 3. Controlling Access to The Regulated Area: Access to the regulated area is allowed only through the personnel decontamination facility

(PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6-mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

- 4. Critical Barriers: Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6-mil fire retardant poly and duct tape. Individually seal with 2 layers of 6mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.
- 5. Primary Barriers:
 - a. Cover the regulated area with two layers of 6-mil fire retardant poly on the floors and two layers of 4 mil, fire retardant poly on the walls, unless otherwise directed in writing by the VA representative. Floor layers must form a right angle with the wall and turn up the wall at least 300 mm (12 inches). Seams must overlap at least 1800 mm (6 feet) and must be spray glued and taped. Install sheeting so that layers can be removed independently from each other. Carpeting shall be covered with three layers of 6-mil poly. Corrugated cardboard sheets must be placed between the bottom and middle layers of poly. Mechanically support and seal with duct tape and glue all wall layers.
 - b. If stairs and ramps are covered with 6-mil plastic, two layers must be used. Provide 19 mm (3/4 inch) exterior grade plywood treads held in place with duct tape/glue on the plastic. Do not cover rungs or rails with any isolation materials.
- 6. Secondary Barriers: A loose layer of 6-mil shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work.
- 7. Extension of the Regulated Area: If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be

started immediately and continue until air monitoring indicates background levels are met.

- 8. Firestopping:
 - a. Through penetrations caused by cables, cable trays, pipes, sleeves, conduits, etc. must be firestopped with a fire-rated firestop system providing an air tight seal.
 - b. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
 - c. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.
- E. Sanitary Facilities: The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.
- F. Personal Protective Equipment: Provide whole body clothing, head coverings, gloves and foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.
- G. Pre-Cleaning:
 - The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.
 - Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. All workers performing pre-cleaning activities must don appropriate personal protective equipment (PPE),

as specified throughout this document and as approved in the Contractor's work plan. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

- 3. Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location. Drapes, clothing, upholstered furniture and other fabric items shall be disposed of as asbestos contaminated waste. Cleaning these asbestos contaminated items utilizing HEPA vacuum techniques and off-premises steam cleaning is very difficult and cannot guarantee decontamination. Carpeting will be disposed of prior to abatement if in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.
- 4. Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.
- 5. Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestoscontaining materials during this pre-cleaning phase.
- H. Pre-Abatement Activities:

- 1. Pre-Abatement Meeting: The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a preabatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.
- 2. Pre-Abatement Construction and Operations:
 - a. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
 - b. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.
 - c. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
 - d. Upon satisfactory inspection of the installation of and operation of systems, the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

- 3. Pre-Abatement Inspections and Preparations:
 - a. Before any work begins on the construction of the regulated area, the Contractor will:
 - Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
 - 2) A NESHAP (destructive) ACM inspection shall be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawlspaces (previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings. Verify during NESHAP survey that no other suspect ACM is present.
 - 3) Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
 - If present and required, remove and dispose of carpeting from floors in the regulated area.
 - 5) Inspect existing firestopping in the regulated area. Correct as needed.

3.2 REMOVAL OF ACM

A. Wetting ACM:

 Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.

- 2. Amended Water: Provide water to which a surfactant has been added to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting of one ounce of 50 percent polyoxyethylene ester and 50 percent polyoxyethylene ether mixed with 5 gallons (19L) of water.
- 3. Removal Encapsulant: When authorized by VA, provide a removal encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during removal.
- B. Secondary Barrier and Walkways:
 - 1. Install as a drop cloth a 6-mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
 - 2. Install walkways using 6-mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.
- C. Wet Removal of ACM:
 - 1. Adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-53

separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present.

- 2. If ACM does not wet well with amended water due to composition, coating or jacketing, remove as follows:
 - a. Mist work area continuously with amended water whenever necessary to reduce airborne fiber levels.
 - b. Remove saturated ACM in small sections. Do not allow material to dry out. As material is removed, bag material, while still wet into disposal bags. Twist the bag neck tightly, bend over (gooseneck) and seal with a minimum of three tight wraps of duct tape. Clean /decontaminate the outside of the bag of any residue and move to washdown station adjacent to W/EDF.
 - c. Fireproofing or Architectural Finish on Scratch Coat: Spray with a fine mist of amended water or removal encapsulant. Allow time for saturation to the substrate. Do not over saturate causing excess dripping. Scrape material from substrate. Remove material in manageable quantities and control falling to staging or floor. If the falling distance is over 20 feet (6 meters), use a drop chute to contain material through descent. Remove residue remaining on the scratch coat after scraping is done using a stiff bristle hand brush. If a removal encapsulant is used, remove residue completely before the encapsulant dries. Periodically re-wet the substrate with amended water as needed to prevent drying of the material before the residue is removed from the substrate.
 - d. Fireproofing or Architectural Finish on Wire Lath: Spray with a fine mist of amended water or removal encapsulant. Allow time to completely saturate the material. Do not over saturate causing excess dripping. If the surface has been painted or otherwise coated, cut small holes as needed and apply amended water or removal encapsulant from above. Cut saturated wire lath into 2 feet x 6 feet (50mm x 150mm) sections and cut hanger wires. Roll up complete with ACM, cover in burlap and hand place in disposal

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-54

bag. Do not drop to floor. After removal of lath/ACM, remove any overspray on decking and structure using stiff bristle nylon brushes. Depending on hardness of overspray, scrapers may be needed for removal.

e. Pipe/Tank/Vessel/Boiler Insulation: Remove the outer layer of wrap while spraying with amended water in order to saturate the ACM. Spray ACM with a fine mist of amended water or removal encapsulant. Allow time to saturate the material to the substrate. Cut bands holding pre-formed pipe insulation sections. Slit jacketing at the seams, remove and hand place in a disposal bag. Do not allow dropping to the floor. Remove molded fitting insulation/mud in large pieces and hand place in a disposal bag. Remove any residue on pipe or fitting with a stiff bristle nylon brush. In locations where pipe fitting insulation is removed from fibrous glass or other non-asbestos insulated straight runs of pipe, remove fibrous material at least 6 inches from the point it contacts the ACM.

D. Wet Removal of Amosite:

- The following areas shown on drawings indicate locations of amosite ACM which will require local exhaust ventilation and collection as described below, in addition to wet removal. Provide specific description /locations/ drawings.
- 2. Provide local exhaust ventilation and collection systems to assure collection of amosite fibers at the point of generation. A 300 mm (12") flexible rigid non-collapsing duct shall be shall be located no more than 600 mm (2 feet) from any scraping/brushing activity. Primary filters must be replaced every 30 minutes on the negative air machines. Each scraping/brushing activity must have a negative air machine devoted to it. For pre-molded pipe insulation or cutting wire lathe attach a 1200 mm (4 feet) square flared end piece on the intake of the duct. Support the duct horizontally at a point 600 mm (2 feet) below the work to effect capture. One person in the crew shall be assigned to operate the duct collection system on a continual basis.
- 3. Amosite does not wet well with amended water. Submit full information/documentation on the wetting agent proposed prior to start for review and approval by the VPIH/CIH and VA Contracting

Officer. Insure that the material is worked on in small sections and is thoroughly and continuously wetted. Package as soon as possible while wet. Remove as required.

E. Removal of ACM/Dirt Floors and Other Special Procedures:

- Major Abatement on Dirt Floors: When working on dirt floors, remove all visible asbestos debris using wet methods after set-up of PDF, W/EDF, negative air systems as required. Perform work and decontaminate/clean-up; perform lockdown as needed and complete work as required in these specifications. The asbestos contaminated soil (ACS) shall be removed and/or enclosed.
- 2. Options for abatement of asbestos contaminated soil include: Removal of top 6 inches of soil; encapsulate the soil using shotcrete or other spray applied concrete materials. Considerations for which option to be used will be made by the VA representative. Factors which may affect which option to be used may include: access to the work area; height of the area (such as is there sufficient height to use concrete materials in the area, etc.). Soils covered with permanent barriers MUST HAVE PERMANENT SIGNAGE INSTALLED TO WARN AGAINST PENETRATION ASSOCIATED WITH POTENTIAL DISTURBANCE OF ASBESTOS.
 - a. Remove ACS as shown on drawings to a minimum depth of 6 using wet methods. After wetting with amended water to minimize dust, shovel dirt into disposal bags. The CPIH/CIH shall closely monitor work conditions and take appropriate action to protect workers from over exposure to asbestos and heat stress. The minimum number of air changes per hour shall be six using negative air machines. Use of special vacuum truck equipped with HEPA filtration to remove soil is an acceptable option.
 - b. Enclosure of ACS using a concrete layer of 4 inches over the entire surface may also be done. Thoroughly dampen soil first with amended water before pouring concrete. Personnel shall be proficient in concrete finishing as well as asbestos trained.
- 3. Crawlspaces/Pipe Tunnels: When working in crawlspaces or pipe tunnels, remove all visible asbestos debris using wet methods (if possible) after set-up of PDF, W/EDF, and after establishing negative air systems as required. Perform work and decontaminate/clean-up; perform lockdown as needed and complete work

as required in these specifications. The asbestos contaminated soil (ACS) shall be removed and/or enclosed. Clearance requirements include confirmation sampling of affected soil by Polarized Light Microscopy (PLM). Clearance sampling requirements are specified in Sections 3.6.4 3.6.5 and 3.6.6.

4. Options for abatement of asbestos contaminated soil include: Removal of top 6 inches of soil; encapsulate the soil using shotcrete or other spray applied concrete materials. Considerations for which option to be used will be made by the VA representative. Factors which may affect which option to be used may include: access to the work area; height of the area (such as is there sufficient height to use concrete materials in the area, etc.).

3.3 LOCKDOWN ENCAPSULATION

- A. General: Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, the contractor shall encapsulate all surfaces with a bridging encapsulant.
- B. Delivery and Storage: Deliver materials to the job site in original, new and unopened containers bearing the manufacturer's name and label as well as the following information: name of material, manufacturer's stock number, date of manufacture, thinning instructions, application instructions and the SDS for the material.
- C. Worker Protection: Before beginning work with any material for which an SDS has been submitted, provide workers with any required personal protective equipment. The required personal protective equipment shall be used whenever exposure to the material might occur. In addition to OSHA/specification requirements for respiratory protection, a paint pre-filter and an organic vapor cartridge, at a minimum, shall be used in addition to the HEPA filter when an organic solvent based encapsulant or other solvent is used. The CPIH/CIH shall be responsible for provision of adequate respiratory protection. Note: Flammable and combustible encapsulants or solvents shall not be used, unless authorized in writing by the VA.
- D. Encapsulation of Scratch Coat Plaster or Piping:
 - Apply two coats of lockdown encapsulant to the scratch coat plaster or piping after all ACM has been removed. Apply in strict accordance with the manufacturer's instructions. Any deviation from the

instructions must be approved by the VA's representative in writing prior to commencing the work.

- 2. Apply the lockdown encapsulant with an airless sprayer at a pressure and using a nozzle orifice as recommended by the manufacturer. Apply the first coat while the scratch coat is still damp from the asbestos removal process, after passing the visual inspection. If the surface has been allowed to dry, wet wipe or HEPA vacuum prior to spraying with encapsulant. Apply a second coat over the first coat in strict conformance with the manufacturer's instructions. Color the lockdown encapsulant and contrast the color in the second coat so that visual confirmation of completeness and uniform coverage of each coat is possible. Adhere to the manufacturer's instructions for coloring. At the completion of the encapsulation, the surface must be a uniform third color produced by the mixture.
- E. Sealing Exposed Edges: Seal edges of ACM exposed by removal work which is inaccessible, such as a sleeve, wall penetration, etc., with two coats of bridging encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the bridging encapsulant. Apply in accordance with 3.3.4 (B).

3.4 DISPOSAL OF ACM WASTE MATERIALS

- A. General: Dispose of waste ACM and debris which is packaged in accordance with these specifications, in accordance with OSHA, EPA, State, Local and DOT requirements. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 171-180 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.
- B. Procedures:
 - 1. The VA must be notified at least 24 hours in advance of any waste removed from the containment.
 - 2. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures is this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be evacuated with HEPA vacuum and securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-58

VA PROJECT NO: 437-21-225

unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.

- 3. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped and HEPA vacuumed.
- 4. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.5 PROJECT DECONTAMINATION

- A. General:
 - The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
 - 2. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
 - 3. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.
- B. Regulated Area Clearance: Clearance air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.
- C. Work Description: Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including

primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

- D. Pre-Decontamination Conditions:
 - Before decontamination starts, all ACM waste from the regulated area shall be collected and removed, and the loose 6-mil layer of poly removed while being adequately wetted with amended water and disposed of along with any gross debris generated by the work.
 - 2. At the start of decontamination, the following shall be in place:
 - a. Primary barriers consisting of 2 layers of 6-mil poly on the floor and 4 mil poly on the walls.
 - b. Critical barriers consisting of 2 layers of 6-mil poly which is the sole barrier between the regulated area and openings to the rest of the building or outside.
 - c. Decontamination facilities for personnel and equipment in operating condition and the negative pressure system in operation.
- E. First Cleaning: Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.
- F. Pre-Clearance Inspection and Testing: The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III) (B) (7) (d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown

encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

- G. Lockdown Encapsulation of Abated Surfaces: With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification. Negative pressure shall be maintained in the regulated area during the lockdown application.
- 3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING
 - A. General: Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH starting after the final cleaning.
 - B. Final Visual Inspection: Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no additional cost to the VA. Dust/material samples may be collected and analyzed at no additional cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.
 - C. Final Air Clearance Testing:
 - 1. After an acceptable final visual inspection by the VPIH/CPIH and VA Representative, the VPIH/CPIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 1f/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of two field blank. If work is equal to or more than 260 1f/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA presented in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All Additional inspection and testing costs will be borne by the Contractor.
 - If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

- D. Final Air Clearance Procedures:
 - 1. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol and < 70 AHERA asbestos structures per square millimeter (s/mm2) by AHERA TEM. No averaging of results will be used for this project. All five (5) TEM samples inside the regulated area shall be at or below 70 asbestos s/mm2 to satisfy the project final clearance criteria.
 - 2. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - a. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - b. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ MCE for TEM. A minimum of 3850 Liters of air using calibrated sampling pumps shall be collected for PCM samples and a minimum of 1200 Liters of air using calibrated sampling pumps shall be collected for TEM clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III) (B) (7) (d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.
 - c. Final clearance for soil that is not encapsulated, samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ MCE filters for TEM. A minimum of 3850 Liters of air using calibrated sampling pumps shall be collected for PCM samples and a minimum of 1200 Liters of air using calibrated sampling pumps shall be collected for TEM clearance samples. Air clearance of work areas

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225

02 82 11 Traditional Asbestos-62

where contaminated soil has been removed is in addition to the requirement for clearance by bulk sample analysis discussed within these specifications. There will be no aggressive air sampling for the clearance of soil due to the fact that aggressive air sampling may overload the cassettes.

- d. Random bulk samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 square feet of soil - 3 samples; >1000 to <5000 square feet of soil - 5 samples; and >5000 square feet of soil - 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1 percent asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1 percent asbestos, the areas shall be re-cleaned until the sample results are <1 percent.</p>
- E. Clearance Sampling Using PCM Less than 260LF/160SF:
 - 1. The CPIH/CIH will perform clearance samples as indicated by the specification.
 - 2. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 3850 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.
 - 3. Random bulk samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 square feet of soil 3 samples; >1000 to <5000 square feet of soil 5 samples; and >5000 square feet of soil 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1 percent asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1 percent asbestos, the areas shall be re-cleaned until the sample results are <1 percent.</p>
- F. Clearance Sampling Using Tem Equal to or more than 260LF/160SF: TEM

- 1. Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks.
- 2. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 13 clearance samples shall be collected. All samples must be equal to or less than 70 AHERA structures per square millimeter (s/mm2) AHERA TEM, no averaging of results for this specific project.
- G. Laboratory Testing of PCM Clearance Samples: The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24-36 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.
- H. Laboratory Testing of Tem Samples: Samples shall be sent by the VPIH/CIH to a NIST NVLAP accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24-36 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.
- I. Laboratory Testing of Bulk Samples: Samples shall be sent by the VPIH/CIH or CPIH/CIH to a NIST NVLAP accredited laboratory for analysis by PLM. The laboratory shall successfully participate in the NIST NVLAP Bulk Asbestos Analysis (PLM) program. Verbal/faxed results from the laboratory shall be available within 24-36 hours after receipt of the samples. A complete record, certified by the laboratory, of all PLM and/or TEM results shall be furnished to the VA's representative and the Contractor.

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

- A. Completion of Abatement Work:
 - After thorough decontamination, seal negative air machines with 2 layers of 6-mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete

asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- a. Remove all equipment and materials from the project area.
- b. Dispose of all packaged ACM waste as required.
- c. Repair or replace all interior finishes damaged during the abatement work, as required.
- d. Fulfill other project closeout requirements as required in this specification.
- B. Certificate of Completion By Contractor: The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.
- C. Work Shifts: All work shall generally be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.
- D. Re-Insulation: Replace all asbestos containing insulation/fire-proofing with suitable non-asbestos material. Provide SDS's for all replacement materials in advance of installation for VA approval. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

ATTACHMENT #1 CERTIFICATE OF COMPLETION

DATE:	VA Project #:
PROJECT NAME:_	Abatement Contractor:
VAMC/ADDRESS:_	

- 1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building): which took place from / / to / /
- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Da	ate:
CPIH/CIH Print Name:	
Abatement Contractor	Signature/Date:
Abatement Contractor	Print Name:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-66

VA PROJECT NO: 437-21-225

01-01-21

ATTACHMENT #2	
CERTIFICATE OF WORKER'S ACKNOWLEDGMENT	
PROJECT NAME:	DATE:
PROJECT ADDRESS:	
ABATEMENT CONTRACTOR'S NAME:	

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate of worker's acknowledgement you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32-hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination. Signature: Printed Name: Social Security Number:

Witness:

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 11 Traditional Asbestos-67

VA PROJECT NO: 437-21-225

ATTACHMENT #3 AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

1. I verify that the following individual

Name:______ Social Security Number:______ who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

- 2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.
- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of	CPIH/CIH:			Date:	
Printed Name	of CPIH/CIH:				
Signature of	Contractor:			Date:	
Printed Name	of Contractor:				
FARGO VA HEAL	THCARE SYSTEM		V	A PROJECT NO:	437-21-225
EHRM - TRAINI	NG AND ADMIN. SPAC	E SUPPORT (02 82 11	Traditional A	sbestos-68

ATTACHMENT #4 ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA	Project	Location:
VA	Project	#:
VA	Project	Description:

- 1. This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.
- 2 I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.
- 3. At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement	Contractor	Owner's	Signature		Date
			E	N D	

SECTION 02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT

PART 1 - GENERAL

1.1 SUMMARY OF WORK

- A. Contract Documents and Related Requirements: Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.
- B. Extent of Work: Below is a brief description of the estimated quantities of asbestos containing materials to be abated by the Glovebag method. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as to the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
 - Removal, clean-up and disposal of ACM piping and fittings and asbestos contaminated elements in an appropriate regulated area in the following approximate quantities:

a. For use if concealed ACM is found during construction. For use if concealed Thermal System Insulation is found during construction.

- B. Related Work:
 - 1. Section 02 41 00, DEMOLITION
- C. TASKS:

- 1. The work tasks are summarized briefly as follows:
 - a. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, worksite preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for Glovebag asbestos abatement work.
 - b. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
 - c. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.
- D. Abatement Contractor Use of Premises:
 - The Contractor and Contractor's personnel shall cooperate fully with the VA Representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
 - 2. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA Representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings.

1.2 VARIATIONS IN QUANTITY

A. The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated, which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-10 percent) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly

discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

- A. If the Contracting Officer; their field representative; the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities if:
 - Airborne PCM analysis results equal to or greater than 0.01 f/cc above background levels inside the building but outside the regulated area;
 - 2. breach or break in regulated area containment barrier(s);
 - 3. less than -0.02 inch WCG pressure in the regulated area;
 - 4. serious injury/death at the site;
 - 5. fire/safety emergency at the site;
 - 6. respiratory protection system failure;
 - 7. power failure or loss or inadequate use of wetting agent; or
 - 8. any visible emissions observed outside the regulated area; or

9. failure to follow project specification requirements.

1.4 DEFINITIONS

- A. General: Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.
- B. Glossary:

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted. Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive air sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 3, Fifth Edition is used to determine the fiber levels in air. For personal samples, area air samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis, the NIOSH Method 7402 Issue 2, Fourth Edition) can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 0

VA PROJECT NO: 437-21-225 02 82 13.13 Glovebag Asbestos-4 Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane (MCE) for PCM (Phase Contrast Microscopy, 25 mm, 3-piece with 2 inches Static Extension Cowl, 0.8 micron pore size) and MCE for TEM (Transmission Electron Microscopy, 25 mm, 3-piece with 2 inches Static Extension Cowl, 0.45 micron pore size).

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins. Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some States require that any person conducting asbestos abatement air sampling, clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA). Barrier - Any surface that isolates the regulated area and inhibits

fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of 2-layers of 6-mil independently installed plastic sheeting (Polyethylene) secured in place at openings such as doors, windows, penetrations or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work or to secondary barrier.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place. Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. **Clean room/Changing room** - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's Professional Industrial Hygiene Consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may report to a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

Disposal bag - Typically 6-mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated

01-01-21

areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements. **Disturbance** - Asbestos Operations and Maintenance Activities (OSHA Class III) that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag, in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag, which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment. Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a
length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air. Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent asbestos as determined using the method specified 40 CFR 763, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled. High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter. HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers. Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some States require that an industrial hygienist technician conducting asbestos abatement air sampling, clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise
deteriorated so that the asbestos is no longer likely to be bound with
its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) -EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL or Excursion Limit (EL).

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through

HEPA equipped filtration units. OSHA requires maintaining -0.02 inch water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants. Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock. Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8-hour time weighted average. For asbestos fibers, the eight (8) hour time-weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit (EL) is 1.0 fibers per cubic centimeter (1 f/cc).

Personal protective equipment (PPE) - equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, fall protection, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or more workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, debris or asbestos-contaminated soil.

01-01-21

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6-mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (k) (5).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH/CIH) or Contractor's PIH (CPIH/CIH). **Project designer** - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Subpart E, Appendix C, Part I; (B) (5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs. Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-2018.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, decorative, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Representative - The VA official responsible for on-going project work.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area. Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be
originated and signed by the waste generator, used to track and
substantiate the disposition of asbestos-containing waste material.
Wet cleaning - The process of thoroughly eliminating, by wet methods,
any asbestos contamination from surfaces or objects.

C. Referenced Standards Organizations: See Section 01 42 19 REFERENCED STANDARDS.

1.5 APPLICABLE CODES AND REGULATIONS

- A. General Applicability of Codes, Regulations, and Standards:
 - All work under this contract shall be done in strict accordance with all applicable Federal, State, and Local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
 - 2. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specification, exists, the most stringent requirement(s) shall be utilized.
 - 3. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system and/or the Contractor's on-site Field Office. These standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 may be made available electronically.
- B. Asbestos Abatement Contractor Responsibility: The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability

for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE), respiratory protection, and respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State/Local requirements related to failure to comply with the regulations applicable to the work.

- C. Federal Requirements: Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.
 - 1. Occupational Safety and Health Administration (OSHA)
 - a. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - a. Title 29 CFR 1926 Subpart E Personal Protective Equipment and Life Saving Equipment
 - b. Title 29 CFR 1910.134 Respiratory Protection
 - c. Title 29 CFR 1926 Construction Industry Standards
 - d. Title 29 CFR 1926.33 Access to Employee Exposure and Medical Records
 - e. Title 29 CFR 1926.59 same as 1910.1200 Hazard Communication
 - f. Title 29 CFR 1926 Subpart C General Safety and Health Provisions and Subpart D - Occupational Health and Environmental Controls
 - 2. Environmental Protection Agency (EPA)
 - a. 1.40 CFR 61 Subpart M National Emission Standard for Hazardous
 Air Pollutants Asbestos
 - a. 2.40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA) and Asbestos Hazard Abatement Reauthorization Act (ASHARA)
 - 3. Department of Transportation (DOT)
 - a. Title 49 CFR 171 180 Transportation
- D. State Requirements:

- a. State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following:
- b. North Dakota Department of Environmental Quality
 Division of Waste Management Asbestos Control Program
 4201 Normandy Street, Bismarck, ND 58503

1.

E. Local Requirements:

- 1. If Local requirements are more stringent than Federal or State standards, the local standards are to be followed.
- F. Standards:
 - Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - a. American National Standards Institute (ANSI/ASSP) Z9.2-2018 -Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI/ASSE Z88.2-2015 - Practices for Respiratory Protection.
 - b. Underwriters Laboratories (UL) 586-2009 UL Standard for Safety of HEPA filter Units, 9th Edition; ANSI Approval 2017-12-19.
 - Standards which govern encapsulation work include, but are not limited to, the following:
 - a. American Society for Testing and Materials International (ASTM).
 - 3. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - a. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - b. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - c. NFPA 101 Life Safety Code.

G. EPA Guidance Documents:

- EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024.
- 2. Asbestos Waste Management Guidance EPA 530-SW-85-007.

- 3. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001.
- 4. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990.
- H. Notices:
 - State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
 - Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.
- I. Permits/Licenses: The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations prior to beginning any work on ACM as follows.
- J. Posting and Filing of Regulations: Maintain two (2) copies of applicable Federal, State, and Local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.
- K. VA Responsibilities Prior to Commencement of Work:
 - Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
 - 2. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.
- L. Emergency Action Plan and Arrangements:
 - 1. An Emergency Action Plan shall be developed by prior to commencing abatement activities and shall be agreed to by the Contractor and

the VA. The Plan shall meet the requirements of 29 CFR 1926, Subpart C, Standard 1926.35 Employee Emergency Action Plans.

- 2. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- 3. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- 4. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- 5. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - a. For non-life-threatening situations employees injured or otherwise incapacitated shall be decontaminated following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - b. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, medical personnel shall remove them from the regulated area if back or neck injury is present, and secure proper medical treatment.
- Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- 7. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.

- 8. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.
- M. Pre-Construction Meeting:
 - Prior to commencing the work, the Contractor shall meet with the VPIH/CIH to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be onsite shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:
 - a. Proof of Contractor licensing.
 - b. Proof the Competent Person is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person shall also be presented.
 - c. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
 - d. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
 - e. Current medical written opinions for all personnel working onsite meeting the requirements of 29 CFR 1926.1101 (m).
 - f. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
 - g. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project. A copy of the Contractor's Asbestos Hazard Abatement Plan (AHAP) for Class I Glovebag Asbestos Abatement. In these procedures, the following information must be detailed, specific for this project.
 - 1) Regulated area preparation procedures;
 - Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d) Multi-Employer Worksites;

- If required, decontamination area set-up/layout and decontamination procedures for employees;
- Glovebag abatement methods/procedures and equipment to be used; and
- 5) Personal protective equipment to be used
- 2. At this meeting the Contractor shall provide all submittals as required.
- 3. Procedures for handling, packaging and disposal of asbestos waste.
- 4. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

- A. The following are the minimum administrative and supervisory personnel necessary for coordination of the work.
 - 1. Personnel
 - a. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
 - b. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA Representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; last four digits of social security number; qualifications; accreditation card with color picture if required by State; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
 - c. Minimum qualifications for Contractor and assigned personnel are: 1) The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of Federal (and State or Local as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as

required by the State; is licensed in applicable State; has

adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans (AHAPs) for asbestos work; and has adequate materials, equipment and supplies to perform the work.

- 2) The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
- 3) The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
- 4) The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.
- 2. All personnel shall be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

A. General - Respiratory Protection Program: The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.134. ANSI Standard Z88.2-2015 provides excellent guidance for

developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c) - Respiratory Protection Program.Respiratory Protection Program Coordinator: The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years of experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

- B. Selection and Use of Respirators: The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must be written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit or in the onsite Contractor's office, for reference by employees or authorized visitors.
- C. Minimum Respiratory Protection: Minimum respiratory protection shall be a ½-mask negative pressure air purifying respirator equipped with P100 filters, provided personal air samples in the workplace remain at or below 0.1 f/cc, determined as an 8-hour TWA. Full face powered air purifying respirator equipped with P100 filters shall be required until Contractor demonstrates that personal air samples are at or below 0.1 f/cc, determined as an 8-hour TWA. A higher level of respiratory protection shall be required, if fiber levels exceed 1 f/cc as an 8hour TWA, inside the regulated work area. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h) and 29 CFR 1910.134 (d) (3) (i) (A) Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.
- D. Medical Written Opinion: No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.
- E. Respirator Fit Test: All personnel wearing respirators shall have a current quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Fit tests shall be done for PAPR's which have been put into a failure mode.

- F. Respirator Fit Check: The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from entering the regulated area until resolution of the problem.
- G. Maintenance and Care of Respirators: The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) maintenance and care of respirators.

1.8 WORKER PROTECTION

- A. Training of Abatement Personnel: Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k) (9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k) (9) (viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.
- B. Medical Examinations: Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the medical opinion that the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.
- C. Personal Protective Equipment: Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.
- D. Regulated Area Entry Procedure: The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new

disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment

- E. Decontamination Procedure: The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.
 - When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
 - 2. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - a. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - b. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - c. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
 - 3. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
 - Shower and wash body completely with soap and water. Rinse thoroughly.
 - 5. Rinse shower room walls and floor to drain prior to exiting.

- 6. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.
- F. Regulated Area Requirements: The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I Glovebag regulated areas at 29 CFR 1926.1101 (e), 29 CFR 1926.1101 (g) (1) (i) (ii) (iii), 29 CFR 1926.1101 (g) (5) (ii) (iii) (iv) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

- A. Description: Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.
- B. General Requirements: All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3-layers of 6-mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3-layers of 6-mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.
- C. Temporary Facilities to the PDF and W/EDF: The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d) (3). Provide adequate temporary

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82

VA PROJECT NO: 437-21-225

02 82 13.13 Glovebag Asbestos-24

overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70°F throughout the PDF and W/EDF.

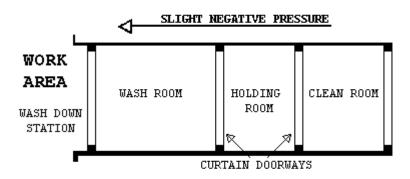
- D. Personnel Decontamination Facility (PDF): The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.
 - 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3-layers of 6-mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6-mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry and sanitary condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. //Any person entering the regulated area to perform Glovebag removal work, in which a negative exposure assessment has been performed, shall don a double outer protective suit and respirator//. Male/Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male/female can enter or exit the PDF during his/her stay in the PDF.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-25

- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3-layers of 6-mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of once per day or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste. //The Competent Person shall provide a decontamination area at the outer perimeter of the regulated work area where the employees will decontaminate the outer protective suit and respirator by wet wiping and HEPA vacuuming//.
- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2-layers of 6-mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3-layers of 6-mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6-mil fire retardant poly per

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-26

shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area. //The Competent Person shall provide a decontamination area at the outer perimeter of the regulated work area where the employees will decontaminate the outer protective suit and respirator by wet wiping and HEPA vacuuming//.



a.

- E. . Waste/Equipment Decontamination Facility (W/EDF)
 - 1. The Competent Person shall provide a W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:
 - a. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
 - b. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2 inches x 4 inches) wood framing and 3-layers of 6-mil fire

retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2-layers of 6mil fire retardant poly.

- c. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2 inches x 4 inches) wood framing or approved equivalent and 3-layers of 6-mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2-layers of 6-mil fire retardant poly.
- d. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 inches x 4 inches wood framing or approved equivalent and 2-layers of 6-mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2-layers of 6-mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- e. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

F. Waste/Equipment Decontamination Procedures: At the washdown station in the regulated area, thoroughly wet wipe/clean contaminated equipment

and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

- A. General Requirements (all abatement projects): Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's Representative.
 - All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
 - 2. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
 - 3. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
 - 4. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
 - 5. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mils shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.

- 6. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape, poly tape, furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or approved equivalent procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- 7. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6-mil fire retardant poly.
- Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- 9. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- 10.Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- 11.Disposal bags 2-layers of 6-mil poly for asbestos waste shall be
 pre-printed with labels, markings and address as required by OSHA,
 EPA and DOT regulations.
- 12.The VA shall be provided an advance copy of the Safety Data Sheets (SDS) as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- 13.OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal, State and Local regulations shall be posted in the Clean Room.

14.Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d)

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

- A. General: Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All horizontal surfaces in the regulated area must be covered with 2-layers of 6-mil fire retardant poly to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated, immediately stop work and clean up the contamination at no additional cost to the Government. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 2.2.7; FIRESTOPPING.
- B. Preparation Prior to Sealing the Regulated Area: Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.
- C. Controlling Access to the Regulated Area: Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6-mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid.
- D. Critical Barriers: Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6-mils thick and duct tape. Individually seal with 2-layers of independently installed 6-mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly.
- E. Secondary Barriers: A loose layer of 6-mil fire retardant poly shall be used as a drop cloth to protect the floor/horizontal surfaces from

debris generated during the Glovebag abatement. This layer shall be replaced as needed during the work.

- F. Extension of the Regulated Area: If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. If the affected area cannot be added to the regulated area, decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.
- G. Firestopping:
 - Through penetrations caused by cables, cable trays, pipes, sleeves must be firestopped with a fire-rated firestop system providing an air tight seal.
 - 2. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The Contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA Representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
 - 3. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed

2.3 MONITORING, INSPECTION AND TESTING

- A. General:
 - 1. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples inside the building, but outside the regulated area.

Inside the building, but outside the regulated area air samples shall be collected at the boundary of the regulated area and/or Clean Room of the PDF, at the approximate location of HEPA exhaust discharge (if used), and at a minimum of three (3) locations in areas immediately outside the regulated work area to satisfy this specification. Additional inspection and testing requirements are also indicated in other parts of this specification.

- 2. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- 3. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's Representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the CPIH/CIH. An agreement between the CPIH/CIH and the VA representative shall be reached on the exact details of the confirmation effort, in writing, including such things as the number

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-33

01-01-21

of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's Representative.

- B. Scope of Services of the CPIH/CIH Consultant:
 - 1. The purpose of the work of the CPIH/CIH is to: Assure quality; resolve problems; and prevent the spread of contamination beyond the regulated area. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The CPIH/CIH will perform the following tasks:
 - a. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - b. Task 2: Perform representative air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - c. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - d. Task 4: Provide support to the VA Representative such as evaluation of submittals from the Contractor, resolution of unforeseen developments, etc.
 - e. Task 5: Perform, in the presence of the VA Representative, final inspection and testing of a decontaminated regulated area or building at the conclusion of the abatement and clean-up work to certify compliance with all regulations and the VA requirements/specifications.
 - f. Task 6: Issue certificate of decontamination for each regulated area or building and project report.
 - 2. All data, inspection results and testing results generated by the CPIH/CIH will be available to the Contractor for information and

consideration. The Contractor shall cooperate with and support the CPIH/CIH for efficient and smooth performance of their work.

- 3. The monitoring and inspection results of the CPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.
- 4. Monitoring, Inspection and Testing by Abatement Contractor CPIH/CIH: The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytical Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples and have experience in substantially similar projects in size and scope. The analytical laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for personal and area air monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA Representative and the upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-35

rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two (2) personal air samples or 25% of representative workforce per shift shall be collected, whichever is greater, in the regulated area; a minimum of three (3) area air samples at locations inside the building but immediately outside the regulated work area; one (1) area air sample shall be collected daily at the boundary of the regulated area and/or Clean Room of the PDF; and one (1) area air sample shall be collected daily at the approximate location of HEPA exhaust discharge, if used. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report. Pressure readings with the containment may be omitted if negative pressure Glovebag procedures are used.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

- A. The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the ways and procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of the project. The AHAP shall be submitted for review and approval prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAP(s) are:
 - 1. Minimum Personnel Qualifications
 - 2. Contingency Plans and Arrangements
 - 3. Security and Safety Procedures
 - 4. Respiratory Protection/Personal Protective Equipment Program and Training
 - 5. Medical Surveillance Program and Recordkeeping
 - 6. Regulated Area Requirements for Glovebag Abatement
 - Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF) or approved equivalent.
 - 8. Monitoring, Inspections, and Testing

- 9. Removal Procedures for Piping ACM Using the Glovebag Method
- 10. Disposal of ACM waste
- 11. Regulated Area Decontamination/Clean-up
- 12. Regulated Area Visual and Air Clearance
- 13. Project Completion/Closeout

2.5 SUBMITTALS

- A. Pre-Start Meeting Submittals:
 - Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:
 - a. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
 - b. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
 - c. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
 - d. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - Waste water filtration system, shower system, containment barriers.
 - Encapsulantys, surfactants, hand held sprayers, airless sprayers, Glovebas, and fire extinguishers.
 - Respirators, water filtration system, shower system, containment barriers equipment.
 - 5) Fire safety equipment to be used in the regulated area.
 - e. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM

disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.

- f. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- g. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. Area or clearance air monitoring shall be conducted in accordance with EPA AHERA protocols.
- h. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - 1) Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project; Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date.
 - 2) List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; and Resolution.
 - 3) List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal, State, Local NESHAP), penalties, and legal actions taken against the company including the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- i. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-38

accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.

- CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; medical opinion; and current respirator fit test.
- 2) Competent Person(s)/Supervisor(s): Number; names; last four digits of social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- 3) Workers: Numbers; names; last four digits of social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- j. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAP(s) incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- k. Rented equipment must be decontaminated prior to returning to the rental agency.

- Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all SDS, and application instructions.
- B. Submittals During Abatement:
 - 1. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VA's Representative.
 - The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - Removal of any poly barriers and/or failure of negative pressure Glovebags.
 - b. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - c. Packaging and removal of ACM waste from regulated area.
 - d. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's Representative on a weekly basis.
- C. Submittals at Completion of Abatement: The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.6 ENCAPSULANTS

- A. Types of Encapsulants:
 - 1. The following four types of encapsulants must comply with performance requirements as stated in paragraph 2.6.2:

- a. Removal encapsulant used as a wetting agent to remove ACM.
- b. Bridging encapsulant provides a tough, durable coating on ACM.
- c. Penetrating encapsulant penetrates/encapsulates ACM at least 13
 mm (1/2 inch).
- d. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.
- B. Performance Requirements:
 - Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:
 - a. General Requirements for all Encapsulants:
 - 1) ASTM E84: Flame spread of 25; smoke emission of 50.
 - University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3) ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4) ASTM E96: Permeability minimum of 0.4 perms.
 - b. Bridging/Penetrating Encapsulants:
 - ASTM E736: Cohesion/Adhesion Test 24 kPa (50 pounds/square foot).
 - ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - 3) ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kg-mm (43 in/lb).
 - ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking
 - c. Lockdown Encapsulants:
 - ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2) ASTM E736: Bond Strength 48 kPa (100 pounds/square foot) (test compatibility with cementitious and fibrous fireproofing).
 - 3) In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or creating any noxious gaseous or vapors during or after application.

2.7 CERTIFICATES OF COMPLIANCE

A. The Contractor shall submit to the VA Representative certification from the manufacturer indicating compliance with performance requirements

for encapsulants when applied according to manufacturer recommendations.

B. Recyclable Protective Clothing: If recyclable clothing is provided, all requirements of EPA, DOT and OSHA shall be met.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

- A. Site Security:
 - Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and Local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and shall be posted in the clean room of the decontamination unit or in a designated area located immediately outside of the regulated area established for Glovebag removal activities.
 - 2. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
 - 3. A log book shall be maintained in the clean room of the decontamination unit or in a designated area located immediately outside of the regulated area established for Glovebag removal activities. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
 - 4. Access to the regulated area shall be through a single decontamination unit or in an area designated by the Competent Person for Glovebag removal activities. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where

exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.

- 5. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- 6. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- 7. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police shall be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.
- B. OSHA Danger Signs: Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed ambient background levels. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.
- C. Shut Down Lock Out Electrical: Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.
- D. Shut Down Lock Out HVAC: Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's Representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2-ayers of independently installed 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all

contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

- E. Containment Barriers and Coverings for the Regulated Area:
 - 1. General: Seal off any openings at the perimeter of the regulated area with critical barriers to completely isolate the regulated area and to contain all airborne asbestos contamination created by the abatement activities. Should the adjacent area past the regulated area become contaminated due to improper work activities, the Contractor shall suspend work inside the regulated area, continue wetting, and clean the adjacent areas in accordance with procedures described in these specifications. Any and all costs associated with the adjacent area cleanup shall not be borne by the VA.
 - 2. Preparation Prior to Sealing Off: Place all materials, equipment and supplies necessary to isolate the regulated area inside the regulated area. Remove all movable material/equipment as described above and secure all unmovable material/equipment as described above. Properly secured material/ equipment shall be considered to be outside the regulated area.
 - 3. Controlling Access to the Regulated Area: Access to the regulated area is allowed only through the personnel decontamination facility (PDF) or in an area designated by the Competent Person for Glovebag removal activities. All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6-mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.
 - 4. Critical Barriers: The regulated area must be completely separated from the adjacent area(s) and the outside by at least 2-layers of independently installed 6-mil fire retardant poly and duct tape/spray adhesive. Individually seal all supply and exhaust ventilation openings, lighting fixtures, clocks, doorways, windows, convectors, speakers, and other openings into the regulated area with 2-layers of 6-mil fire retardant poly, and taped securely in place with duct tape/spray adhesive. Critical barriers must remain in place until all work and clearances have been completed. Light

fixtures shall not be operational during abatement. Auxiliary lighting shall be provided. If needed, provide plywood squares 6 inches x 6 inches x 3/8 inch (150mm x 150mm x 18mm) or approved equivalent, held in place with 6d smooth masonry/galvanized nail or approved equivalent driven through the center of the plywood square and duct tape on the poly so as to clamp the poly to the wall/surface. Locate plywood squares at each end, corner, and 4 feet (1200mm) maximum on centers

- 5. Extension of the Regulated Area: If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.
- 6. Floor Barriers: All floors within 10 feet of Glovebag work shall be covered with 2-layers of 6-mil fire retardant poly. If no breach occurs during the Glovebag abatement operation, these layers of 6-mil fire retardant poly may be reused
- F. Sanitary Facilities: The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.
- G. Pre-Cleaning:
 - 1. Pre-Cleaning Movable Objects:
 - a. The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s), if used, shall be supplied with backflow prevention.
 - b. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. PPE must be donned by all workers performing pre-cleaning activities. After items have been precleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

- c. Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.
- 2. Pre-Cleaning Fixed Objects:
 - a. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.
 - b. Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2-layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.
- 3. Pre-Cleaning Surfaces in the Regulated Area:
 - a. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area.
 - b. Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.
- H. Pre-Abatement Activities:
 - Pre-Abatement Meeting: The VA Representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a preabatement meeting between the Contractor, the CPIH/CIH, Competent

Person, the VA Representatives, and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information or documentation to the VA's Representative regarding any submittals, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

- 2. Pre-Abatement Inspections and Preparations:
 - a. Before any work begins on the construction of the regulated area, the Contractor will:
 - Conduct a space-by-space inspection with an authorized VA Representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
 - 2) The VA Representative, the Contractor, and the VPIH/CIH must be aware of AEQA 10-95 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAP (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.

- 3) Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- Inspect existing firestopping in the regulated area. Correct as needed.
- 3. Pre-Abatement Construction and Operations:
 - a. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
 - b. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's Representative when the work is completed in accordance with this specification. The VA's Representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation.
 - c. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's Representative.
 - d. Upon satisfactory inspection of the installation of and operation of systems the VA's Representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification.

3.2 REMOVAL OF PIPING ACM

- A. Wetting Materials:
 - Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure that the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's Representative.
 - 2. Amended Water: Provide water to which a surfactant has been added to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting of one

ounce of 50 percent polyoxyethylene ester and 50 percent polyoxyethylene ether mixed with 5 gallons (19L) of water.

- 3. Removal Encapsulant: Provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during disturbance equal to or greater than the amended water described above in B.
- B. Secondary Barrier and Walkways: Install as a drop cloth a 6-mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Secure the drop cloth (6-mil poly sheet) with duct tape or approved equivalent to prevent it from moving or debris from getting behind it. Remove the drop cloth (6-mil poly sheet) at the end of the shift or as work in the area is completed. Keep residue on the drop cloth (6-mil poly sheet) wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- C. Wet Removal of ACM: Using acceptable Glovebag procedures, adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release.

3.3 GLOVEBAG REMOVAL PROCEDURES

A. General: All applicable OSHA requirements and Glovebag manufacturer's recommendations shall be met during Glovebag removal operations. In cases where live steam lines are present, the lines must be shut down prior to any work being performed on the system. No abatement work shall be conducted on live, pressurized steam lines. The Contractor may choose to use a High Temperature Glovebag in which a temperature rating ranges from 300°F to 700°F on steam lines that have recently been shut

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-49

down and remain at high temperature for some time. In the case where a Glovebag is not feasible, the Contractor will need to build a full negative pressure containment of sufficient size or work within a negative pressure mini-enclosure and follow all regulations as it pertains to removal. The Contractor shall provide enough HEPA negative air machines to continuously maintain a negative pressure differential of -0.02 inch water column gauge (WCG) inside the regulated work area relative to adjacent non-work building areas. OSHA 29 CFR 1926.1101 (g) (5) (i) (A) (2) also requires at least four (4) air changes per hour. Contractor shall increase air changes per hour as necessary to maintain volatile organic compounds below the applicable OSHA PEL. Contractor shall protect pipe insulation from being disturbed on either side of the Glovebag removal operations with a "candy stripe" layer of 6-mil poly sheet and duct tape, if Glove bag removal activities cause the piping to dislodge ACM during performance of their work.

- Mix the surfactant with water in the garden sprayer, following the manufacturer's directions.
- 2. Have each employee put on a HEPA filtered respirator approved for asbestos and check the fit using the positive/negative fit check.
- 3. Have each employee put on a disposable full-body suit. Remember, the hood goes over the respirator straps.
- Check closely the integrity of the glove bag to be used. Check all seams, gloves, sleeves, and glove openings. OSHA requires the bottom of the bag to be seamless.
- 5. Check the pipe where the work will be performed. If it is damaged (broken lagging, hanging, etc.), wrap the entire length of the pipe in poly sheeting and "candy stripe" it with duct tape.
- 6. Attach Glovebag with required tools per manufacturer's instructions.
- 7. Using the smoke tube and aspirator bulb, test 10 percent of Glovebags by placing the tube into the water porthole (two-inch opening to glove bag), and fill the bag with smoke and squeeze it. If leaks are found, they shall be taped closed using duct tape and the bag shall be retested with smoke.
- 8. Insert the wand from the water sprayer through the water porthole.
- 9. Insert the hose end from a HEPA vacuum into the upper portion of the glove bag.
- 10.Wet and remove the pipe insulation.

- 11.If the section of pipe is covered with an aluminum jacket, remove it first using the wire cutters to cut any bands and then use tin snips to remove the aluminum. It is important to fold the sharp edges in to prevent cutting the bag when placing it in the bottom.
- 12.When the work is complete, spray the upper portion of the bag and move all residue into the bottom of the bag with the other waste material. Be very thorough. Use adequate water.
- 13.Put all tools, after washing them off in the bag, in one of the sleeves of glove bag and turn it inside out, drawing it outside of the bag. Twist the sleeve tightly several times to seal it and tape it several tight turns with duct tape. Cut through the middle of the duct tape and remove the sleeve. Put the sleeve in the next glove bag or put it in a bucket of water to decontaminate the tools after cutting the sleeve open.
- 14.Turn on the HEPA vacuum and collapse the bag completely. Remove the vacuum nozzle, seal the hole with duct tape, twist the bag tightly several times in the middle, and tape it to keep the material in the bottom during removal of the glove bag from the pipe.
- 15.Slip a disposal bag over the glove bag (still attached to the pipe). Remove the tape securing the ends, and slit open the top of the glove bag and carefully fold it down into the disposal bag. Double bag and gooseneck waste materials.
- B. Negative Pressure Glovebag Procedure:
 - In addition to the above requirements, the HEPA vacuum shall be run continuously during the Glovebag procedure until completion at which time the Glovebag will be collapsed by the HEPA vacuum prior to removal from the pipe/component.
 - 2. The HEPA vacuum shall be attached and operated as needed to prevent collapse of the Glovebag during the removal process.

3.4 LOCKDOWN ENCAPSULATION

- A. General: Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, all piping surfaces shall be encapsulated with a bridging encapsulant.
- B. Sealing Exposed Edges: Seal edges of ACM exposed by removal work with two coats of encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the encapsulant.

3.5 DISPOSAL OF ACM WASTE MATERIALS

- A. General: Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 171 - 180 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.
- B. Procedures:
 - 1. The VA must be notified at least 24 hours in advance of any waste removed from the containment
 - 2. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures in this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. OSHA Danger signs must be displayed during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
 - 3. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped and HEPA vacuumed.
 - 4. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.6 PROJECT DECONTAMINATION

A. General:

- 1. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- 2. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary poly barrier prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- 3. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary poly barrier prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.
- B. Regulated Area Clearance: Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.
- C. Work Description: Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.
- D. Pre-Decontamination Conditions:
 - 1. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.
 - 2. At the start of decontamination, the following shall be in place.
 - a. Critical barriers over all openings consisting of two layers of 6-mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - b. Decontamination facilities, if required for personnel and equipment in operating condition.
- E. First Cleaning: Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-53

abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time, if used. Additional cleaning may be needed as determined by the CPIH/VPIH/CIH.

- F. Pre-Clearance Inspection and Testing: The CPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform preclearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III) (B) (7) (d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's Representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.
- G. Lockdown Encapsulation of Abated Surfaces: With the express written permission of the VA's Representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification.

3.7 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING

- A. General: Notify the VA Representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the CPIH/CIH after the final cleaning.
- B. Final Visual Inspection: Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no additional cost to the VA. Dust/material samples may be collected and analyzed at no additional cost to the VA at the discretion of the CPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.
- C. Final Air Clearance Testing:
 - After an acceptable final visual inspection by the CPIH/CIH and VA Representative, the VPIH/CPIH will perform the final clearance

testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of two field blank. If work is equal to or more than 260 lf/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA presented in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All additional inspection and testing costs will be borne by the Contractor.

- If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.
- D. Final Air Clearance Procedures:
 - 1. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, and < 70 AHERA asbestos structures per square millimeter (s/mm2) by AHERA TEM. No averaging of results will be used for this project. All five (5) TEM samples inside the regulated area shall be at or below 70 asbestos s/mm2 to satisfy the project final clearance criteria.
 - 2. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the CPIH/CIH will secure samples and analyze them according to the following procedures:
 - a. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - b. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8μ MCE filters for PCM analysis and 0.45μ MCE for TEM. A minimum of 3850 Liters of air using calibrated sampling pumps shall be collected for PCM samples and a minimum of 1200 Liters of air

using calibrated sampling pumps shall be collected for TEM clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.

- E. Clearance Sampling Using PCM:
 - The CPIH/CIH will perform clearance samples as indicated by the specification.
 - 2. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 3850 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.
- F. Clearance Sampling Using TEM:
 - Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks.
 - 2. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 13 clearance samples shall be collected. All samples must be equal to or less than 70 AHERA structures per square millimeter (s/mm2) AHERA TEM, no averaging of results for this specific project.
- G. Laboratory Testing of PCM Samples: The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the CPIH/CIH so that verbal/faxed reports can be received within 24-36 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's Representative and the Contractor.
- H. Laboratory Testing of Tem Samples: Samples shall be sent by the VPIH/CIH to a NIST NVLAP accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST NVLAP Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24-36 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM

results shall be furnished to the VA's Representative and the Contractor.

3.8 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

- A. Completion of Abatement Work: After thorough decontamination, seal negative air machines with 2-layers of 6-mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:
 - 1. Remove all equipment, materials, and debris from the project area.
 - Package and dispose of all asbestos waste as required. Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 171 - 180 regulations.
 - 3. Repair or replace all interior finishes damaged during the abatement work.
 - 4. The VA will be notified of any waste removed from the containment prior to 24 hours.
 - 5. Fulfill other project closeout requirements as specified elsewhere in this specification.
- B. Certificate of Completion by Contractor: The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.
- C. Work Shifts: All work shall generally be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.
- D. Re-Insulation: If required as part of the contract, replace all asbestos containing insulation with suitable non-asbestos material. Provide SDS for all replacement materials. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

ATTACHMENT #1 CERTIFICATE OF COMPLETION

DATE:	VA Project #:
PROJECT NAME:_	Abatement Contractor:
VAMC/ADDRESS:_	

- 1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building): which took place from / / to / /
- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Da	ate:
CPIH/CIH Print Name:_	
Abatement Contractor	Signature/Date:
Abatement Contractor	Print Name:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-58

ATTACHMENT #2 CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT NAME:

DATE:

PROJECT ADDRESS:

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate of worker's acknowledgement you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32-hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:	
Printed Name:	
Social Security Number:	
Witness:	

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02 82 13.13 Glovebag Asbestos-59

ATTACHMENT #3 AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

- 1. I verify that the following individual
- Name:______ Social Security Number:______ who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address. Address:
- 2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.
- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of	CPIH/CIH:	Date:	
Printed Name	of CPIH/CIH:		
Signature of	Contractor:	Date:	
Printed Name	of Contractor:		
FARGO VA HEAI	THCARE SYSTEM	VA PROJECT NO: 437-21-2	25
EHRM - TRAINI	ING AND ADMIN. SPACE SUPPORT	02 82 13.13 Glovebag Asbestos	-60

ATTACHMENT #4 ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA	Project	Location:
VA	Project	#:
VA	Project	Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Con	tractor Owner	's	Signature		Date	
---------------	---------------	----	-----------	--	------	--

- - - END - - -

SECTION 02 83 33.13 LEAD-BASED PAINT REMOVAL AND DISPOSAL

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Removing and disposal of lead-based paint (LBP) atinterior locations .

1.2 RELATED WORK

- A. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Hazardous Material Abatement.
- B. Section 02 41 00, DEMOLITION: Demolition Disturbing Lead-Based Paint.
- C. Section 09 91 00, PAINTING: Surface Preparation Disturbing Lead-Based Paint.

1.3 DEFINITIONS

- A. Action Level: Employee exposure, without regard to use of respirator, to an airborne lead concentration of 30 micrograms(μ) per cubic meter (m³) of air determined as an 8-hour Time-Weighted Average (TWA). As used in this section, "30 micrograms per cubic meter of air" refers to OSHA 29 CFR 1926.62 Lead in Construction Action Level (AL).
- B. Area Monitoring: Sampling of lead concentrations within lead control area and inside physical boundaries which are representative of airborne lead concentrations which may reach breathing zone of personnel potentially exposed to lead.
- C. Breathing Zone: Area within hemisphere, forward of shoulders, with 150 mm to 225 mm (6 to 9 inches) radius and center at nose or mouth of employee.
- D. Certified Industrial Hygienist (CIH): As used in this section, refers to an Industrial Hygienist Certified in the Comprehensive Practice of Industrial Hygiene by the American Board of Industrial Hygiene and Board for Global EHS Credentialing, employed by Contractor.
- E. Change Rooms and Shower Facilities: Rooms within designated physical boundary around lead control area equipped with separate storage facilities for clean protective work clothing and equipment and for street clothes which prevents cross contamination.

- F. Competent Person: Person capable of identifying lead hazards in work area and authorized by contractor to take corrective action. Meets the OSHA definition of Competent Person.
- G. Decontamination Room: Room for removal of contaminated personal protective equipment (PPE).
- H. Eight-Hour Time Weighted Average (TWA): Airborne concentration of lead averaged over 8-hour workday to which an employee is exposed.
- I. High Efficiency Particulate Air (HEPA) Filter Equipment: HEPA filtered vacuuming equipment with UL 586 filter system capable of collecting and retaining lead-contaminated paint dust. HEPA filter means 99.97 percent efficient against 0.3 micron (0.012 mil) size particles.
- J. Lead: Metallic lead, inorganic lead compounds, and organic lead soaps. Excluded from this definition are other organic lead compounds.
- K. Lead Control Area: Enclosed area or structure with full containment to prevent spreading lead dust, paint chips, and debris from lead-based paint removal operations. Lead control area is isolated by physical boundaries to prevent unauthorized entry of personnel.
- L. Lead Permissible Exposure Limit (PEL): Fifty micrograms per cubic meter of air (50 µg/m³) determined as an 8-hour TWA as determined by 29 CFR Part 1926.62. When employee is exposed for more than 8-hours per work day, determine PEL by the following formula. PEL micrograms/cubic meter (parts per million) of air = 400/No. of hrs. worked per day.
- M. Personnel Monitoring: Sampling of lead concentrations within employee breathing zone to determine 8-hour time weighted average concentration according to 29 CFR Part 1926.62. Take samples that are representative of the various employee's work tasks.
- N. Physical Boundary: Area physically roped or partitioned off around enclosed lead control area to limit unauthorized entry of personnel. As used in this section, "inside boundary" shall mean same as "outside lead control area."

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute (ANSI): Z9.2-2018.....Fundamentals Governing the Design & Operation of Local Exhaust Ventilation Systems.
- C. Code of Federal Regulations (CFR):
 29 CFR Part 1910.....Occupational Safety and Health Standards.

29 CFR Part 1926......Safety and Health Regulations for Construction. 40 CFR Part 260..... Hazardous Waste Management System: General. 40 CFR Part 261.....Identification and Listing of Hazardous Waste. 40 CFR Part 262.....Standards Applicable to Generators of Hazardous Waste. 40 CFR Part 263.....Standards Applicable to Transporters of Hazardous Waste. 40 CFR Part 264..... Standards for Owners and Operations of Hazardous Waste Treatment, Storage, and Disposal Facilities. 40 CFR Part 265.....Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities. 40 CFR Part 268.....Land Disposal Restrictions. 49 CFR Part 172......Hazardous Material Table, Special Provisions, Hazardous Material Communications, Emergency Response Information, and Training Requirements, and Security Plans. 49 CFR Part 178.....Specifications for Packaging.

D. Underwriters Laboratories (UL): 586-09......High-Efficiency, Particulate, Air Filter Units.

1.5 PRE-REMOVAL MEETINGS

- A. Conduct pre-removal meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Certified Industrial Hygienist.
 - c. Architect/Engineer.
 - d. Inspection and Testing Agency.
 - e. Contractor.
 - f. Paint removal contractor.
 - g. Other installers responsible for finishing resulting surfaces.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Respiratory protection program.
 - b. Hazard communication program.

- c. Hazardous waste management plan.
- d. Safety and health regulation compliance.
- e. Employee training.
- f. Removal schedule.
- g. Removal sequence.
- h. Preparatory work.
- i. Protection before, during, and after removal.
- j. Removal.
- k. Inspecting and testing.
- 1. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Paint removal products.
 - b. Vacuum filters.
 - c. Respirators.
 - 2. Safety Data Sheet for each paint removal product.
 - 3. Installation instructions.
 - a. Paint removal products.
- C. Test Reports: Submit testing laboratory reports.
 - Submit air monitoring results within three working days, signed by testing laboratory employee performing air monitoring, employee analyzing sample, and CIH.
- D. Certificates: Certify completed lead training.
 - Submit certificate for each employee signed and dated by CIH and employee stating employee was trained.
- E. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Paint removal contractor.
 - 2. Testing laboratory.
 - a. Name, address, and telephone number.
 - b. Current evidence of participation in American Industrial Hygiene Association (AIHA) Laboratory Accreditation Program (LAP), LLC, Environmental Lead Laboratory Accreditation Program (ELLAP).
 - c. Copy of current AIHA accreditation certificate.

- 3. Industrial hygienist.
 - a. Name, address, and telephone number.
 - b. Resume showing previous experience.
 - c. Copy of current ABIH CIH certification.
- 4. Paint disposal facility.
 - a. Name, address, and telephone number.
 - b. Current license or authorization to receive and dispose lead contaminated waste.
- F. Record Documents:
 - Completed and signed hazardous waste manifest from waste transporter.
 - 2. Toxicity Characteristic Leaching Procedure (TCLP) test results to determine if waste is hazardous.
 - 3. Paint disposal facility receipts and disposition reports.
 - 4. Certification of medical examinations.
 - 5. Medical Opinion that employee is qualified to wear a respirator, that employees has been trained and fit tested for the respirator.
 - 6. Employee training certification.

1.7 QUALITY ASSURANCE

- A. Safety and Health Regulation Compliance:
 - Comply with laws, ordinances, rules, and regulations of Federal, State, and Local authorities having jurisdiction regarding removing, handling, storing, transporting, and disposing lead waste materials.
 - a. Comply with applicable requirements of 29 CFR Part 1926.62.
 - b. Notify Contracting Officer's Representative and request resolution of conflicts between regulations and specified requirements before starting work.
 - Comply with federal, state and local laws, ordinances, criteria, rules and regulations regarding removing, handling, storing, transporting, and disposing lead-contaminated materials:
 - a) U.S. EPA Region 8 (8P-P3T)
 1595 Wynkoop Street
 Denver, CO 80202-1129
 (303) 312-6966
 - b) North Dakota Department of Environmental Quality
 4201 Normandy Street, Bismarck, ND 58503
 (701)-328-5150

- B. Paint Removal Contractor: Experienced contractor, registered or licensed by applicable state agency regulating lead-based paint removal.
- C. Testing Laboratory: State certified independent testing laboratory experienced in airborne lead monitoring, testing, and reporting.
 - Successful participant in American Industrial Hygiene Association (AIHA) Laboratory Accreditation Program (LAP), LLC, Environmental Lead Laboratory Accreditation Program (ELLAP).
- D. Certified Industrial Hygienist: Certified as CIH by American Board of Industrial Hygiene in comprehensive practice and responsible for:
 - 1. Certify Training.
 - 2. Review and approve lead-based paint removal plan for conformance to applicable referenced standards.
 - 3. Inspect lead-based paint removal work for conformance with approved plan.
 - 4. Direct monitoring.
 - 5. Ensure work is performed according to specifications.
 - Ensure personnel and environment hazardous exposures are adequately controlled.
- E. Paint Disposal Facility: State certified disposal facility qualified to receive and dispose lead-based paint.
- F. Lead-based Paint Removal Plan:
 - Submit detailed, site-specific plan describing lead-based paint removal procedures.
 - Include sketch showing location, size, and details of lead control areas, decontamination rooms, change rooms, shower facilities, and mechanical ventilation system.
 - 3. Include eating, drinking, and restroom procedures, interface of trades, work sequencing, collected wastewater and paint debris disposal plan, air sampling plan, respirators, protective equipment, and detailed description of containment methods ensuring airborne lead concentrations do not exceed action level outside lead control area.
 - a. Eating, drinking, and smoking are not acceptable within lead control area.
 - 4. Include air sampling, training and strategy, sampling methodology, frequency, duration, and qualifications of air monitoring personnel.

- G. Respiratory Protection Program: Establish and implement program required by 29 CFR Part 1910.134 and 29 CFR Part 1926.62.
 - 1. Provide each employee negative pressure or other appropriate respirator.
 - a. Respirator fit each employee's respirator at initial fitting and at least annually thereafter, as required by 29 CFR Part 1910.134 Respiratory Protection.
- H. Hazard Communication Program: Establish and implement program required by 29 CFR Part 1910.1200 which is the same as 29 CFR 1926.59.
- I. Hazardous Waste Management Plan: Establish and implement plan according to applicable requirements of Federal, State, and Local hazardous waste regulations including the following:
 - 1. Identification of hazardous wastes associated with work.
 - 2. Estimated quantities of generated and disposed waste.
 - 3. Names and qualifications of each contractor transporting, storing, treating, and disposing wastes. Include facility location and 24hour point of contact. Provide two copies of EPA Identification numbers .
 - Names and qualifications (experience and training) of personnel working on-site with hazardous wastes.
 - 5. List of required waste handling equipment including cleaning, volume reduction, and transport equipment.
 - Spill prevention, containment, and cleanup contingency implementation measures.
 - 7. Work plan and schedule for waste containment, removal, and disposal with daily waste cleaned up and containerization.
 - 8. Hazardous waste disposal cost.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PAINT REMOVAL PRODUCTS

A. Chemical Stripper: Biodegradable, non-toxic, capable of removing existing paint layers in one application, and acceptable to CIH.

2.2 ACCESSORIES

A. Waste Collection Drums: 49 CFR Part 178; Type 1A2, steel, removable head, 200 L (55 gal.) capacity, capable of containing waste without loss.

- B. Vacuum Cleaner: HEPA filtered type.
- C. Scrapers:
 - 1. Metal type for use on metal, concrete, and masonry surfaces.
 - 2. Plastic type for use on wood, plaster, gypsum board, and other surfaces.
- D. Rinse Water: Potable.
- E. Cleaning Cloths: Cotton.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before exposure to lead-contaminated dust, provide workers with comprehensive medical examination required by 29 CFR Part 1926.62 (j) Medical Surveillance.
- B. Maintain complete and accurate employee medical records according to 29 CFR Part 1910.1020.
- C. Train each employee performing paint removal, disposal, and air sampling operations according to 29 CFR Part 1926.62.
 - Certify training is completed before employee is permitted to work on project and enter lead control area.

3.2 PREPARATION

- A. Protect existing work indicated to remain.
 - Perform paint removal work without damaging and contaminating adjacent work.
 - 2. Restore damage and contamination to original condition.
- B. Notify Contracting Officer 10 days before starting paint removal work.
- C. Lead Control Area Requirements:
 - Establish lead control area by completely enclosing lead-based paint removal work area with containment screens.
 - 2. Contain removal operations using negative pressure full containment system with minimum one change room and HEPA filtered exhaust.
- D. Boundary Requirements: Provide physical boundaries around lead control area by roping off area designated on drawings or providing curtains, portable partitions or other enclosures to ensure that airborne lead concentrations do not meet or exceed action level outside of lead control area.
- E. Heating, Ventilating and Air Conditioning (HVAC) Systems: Shut down, lock out, and isolate HVAC systems supplying exhausting, and passing through lead control areas. Seal HVAC inlets and outlet within lead

control area with 6-mil plastic sheet and tape. Tape seal seams in HVAC components passing through lead control area.

- F. Change Room and Shower Facilities: Provide clean change rooms and shower facilities within physical boundary around lead control area according to 29 CFR Part 1926.62.
- G. Mechanical Ventilation System:
 - 1. Provide ventilation system to control personnel exposure to lead using HEPA equipped negative air machines.
 - Design, construct, install, and maintain HEPA filtered fixed local exhaust ventilation system according to ANSI Z9.2 and approved by CIH.
 - 3. Exhaust ventilation air to exterior wherever possible.
 - 4. When exhaust ventilation air must be recirculated into work area, provide HEPA filter with reliable back-up filter and controls to monitor lead concentration in return air and to bypass recirculation system automatically when system fails.
- H. Personnel Protection: Provide and use required protective clothing and equipment within lead control area.
- I. Warning Signs: Provide warning signs complying with 29 CFR Part 1926.62 at lead control area approaches. Locate signs so personnel read signs and take necessary precautions before entering lead control area.

3.3 WORK PROCEDURES

- A. Remove lead-based paint according to approved lead-based paint removal plan.
 - Perform work only in presence of CIH or Industrial Hygienist (IH) Technician under direction of CIH ensuring continuous inspection of work in progress and direction of air monitoring activities.
 - Handle, store, transport, and dispose lead or and lead contaminated waste according to 40 CFR Part 260, 40 CFR Part 261, 40 CFR Part 262, 40 CFR Part 263, 40 CFR Part 264, and 40 CFR Part 265. Comply with land disposal restriction notification requirements as required by 40 CFR Part 268.
- B. Use procedures and equipment required to limit occupational and environmental lead exposure when lead-based paint is removed according to 29 CFR Part 1926.62.
- C. Dispose removed paint and waste according to Environmental Protection Agency (EPA), federal, state, and local requirements.
- D. Personnel Exiting Procedures:

- 1. When personnel exit lead control area, comply with the following procedures:
 - a. Vacuum exposed clothing surfaces.
 - Remove protective clothing and equipment in decontamination room.
 Place clothing in approved impermeable disposal bag.
 - c. Shower.
 - d. Dress in clean clothes before leaving lead control area.
- E. Monitoring General:
 - Monitor airborne lead concentrations according to
 29 CFR Part 1910.1025by testing laboratory as directed by CIH.
 - Take personal air monitoring samples on employees anticipated to have greatest exposure risk as determined by CIH. Additionally, take air monitoring samples on minimum 25 percent of work crew or minimum of two employees, whichever is greater, during each work shift.
 - 3. Submit results of air monitoring samples, signed by CIH, within 48 hours after taking air samples. Notify Contracting Officer's Representative immediately of lead exposure at or exceeding action level outside of lead control area.
- F. Monitoring During Paint Removal:
 - Perform personal and area monitoring during entire paint removal operation.
 - Conduct area monitoring at physical boundary daily for each work shift to ensure unprotected personnel are not exposed above action level anytime.
 - 3. For outdoor operations, take at least one sample on each shift leeward of lead control area. When adjacent areas are contaminated, clean area of contamination and have CIH visually inspect and certify lead contamination is cleaned.
 - 4. Stop work when outside boundary lead levels meet or exceed action level. Notify Contracting Officer's Representative, immediately.
 - 5. Correct conditions causing increased lead concentration as directed by CIH.
 - Review sampling data collected during work stoppage to determine if conditions require additional work method modifications as determined by CIH.
 - 7. Resume paint removal when approved by CIH.

3.4 LEAD-BASED PAINT REMOVAL

- A. Remove paint within areas indicated on drawings completely exposing substrate. Minimize damage to substrate.
- B. Comply with paint removal processes described lead paint removal plan.
- C. Lead-Based Paint Removal: Select processes for each application to minimize work area lead contamination and waste.

3.5 SUBSTRATE SURFACE PREPARATION

- A. Protect substrates from deterioration and contamination until refinished.
 - 1. Protect metal substrates from flash rusting.
- B. Prepare and paint substrates according to Section 09 91 00, PAINTING.

3.6 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section01 45 29, TESTING LABORATORY SERVICES.
- B. Perform sampling and testing for:
 - 1. Air monitoring.
 - 2. Lead-Based Paint.

3.7 CLEANING AND DISPOSAL

- A. Cleaning:
 - Maintain lead control area surfaces free of accumulating paint chips and dust. Confine dust, debris, and waste to work area.
 - HEPA vacuum clean and wet wipe with detergent solution work area daily, at end of each shift, and when paint removal operation is complete.
- B. CIH Certification: Certify in writing that inside and outside lead control area air monitoring samples are less than action level, employee respiratory protection was adequate, the work was performed according to 29 CFR Part 1926.62, and no visible accumulations of lead-based paint and dust remain on worksite.
 - Do not remove lead control area or roped-off boundary and warning signs before Contracting Officer's Representative's receipt of CIH's certification.
 - 2. Re-clean areas showing dust or residual paint chips.
- C. Testing: Where indicated and when directed by Contracting Officer's Representative, test lead-based paint residue and used abrasive according to 40 CFR Part 261 for hazardous waste.
- D. Waste Collection:

- Collect lead-contaminated materials including waste, scrap, debris, bags, containers, equipment, and clothing, which may produce airborne lead contamination.
- 2. Place lead contaminated materials in waste disposal drums. Label each drum identifying waste type according to 49 CFR Part 172 and date waste materials were first put into drum. Obtain and complete the Uniform Hazardous Waste Manifest forms. Comply with land disposal restriction notification requirements required by 40 CFR Part 268:
- 3. Coordinate temporary storage location on project site with Contracting Officer's Representative.
- E. Waste Disposal:
 - Minimum 14 days before delivery, notify Contracting Officer's Representative who will arrange for job site inspection of drums and manifests by local EPA approved disposal facility.
 - Contracting Officer's Representative will arrange hazardous wastes removal, transport and delivery to local EPA approved disposal facility to ensure drums do not remain on project site longer than 90 calendar days from drum label date.
 - Do not store hazardous waste drums in temporary storage location longer than 90 calendar days from drum label date.
 - 4. Remove, transport, and deliver drums to paint disposal facility.
 - a. Obtain signed receipt including date, time, quantity, and description of materials received according to 40 CFR Part 262.
 - b. Obtain final report of materials disposition after disposal completion.

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 02

Article I. SECTION 03 30 53 (Short Form) CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cast-in-place structural concrete.
 - 2. Slab on grade infill.
 - 3. Preparation of existing surfaces to receive concrete.

1.2 RELATED WORK

A. Section 01 45 29, TESTING LABORATORY SERVICES: Materials Testing and Inspection During Construction.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American Concrete Institute (ACI): 117-10(R2015)......Specification for Tolerances for Concrete Construction and Materials and Commentary 211.1-91(R2009).....Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. 211.2-98(R2004).....Standard Practice for Selecting Proportions for Structural Lightweight Concrete. 301/301M-16.....Specifications for Structural Concrete. 305.1-14 -Hot Weather Concreting. 306.1-90(R2002).....Cold Weather Concreting. 318/318M-19.....Building Code Requirements for Structural Concrete and Commentary 347R-14 -Guide to Formwork for Concrete. SP-66-04-....ACI Detailing Manual.

A615/A615M-20.....Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement A996/A996M-16....Standard Specification for Rail Steel and Axle Steel Deformed Bars for Concrete Reinforcement

A1064/A1064M-18aStandard Specification for Carbon-Steel Wire
and Welded Wire Reinforcement, Plain and
Deformed, for Concrete
C33/C33M-18Standard Specification for Concrete Aggregates.
C39/C39M-20Standard Test Method for Compressive Strength
of Cylindrical Concrete Specimens.
C94/C94M-20Standard Specification for Ready-Mixed
Concrete.
C143/C143M-20Standard Test Method for Slump of Hydraulic
Cement Concrete.
C150/C150M-20Standard Specification for Portland Cement.
C171-16 Standard Specification for Sheet Materials for
Curing Concrete.
C192/C192M-19Standard practice for Making and Curing
Concrete Test Specimens in the Laboratory.
C219-20a Standard Terminology Relating to Hydraulic and
Other Inorganic Cements.
C260/C260M-10a(2016)Standard Specification for Air-Entraining
Admixtures for Concrete.
C330/C330M-17aStandard Specification for Lightweight
Aggregates for Structural Concrete.
C494/C494M-19Standard Specification for Chemical Admixtures
for Concrete.
C618-19 Standard Specification for Coal Fly Ash and Raw
or Calcined Natural Pozzolan for Use in
Concrete.
C881/C881M-20Standard Specification for Epoxy-Resin-Base
Bonding Systems for Concrete.
C989/C989M-18aStandard Specification for Slag Cement for Use
in Concrete and Mortars.
C1240-20Standard Specification for Silica Fume Used in
Cementitious Mixtures.
D1751-18 Standard Specification for Preformed Expansion
Joint Fillers for Concrete Paving and
Structural Construction (Non-extruding and
Resilient Bituminous Types).
E1155-20Determining FF Floor Flatness and FL Floor
Levelness Numbers.

E1745-17Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs.

D. International Concrete Repair Institute: 310.2R-2013 -.....Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer

Overlays, and Concrete Repair.

1.4 SUBMITTALS

- A. Submittal Procedures: Refer to Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. All items indicated below are required submittals requiring Contracting Officer's Representative (COR) review and approval.
- B. Submittal Drawings:
 - Submit large scale drawings of reinforcing steel, including all reinforcing bend diagrams and reinforcing details, to the COR for review and approval.
- C. Manufacturer's Literature and Data:
 - 1. Concrete Mix Design.
 - 2. Air-entraining admixture, chemical admixtures, and curing compounds.
 - 3. Indicate manufacturer's recommendation for each application.
- D. Certificates: Certify products comply with specifications.
 - 1. Each ready mix concrete batch delivered to site.

1.5 DELIVERY

A. Deliver each ready-mixed concrete batch with mix certification in duplicate according to ASTM International(ASTM) C94/C94M.

1.6 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - Fly Ash: ASTM International (ASTM) C618, Class C or F including supplementary optional physical requirements. Pozzolans shall not exceed 25 percent of total cementitious materials by weight.
 - 2. Silica Fume: ASTM International (ASTM) C1240.

- C. Coarse Aggregate: ASTM International(ASTM) C33/C33M. 1. Size 67 aggregate.
- D. Fine Aggregate: ASTM International(ASTM) C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM International (ASTM) C260/C260M.
- G. Chemical Admixtures: ASTM International(ASTM) C494/C494M.
- H. Vapor Barrier: ASTM International (ASTM) E1745, Class A with a minimum puncture resistance of 2200 g (3000 pounds); minimum 0.38 mm (15 mil) thick.
- I. Reinforcing Steel: ASTM International(ASTM) A615/A615M or ASTM International(ASTM) A996/A996M, deformed. See Structural Drawings for grade.
- J. Expansion Joint Filler: ASTM International (ASTM) D1751.
- K. Sheet Materials for Curing Concrete: ASTM International (ASTM) C171.
- L. Abrasive Aggregates: Aluminum oxide grains or emery grits.
- M. Liquid Densifier/Sealer: 100 percent active colorless aqueous siliconate solution.
- N. Grout, Non-Shrinking: Premixed ferrous or non-ferrous. Grout to show no settlement or vertical drying shrinkage at 3 days. Compressive strength for grout, at least 18 MPa (2500 psi) at 3 days and 35 MPa (5000 psi) at 28 days.

2.2 ACCESSORIES

- A. Bonding Agent: ASTM International (ASTM) C 1059/C 1059M, Type II.
- B. Structural Adhesive: ASTM International (ASTM) C881, 2-component material suitable for use on dry or damp surfaces. Provide material Type, Grade, and Class to suit Project requirements.
- C. Water Stops: Rubber base with self-healing properties. Expanding clay based products not acceptable.

2.3 CONCRETE MIXES

- A. Design concrete mixes according to ASTM International (ASTM) C94/C94M, Option C.
- B. Compressive strength at 28 days: minimum 30 MPa (4,000 psi) .
- C. Submit mix design and results of compression tests to the Contracting Officer for his evaluation. Identify all materials, including admixtures, making-up the concrete.
- D. Maximum Slump for Vibrated Concrete: 100 mm (4 inches) tested according to ASTM International (ASTM) C143.
- E. Cement and Water Factor (See Table I):

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE									
Concrete: Strength	Non-Air-B	Entrained	Air-Entrained						
Min. 28 Day Comp.	Min. Cement	Max. Water	Min. Cement	Max. Water					
Str.	kg/cu. m	Cement Ratio	kg/cu. m	Cement Ratio					
MPa (psi)	(lbs./cu.		(lbs./cu.						
	yd.)		yd.)						
35 (5000)1,3	375 (630)	0.45	385 (650)	0.40					
30 (4000)1,3	325 (550)	0.55	340 (570)	0.50					
25 (3000)1,3	280 (470)	0.65	290 (490)	0.55					
25 (3000)1,2	300 (500)	See 4 Below	310 (520)	See 4 Below					

Notes:

1. If trial mixes are used, achieve a compressive strength 8.3 MPa (1 200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve a compressive strength 9.7 MPa (1,400 psi) in excess of f'c.

2. Lightweight Structural Concrete: Pump mixes may require higher cement values as specified in ACI 318/318M.

3. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.

4. Laboratory Determined according to ACI 211.1 for normal weight concrete or ACI 211.2 for lightweight structural concrete.

F. Air-entrainment as specified, and conform with the following for air content table:

TABLE II - TOTAL AIR CONTENT FOR	VARIOUS SIZES OF COARSE AGGREGATES	
Nominal Maximum Size of	Total Air Content, percent	
Coarse Aggregate		
10 mm (3/8 inches)	6 Moderate exposure; 7.5 severe exposure	
13 mm (1/2 inches)	5.5 Moderate exposure; 7 severe exposure	
19 mm (3/4 inches)	5 Moderate exposure; 6 severe exposure	
25 mm (1 inches)	4.5 Moderate exposure; 6 severe exposure	
40 mm (1 1/2 inches)	4.5 Moderate exposure; 5.5 severe exposure	

2.4 BATCHING AND MIXING

A. Store, batch, and mix materials according to ASTM C94/C94M.

 Job-Mixed: Batch mix concrete in stationary mixers as specified in ASTM International(ASTM) C94/C94M.

- 2. Ready-Mixed Concrete: Comply with ASTM International(ASTM) C94/C94M, except use of non-agitating equipment for transporting concrete to Site is not acceptable.
- 3. When aggregate producer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

PART 3 - EXECUTION

3.1 REINFORCEMENT

- A. Install concrete reinforcement according to ACI 318 and ACI SP-66.
- B. Support and securely tie reinforcing steel to prevent displacement during placing of concrete.
- C. Drilling for Dowels in Existing Concrete: Use sharp bits, drill hole slightly oversize, fill with epoxy grout, inset the dowel, and remove excess epoxy.

3.2 VAPOR BARRIER

- A. Except where membrane waterproofing is required, place interior concrete slabs on a continuous vapor barrier.
- B. Lap joints 150 mm (6 inches) and seal with a compatible pressure-sensitive tape.
- C. Patch punctures and tears.

3.3 PLACING CONCRETE

- A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval from Contracting Officer's Representative before placing concrete.
- B. Install screeds at required elevations for concrete slabs.
- C. Roughen and clean free from laitance, foreign matter, and loose particles before placing new concrete on existing concrete.
 - Blow-out areas with compressed air and immediately coat contact areas with adhesive in compliance with manufacturer's instructions.
- D. Place structural concrete according to ACI 301 and ACI 318.
- E. Convey concrete from mixer to final place of deposit by method that will prevent segregation or loss of ingredients. Do not deposit, in Work, concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work.

- F. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading, rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Continuously vibrate during placement of concrete.
- G. Hot Weather Concrete Placement: As recommended by ACI 305.1 to prevent adversely affecting properties and serviceability of hardened concrete.
- H. Cold Weather Concrete Placement: As recommended by ACI 306.1, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly.
 - Do not use calcium chloride without written approval from Contracting Officer's Representative.

3.4 TOLERANCES

- A. Slab on Grade Finish Tolerance: Comply with ACI 117, FF-number and FL-number method.
 - 1. Paragraph 4.8.3, Class A 3 mm (1/8 inches) for offset in form-work.
 - 2. Table R4.8.4, "Flat" 6 mm (1/4 inch) in 3 m (10 feet) for slabs.

3.5 PROTECTION AND CURING

- A. Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical damage, and excessive hot or cold temperatures.
- B. Curing Methods: Cure concrete with curing compound using wet method with sheets.
- C. Concrete Flatwork Curing:
 - Install sheet materials according to the manufacturer's instructions.
 - a. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.6 FINISHES

- A. Slab Finishes:
 - Allow bleed water to evaporate before surface is finished. Do not sprinkle dry cement on surface to absorb water.
 - Scratch Finish: Rake or wire broom after partial setting slab surfaces to received bonded applied cementitious application, within 2 hours after placing, to roughen surface and provide permanent bond between base slab and applied cementitious materials.

3. Float Finish: Interior equipment pads, and slabs to receive non-cementitious materials, except as specified.

a. Screen and float to smooth dense finish.

- b. After first floating, while surface is still soft, check surfaces for alignment using straightedge or template. Correct high spots by cutting down with trowel or similar tool. Correct low spots by filling in with material same composition as floor finish. Remove any surface projections on floated finish by rubbing or dry grinding. Refloat slab to uniform sandy texture.
- 4. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and other monolithic concrete floor slabs exposed to view without other finish indicated or specified.
 - a. Delay final steel troweling to secure smooth, dense surface, usually when surface can no longer be dented by fingers. During final troweling, tilt steel trowel at slight angle and exert heavy pressure on trowel to compact cement paste and form dense, smooth surface.
 - b. Finished surface: Free from trowel marks. Uniform in texture and appearance.
- 5. Finished Slab Flatness (FF) and Levelness (FL):
 - a. Slab on Grade: Specified overall value FF 25/FL 20. Minimum local value FF 17/FL 15.
 - b. Test flatness and levelness according to ASTM E1155.

3.7 SURFACE TREATMENTS

- A. Mix and apply the following surface treatments according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Liquid Densifier/Sealer: Use for exposed concrete floors and concrete floors to receive carpeting except those specified to receive non-slip finish .

- - E N D - -

SECTION 04 05 13 MASONRY MORTARING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Masonry mortar installed by other concrete and masonry sections.

1.2 RELATED REQUIREMENTS

- A. Mortar used in Section:
 - 1. Section 04 05 16, MASONRY GROUTING.
 - 2. Section 04 20 00, UNIT MASONRY.
- B. Mortar Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. C40/C40M-11 Organic Impurities in Fine Aggregates for Concrete.
 - 2. C91/C91M-12 Masonry Cement.
 - 3. C144-11 -Aggregate for Masonry Mortar.
 - 4. C150/C150M-15 Portland Cement.
 - 5. C207-06(2011) Hydrated Lime for Masonry Purposes.
 - 6. C270-14a Mortar of Unit Masonry.
 - 7. C595/C595M-15e1 Blended Hydraulic Cements.
 - 8. C780-15 Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry.
 - 9. C979/C979M-10 Pigments for Integrally Colored Concrete.
 - 10. C1329/C1329M-15 Mortar Cement.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
- C. Test Reports: Certify each product complies with specifications.
 - 1. Mortar.
 - 2. Admixtures.
- D. Certificates: Certify each product complies with specifications.
 - 1. Portland cement.
 - 2. Masonry cement.
 - 3. Mortar cement.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 05 13 Masonry Mortaring-1

- 4. Hydrated lime.
- 5. Fine aggregate.
- 6. Color admixture.
- E. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Testing laboratory.

1.5 QUALITY ASSURANCE

- A. Preconstruction Testing:
 - 1. Engage independent testing laboratory to tests and submit reports.
 - Deliver samples to laboratory in number and quantity required for testing.
 - 2. Test mortar and materials specified.
 - 3. Mortar:
 - a. Test for compressive strength and water retention according to ASTM C270.
 - b. Minimum Mortar compressive strengths 28 days:
 - 1) Type M: 17.2 MPa (2,500 psi).
 - 2) Type S: 12.4 MPa (1,800 psi).
 - 4. Non Staining Cement: Test for water soluble alkali.
 - a. Water Soluble Alkali: Maximum 0.03 percent.
 - 5. Sand: Test for deleterious substances, organic impurities, soundness and grading.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store masonry materials under waterproof covers on planking clear of ground.
 - 1. Protect loose, bulk materials from contamination.
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 05 13 Masonry Mortaring-2

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Hydrated Lime: ASTM C207, Type S.
- B. Aggregate for Masonry Mortar: ASTM C144 and as follows:
 - 1. Light colored sand for mortar for laying face brick.
 - White plastering sand meeting sieve analysis for mortar joints for pointing and laying of structural facing tile units except that 100 percent passes No. 8 sieve, and maximum 5 percent retained on No. 16 sieve.
 - 3. Test sand for color value according to ASTM C40/C40M. Sand producing color darker than specified standard is unacceptable.
- C. Blended Hydraulic Cement: ASTM C595/C595M, Type IS, IP.
- D. Masonry Cement: ASTM C91/C91M. Type N, S, Or M.
 - 1. Use white masonry cement whenever white mortar is specified.
- E. Mortar Cement: ASTM C1329/C1329M, Type N, S or M.
- F. Portland Cement: ASTM C150/C150M, Type I.
 - 1. Use white Portland cement wherever white mortar is specified.
- G. Pigments: ASTM C979/C979M; inorganic, inert, mineral pigments only, unaffected by atmospheric conditions, nonfading, alkali resistant, and water insoluble.
- H. Water: Potable, free of substances that are detrimental to mortar, masonry, and metal.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run .

2.3 MIXES

- A. Pointing Mortar for New Work:
 - For Cast Stone or Precast Concrete: Proportion by volume; one part white Portland cement, two parts white sand, and 1/5 part hydrated lime.
 - 2. Pointing Mortar for Glazed Structural Facing Tile:
 - a. Proportion by volume: One part white Portland cement, two parts of graded white sand passing Number 50 sieve, and 1/8 part hydrated lime.
- B. Masonry Mortar: ASTM C270.
 - 1. Admixtures:

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 05 13 Masonry Mortaring-3

- a. Do not use mortar admixtures, and color admixtures unless approved by Contracting Officer's Representative.
- b. Do not use antifreeze compounds.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

3.2 MIXING

- A. Measure ingredients by volume using known capacity container.
- B. Mix for 3 to 5 minutes in a mechanically operated mortar mixer.
- C. Mix water with dry ingredients in sufficient amount to provide a workable mixture which will adhere to vertical surfaces of masonry units.
- D. Mortar Stiffened Because of Water Loss Through Evaporation:
 - Re-temper by adding water to restore to proper consistency and workability.
 - Discard mortar reaching initial set or unused within two hours of mixing.
- E. Pointing Mortar:
 - Mix dry ingredients with enough water to produce damp mixture of workable consistency retaining shape when formed into ball.
 - 2. Allow mortar to stand in dampened condition for 60 to 90 minutes.
 - 3. Add water to bring mortar to a workable consistency before use.

3.3 MORTARING

- A. Brick Veneer Over Frame Back Up Walls: Use Type S Portland cement-lime mortar.
- B. Type N Mortar: Use for other masonry work.

3.4 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
 - Take and test samples during progress of work according to ASTM C780.

- - E N D - -

SECTION 04 05 16 MASONRY GROUTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Grout for filling hollow concrete masonry cores.

1.2 RELATED WORK

A. Section 04 20 00, UNIT MASONRY: Grout

B. Section 09 06 00, SCHEDULE FOR FINISHES: Grout Color

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section American National Standards Institute (ANSI): A118.6-19 -Standard Cement Grouts for Tile Installation.
- B. ASTM International (ASTM): C40/C40M-20 -Organic Impurities in Fine Aggregates for

Concrete.

C150/C150M-20 -Portland Cement. C207-18 -Hydrated Lime for Masonry Purposes. C404-18 -Aggregates for Masonry Grout. C476-20 -Grout for Masonry. C595/C595M-20 -Blended Hydraulic Cement. C979/C979M-16 -Pigments for Integrally Colored Concrete. C1019-19 -Sampling and Testing Grout.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. All items indicated below are required submittals requiring Contracting Officer's Representative (COR) review and approval.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
- C. Test Reports: Certify each product complies with specifications.
 - 1. Grout, each type.
 - 2. Cement.
 - 3. Aggregate.
- D. Certificates: Certify each product complies with specifications.
 - 1. Blended hydraulic cement.
 - 2. Portland cement.
 - 3. Grout.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 04 05 16 Masonry Grouting-1

- 4. Hydrated lime.
- 5. Aggregate.
- 6. Color admixture.

1.5 QUALITY ASSURANCE

- A. Preconstruction Testing:
 - Engage independent testing laboratory to perform tests and submit reports.
 - a. Deliver samples to laboratory in number and quantity required for testing.
 - 2. Grout:
 - a. Test compressive strength according to ASTM C1019 standard.
 - 3. Cement:
 - a. Test for water soluble alkali (nonstaining) when nonstaining cement is specified.
 - b. Nonstaining cement containing more than 0.03 percent water soluble alkali.
 - 4. Aggregate:
 - Test for deleterious substances, organic impurities, soundness and grading.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.

1.7 STORAGE AND HANDLING

- A. Store masonry materials under waterproof covers on planking clear of ground, and protect damage from handling, dirt, stain, water and wind.
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Grout Components:
 - 1. Hydrated Lime: ASTM C207, Type S.
 - 2. Aggregate For Masonry Grout: ASTM C404, Size 8.
 - 3. Blended Hydraulic Cement: ASTM C595, Type IS, IP.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 4. Portland Cement: ASTM C150, Type I.
- 5. Liquid Acrylic Resin:
 - a. A formulation of acrylic polymers and modifiers in liquid form designed for use as an additive for mortar to improve physical properties.
- 6. Water: Potable, free of substances that are detrimental to grout, masonry, and metal.

2.2 PRODUCTS - GENERAL

A. Provide each product from one manufacturer and from one production run .

2.3 MIXES

- A. Grout: ASTM C476; fine grout and coarse grout.
- B. Ready-Mixed Grout: ANSI A118.8.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Clean mortar from masonry cells protruding more than 13 mm (1/2 inch) to permit grout flow.
- D. Remove debris from grout spaces.
- E. Verify reinforcement is correctly placed before placing grout.

3.2 MIXING

- A. Mix grout in mechanically operated mixer.
 - 1. Mix grout for five minutes, minimum.
- B. Measure ingredients by volume using container of known capacity.
- C. Mix water with grout dry ingredients.
 - 1. Slump Range: 200 to 275 mm (8 to 11 inches).

3.3 GROUTING

- A. Install grout according to Section 04 20 00, UNIT MASONRY.
- B. Use fine grout for filling wall cavities and hollow concrete masonry units where smallest cell dimension is 50 mm (2 inches) or less.
- C. Use either fine grout or coarse grout for filling wall cavities and hollow concrete masonry units where smallest cell dimension is greater than 50 mm (2 inches).
- D. Use grout for filling bond beam or lintel units.

- - E N D - -

SECTION 04 20 00 UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Concrete masonry unit (CMU) assemblies for:
 - 1. Exterior walls.
 - 2. Interior walls and partitions.

1.2 RELATED REQUIREMENTS

- A. Sealants and Sealant Installation: Section 07 92 00, JOINT SEALANTS.
- B. Color and Texture of Masonry Units: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Concrete Institute (ACI):
 - 1. 315-99 Details and Detailing of Concrete Reinforcement.
 - 2. 530.1/ASCE 6/TMS 602-13 Specification for Masonry Structures.
- C. ASTM International (ASTM):
 - A615/A615M-15ae1 Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
 - 2. A951/A951M-14 Steel Wire for Masonry Joint Reinforcement.
 - A1064/A1064M-15 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
 - 4. C34-13 Structural Clay Load-Bearing Wall tile.
 - 5. C55-14a Concrete Building Brick.
 - 6. C56-13 Structural Clay Nonloadbearing Tile.
 - C62-13a Building Brick (Solid Masonry Units Made from Clay or Shale).
 - 8. C67-14 Sampling and Testing Brick and Structural Clay Tile.
 - 9. C90-14 Load-Bearing Concrete Masonry Units.
 - 10. C126-15 Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units.
 - 11. C216-15 Facing Brick (Solid Masonry Units Made From Clay or Shale).
 - 12. C612-14 Mineral Fiber Block and Board Thermal Insulation.
 - 13. C744-14 Prefaced Concrete and Calcium Silicate Masonry Units.
 - 14. D1056-14 Flexible Cellular Materials Sponge or Expanded Rubber.
 - 15. D2240-05(2010) Rubber Property-Durometer Hardness.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 04 20 00 Unit Masonry-1 16. F1667-15 - Driven Fasteners: Nails, Spikes, and Staples.

- D. American Welding Society (AWS):
 - 1. D1.4/D1.4M-11 Structural Welding Code Reinforcing Steel.
- E. Brick Industry Association (BIA):
 - 1. TN 11B-88 Guide Specifications for Brick Masonry, Part 3.
- F. Federal Specifications (Fed. Spec.):
 1. FF-S-107C(2) Screws, Tapping and Drive.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - Fabrication, bending, and placement of reinforcing bars. Comply with ACI 315. Show bar schedules, diagrams of bent bars, stirrup spacing, lateral ties and other arrangements and assemblies.
 - 2. Special masonry shapes, profiles, and placement.
 - Masonry units for typical window and door openings, and, for special conditions as affected by structural conditions.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Samples:
 - Face brick: Sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints.
 - Ceramic Glazed Facing Brick: Sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints.
 - 3. Concrete masonry units, when exposed in finish work.
 - 4. Anchors and Ties: Each type.
 - 5. Joint Reinforcing: 1200 mm (48 inches) long each type.
 - 6. Face brick.
 - Solid and load-bearing concrete masonry units, including fire-resistant rated units.

1.5 QUALITY ASSURANCE

A. Welders and Welding Procedures Qualifications: AWS D1.4/D1.4M.

1.6 DELIVERY

A. Deliver products in manufacturer's original sealed packaging.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 20 00 Unit Masonry-2

- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products above grade, protected from contamination.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Hot and Cold Weather Requirements: Comply with ACI 530.1/ASCE 6/TMS 602.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run .

2.2 UNIT MASONRY PRODUCTS

- A. Brick:
 - 1. Face Brick:
 - a. ASTM C216, Grade SW, Type FBS.
 - Brick when tested according to ASTM C67: Classified slightly efflorescent or better.
 - c. Size:
 - 1) Modular.
 - 2. One Face Exposed: Grade S, Type I.
- B. Concrete Masonry Units (CMU):
 - 1. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90.
 - a. Unit Weight: Normal weight.
 - b. Fire rated units for fire rated partitions.
 - Sizes: Modular, 200 mm by 400 mm (8 inches by 16 inches) nominal face dimension; thickness as indicated on drawings.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

2.3 ANCHORS, TIES, AND REINFORCEMENT

- A. Steel Reinforcing Bars: ASTM A615/A615M; Grade 60, deformed bars.
- B. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951/A951M.
 - 2. Hot dipped galvanized after fabrication.
 - Width of joint reinforcement 40 mm (1.6 inches) less than nominal thickness of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcement minimum 3000 mm (10 feet) long, factory cut.
 - 6. Joint reinforcement with crimp formed drip is not acceptable.
 - Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires.
 - 8. Ladder Design:
 - a. Longitudinal wires deformed 4 mm (0.16 inch).
 - b. Cross wires 2.6 mm (0.10 inch).
 - 9. Trussed Design:
 - a. Longitudinal and cross wires minimum 4 mm (0.16 inch nominal) diameter.
 - b. Longitudinal wires deformed.
 - 10. Multiple Wythes and Cavity Wall Ties:
 - a. Longitudinal wires 4 mm (0.16 inch), two in each wythe with ladder truss wires 4 mm (0.16 inch) overlay, welded to each longitudinal wire.
 - b. Longitudinal wires 4 mm (0.16 inch) with U shape 4 mm (0.16 inch) rectangular ties extending into other wythe minimum 75 mm (3 inches) spaced 400 mm on center (16 inches). Adjustable type with U shape tie designed to receive 4 mm (0.16 inch) pintle projecting into other wythe 75 mm (3 inches min.).
- C. Adjustable Veneer Anchor for Framed Walls:
 - 1. Two piece, adjustable anchor and tie.
 - Anchor and tie may be either loop or angle type; provide only one type throughout.
 - 3. Loop Type:
 - a. Anchor: Screw-on galvanized steel anchor strap 2.75 mm
 (0.11 inch) by 19 mm (3/4 inch) wide by 225 mm (9 inches) long, with 9 mm (0.35 inch) offset and 100 mm (4 inch) adjustment.
 Provide 5 mm (0.20 inch) hole at each end for fasteners.

- b. Ties: Triangular tie, fabricated of 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Ties long enough to engage anchor and be embedded minimum 50 mm (2 inches) into bed joint of masonry veneer.
- 4. Angle Type:
 - Anchor: Minimum 2 mm (16 gage) thick galvanized steel angle shaped anchor strap. Provide hole in vertical leg for fastener.
 Provide hole near end of outstanding leg to suit upstanding portion of tie.
 - b. Tie: Fabricate from 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Form "L" shape to be embedded minimum 50 mm (2 inches) into the bed joint of masonry veneer and provide upstanding leg to fit through hole in anchor and be long enough to allow 50 mm (2 inches) of vertical adjustment.
- D. Dovetail Anchors:
 - Corrugated steel dovetail anchors formed of 1.5 mm (0.06 inch) thick by 25 mm (1 inch) wide galvanized steel, 90 mm (3-1/2 inches) long where used to anchor 100 mm (4 inch) nominal thick masonry units, 140 mm (5-1/2 inches) long for masonry units more than 100 mm (4 inches) thick.
 - 2. Triangular wire dovetail anchor 100 mm (4 inch) wide formed of 4 mm (9 gage) steel wire with galvanized steel dovetail insert. Anchor length to extend minimum 75 mm (3 inches) into masonry, 25 mm (1 inch) into 40 mm (1-1/2 inch) thick units.
 - Form dovetail anchor slots from 0.6 mm (0.02 inch) thick galvanized steel (with felt or fiber filler).
- E. Individual Ties:
 - Rectangular ties: Form from 5 mm (3/16 inch) diameter galvanized steel rod to rectangular shape minimum 50 mm (2 inches) wide by sufficient length for ends of ties to extend within 25 mm (1 inch) of each face of wall. Ties that are crimped to form drip are not acceptable.
 - 2. Adjustable Cavity Wall Ties:
 - a. Adjustable wall ties may be furnished at Contractor's option.
 - b. Two piece type permitting up to 40 mm (1-1/2 inch) adjustment.
 - c. Form ties from 5 mm (3/16 inch) diameter galvanized steel wire.
 - d. Form one piece to rectangular shape 105 mm (4-1/8 inches) wide by length required to extend into bed joint 50 mm (2 inches).

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 04 20 00 Unit Masonry-5

- e. Form other piece to 75 mm (3 inch) long by 75 mm (3 inch) wide shape, having 75 mm (3 inch) long bent section for engaging 105 mm (4-1/8 inch) wide piece to form adjustable connection.
- F. Wall Ties, (Mesh or Wire):
 - Mesh wall ties formed of ASTM A1064/A1064M, W0.5, 2 mm, (0.08 inch) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long.
 - Rectangular wire wall ties formed of W1.4, 3 mm, (0.12 inch) galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches) long.
- G. Corrugated Wall Tie:
 - Form from 1.5 mm (0.06 inch) thick corrugated, galvanized steel
 30 mm (1-1/4 inches) wide by lengths to extend minimum 100 mm
 (4 inches) into joints of masonry plus 38 mm (1-1/2 inch) turn-up.
 - 2. Provide 5 mm (3/16 inch) hole in turn-up for fastener attachment.

2.4 ACCESSORIES

- A. Weeps:
 - 1. Weep Hole: Flexible PVC louvered configuration with rectangular closure strip at top.
- B. Cavity Drain Material: Open mesh polyester sheets or strips to prevent mortar droppings from clogging the cavity.
- C. Preformed Compressible Joint Filler:
 - 1. Thickness and depth to fill joint.
 - 2. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1.
 - 3. Non-Combustible Type: ASTM C612, Type 5, Max. Temp.1800 degrees F.
- D. Box Board:
 - 1. Mineral Fiber Board: ASTM C612, Type 1.
 - 2. 25 mm (1 inch) thickness.
 - Other spacing material having similar characteristics is acceptable subject to Contracting Officer's Representative's approval.
- E. Masonry Cleaner:
 - 1. Detergent type cleaner selected for each type masonry.
 - 2. Acid cleaners are not acceptable.
 - Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate.
- F. Fasteners:
 - Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 20 00 Unit Masonry-6

- Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length.
- 3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting.
- G. Welding Materials: AWS D1.4/D1.4M, type to suit application.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings .
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Keep finish work free from mortar smears or spatters, and leave neat and clean.
- C. Wall Openings:
 - Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses.
 - 2. When items are not available when walls are built, prepare openings for subsequent installation.
- D. Tooling Joints:
 - Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar.
 - Tool while mortar is soft enough to be compressed into joints and not raked out.
 - Finish joints in exterior face masonry work with jointing tool, and provide smooth, water-tight concave joint unless specified otherwise.
 - 4. Tool Exposed interior joints in finish work concave unless specified otherwise.
- E. Lintels:
 - Openings 1025 mm (41 inches) wide to 1600 m (63 inches) wide without structural steel lintel or frames, require lintel formed of concrete masonry lintel or bond beam units unless shown otherwise.
 - Use steel lintels, for openings greater than 1600 m (63 inches) wide, brick masonry openings, and elevator openings unless shown otherwise.
 - Doors having overhead concealed door closers require steel lintel, and pocket for closer box.

- 4. Lintel Bearing Length: Minimum 200 mm (8 inches) at both ends.
- 5. Build masonry openings or arches over wood or metal centering and supports when steel lintels are not used.
- F. Wall, Furring, and Partition Units:
 - Lay out field units to provide one-half running bond, unless indicated otherwise.
 - 2. Align head joints of alternate vertical courses.
 - At sides of openings, balance head joints in each course on vertical center lines of openings.
 - 4. Minimum Masonry Unit Length: 100 mm (4 inches).
 - On interior partitions provide 6 mm (1/4 inch) open joint for caulking between existing construction, exterior walls, concrete work, and abutting masonry partitions.
 - Use minimum 100 mm (4 inches) nominal thick masonry for free standing furring, unless indicated otherwise.
 - Do not abut existing plastered surfaces except suspended ceilings with new masonry partitions.
- G. Use minimum 100 mm (4 inches) nominal thick masonry for fireproofing steel columns unless indicated otherwise.
- H. Before connecting new masonry with previously laid masonry, remove loosened masonry or mortar, and clean and wet work in place as specified under wetting.
- When new masonry partitions start on existing floors, machine cut existing floor finish material down to concrete surface.
- J. Structural Steel Encased in Masonry:
 - Do not install spacing material where steel is bearing on masonry or masonry is bearing on steel.
- K. Chases:
 - Do not install chases in masonry walls and partitions exposed to view in finished work, including painted or coated finishes on masonry.
 - Masonry 100 mm (4 inch) nominal thick may have electrical conduits
 25 mm (1 inch) or less in diameter when covered with soaps, or other finishes.
 - 3. Fill recess chases after installation of conduit, with mortar and finish flush.
 - 4. When pipes or conduits, or both occur in hollow masonry unit partitions retain minimum one web of hollow masonry units.

- L. Wetting and Wetting Test:
 - 1. Test and wet brick and clay tile according to BIA TN 11B.
 - Do not wet concrete masonry units or glazed structural facing tile before laying.
- M. Temporary Formwork: Provide formwork and shores as required for temporary support of reinforced masonry elements.
- N. Construct formwork to conform to shape, line and dimensions indicated on drawings. Make sufficiently tight to prevent mortar, grout, or concrete leakage. Brace, tie and support formwork as required to maintain position and shape during construction and curing of reinforced masonry.
- O. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other reasonable temporary construction loads.

3.2 INSTALLATION - ANCHORAGE

- A. Veneer to Framed Walls:
 - 1. Install adjustable veneer anchors.
 - Fasten anchor to stud through sheathing with self-drilling and tapping screw, one at both ends of loop type anchor.
 - Space anchors maximum 400 mm (16 inches) on center vertically at each stud.
- B. Veneer to Concrete Walls:
 - Install dovetail slots in concrete vertically at 400 mm (16 inches) on centers.
 - Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals.
 - 3. Anchor new masonry facing to existing concrete with adjustable cavity wall ties spaced at 400 mm, (16 inches) maximum vertical intervals, and at 400 mm (16 inches) maximum horizontal intervals. Fasten ties to concrete with power actuated fasteners or concrete nails.
- C. Masonry Facing to Backup and Cavity Wall Ties:
 - 1. Use individual ties for new work.
 - 2. Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 400 mm (16 inches) horizontally.
 - At openings, provide additional ties spaced maximum 900 mm (36 inches) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 20 00 Unit Masonry-9

- 4. Anchor new masonry facing to existing masonry with adjustable cavity wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails.
- 5. Option: Install joint reinforcing for multiple wythes and cavity wall ties spaced maximum 400 mm (16 inches) vertically.
- 6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals maximum 400 mm (16 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours.
- D. Anchorage of Abutting Masonry:
 - Anchor interior 100 mm (4 inch) thick masonry partitions to exterior masonry walls with wall ties. Space ties at 600 mm (24 inches) maximum vertical intervals. Extend ties 100 mm (4 inches) minimum into masonry.
 - Anchor interior masonry bearing walls or interior masonry partitions over 100 mm (4 inches) thick to masonry walls with rigid wall anchors spaced at 400 mm (16 inch) maximum vertical intervals.
 - 3. Anchor abutting masonry walls and partitions to concrete with dovetail anchors. Install dovetail slots vertically in concrete at centerline of abutting wall or partition. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. Secure anchors to existing wall with two 9 mm (3/8 inch) by 75 mm (3 inch) expansion bolts or two power-driven fasteners.
 - 4. Anchor abutting interior masonry partitions to existing concrete and existing masonry construction, with adjustable wall ties. Extend ties minimum 100 mm (4 inches) into joints of new masonry. Fasten ties to existing concrete and masonry construction, with powder actuated drive pins, nail or other means that provides rigid anchorage. Install anchors at 400 mm (16 inch) maximum vertical intervals.
- E. Masonry Furring:
 - Anchor masonry furring less than 100 mm (4 inches) nominal thick to masonry walls or to concrete with adjustable wall ties or dovetail anchors.
 - 2. Space at maximum 400 mm (16 inches) on center in both directions.
- F. Anchorage to Steel Beams or Columns:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 04 20 00 Unit Masonry-10

- 1. Use adjustable beam anchors on each flange.
- At columns weld steel rod to steel columns at 300 mm (12 inch) intervals, and place wire ties in masonry courses at 400 mm (16 inches) maximum vertically.

3.3 INSTALLATION - REINFORCEMENT

- A. Joint Reinforcement:
 - Install joint reinforcement in CMU wythe of combination brick and CMU, cavity walls, and single wythe concrete masonry unit walls or partitions.
 - Reinforcing is acceptable in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls.
 - Locate joint reinforcement in mortar joints at 400 mm (16 inch) maximum vertical intervals.
 - Additional joint reinforcement is required in mortar joints at both 200 mm (8 inches) and 400 (16 inches) above and below windows, doors, louvers and similar openings in masonry.
 - 5. Wherever brick masonry is backed up with stacked bond masonry, install multiple wythe joint reinforcement in every two courses of CMU backup, and in corresponding joint of facing brick.
- B. Steel Reinforcing Bars:
 - Install reinforcing bars in cells of hollow masonry units where required for vertical reinforcement and in bond beam units for horizontal reinforcement. Install in wall cavities of reinforced masonry walls where indicated on drawings.
 - 2. Bond Beams:
 - a. Form Bond beams of load-bearing concrete masonry units filled with grout and reinforced with two No. 15m (No. 5) reinforcing bars unless shown otherwise. Do not cut reinforcement.
 - b. Brake bond beams only at expansion joints and at control joints, if shown.
 - 3. Grout openings:
 - Leave cleanout holes in double wythe walls during construction by omitting units at base of one side of wall.
 - b. Locate 75 mm by 75 mm (3 inches. by 3 inches.) min. cleanout holes at location of vertical reinforcement.
 - c. Keep grout space clean of mortar accumulation and debris. Clean as work progresses and immediately before grouting.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

3.4 INSTALLATION - BRICK EXPANSION JOINTS

- A. Provide brick expansion joint (EJ) where indicated on drawings.
- B. Keep joint free of mortar and other debris.
- C. Joints Occur In Masonry Walls:
 - 1. Install preformed compressible joint filler in brick wythe.
- D. Interrupt joint reinforcement at expansion and control joints.
- E. Fill opening in exposed face of expansion and control joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.5 INSTALLATION - BUILDING EXPANSION AND SEISMIC JOINTS

- A. Keep expansion joints open and free of mortar. Remove mortar and other debris.
- B. Install non-combustible, compressible type joint filler to fill space completely except where sealant is shown on joints in exposed finish work.
- C. Fill opening in exposed face of expansion and seismic joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.6 INSTALLATION - ISOLATION JOINT

- A. Where full height walls and partitions lie parallel or perpendicular to and under structural beams and shelf angles, provide minimum 9 mm (3/8 inch) separation between walls and partitions and bottom of beams and shelf angles.
- B. Insert continuous full width strip of non-combustible type compressible joint filler.
- C. Fill opening in exposed face of isolation joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.7 INSTALLATION - BRICKWORK

- A. Lay clay brick according to BIA TN 11B.
- B. Laying:
 - Lay brick in one-half running bond with bonded corners, unless indicated otherwise. Match bond of existing building on alterations and additions.
 - 2. Maintain bond pattern throughout.
 - Do not use brick smaller than half-brick at any angle, corner, break, and jamb.
 - 4. Where length of cut brick is greater than one half length, maintain vertical joint location.

- 5. Lay exposed brickwork joints symmetrical about center lines of openings.
- Do not structurally bond multi-wythe brick walls, unless indicated on drawings.
- Before starting work, lay facing brick on foundation wall and adjust bond to openings, angles, and corners.
- 8. Lay brick for sills with wash and drip.
- 9. Build solid brickwork as required for anchorage of items.
- C. Joints:
 - Exterior And Interior Joint Widths: Lay for three equal joints in 200 mm (8 inches) vertically, unless shown otherwise.
 - Rake joints for pointing with colored mortar when colored mortar is not full depth.
 - 3. Arches:
 - a. Flat arches (jack arches) lay with camber of 1 in 200 (1/16 inch per foot) of span.
 - b. Face radial arches with radial brick with center line of joints on radial lines.
 - c. Form Radial joints of equal width.
 - d. Bond arches into backing with metal ties in every other joint.
- D. Weep Holes:
 - Install weep holes at 600 mm (24 inches) on center in bottom of vertical joints of exterior masonry veneer or cavity wall facing over foundations, bond beams, and other water stops in wall.
 - Form weep holes using wicks made of mineral fiber insulation strips turned up 200 mm (8 inches) in cavity. Anchor top of strip to backup to securely hold in place.
 - Install sand or pea gravel in cavity approximately 75 mm (3 inches) high between weep holes.
- E. Cavity Walls:
 - 1. Keep air space clean of mortar accumulations and debris.
 - 2. Veneer Framed Walls:
 - Build with 100 mm (4 inches) of face brick over sheathed stud wall with air space.
 - b. Keep air space clean of mortar accumulations and debris.

3.8 INSTALLATION - CONCRETE MASONRY UNITS

A. Types and Uses:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 1. Provide special concrete masonry shapes as required, including lintel and bond beam units, sash units, and corner units . Provide solid concrete masonry units, where full units cannot be installed, or where needed for anchorage of accessories.
- 2. Provide solid load-bearing concrete masonry units or grout cell of hollow units at jambs of openings in walls, where structural members impose loads directly on concrete masonry, and where shown.
- 3. Provide rounded corner (bullnose) shapes at opening jambs in exposed work and at exterior corners.
- 4. Do not install brick jambs in exposed finish work.
- 5. Install concrete building brick only as filler in backup material where not exposed.
- 6. Construct fire resistance in fire rated partitions meeting fire ratings indicated on drawings.
- B. Laying:
 - 1. Lay concrete masonry units with 9 mm (3/8 inch) joints, with a bond overlap of minimum 1/4 of unit length, except where stack bond is indicated on drawings.
 - 2. Do not wet concrete masonry units before laying.
 - 3. Bond external corners of partitions by overlapping alternate courses.
 - 4. Lay first course in a full mortar bed.
 - 5. Set anchorage items as work progress.
 - 6. Where ends of anchors, bolts, and other embedded items, project into voids of units, completely fill voids with mortar or grout.
 - 7. Provide 6 mm (1/4 inch) open joint for sealant between existing construction, exterior walls, concrete work, and abutting masonry partitions.
 - 8. Lay concrete masonry units with full face shell mortar beds and fill head joint beds for depth equivalent to face shell thickness.
 - 9. Lay concrete masonry units so cores of units, that are to be filled with grout, are vertically continuous with joints of cross webs of such cores completely filled with mortar. Unobstructed core openings minimum 50 mm (2 inches) by 75 mm (3 inches).
 - 10. Do not wedge masonry against steel reinforcing. Minimum 13 mm (1/2 inch) clear distance between reinforcing and masonry units. 11. Install deformed reinforcing bars of sizes indicated on drawings.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 12. At time of placement, ensure steel reinforcement is free of loose rust, mud, oil, and other contamination capable of affecting bond.
- 13. Place steel reinforcement at spacing indicated on drawings before grouting.
- 14. Minimum clear distance between parallel bars: One bar diameter.
- 15. Hold vertical steel reinforcement in place vertically by centering clips, caging devices, tie wire, or other approved methods.
- 16. Support vertical bars near each end and at maximum 192 bar diameter on center.
- 17. Splice reinforcement or attach reinforcement to dowels by placing in contact and securing with wire ties.
- 18. Stagger splices in adjacent horizontal reinforcing bars. Lap reinforcing bars at splices a minimum of 40 bar diameters.
- 19. Grout cells of concrete masonry units, containing reinforcing bars, solid as specified.
- 20. Install cavity and joint reinforcement as masonry work progresses.
- 21. Rake joints 6 to 10 mm (1/4 to 3/8 inch) deep for pointing with colored mortar when colored mortar is not full depth.

3.9 POINTING

- A. Fill joints with pointing mortar using rubber float trowel to apply mortar solidly into raked joints.
- B. Wipe off excess mortar from joints of glazed masonry units with dry cloth.
- C. Tool exposed joints to smooth concave joint.
- D. At joints with existing work, match existing joint.

3.10 GROUTING

- A. Preparation:
 - 1. Clean grout space of mortar droppings before placing grout.
 - 2. Close cleanouts.
 - 3. Install vertical solid masonry dams across grout space for full height of wall at intervals of maximum 9000 mm (30 feet). Do not bond dam units into wythes as masonry headers.
 - 4. Verify reinforcing bars are installed as indicated on drawings.
- B. Placing:
 - 1. Place grout in grout space in lifts as specified.
 - Consolidate each grout lift after free water has disappeared but before plasticity is lost.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 04 20 00 Unit Masonry-15

- 3. Do not slush with mortar or use mortar with grout.
- 4. Interruptions:
 - a. When grouting must be stopped for more than an hour, top off grout 40 mm (1-1/2 inches) below top of last masonry course.
 - b. Grout from dam to dam on high lift method.
 - c. Longitudinal run of masonry may be stopped off only by raking back one-half masonry unit length in each course and stopping grout 100 mm (4 inches) back of rake on low lift method.
- C. Puddling Method:
 - Consolidate by puddling with grout stick during and immediately after placing.
 - Grout cores of concrete masonry units containing reinforcing bars solid as masonry work progresses.
- D. Low Lift Method:
 - 1. Construct masonry to 1.5 m (5 feet) maximum height before grouting.
 - Grout in one continuous operation and consolidate grout by mechanical vibration and reconsolidate after initial water loss and settlement has occurred.
- E. High Lift Method:
 - 1. Do not pour grout until masonry wall has cured minimum of 4 hours.
 - 2. Place grout in 1.5 m (5 feet) maximum lifts.
 - 3. Exception:
 - a. Where following conditions are met, place grout in 3.86 m (12.67 feet) maximum lifts.
 - b. Masonry has cured minimum of 4 hours.
 - c. Grout slump is maintained between 250 and 275 mm (10 and 11 inches).
 - d. No intermediate reinforced bond beams are placed between top and bottom of grout lift.
 - When vibrating succeeding lifts, extend vibrator 300 to 450 mm (12 to 18 inches) into preceding lift.

3.11 PLACING REINFORCEMENT

A. General: Clean reinforcement of loose rust, mill scale, earth, ice or other materials which will reduce bond to mortar or grout. Do not use reinforcement bars with kinks or bends not shown on drawings or approved submittal drawings, or bars with reduced cross-section due to excessive rusting or other causes.

- B. Position reinforcement accurately at spacing indicated on drawings. Support and secure vertical bars against displacement. Install horizontal reinforcement as masonry work progresses. Where vertical bars are shown in close proximity, provide clear distance between bars of minimum one bar diameter or 25 mm (1 inch), whichever is greater.
- C. Splice reinforcement bars only where indicated on drawings, unless approved by Contracting Officer's Representative. Provide lapped splices. In splicing vertical bars or attaching to dowels, lap ends, place in contact and wire tie.
- D. Provide minimum lap as indicated on approved submittal drawings, or if not indicated, minimum 48 bar diameters.
- E. Embed metal ties in mortar joints as work progresses, with minimum mortar cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations.
- F. Embed prefabricated horizontal joint reinforcement as work progresses, with minimum cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations. Lap joint reinforcement minimum 150 mm (6 inches) at ends. Use prefabricated "L" and "T" sections to provide continuity at corners and intersections. Cut and bend joint reinforcement for continuity at returns, offsets, column fireproofing, pipe enclosures and other special conditions.
- G. Anchoring: Anchor reinforced masonry work to supporting structure as indicated on drawings.
- H. Anchor reinforced masonry walls at intersections with non-reinforced masonry.

3.12 INSTALLATION OF REINFORCED CONCRETE UNIT MASONRY

- A. Do not wet concrete masonry units (CMU).
- B. Lay CMU units with full-face shell mortar beds. Fill vertical head joints (end joints between units) solidly with mortar from face of unit to distance behind face equal to thickness of longitudinal face shells. Solidly bed cross-webs of starting courses in mortar. Maintain head and bed 9 mm (3/8 inch) joint widths.
- C. Where solid CMU units are shown, lay with full mortar head and bed joints.
- D. Walls:
 - Maintain vertical continuity of core or cell cavities, which are to be reinforced and grouted, to provide minimum clear dimension indicated and to provide minimum clearance and grout coverage for

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT04 20 00 Unit Masonry-17

vertical reinforcement bars. Keep cavities free of mortar. Solidly bed webs in mortar where adjacent to reinforced cores or cells.

- 2. Where horizontally reinforced beams (bond beams) are indicated on drawings, use special units or modify regular units to allow for placement of continuous horizontal reinforcement bars. Place small mesh expanded metal lath or wire screening in mortar joints under bond beam courses over cores or cells of non-reinforced vertical cells, or provide units with solid bottoms.
- E. Grouting:
 - Use fine grout for filling spaces less than 100 mm (4 inches) in one or both horizontal directions.
 - Use coarse grout for filling 100 mm (4 inch) spaces or larger in both horizontal directions.
 - Grouting Technique: At Contractor's option, use either low-lift or high-lift grouting techniques.
- F. Low-Lift Grouting:
 - Provide minimum clear dimension of 50 mm (2 inches) and clear area of 5160 sq. mm (8 sq. inches) in vertical cores to be grouted.
 - Place vertical reinforcement before grouting of CMU. Extend above elevation of maximum pour height as required for splicing. Support in position at vertical intervals not exceeding 192 bar diameters nor 3 m (10 feet).
 - 3. Lay CMU to maximum pour height. Do not exceed 1.5 m (5 feet) height, or if bond beam occurs below 1.5 m (5 feet) height, stop pour 38 mm (1-1/2 inches) below top of bond beam.
 - Rod or vibrate grout during placing. Place grout continuously; do not interrupt pouring of grout for more than one hour. Terminate grout pours 38 mm (1-1/2 inches) below top course of pour.
 - 5. Bond Beams: Stop grout in vertical cells 38 mm (1-1/2 inches) below bond beam course. Place horizontal reinforcement in bond beams; lap at corners and intersections as indicated on drawings. Place grout in bond beam course before filling vertical cores above bond beam.
- G. High-Lift Grouting:
 - Do not use high-lift grouting technique for grouting of CMU unless minimum cavity dimension and area is 75 mm (3 inches) and 6450 sq. mm (10 sq. inches), respectively.
 - Provide cleanout holes in first course at vertical cells which are to be filled with grout.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- Use units with one face shell removed and provide temporary supports for units above, or use header units with concrete brick supports, or cut openings in one face shell.
- Construct masonry to full height of maximum grout pour before placing grout.
- 5. Limit grout lifts to maximum height of 1.5 m (5 feet) and grout pour to maximum height of 7.3 m (24 feet), for single wythe hollow concrete masonry walls, unless otherwise indicated.
- 6. Place vertical reinforcement before grouting. Place before or after laying masonry units, to suit application. Tie vertical reinforcement to dowels at base of masonry where shown and thread CMU over or around reinforcement. Support vertical reinforcement at intervals not exceeding 192 bar diameters nor 3 m (10 feet).
- 7. Where individual bars are placed after laying masonry, place wire loops extending into cells as masonry is laid and loosen before mortar sets. After insertion of reinforcement bar, pull loops and bar to proper position and tie free ends.
- Where reinforcement is prefabricated into cage units before placing, fabricate units with vertical reinforcement bars and lateral ties of the size and spacing indicated.
- 9. Place horizontal beam reinforcement as masonry units are laid.
- 10. Embed lateral tie reinforcement in mortar joints where indicated. Place as masonry units are laid, at vertical spacing shown.
- 11. Preparation of Grout Spaces: Before grouting, inspect and clean grout spaces. Remove dust, dirt, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper position. Clean top surface of structural members supporting masonry to ensure bond. After final cleaning and inspection, close cleanout holes and brace closures to resist grout pressures.
- 12. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist displacement of masonry units and breaking of mortar bond. Install shores and bracing, if required, before starting grouting operations.
- 13. Limit grout pours to sections which can be completed in one working day with maximum one hour interruption of pouring operation. Place grout in lifts which do not exceed 1.5 m (5 feet). Allow minimum 30

minutes and maximum one hour between lifts. Mechanically consolidate each lift.

- 14. Place grout in lintels or beams over openings in one continuous pour.
- 15. Where bond beam occurs more than one course below top of pour, fill bond beam course to within 25 mm (1 inch) of vertically reinforced cavities, during construction of masonry.
- 16. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence if more pours are required.

3.13 CONSTRUCTION TOLERANCES

- A. Lay masonry units plumb, level and true to line within tolerances according to ACI 530.1/ASCE 6/TMS 602 and as follows:
- B. Maximum variation from plumb:
 - 1. In 3000 mm (10 feet) 6 mm (1/4 inch).
 - 2. In 6000 mm (20 feet) 9 mm (3/8 inch).
 - 3. In 12,000 mm (40 feet) or more 13 mm (1/2 inch).
- C. Maximum variation from level:
 - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch).
 - 2. In 12,000 mm (40 feet) or more 13 mm (1/2 inch).
- D. Maximum variation from linear building lines:
 - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch).
 - 2. In 12,000 mm (40 feet) or more 19 mm (3/4 inch).
- E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown:
 - 1. Minus 6 mm (1/4 inch).
 - 2. Plus 13 mm (1/2 inch).
- F. Maximum variation in prepared opening dimensions:
 - 1. Accurate to minus 0 mm (0 inch).
 - 2. Plus 6 mm (1/4 inch).

3.14 CLEANING AND REPAIR

- A. General:
 - 1. Clean exposed masonry surfaces on completion.

- Protect adjoining construction materials and landscaping during cleaning operations.
- Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint.
- Remove mortar droppings and other foreign substances from wall surfaces.
- B. Brickwork:
 - First wet surfaces with clean water, then wash down with detergent solution. Do not use muriatic acid.
 - Brush with stiff fiber brushes while washing, and immediately wash with clean water.
 - Remove traces of detergent, foreign streaks, or stains of any nature.
- C. Concrete Masonry Units:
 - Immediately following setting, brush exposed surfaces free of mortar or other foreign matter.
 - 2. Allow mud to dry before brushing.
- D. Glazed Structural Facing Tile or Brick Units:
 - Clean as recommended manufacturer. Protect light colored mortar joints from discoloration during cleaning.
 - 2. Use on solid masonry walls.
 - 3. Prepare schedule of test locations.

- - E N D - -

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Loose Lintels

1.2 RELATED WORK

- A. Colors, finishes, and textures: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Prime and finish painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.

1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.2.2-87 (R2010) Square and Hex Nuts
- C. American Society for Testing and Materials (ASTM): A36/A36M-14.....Structural Steel

A48-03(R2012)....Gray Iron Castings A53-12.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-15.....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A240/A240M-15.....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications. A269-15.....Seamless and Welded Austenitic Stainless Steel Tubing for General Service A307-14.....Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A391/A391M-07(R2015)....Grade 80 Alloy Steel Chain A786/A786M-15.....Rolled Steel Floor Plate B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-11.....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium B632-08.....Aluminum-Alloy Rolled Tread Plate C1107-13.....Packaged Dry, Hydraulic-Cement Grout (Nonshrink) D3656-13.....Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns F436-16.....Hardened Steel Washers F468-06(R2015).....Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws and Studs for General Use F593-13.....Stainless Steel Bolts, Hex Cap Screws, and Studs

FARGO VA HEALTHCARE SYSTEM	VA PROJECT NO: 437-21-225
EHRM - TRAINING AND ADMIN. SPACE	05 50 00 Metal Fabrications-2

F1667-15.....Driven Fasteners: Nails, Spikes and Staples
D. American Welding Society (AWS):
D1.1-15.....Structural Welding Code Steel
D1.2-14....Structural Welding Code Aluminum
D1.3-18....Structural Welding Code Sheet Steel
E. National Association of Architectural Metal Manufacturers (NAAMM)
AMP 521-01(R2012).....Pipe Railing Manual
AMP 500-06.....Metal Finishes Manual
MBG 531-09(R2017).....Metal Bar Grating Manual

MBG 532-09......Heavy Duty Metal Bar Grating Manual

- F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings:
 - SP 1-15.....No. 1, Solvent Cleaning

SP 2-04.....No. 2, Hand Tool Cleaning

SP 3-04.....No. 3, Power Tool Cleaning

G. Federal Specifications (Fed. Spec):

RR-T-650E.....Treads, Metallic and Nonmetallic, Nonskid

PART 2 - PRODUCTS

2.2 MATERIALS

- A. Structural Steel: ASTM A36.
- B. Primer Paint: As specified in Section 09 91 00, PAINTING.
- C. Paint: As specified in Section 09 91 00 PAINTING and 09 06 00 SCHEDULE OF FINISHES.

2.3 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.

B. Fasteners:

- 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE05 50 00 Metal Fabrications-3

- 2. Screws: ASME B18.6.1.
- 3. Washers: ASTM F436, type to suit material and anchorage.
- 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

2.4 FABRICATION GENERAL

- A. Material
 - Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named, or its standard of quality not specified.
 - Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections
 - Except as otherwise specified, connections may be made by welding, riveting or bolting.
 - 2. Field riveting will not be approved.
 - 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
 - 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.
 - 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
 - Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
 - 7. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE of the members or causing failure of the anchor or fastener, and suit the sequence of installation.

- Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
- 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
- Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self-drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:
 - a. Fabricate items to design shown.
 - b. Furnish members in longest lengths commercially available within the limits shown and specified.
 - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
 - d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
 - e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
 - f. Prepare members for the installation and fitting of hardware.
 - h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
 - 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
 - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
 - d. Finish welded joints to match finish of adjacent surface.
 - 3. Joining:
 - a. Miter or butt members at corners.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE05 50 00 Metal Fabrications-5

- b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 5. Cutting and Fitting:
 - Accurately cut, machine and fit joints, corners, copes, and miters.
 - b. Fit removable members to be easily removed.
 - c. Design and construct field connections in the most practical place for appearance and ease of installation.
 - d. Fit pieces together as required.
 - e. Fabricate connections for ease of assembly and disassembly without use of special tools.
 - f. Joints firm when assembled.
 - g. Conceal joining, fitting and welding on exposed work as far as practical.
 - h. Do not show rivets and screws prominently on the exposed face.
 - i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.
- F. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM AMP 500 Metal Finishes Manual.
 - 3. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to have prime paint.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.

- e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
- 2) Non-ferrous metals: Comply with MAAMM-500 series.
- G. Protection:
 - Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop.
 - Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.5 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - Use clip angles or make provisions for welding hangers and braces to overhead construction.
 - 3. Field connections may be welded or bolted.

2.10 LOOSE LINTELS

- A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified.
- B. Furnish Loose Lintels as described in the Structural Drawings lintel schedule.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
 - Provide temporary bracing for such items until concrete or masonry is set.
 - 2. Place in accordance with setting drawings and instructions.
 - 3. Build strap anchors, into masonry as work progresses.
- C. Set frames of gratings, covers, corner guards, trap doors and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening.
- D. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE05 50 00 Metal Fabrications-7

2. Use continuous weld unless specified otherwise.

- E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.
- F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.
- H. Secure escutcheon plate with set screw.

3.2 STEEL LINTELS

- A. Use lintel sizes and combinations shown or specified.
- B. Install lintels with longest leg upstanding, except for openings in 150 mm (6 inch) masonry walls install lintels with longest leg horizontal.
- C. Install lintels to have not less than 150 mm (6 inch) bearing at each end for nonbearing walls, and 200 mm (8 inch) bearing at each end for bearing walls.

3.20 CLEAN AND ADJUSTING

- A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.
- B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies wood blocking.

1.2 RELATED WORK:

B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Submit data for lumber, hardware and adhesives.
 - Submit data for wood-preservative treatment from chemical treatment manufacturer and certification from treating plants that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 3. Submit data for fire retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
- C. Manufacturer's certificate for unmarked lumber.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Locate stacks on well drained areas, supported at least 152 mm (6 inches) above grade and cover with well-ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 QUALITY ASSURANCE:

A. Installer: A firm with a minimum of three (3) years' experience in the type of work required by this section.

1.6 GRADING AND MARKINGS:

A. Any unmarked lumber for its grade and species will not be allowed on VA Construction sites for lumber and material not normally grade marked,

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT06 10 00 Rough Carpentry-1

provide manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material meet the specified the specified requirements.

1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA): NDS-15.....National Design Specification for Wood Construction
- C. American Society of Mechanical Engineers (ASME): B18.2.1-12(R2013).....Square and Hex Bolts and Screws B18.2.2-10.....Square and Hex Nuts B18.6.1-81(R2008).....Wood Screws
- D. American Plywood Association (APA): E30-11.....Engineered Wood Construction Guide
- E. ASTM International (ASTM):
- A653/A653M-13.....Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process
 - C954-11.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Studs from 0.033 inch (2.24 mm) to 0.112-inch (2.84 mm) in thickness
 - C1002-14.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Metal Studs
 - D198-14.....Test Methods of Static Tests of Lumber in Structural Sizes
 - D2344/D2344M-13.....Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates
 - F844-07a(R2013).....Washers, Steel, Plan (Flat) Unhardened for General Use
 - F1667-13.....Nails, Spikes, and Staples
- F. American Wood Protection Association (AWPA): AWPA Book of Standards
- G. Commercial Item Description (CID):

A-A-55615..... Abield, Expansion (Wood Screw and Lag Bolt Self Threading Anchors)

H. Forest Stewardship Council (FSC):
 FSC-STD-01-001(Ver. 4-0)FSC Principles and Criteria for Forest

Stewardship

- I. Military Specification (Mil. Spec.): MIL-L-19140E.....Lumber and Plywood, Fire-Retardant Treated
- J. Environmental Protection Agency (EPA): 40 CFR 59(2014).....National Volatile Organic Compound Emission Standards for Consumer and Commercial Products
- K. U.S. Department of Commerce Product Standard (PS)

PS 20-10.....American Softwood Lumber Standard

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber must bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks are to be in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
- C. Sizes:
 - 1. Conforming to PS 20.
 - Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- D. Moisture Content:
 - Maximum moisture content of wood products is to be as follows at the time of delivery to site.

- a. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
- b. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- E. Fire Retardant Treatment:
 - 1. Comply with Mil Spec. MIL-L-19140.
 - Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.
- F. Preservative Treatment:
 - 1. Do not treat Heart Redwood and Western Red Cedar.
 - 2. Treat wood members in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 610 mm (24 inches) from ground; nailers, edge strips, blocking .
 - 3. Treat other members specified as preservative treated (PT).
 - 4. Preservative treat by the pressure method complying with AWPA Book use category system standards U1 and T1, except any process involving the use of Chromated Copper Arsenate (CCA) or other agents classified as carcinogenic for pressure treating wood is not permitted.

2.5 ROUGH HARDWARE AND ADHESIVES:

- A. Washers
 - 1. ASTM F844.
 - 2. Provide zinc or cadmium coated steel or cast iron for washers exposed to weather.
- B. Screws:
 - 1. Wood to Wood: ASME B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- C. Nails:
 - Size and type best suited for purpose unless noted otherwise. Provide aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT06 10 00 Rough Carpentry-4

f. Provide special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA WCD1 for nailing and framing unless specified otherwise.
- B. Fasteners:
 - 1. Nails.
 - a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA WCD1 where detailed nailing requirements are not specified in nailing schedule. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.
 - b. Use special nails with framing connectors.
 - c. Use 8d or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
 - d. Use 16d or larger nails for nailing through 50 mm (2 inch) thick lumber.
 - 2. Bolts:
 - a. Fit bolt heads and nuts bearing on wood with washers.
 - b. Countersink bolt heads flush with the surface of nailers.
 - c. Embed in concrete and solid masonry or provide expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
 - d. Provide toggle bolts to hollow masonry or sheet metal.
 - e. Provide bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 610 mm (24 inch) intervals between end bolts. Provide clips to beam flanges.
 - 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C954 for steel over 0.84 mm (0.033 inch) thick.
 - 4. Power actuated drive pins may be provided where practical to anchor to solid masonry, concrete, or steel.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT06 10 00 Rough Carpentry-5

- 5. Do not anchor to wood plugs or nailing blocks in masonry or concrete. Provide metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- C. Cut notch, or bore in accordance with AFPA WCD1 passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- D. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Provide longest lengths practicable.
 - 3. Provide fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 610 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 127 mm (5 inches) in width.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Thermal insulation.
 - a. Board or block insulation at masonry cavity walls.
 - b. Loose fill insulation at exterior hollow masonry walls.
 - 2. Acoustical insulation.
 - a. Batt and blanket insulation at interior framed partitions

1.2 RELATED WORK

- A. Section 04 20 00, UNIT MASONRY: Insulation for Cavity Face of Masonry.
- B. Section 07 21 23, LOOSE-FILL INSULATION: Loose Fill Insulation for Attic Floors.
- C. Section 07 84 00, FIRESTOPPING: Safing Insulation.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

C612-14(2019).....Mineral Fiber Block and Board Thermal C665-17

Mineral-Fiber Blanket Thermal

Insulation for Light Frame Construction and Manufactured Housing.

C954-18.....Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Base to Steel Studs From 0.033 (0.84 mm) inch to 0.112 inch (2.84 mm) in thickness.

E84-20.....Surface Burning Characteristics of Building Materials.

F1667-18a.....Driven Fasteners: Nails, Spikes, and Staples.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show insulation type, thickness, and R-value for each location.
- C. Manufacturer's Literature and Data:

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT07 21 31 Thermal Insulation-1

- 1. Description of each product.
- 2. Adhesive indicating manufacturer recommendation for each application.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.
- C. Protect foam plastic insulation from UV exposure.

1.7 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL

2.2 THERMAL INSULATION

- A. Inside Face of Exterior Wall Insulation:
 - 1. Mineral Fiber Board: ASTM C612, Type IB or II.
- B. Masonry Cavity Wall Insulation:
 - Mineral Fiber Board: ASTM C612, Type II, with vapor retarder facing; maximum permeance 29 ng/Pa/s/sq. m (0.5 perms).

2.3 ACOUSTICAL INSULATION

- A. Semi Rigid, Batts and Blankets:
 - 1. Widths and lengths to fit tight against framing.
 - Mineral Fiber boards: ASTM C553, Type II, flexible, or Type III, semi rigid unfaced .
 - a. Density: nominal 4.5 pound.
 - 3. Mineral Fiber Batt or Blankets: ASTM C665 unfaced .
 - 4. Maximum Surface Burning Characteristics: ASTM E84.
 - a. Flame Spread Rating: 25.
 - b. Smoke Developed Rating: 450.

2.4 ACCESSORIES

A. Fasteners:

- 1. Staples or Nails: ASTM F1667, zinc-coated, size and type to suit application.
- 2. Screws: ASTM C954 or ASTM C1002, size and length to suit application with washer minimum 50 mm (2 inches) diameter.
- Impaling Pins: Steel pins with head minimum 50 mm (2 inches) diameter.
 - a. Length: As required to extend beyond insulation and retain cap washer when washer is placed on pin.
 - b. Adhesive: Type recommended by manufacturer to suit application.
- B. Insulation Adhesive: Nonflammable type recommended by insulation manufacturer to suit application.
- C. Tape: Pressure sensitive adhesive on one face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install insulation with vapor barrier facing the heated side, unless indicated otherwise.
- C. Install batt and blanket insulation with joints tight. Fill framing voids completely. Seal penetrations, terminations, facing joints, facing cuts, tears, and unlapped joints with tape.
- D. Fit insulation tight against adjoining construction and penetrations, unless indicated otherwise.

3.3 THERMAL INSULATION

- A. Inside Face of Exterior Wall Insulation:
 - Location: On interior face of solid masonry and concrete walls, beams, beam soffits, underside of floors, and to face of studs to support interior wall finish where indicated.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT07 21 31 Thermal Insulation-3

- Bond insulation to solid vertical surfaces with adhesive. Fill joints with adhesive cement.
- Fasten board insulation to face of studs with screws, nails or staples. Space fastenings maximum 300 mm (12 inches) on center. Stagger fasteners at board joints. Install fasteners at each corner.

3.4 ACOUSTICAL INSULATION

- A. General:
 - 1. Install insulation without voids.
 - Pack insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
 - Pack behind outlets, around pipes, ducts, and services encased in walls.
 - 4. Hold insulation in place with pressure sensitive tape.
 - Lap facer flanges together over framing for continuous surface. Seal all penetrations through the insulation and facers.
 - 6. Do not compress insulation below required thickness except where embedded items prevent required thickness.
- B. Semi Rigid, Batts and Blankets:
 - When insulation is not full thickness of cavity, adhere insulation to one side of cavity, maintaining continuity of insulation and covering penetrations or embedments.
 - a. Wood Framing:
 - Fasten blanket insulation between wood framing and joists with nails or staples through flanged edges of insulation.
 - 2) Space fastenings maximum 150 mm (6 inches) on center.
 - b. Metal Framing:
 - Fasten insulation between metal framing with pressure sensitive tape continuous along flanged edges.
 - At metal framing or ceilings suspension systems, install blanket insulation above suspended ceilings or metal framing at right angles to the main runners or framing.
 - Tape insulation tightly together so no gaps occur and metal framing members are covered by insulation.

3.5 CLEANING

A. Remove excess adhesive before adhesive sets.

3.6 PROTECTION

A. Protect insulation from construction operations.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT07 21 31 Thermal Insulation-4

B. Repair damage.

- - E N D - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 07 21 31 Thermal Insulation-5

VA PROJECT NO: 437-21-225

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Section 07 81 00, APPLIED FIREPROOFING: Spray applied fireproofing.
- B. Section 07 92 00, JOINT SEALANTS: Sealants and application.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS: Fire and smoke damper assemblies in ductwork.
- D. Section 23 37 00, AIR OUTLETS AND INLETS: Fire and smoke damper assemblies in ductwork.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Installer qualifications.
- C. Inspector qualifications.
- D. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- E. List of FM, UL, or WH classification number of systems installed.
- F. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- G. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE

A. FM, UL, or WH or other approved laboratory tested products will be acceptable.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):
 - E84-20.....Surface Burning Characteristics of Building Materials
 - E699-16.....Standard Specification for Agencies Involved in Testing, Quality Assurance, and Evaluating of Manufactured Building Components
 - E814-13a(2017).....Fire Tests of Penetration Firestop Systems E2174-20a....Standard Practice for On-Site Inspection of Installed Firestop Systems
 - E2393-20.....Standard Practice for On-Site Inspection of Installed Fire Resistive Joint Systems and Perimeter Fire Barriers
- C. FM Global (FM): Annual Issue Approval Guide Building Materials 4991-13.....Approval of Firestop Contractors
- D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory
- E. Annual Issue Fire Resistance Directory 723-Edition 11(2018)....Standard for Test for Surface Burning Characteristics of Building Materials

1479-04(2015).....Fire Tests of Penetration Firestops

F. Intertek Testing Services - Warnock Hersey (ITS-WH):

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 07 84 00 Firestopping-2

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

Annual Issue Certification Listings

G. Environmental Protection Agency (EPA): 40 CFR 59(2014).....National Volatile Organic Compound Emission Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 inches) nominal pipe or 0.01 square meter (16 square inches) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
 - 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used.

- Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 inches) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- B. Glazing: Section 08 80 00, GLAZING.
- C. Sound Rated Gypsum Partitions/Sound Sealants: Section 09 29 00, GYPSUM BOARD.
- D. Mechanical Work: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's installation instructions for each product used.
- C. Cured samples of exposed sealants for each color.
- D. Manufacturer's Literature and Data:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 07 92 00 Joint Sealants-1

- 1. Primers
- 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- E. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below
 4.4 degrees C (40 degrees F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT07 92 00 Joint Sealants-2

1.10 APPLICABLE PUBLICATIONS:

A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

в.	ASTM International (ASTM):					
	C509-06Gasket and					
		Sealing Material				
	C612-14	.Mineral Fiber Block and Board Thermal				
		Insulation				
	C717-14a	.Standard Terminology of Building Seals and				
		Sealants				
	C734-06(R2012)	.Test Method for Low-Temperature Flexibility of				
		Latex Sealants after Artificial Weathering				
	C794-10	.Test Method for Adhesion-in-Peel of Elastomeric				
		Joint Sealants				
	C919-12	.Use of Sealants in Acoustical Applications.				
	C920-14a	.Elastomeric Joint Sealants.				
	C1021-08 (R2014)	Laboratories Engaged in Testing of Building.				
		Sealants				
	C1193-13	.Standard Guide for Use of Joint Sealants.				
	C1248-08 (R2012)	.Test Method for Staining of Porous Substrate by				
		Joint Sealants				
	E84-09	.Surface Burning Characteristics of Building				
		Materials				
С.	C. Sealant, Waterproofing and Restoration Institute (SWRI).					
	The Professionals' Guide					
D.	Environmental Protection	n Agency (EPA):				
	40 CFR 59(2014)National Volatile Organic Compound Emission					

```
Standards for Consumer and Commercial Products
```

PART 2 - PRODUCTS

2.1 SEALANTS:

A. Interior Sealants:

- VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250 g/L.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT07 92 00 Joint Sealants-3

- b. Sealant Primers for Nonporous Substrates: 250 g/L.
- c. Sealant Primers for Porous Substrates: 775 g/L.
- S-#1 Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25.
- 3. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.
 - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces.
 - c. Interior surfaces of exterior wall penetrations.
 - d. Joints at masonry walls and columns, piers, concrete walls or exterior walls.
 - e. Perimeter of lead faced control windows and plaster or gypsum wallboard walls.
 - f. Exposed isolation joints at top of full height walls.
 - g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet.
 - h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.

2.2 COLOR:

- A. Sealants used with exposed masonry are to match color of mortar joints.
- B. Sealants used with unpainted concrete are to match color of adjacent concrete.
- C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.

- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to

produce a clean, sound substrate capable of developing optimum bond with joint sealants.

- Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
- 3. Remove laitance and form-release agents from concrete.
- 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
 - Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - Do not install sealant type listed by manufacture as not suitable for use in locations specified.
 - Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 5. Avoid dropping or smearing compound on adjacent surfaces.
 - 6. Fill joints solidly with compound and finish compound smooth.
 - 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
 - Finish paving or floor joints flush unless joint is otherwise detailed.
 - 9. Apply compounds with nozzle size to fit joint width.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT07 92 00 Joint Sealants-7

- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
- 11. Replace sealant which is damaged during construction process.
- C. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- D. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

- - - E N D - - -

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Hollow metal doors hung in hollow metal frames at interior locations.
 - 2. Hollow metal door frames for wood doors at interior locations.

1.2 RELATED WORK

- A. Section 08 71 00, DOOR HARDWARE: Door Hardware:
- B. Section 08 80 00, GLAZING: Glazing.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standard Institute (ANSI): A250.8-2014.....Standard Steel Doors and Frames
- C. ASTM International (ASTM):
 - A240/A240M-15b.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
 - A653/A653M-15.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip
 - A1008/A1008M-15.....Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability, Solution Hardened, and Bake Hardenable
- D. Master Painters Institute (MPI):

No. 18..... Primer, Zinc Rich, Organic

- E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- F. National Fire Protection Association (NFPA): 80-16......Fire Doors and Other Opening Protectives

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:1. Show size, configuration, and fabrication and installation details.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 11 13 Hollow Doors-1

- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Include schedule showing each door and frame requirements fire label and smoke control label for openings.
 - 3. Installation instructions.
- D. Qualifications: Substantiate qualifications comply with specifications.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Fasten temporary steel spreaders across the bottom of each door frame before shipment.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Sheet Steel: ASTM A1008/A1008M, cold-rolled.
- B. ASTM B221M (ASTM B221).

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide hollow metal doors and frames from one manufacturer.

2.3 HOLLOW METAL DOORS

A. Hollow Metal Doors: ANSI A250.8; 44 mm (1-3/4 inches) thick. See drawings for sizes and designs.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 11 13 Hollow Doors-2

- Interior Doors: Level 2 and Physical Performance Level B, heavy duty; Model 2, seamless at interior locations .
- B. Door Faces:
 - 1. Interior Doors: Sheet steel minimum prime coating .
- C. Door Cores:
 - 1. Interior Doors: Kraft paper honeycomb.

2.4 HOLLOW METAL FRAMES

- A. Hollow Metal Frames: ANSI A250.8; face welded . See drawings for sizes and designs.
 - 1. Interior Frames:
 - a. Level 2 Hollow Metal Doors: 1.3 mm (0.053 inch) thick.
- B. Frame Materials:
 - 1. Interior Frames: Sheet steel prime coating .

2.5 FABRICATION

- A. Hardware Preparation: ANSI A250.8; for hardware specified in Section 08 71 00, DOOR HARDWARE.
- B. Hollow Metal Door Fabrication:
 - Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 2. Fill spaces between vertical steel stiffeners with insulation.
- C. Hollow Metal Frame Fabrication:
 - 1. Fasten mortar guards to back of hardware reinforcements.
 - 2. Frame Anchors:
 - a. Floor anchors:
 - Provide extension type floor anchors to compensate for depth of floor fills.
 - Provide 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive floor fasteners.
 - Provide mullion 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two floor fasteners and frame anchor screws.
 - Provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for floor fasteners and frame anchor screws for sill sections.
 - a) Space floor bolts50 mm (24 inches) on center.
 - b. Jamb anchors:
 - 1) Place anchors on jambs:

a) Near top and bottom of each frame.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 08 11 13 Hollow Doors-3

- b) At intermediate points at maximum 600 mm (24 inches) spacing.
- 2) Form jamb anchors from steel minimum 1 mm (0.042 inch) thick.
- 3) Anchors for frames set in prepared openings:
 - a) Steel pipe spacers 6 mm (1/4 inch) inside diameter, welded to plate reinforcing at jamb stops, or hat shaped formed strap spacers 50 mm (2 inches) wide, welded to jamb near stop.
 - b) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass through frame and spacers.
 - c) Two piece frames: Subframe or rough buck drilled for 6 mm (1/4 inch) bolts.
- Modify frame anchors to fit special frame and wall construction.
- 5) Provide special anchors where shown on drawings and where required to suit application.

2.6 FINISHES

- A. Steel: ANSI A250.8; shop primed.
- B. Finish exposed surfaces after fabrication.

2.7 ACCESSORIES

- A. Primers: ANSI A250.8.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Clips Connecting Members and Sleeves: Match door faces.
- E. Fasteners: stainless steel .
 - 1. Metal Framing: Steel drill screws.
- F. Anchors: stainless steel .
- G. Galvanizing Repair Paint: MPI No. 18.
- H. Insulation: Unfaced mineral wool.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Apply barrier coating to metal surfaces in contact with cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

A. Install products according to manufacturer's instructions and approved submittal drawings .

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 11 13 Hollow Doors-4

 When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 FRAME INSTALLATION

- A. Apply barrier coating to concealed surfaces of frames built into masonry.
- B. Plumb, align, and brace frames until permanent anchors are set.
 - Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - Use wood spreaders at bottom of frame when shipping spreader is removed.
 - Where construction permits concealment, leave shipping spreaders in place after installation, otherwise remove spreaders when frames are set and anchored.
 - Remove wood spreaders and braces when walls are built and jamb anchors are secured.
- C. Floor Anchors:
 - 1. Anchor frame jambs to floor with two expansion bolts.
 - a. All Frames: Use 6 mm (1/4 inch) diameter bolts.
 - 2. Power actuated drive pins are acceptable to secure frame anchors to concrete floors.
- D. Jamb Anchors:
 - Metal Framed Walls: Secure anchors to sides of studs with two fasteners through anchor tabs.
- E. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.4 DOOR INSTALLATION

- A. Install doors plumb and level.
- B. Adjust doors for smooth operation.
- C. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.5 CLEANING

A. Clean exposed door and frame surfaces. Remove contaminants and stains.

3.6 PROTECTION

A. Protect doors and frames from traffic and construction operations.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 11 13 Hollow Doors-5

B. Remove protective materials immediately before acceptance.

C. Repair damage.

- - - E N D - - -

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Interior flush wood doors transparent finish.

1.2 RELATED WORK

- A. Section 08 71 00, DOOR HARDWARE: Door Hardware including hardware location (height).
- B. Section 08 11 13, HOLLOW METAL DOORS AND FRAMES: Installation of Doors.
- C. Section 08 71 00, DOOR HARDWARE: Installation of Door Hardware.
- D. Section 09 06 00, SCHEDULE FOR FINISHES: Door Finish.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Window and Door Manufacturers Association (ANSI/WDMA):
 - 1. I.S. 1A-13 Architectural Wood Flush Doors.
- C. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
- D. Window and Door Manufacturers Association (WDMA):
 - 1. TM 7-14 Cycle-Slam Test.
 - 2. TM 8-14 Hinge Loading Test.
 - 3. TM 10-14 Screw Holding Capacity.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Include details of glazing.
 - Indicate project specific requirements not included in Manufacturer's Literature and Data submittal.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
- D. Samples:
 - Corner section of flush veneered door 300 mm (12 inches) square, showing details of construction, labeled to show grade and type number and conformance to specified standard.

- Veneer sample 200 mm by 275 mm (8 inch by 11 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted.
- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly and presently manufactures specified products.
 - Manufactures specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
 - 1. Minimum 0.15 mm (6 mil) polyethylene bags or cardboard packaging to remain unbroken during delivery and storage.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
 - 1. Identify door opening corresponding to Door Schedule.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging. Retain packaging for door protection after installation.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.1. Store doors according to ANSI/WDMA I.S. 1A.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

Comply with door manufacturer's instructions for relative humidity.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 14 00 Interior Wood Doors-2

- B. Manufacturer's Warranty: Warrant interior factory finished flush wood doors against material and manufacturing defects.
 - 1. Warranty Period: Lifetime of original installation.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer.

2.2 FLUSH WOOD DOORS

- A. General:
 - 1. ANSI/WDMA I.S. 1A, Extra Heavy Duty.
 - 2. Adhesive: Type II.
 - 3. Core: Structural composite lumber, except when mineral core is required for fire rating.
 - 4. Thickness: 1-3/4 inches unless otherwise shown or specified.

B. Faces:

- 1. ANSI/WDMA I.S. 1A.
- 2. One species throughout project unless scheduled or otherwise shown.
- 3. Transparent Finished Faces: Premium Grade. AA Grade face veneer to match Station Standard.
- Match face veneers for doors for uniform effect of color and grain at joints.
- Door Edges: Same species as door face veneer, except maple is acceptable for stile face veneer on birch doors.
- In existing buildings, where doors are required to have transparent finish, use wood species, grade, and assembly of face veneers to match adjacent existing doors.
- 7. Painted Finishes: Custom Grade, mill option close grained hardwood, premium or medium density overlay.
- 8. Factory sand doors for finishing.

2.3 FABRICATION

- A. Factory machine interior wood doors to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
 - 1. Factory fit fire rated doors according to NFPA 80.
- B. Rout doors for hardware using templates and location heights specified in Section 08 71 00, DOOR HARDWARE.
- C. Factory fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (2 inches) of door thickness.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 14 00 Interior Wood Doors-3

- D. Clearances between Doors and Frames and Floors:
 - 1. Fire Rated Doors: Comply with NFPA 80.
 - a. Doors with Automatic Bottom Seal: Maximum clearance 10 mm (3/8 inch) at threshold.
 - b. Other Door Bottoms: Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
 - 2. Door Jambs, Heads, and Meeting Stiles: Maximum 3 mm (1/8 inch).
- E. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- F. Identify each door on top edge.
 - Mark with stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, date of manufacture and quality.
 - Mark door or provide separate certification including name of inspection organization.
 - 3. Identify door manufacturing standard, including glue type.
 - 4. Identify veneer and quality certification.
 - 5. Identification of preservative treatment for stile and rail doors.

2.4 FINISHES

- A. Factory Transparent Finish:
 - 1. Factory finish flush wood doors.
 - ANSI/WDMA I.S. 1A Section F-3 Finish System Descriptions for System 5, Conversion Varnish or System 7, Catalyzed Vinyl.
 - b. Use stain when required to produce finish which matches Station Standard or as otherwise approved by the VA.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify door frames are properly anchored.
 - 2. Verify door frames are plumb, square, in plane, and within tolerances for door installation.
- B. Protect existing construction and completed work from damage.
- C. Install astragal on active leaf of pair of smoke doors and one leaf of double egress smoke doors.

3.2 INSTALLATION

A. Install products according to manufacturer's instructions and approved submittal drawings .

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 14 00 Interior Wood Doors-4

1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 PROTECTION

- A. After installation, place shipping container over door and tape in place.
 - 1. Do not apply tape to door faces and edges.
- B. Provide protective covering over exposed hardware in addition to covering door.
- C. Maintain covering in good condition until removal is directed by Contracting Officer's Representative.

- - E N D - -

SECTION 08 51 13 ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

 New infill double-hung aluminum window sashes of type and size shown, complete with integral blinds, related components and Match existing type, style, and color of existing Building 9 windows.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing Joints.
- B. Section 08 80 00, GLAZING: Glazing.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Architectural Manufacturers Associations (AAMA): AAMA/WDMA/CSA 101/I.S.2/A440-17 Windows, Doors, and Skylights. AAMA 505-17.....Dry Shrinkage and Composite Performance Thermal Cycle Test Procedures.
 - AAMA 2605-20.....Performance Requirements and Test Procedures for Superior Performing Organic Coatings on Aluminum Extrusions and Panels.

AAMA TIR A8-16.....Structural Performance of Composite Thermal Barrier Framing System.

C. American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI):

7-16......Minimum Design Loads for Buildings and Other Structures.

D. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-19.....Energy Standard for Buildings Except Low-Rise

Residential Buildings.

E. ASTM International (ASTM):

B209-14.....Aluminum and Aluminum-Alloy Sheet and Plate. B209M-14....Aluminum and Aluminum-Alloy Sheet and Plate (Metric).

B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.

B221M-13.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 51 13 Aluminum Windows-1

E283-19.....Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen. E331-00(2016).....Water Penetration of Exterior Windows,

> Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference.

1.4 SUBMITTAL

- A. Submit according to Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Indicate window types required for project.
 - Identify window unit components by name and type of metal or material, show construction, locking systems, mechanical operators, trim, installation and anchorages.
 - 3. Include glazing details and standards for factory glazed units.
- C. Manufacturer's Literature and Data:
 - 4. Description of each product.
 - 5. Installation instructions.
 - 6. Warranty.
- D. Samples:
 - Window Frame: 150 mm (6 inch) long samples showing finishes, specified.
- E. Test reports: Indicate each product complies with specifications.
 - 8. Windows.
 - 9. Operating hardware.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - Manufactured specified products with satisfactory service on five similar installations for minimum five years.
- B. Provide contact names and addresses for completed projects when requested by Contracting Officer's Representative.
- C. Quality Certified Labels or Certificates:
 - 1. AAMA Label affixed to each window indicating compliance with specification.
 - Certificates in lieu of label with copy of test report maximum 4 years old from independent testing laboratory and certificate signed

by window manufacturer stating that windows provided comply with specified requirements and AAMA/WDMA/CSA 101/I.S.2/A440 for type of window specified.

1.6 STORAGE AND HANDLING

- A. Protect windows from damage during handling and construction operations before, during and after installation.
- B. Store windows under cover, setting upright.
- C. Do not stack windows flat.
- D. Do not lay building materials or equipment on windows.

1.7 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant windows against material and manufacturing defects.
 - 1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design windows complying with specified performance:
 - Thermal Transmittance: Maximum U-value watt/square meter/degree K (Btu/square foot/hour/degree F).
 - a. Insulating Glass Windows: U-2.8 (U-0.5).
 - b. Dual Glazed Windows: U-4.0 (U-0.7), or as required by ASHRAE 90.1.
 - 2. Condensation Resistance Factor (CRF): NFRC 500 Minimum CRF C 55.
 - Water Resistance: ASTM E331; No uncontrolled penetration at 220 Pa (4.50 pound square foot) minimum, pressure differential.
 - 4. Air Infiltration Resistance: ASTM E283; 1.5 liter/second/square meter (0.3 cubic foot/minute/square foot.), maximum at / 75 Pa (1.57 pound square foot) minimum, pressure differential.

2.2 MATERIALS

- A. Aluminum Extrusions: ASTM B221M (ASTM B221); 6063 alloy, T5 temper.
- B. Aluminum Sheet: ASTM B209M (ASTM B209); 5005 alloy, H15 or H34 temper.

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide windows from one manufacturer.

2.4 ALUMINUM WINDOWS

A. Frames and Sashes: Aluminum extrusions, AAMA/WDMA/CSA 101/I.S.2/A440.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 51 13 Aluminum Windows-3

- B. ALUMINUM SHEET: ASTM B209M (ASTM B209); 5005 ALLOY, H15 OR H34 TEMPER.
- C. Glass and Glazing: As specified in Section 08 80 00, GLAZING.
 - 1. Factory glaze windows.

2.5 NEW EXTERIOR DOUBLE HUNG WINDOWS

- A. Existing window is AAMA 101 double hung type dual sash 4-track design. Exterior sash shall be glazed with 5/8" clear insulated glass with simulated divided lite (see Drawings for pattern) and interior sash glazed with 3/16" low "E" single glazing. Frame shall be approximately 5-7/8" depth.
- B. Manufacturer's/Type:
 - Existing window is 4-Track aluminum, SCW 900 Series, dual sash window units as manufactured by St. Cloud Window Inc..
- C. Sash:
 - Provide units with removable sash feature permitting sash removed without tools (except for security device) for cleaning from interior.
 - All sash members shall be hollow tubular extrusions to resist twist and deflection. Sash members shall be square cut and milled to allow telescoped joints at each corner. Assembly screws must be stainless steel.
 - Provide simulated divided lites on exterior sash consisting of extruded aluminum muntin bars attached to outside of spandrel glass with double stick glazing tape. Aluminum muntins shall not be over 3/4" wide.
- D. Integral Venetian Blinds:
 - 1. Tempered aluminum slats with Manufacturers Standard Baked on acrylic enamel finish.
 - 2. Slats maximum 5/8" wide.
 - 3. Slat Color: Match existing.
 - 4. Weave cords and tapes of polyester-dacron fiber.
 - 5. Control raising and lowering of blinds by cords or other arrangement accessible only when inner sash is open.
 - Angle of slat tilt adjustable by means of a non-removable control knob.

2.6 FABRICATION

A. Fabricate windows to comply specified performance class and grade.

2.7 FINISHES

- A. Finish window units according to NAAMM AMP 500 series.
- B. Kynar painted finish on exposed aluminum surfaces:
 - 1. Fluorocarbon AAMA 6052, 70% Kynar 500 or Hyplar 5000 PFG High-Performance Organic coating applied to minimum 1.2 mil thickness on
 - 2. window. Color: Valspar Fluoropon, Sierra White.
- C. Stainless Steel: AMP 503.
 - 1. Concealed: 2B or 2D.
 - 2. Exposed: No. 4 unless specified otherwise.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.1. Verify openings are within acceptable tolerances.
- B. Protect existing construction and completed work from damage.
- C. Remove existing windows to permit new installation when replacement window is available, and ready for immediate installation.
 - Remove existing work carefully; avoid damage to existing work indicated to remain.
 - 2. Perform other operations as necessary to prepare openings for proper installation and operation of new windows.
 - Do not leave openings uncovered at end of working day, during precipitation or temperatures below 16 degrees C (60 degrees F).

3.2 INSTALLATION, GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings .
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install window sash plumb, level, true, and in alignment; without warp or rack of frames or sash.

3.3 ADJUSTING

A. Adjust ventilating sash and hardware to provide tight fit at contact points, and at weather-stripping for smooth operation and weathertight closure.

3.4 CLEANING

- A. Lubricate hardware and moving parts.
- A. Remove excess glazing and sealant compounds.

FARGO VA HEALTHCARE SYSTEMVA PROJEEHRM - TRAINING AND ADMIN. SPACE SUPPORT08 51 13 A

- B. Clean exposed aluminum and glass surfaces. Remove contaminants and stains.
- C. Keep windows locked except while adjusting and testing.

- - E N D - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 08 51 13 Aluminum Windows-6

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, INTERIOR WOOD DOORS Section 08 11 13, HOLLOW METAL DOORS AND FRAMES
- C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Painting: Section 09 91 00, PAINTING.
- E. Electrical: Division 26, ELECTRICAL.
- F. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with ABAAS, (Architectural Barriers Act Accessibility Standard) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-1

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC COR as record copies.
- B. Hardware Schedule: AHC certified hardware consultant to prepare and submit hardware schedule in the following form:

Hardware Quantity Item	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation
---------------------------	------	--------------------------------------	--------	---------------------------------------	---------------------------	---	------------------------------------

- C. Samples and Manufacturers' Literature:
 - Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.
 - Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.
- D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an

independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to COR for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in COR's office until all other similar items have been installed in project, at which time the COR will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, COR and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type. B. Keys, Cores, pins, etc, and keying information will be furnished to the VA Fargo locksmith to pin cores and install. Cores shall be Best, Figure 8, tb, 7 pin, 626 finish..

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. ASTM International(ASTM): F883-13.....Padlocks E2180-18....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s)

In Polymeric or Hydrophobic Materials

- C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):
 - A156.1-06.....Butts and Hinges A156.2-03.....Bored and Pre-assembled Locks and Latches A156.3-08.....Exit Devices, Coordinators, and Auto Flush Bolts A156.4-08.....Door Controls (Closers) A156.5-14.....Cylinders and Input Devices for Locks. A156.6-05.....Architectural Door Trim A156.8-05......Door Controls-Overhead Stops and Holders A156.11-14....Cabinet Locks A156.12-05Interconnected Locks and Latches A156.13-05......Mortise Locks and Latches Series 1000 A156.14-07Sliding and Folding Door Hardware A156.15-06.....Release Devices-Closer Holder, Electromagnetic and Electromechanical A156.16-08.....Auxiliary Hardware A156.17-04Self-Closing Hinges and Pivots A156.18-06.....Materials and Finishes A156.20-06Strap and Tee Hinges, and Hasps A156.21-09.....Thresholds A156.22-05.....Door Gasketing and Edge Seal Systems A156.23-04.....Electromagnetic Locks A156.24-03.....Delayed Egress Locking Systems

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-4

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

A156.25-07Electrified Locking Devices A156.26-06....Continuous Hinges A156.28-07Master Keying Systems A156.29-07Exit Locks and Alarms A156.30-03High Security Cylinders A156.31-07Electric Strikes and Frame Mounted Actuators A156.36-10....Auxiliary Locks A250.8-03....Standard Steel Doors and Frames

- D. National Fire Protection Association (NFPA): 80-10......Fire Doors and Other Opening Protectives 101-09.....Life Safety Code
- E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless steel material.
 - Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
 - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm (4-1/2 inches x 4-1/2 inches) hinges.
 - 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).

FARGO VA HEALTHCARE SYSTEMVA PROJECEHRM - TRAINING AND ADMIN. SPACE SUPPORT08 71 00 10

VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-5

- 7. Provide heavy-weight hinges where specified.
 - At doors weighing 330 kg (150 pounds) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer.

2.3 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
 - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
 - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
 - Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
 - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.

- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 1/2" (38mm) minimum piston diameter.

2.4 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.

2.5 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed hold-open on/off control at all other doors requiring overhead door stops.

2.6 LOCKS AND LATCHES

A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Cylinders for all locksets shall be removable core type. Cylinders shall be furnished with construction removable cores and construction master keys. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-7

locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core to allow opening and closing during construction and prior to the installation of final cores.

- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching existing. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide nonferrous mortise lock case.

2.7 KEYS

- A. All Blank Keys are
- to be turned over to the station locksmith. Furnish keys in quantities as follows:

Locks/Keys	Quantity		
Cylinder locks	2 keys each		

2.8 KICK PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates as specified below:
 - 1. Kick plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

08 71 00 Door Hardware-8

plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick to within 6 mm (1/4 inch) of each edge of doors. For jamb stop requirements, see specification sections pertaining to door frames.

2.9 EXIT DEVICES

- A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.
- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors.
- C. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels. Where concealed vertical rod panics are specified at exterior doors, provide with both top and bottom rods.
- D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.
- E. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- F. Exit devices for fire doors shall comply with Underwriters Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof of compliance.
- 2.10 FLUSH BOLTS (LEVER EXTENSION)
 - A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
 - B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
 - C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
 - D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

2.11 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm CTC (6 inches CTC) length by 19 mm (3/4 inches) diameter minimum with plate Type J302, 90 mm by 381 mm (3-1/2 inches by 15 inches), unless otherwise specified. Provide pull with projection of 57.2 mm (2 1/4 inches) minimum and a clearance of 38.1 mm (1 1/2 inches) minimum. Cut plates of door pull plate for cylinders, or turn pieces where required.

2.12 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 203 mm (8 inches) wide by 406.4 mm (16 inches) high. Provide metal Type J302 plates 102 mm (4 inches) wide by 406.4 mm (16 inches) high where push plates are specified for doors with stiles less than 203 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.13 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length (0.000774m³/s/m).

2.14 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626.
 - 2. Hinges --interior doors: 652.
 - 3. Pivots: Match door trim.
 - 4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 5. Thresholds: Mill finish aluminum.
 - 6. Cover plates for floor hinges and pivots: 630.
 - 7. Other primed steel hardware: 600.
- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces except where otherwise specified.

E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.15 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval.
- B. For new buildings locate hardware on doors at heights specified below, with all hand-operated hardware centered within 864 mm (34 inches) to 1200 mm (48 inches), unless otherwise noted:
- C. Hardware Heights from Finished Floor:
 - 1.Exit devices centerline of strike (where applicable) 1024 mm (40-5/16
 inches).
 - 2.Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
 - 3. Deadlocks centerline of strike 1219 mm (48 inches).
 - Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.
 - 5. Centerline of door pulls to be 1016 mm (40 inches).
 - 6. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
 - 7. Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike.
 - 8.Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment.

A. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)

- B. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- C. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by COR. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.
- D. Hinges Required Per Door:

Door Description	Number butts
Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts

- E. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, or solid masonry. Fiber or rawl plugs and adhesives are not permitted.
- F. After locks have been installed; show in presence of COR that keys operate their respective locks in accordance with keying requirements.

3.3 FINAL INSPECTION

A. Installer to provide letter to VA COR that upon completion, installer has visited the Project and has accomplished the following:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-12

- 1.Re-adjust hardware.
- 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
- 3. Identify items that have deteriorated or failed.
- 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of COR and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards. ELECTRIC HARDWARE ABBREVIATIONS LEGEND: ADO = Automatic Door Operator EMCH = Electro-Mechanical Closer-Holder MHO = Magnetic Hold-Open (wall- or floor-mounted)

SET #1

Doors: BA-52,

6	5 Hinge(s)	A8111
2	? Fire Exit Device	TYPE 8 F23 LEVER
2	2 Closer Holder	C00191
2	2 Kick Plate	J102
1	Set Self Adhesive Seal	R0Y154

SET #2

Doors: BA-9A, BA-9B, BA-9C, BA-10A, BA-10B, BA-13

3 Hinge(s)	A8111
1 Fire Exit Device	TYPE 1 F23 LEVER
1 Closer	C02011

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-13

01	-0	1-	21

1	Kick	Plate	J102
1	Wall	Stop(s)	L02101
1	Seal		R0Y154

Doors: BA-30

3	Hinge	A8111	
1	Storeroom Lockset	F07	
1	Closer	C02251	
3	Silencer(s)	L03011	
1	2-Factor Authentication	n (Keypad & Card reader)	SIGNO

SET #4

Doors: BA-10C, BA-37, BA-50

3	Hinge(s)	A8111
1	Storeroom Lockset	F07
1	Closer	C02021
1	Kick Plate	J102
3	Silencer(s)	L03011

SET #5

Doors: BA-41

3	Hinge	A8111
1	Storeroom Lockset	F07
1	Closer	C02251
1	Kick Plate	J102
3	Silencer(s)	L03011

SET #6

Doors: BA-67, BA-72

3	Hinge(s)		A8111
1	Storeroom	Lockset	F07

1 Closer	C02021
1 Kick Plate	J102
1 Wall Stop(s)	L02101
3 Silencer(s)	L03011

Doors: BA-44

3 Hinge(s)	A8111
1 Classroom Lockset	F05
1 Electric Strike	E09321
1 Power Operator	A156.19
1 Kick Plate	J102
3 Silencer(s)	L03011
2 Actuators	4-1/2'' square with text and logo (hardwired)
1 Power Supply	12/24 VDC Amp as req'd
1 Key Switch	Alternate Action (incl. cylinder as req'd)
1 Wiring Diagram	Elevation & point-to-point description of
operation	

SET #8

Doors: BA-69A

3	Hinge(s)	A8111
1	Classroom Lockset	F05
3	Silencer(s)	L03011

SET #9

Doors: BA-69B

3 Hinge(s)	A8111	
1 Classroom Lockset	F05	
1 Wall Stop(s)	L02101	
1 Closer	C02251	
3 Silencer(s)	L03011	
1 2-Factor Authentication	n(Keypad & Card Reader)	SIGNO

Doors: BA-70A

6 Hinge(s)	A8111	
1 Set Manual Flush Bolt 1 Dust Proof Strike	L04251 L04021	
1 Office Lockset	F04	
1 Closer	C02021	
	*Active Leaf	
2 Kick Plate	J102	
2 Wall Stop(s)	L02101	
2 Silencer(s)	L03011	
1 Astragal	R3C635	
1 2-Factor Authenticatio	n(Keypad & Card Reader)	SIGNO

SET #11

Doors: BA-45

3	Hinge(s)	A8111
1	Office Lockset	F04
3	Silencer(s)	L03011

SET #12

Doors: BA-42A, BA-42B

3 Hinge(s)	A8111
1 Office Lockset	F04
1 Wall Stop(s)	L02101
1 Closer	C02011
3 Silencer(s)	L03011
1 2-Factor Authenticatio	n(Keypad & Card Reader)

SIGNO

SET #13

Doors: BA-65

FARGO	V	7A	HEALTHO	CARE	SYSTEM			
EHRM	_	ΤF	RAINING	AND	ADMIN.	SPACE	SUPPORT	

3 Hinge(s)	A8111	
1 Office Lockset	F04	
1 Closer	C02021	
3 Silencer(s)	L03011	
1 2-Factor Authenticatio	n(Keypad & Card Reader)	SIGNO

Doors: BA-70B

3 Hinge(s)	A8111	
1 Office Lockset	F04	
1 Wall Stop(s)	L02101	
1 Closer	C02021	
3 Silencer(s)	L03011	
1 2-Factor Authenticatio	on(Keypad & Card Reader)	SIGNO

SET #15

Doors: BA-43

3	Hinge(s)	A8111
1	Passage Latchset	F01
1	Closer	C02251
1	Mop Plate	J103
3	Silencer(s)	L03011

SET #16

Doors: BA-35, BA-39

3	Hinge	e(s)	A8111
1	Pull	Plate	J405
1	Push	Plate	J302
1	Close	er	C02021
1	Kick	Plate	J102
1	Wall	Stop(s)	L02101

VA PROJECT NO: 437-21-225 08 71 00 Door Hardware-17 3 Silencer(s) L03011

- - - E N D - - -

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the following:

1. Glazing materials and accessories for factory and assemblies.

1.2 RELATED WORK

- A. Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- B. Section 08 51 13, ALUMINUM WINDOWS: Aluminum Windows.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass and plastic material identifying manufacturer or brand and glass type, quality and nominal thickness.
 - 2. Label in accordance with NFRC label requirements.
 - Temporary labels are to remain intact until glass and plastic material is approved by Contracting Officer Representative (COR).

B. Permanent labels:

- 1. Locate in corner for each pane.
- Label in accordance with ANSI Z97.1 and SGCC label requirements.
 a. Tempered glass.

1.4 PERFORMANCE REQUIREMENTS

- A. General: Design glazing system consistent with guidance and practices presented in the GANA Glazing Manual, GANA Laminated Glazing Manual, and GANA Sealant Manual, as applicable to project. Installed glazing is to withstand applied loads, thermal stresses, thermal movements, building movements, permitted tolerances, and combinations of these conditions without failure, including loss or glass breakage attributable to defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; unsafe engagement of the framing system; deflections beyond specified limits; or other defects in construction.
- B. Glazing Unit Design: Design glass, including engineering analysis meeting requirements of authorities having jurisdiction. Thicknesses listed are minimum. Coordinate thicknesses with framing system manufacturers.

- Design glass in accordance with ASTM E1300, and for conditions beyond the scope of ASTM E1300, by a properly substantiated structural analysis.
- 2. Design Wind Pressures: In accordance with applicable code.
- 3. Wind Design Data: In accordance with applicable code.
- 4. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than the structural capacity of the glazing unit, the threshold at which frame engagement is no longer safely assured, 1/100 times the short-side length, whichever is less.
- C. Building Enclosure Vapor Retarder and Air Barrier:
 - Utilize the inner pane of multiple pane sealed units for the continuity of the air barrier and vapor retarder seal.
 - 2. Maintain a continuous air barrier and vapor retarder throughout the glazed assembly from glass pane to heel bead of glazing sealant.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates:
 - 1. Certificate on solar heat gain coefficient when value is specified.
 - 2. Certificate on "R" value when value is specified.
- C. Manufacturer Warranty.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Insulating glass units.
 - 3. Elastic compound for metal sash glazing.
 - 4. Glazing cushion.
 - 5. Sealing compound.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.

C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.

1.7 PROJECT CONDITIONS:

A. Field Measurements: Field measure openings before ordering tempered glass products to assure for proper fit of field measured products.

1.8 WARRANTY

- A. Construction Warranty: Comply with the FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their glazing from the date of installation and final acceptance by the Government as follows. Submit manufacturer warranty.

1. Insulating glass units to remain sealed for ten (10) years.

2.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Architectural Manufacturers Association (AAMA): 800.....Test Methods for Sealants 810.1-77....Expanded Cellular Glazing Tape
- C. American National Standards Institute (ANSI):

Z97.1-14.....Safety Glazing Material Used in

Building - Safety Performance Specifications

and Methods of Test

D. American Society of Civil Engineers (ASCE): 7-10.....Wind Load Provisions

E. ASTM International (ASTM): C542-05(2017)....Lock-Strip Gaskets

C716-06(2020).....Installing Lock-Strip Gaskets and Infill

Glazing Materials

C794-18.....Adhesion-in-Peel of Elastomeric Joint Sealants C864-05(2019).....Dense Elastomeric Compression Seal Gaskets,

Setting Blocks, and Spacers

C920-18.....Elastomeric Joint Sealants

C964-20.....Standard Guide for Lock-Strip Gasket Glazing C1036-16.....Flat Glass

C1048-18	.Heat-Treated Flat Glass-Kind HS, Kind FT Coated
	and Uncoated Glass.
C1172-19	.Laminated Architectural Flat Glass
C1349-17	.Standard Specification for Architectural Flat
	Glass Clad Polycarbonate
C1376-15	.Pyrolytic and Vacuum Deposition Coatings on
	Flat Glass
D635-18	.Rate of Burning and/or Extent and Time of
	Burning of Self-Supporting Plastic in a
	Horizontal Position
D4802-16	.Poly (Methyl Methacrylate) Acrylic Plastic
	Sheet
E84-20	.Surface Burning Characteristics of Building
	Materials
E119-20	.Standard Test Methods for Fire Test of Building
	Construction and Material
E1300-16	.Load Resistance of Glass in Buildings
E1886-19	.Standard Test Method for Performance of
	Exterior Windows, Curtain Walls, Doors, and
	Impact Protective Systems Impacted by
	Missile(s) and Exposed to Cyclic Pressure
	Differentials
E1996-17	.Standard Specification for Performance of
	Exterior Windows, Curtain Walls, Doors, and
	Impact Protective Systems Impacted by Windborne
	Debris in Hurricanes
E2141-14	.Test Methods for Assessing the Durability of
	Absorptive Electrochromic Coatings on Sealed
	Insulating Glass Units
E2190-19	.Insulating Glass Unit
E2240-06	.Test Method for Assessing the Current-Voltage
	Cycling Stability at 90 Degree C (194 Degree F)
	of Absorptive Electrochromic Coatings on Sealed
	Insulating Glass Units
E2241-06	.Test Method for Assessing the Current-Voltage
	Cycling Stability at Room Temperature of
	Absorptive Electrochromic Coatings on Sealed
	Insulating Glass Units

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 08 80 00 Glazing-4

	E2354-10	Assessing the Durability of Absorptive
		Electrochromic Coatings within Sealed
		Insulating Glass Units
	E2355-10	.Test Method for Measuring the Visible Light
		Transmission Uniformity of an Absorptive
		Electrochromic Coating on a Glazing Surface
	F1233-08(2019)	Standard Test Method for Security Glazing
		Materials and Systems
	F1642/F1642M-17	.Test Method for Glazing and Glazing Systems
		Subject to Airblast Loadings
F.	Code of Federal Regulati	ions (CFR):
	16 CFR 1201-10	Safety Standard for Architectural Glazing
		Materials
G.	Glass Association of Nor	rth America (GANA):
	2010 Edition	.GANA Glazing Manual
	2008 Edition	.GANA Sealant Manual
	2009 Edition	GANA Laminated Glazing Reference Manual
	2010 Edition	GANA Protective Glazing Reference Manual
н.	International Code Counc	cil (ICC):
	IBC	International Building Code
I.	Insulating Glass Certif	ication Council (IGCC)
J.	Insulating Glass Manufac	cturer Alliance (IGMA):
	тв-3001-13	Guidelines for Sloped Glazing
	тм-3000	North American Glazing Guidelines for Sealed
		Insulating Glass Units for Commercial and
		Residential Use
Κ.	Intertek Testing Service	es - Warnock Hersey (ITS-WHI)
L.	National Fire Protection	n Association (NFPA):
	80-16	Fire Doors and Windows
	252-12	Fire Tests of Door Assemblies
	257-12	Standard on Fire Test for Window and Glass
		Block Assemblies
Μ.	National Fenestration Ra	ating Council (NFRC)
N.	Safety Glazing Certifica	ation Council (SGCC) 2012:
	Certified Products Direc	ctory (Issued Semi-Annually).
0.	Underwriters Laboratorie	
	9-08 (R2009)	Fire Tests of Window Assemblies

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225 08 80 00 Glazing-5 263-14.....Fire Tests of Building Construction and Materials

752-11.....Bullet-Resisting Equipment.

- P. Department of Veterans Affairs:
- Q. Architectural Design Manual for VA Facilities (VASDM)
- S. Environmental Protection Agency (EPA):
 - 40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCT

2.1 GLASS

- A. Provide minimum thickness stated and as additionally required to meet performance requirements.
 - Provide minimum 6 mm (1/4 inch) thick glass units unless otherwise indicated.
- B. Obtain glass units from single source from single manufacturer for each glass type.
- C. Clear Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3.

2.2 HEAT-TREATED GLASS

- A. Clear Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, 6mm (1/4 inch) as indicated.

2.3 COATED GLASS

- A. Reflective-Coated Low-E Coated Tempered Glass:
 - 1. ASTM C1376 and ASTM C1048, Kind FT, Condition C, Type I, Class 1, Quality q3 with reflective metallic coating.
 - 2. Thickness, 4.8 mm (3/16 inch).

2.4 INSULATING GLASS UNITS

- A. Provide factory fabricated, hermetically sealed glass unit consisting of two panes of glass separated by a dehydrated air space and comply with ASTM E2190. The exterior glass unit shall be fully tempered and the inner glass unit shall be laminated annealed at a minimum for all blast resistant glazing.
- B. Assemble units using glass types specified in Insulating Glass Schedule and assembly requirements

- C. Sealed Edge Units:
 - 1. Clear Tempered Glass: (Double-Hung Exterior Sash)
 - a. Exterior pane ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3, 3/16" thick.
 - b. Interior pane ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3, 3/16" thick.
 - c. Total thickness, 5/8".

2.5 GLAZING ACCESSORIES

A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work are to have a finish that will not corrode or stain while in service. Fire rated glazing to be installed with glazing accessories in accordance with the manufacturer's installation instructions.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer is approved shop drawings.
- B. Review for conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation. Do not proceed with installation until unsatisfactory conditions have been corrected.
- C. Verify that wash down of adjacent masonry is completed prior to erection of glass and glazing units.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.

F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, and IGMA TM-3000 unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze doors and operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.
- G. Insulating Glass Units:
 - 1. Glaze in compliance with glass manufacturer's written instructions.
 - 2. When glazing gaskets are used, they are to be of sufficient size and depth to cover glass seal or metal channel frame completely.
 - 3. Do not use putty or glazing compounds.
 - Do not grind, nip, cut, or otherwise alter edges and corners of fused glass units after shipping from factory.
 - 5. Install with tape or gunnable sealant in wood sash.

3.4 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by COR.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.5 PROTECTION

A. Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

- - - E N D - - -

SECTION 08 90 00 LOUVERS AND VENTS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies fixed and operable wall louvers, door louvers and wall vents.

1.2 RELATED WORK

- A. Section 08 11 13, HOLLOW METAL DOORS AND FRAMES: Louvers in Steel Doors.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Color of finish.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - Each type, showing material, finish, size of members, method of assembly, and installation and anchorage details.
- C. Manufacturer's Literature and Data:
 - 1. Each type of louver and vent.
- D. Color samples.
- E. Blast Design Calculations: Louver System and Anchorage
 - 1. Submit calculations for review and approval prepared by qualified blast consultant, with a minimum of 5 years experience in design of blast resistant window systems, verifying louver assembly including anchors comply with specified blast resistance performance. The magnitudes of the design threats W1,W2 and GP1,GP2 are defined in the Physical Security Design Standards Data Definitions which is a document separate from the referenced VA Security Design Manual. The Physical Security Design Standards Data Definitions are provided on a need to know basis by the blast/structural engineer performing the blast design on VA projects. It is the responsibility of the engineer of blast resistant windows to request and obtain the Physical Security Design Data Standard Data Definitions from the VA Office of Construction and Facilities Management (CFM). Any associated delays or increased costs due to failure to obtain this information will be borne by the contractor.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The Master Painters Institute (MPI): Approved Product List - Updated Monthly
- C. ASTM International (ASTM): A240/A240M-20.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications A653/A653M-20....Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process A1008/A1008M-20....Steel, Sheet, Carbon, Cold Rolled, Structural, and High Strength Low-Alloy with Improved Formability
 - B209-14.....Aluminum and Aluminum Alloy, Sheet and Plate B209M-14....Aluminum and Aluminum Alloy, Sheet and Plate (Metric)
 - B221-14..... Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes
 - B221M-13.....Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes (Metric)
 - D1187/D1187M-97(2018)...Asphalt-Base Emulsions for Use as Protective Coatings for Metal
- D. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- E. National Fire Protection Association (NFPA): 90A-15.....Installation of Air Conditioning and Ventilating Systems
- F. American Architectural Manufacturers Association (AAMA): 2605-13......High Performance Organic Coatings on Architectural Extrusions and Panels
- G. Air Movement and Control Association, Inc. (AMCA): 500-L-07 Testing Louvers
- H Department of Veterans Affairs: VA Physical Security Design Manual for Life Safety Protected Facilities January 2015

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT08 90 00 Louvers and Vents-2

VA Physical Security Design Manual for Mission Critical Protected Facilities January 2015

I. Protective Design Center PDC-TR-08 Single Degree of Freedom Structural Response Limits for Antiterrorism Design

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Aluminum, Extruded: ASTM B221M (B221).
- B. Fasteners: Fasteners for securing louvers and wall vents to adjoining construction, except as otherwise specified or indicated in construction documents, to be toggle or expansion bolts of size and type as required for each specific type of installation and service condition.
 - Where type, size, or spacing of fasteners is not shown or specified, submit shop drawings showing proposed fasteners, and method of installation.
 - 2. Fasteners for louvers, louver frames, and wire guards to be of stainless steel or aluminum with same finish as louvers.
 - 3. Fasteners for louvers, louver frames and wire guards within mental health areas to be non-removable/tamper-proof type.
- C. Inorganic Zinc Primer: MPI No. 19.
- D. Bituminous Coating: ASTM D1187/D1187M; cold applied asphalt mastic emulsion.

2.2 EXTERIOR WALL LOUVERS:

- A. General:
 - 1. Provide fixed type louvers of size and design shown.
 - Heads, sills and jamb sections are to have formed caulking slots or be designed to retain caulking. Head sections are to have exterior drip lip, and sill sections an integral water stop.
 - 3. Furnish louvers with sill extension or separate sill as shown.
 - 4. Frame is to be mechanically fastened or welded construction with welds dressed smooth and flush.
- B. Performance Characteristics:
 - Weather louvers are to have a minimum of 50 percent free area and to pass 1000 fpm free area velocity at a pressure drop not exceeding 0.3 inch water gauge and carry not more than 0.1 ounces of water per square foot of free area for 15 minutes when tested per AMCA Standard 500-L.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 2. Louvers are to bear AMCA certified rating seals for air performance and water penetration ratings.
- 3. Blast Resistance:
 - A. Louvers in exterior walls shall be blast resistant and meet the following criteria per the VA Physical Security Design Manual for Life Safety Facilities January 2015:
 - 1. Standoff Distance: 25 feet
 - a. Design Threat W1 at the standoff distance not to exceed pressure and impulse associated with GP1 threat for Life Safety Protected Buildings.
 - b. Deformation not to exceed those defined by B3 response per the Protective Design Center document PDC-TR-08 while experiencing design level pressures.
- C. Aluminum Louvers:
 - General: Frames, blades, and mullions (sliding interlocking type); 2 mm (0.078-inch) thick extruded 6063-T5 or -T52 aluminum. Blades to be tandard type and have reinforcing bosses.
 - Louvers, fixed: Make frame sizes 13 mm (1/2-inch) smaller than openings. Single louvers frames are not to exceed 1676 mm (66 inches) wide. When openings exceed 1676 mm (66 inches), provide twin louvers separated by mullion members.
 - 3. Louvers are to withstand the effects or gravity loads and the following wind loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver-blade rattle or flutter, or permanent damage to fasteners and anchors.
 - a. Wind load acting inward or outward of not less than Pa (30 pound per square foot.).

2.3 CLOSURE ANGLES AND CLOSURE PLATES:

- A. Fabricate from 2 mm (0.078-inch) thick stainless steel or aluminum.
- B. Provide continuous closure angles and closure plates on inside head, jambs and sill of exterior wall louvers.
- C. Secure angles and plates to louver frames with screws, and to masonry or concrete with fasteners as indicated in construction documents.

2.4 WIRE GUARDS:

A. Provide wire guards on outside of all exterior louvers, except on exhaust air louvers.

- B. Fabricate frames from 2 mm (0.078-inch) thick extruded or sheet aluminum designed to retain wire mesh.
- C. Wire mesh to be woven from not less than 1.6 mm (0.063-inch) diameter aluminum wire in 13 mm (1/2-inch) square mesh.
- D. Miter corners and join by concealed corner clips or locks extending not less than 57 mm (2-1/4 inches) into rails and stiles. Equip wire guards over 1219 mm (4 feet) in height with a mid-rail constructed as specified for frame components.
- E. Fasten frames to outside of louvers with aluminum or stainless steel devices of same finish as louvers designed to allow removal and replacement without damage to the wire guard or the louver.

2.5 FINISH:

- A. In accordance with NAAMM Metal Finishes Manual: AMP 500-505
- B. Aluminum Louvers:
 - 1. Anodized finish
 - a. AA-M1X, Mill finish, as fabricated.

2.6 PROTECTION:

- A. Provide protection for aluminum against galvanic action wherever dissimilar materials are in contact, by painting the contact surfaces of the dissimilar material with a heavy coat of bituminous coating (complete coverage), or by separating the contact surfaces with a performed synthetic rubber tape having pressure sensitive adhesive coating on one side.
- B. Isolate the aluminum from plaster, concrete and masonry by coating aluminum with zinc-chromate primer.
- C. Protect finished surfaces from damage during fabrication, erection, and after completion of the work. Strippable plastic coating on colored anodized finish is not approved.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Set work accurately, in alignment and where indicated in construction documents. Install plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Furnish setting drawings and instructions for installation of anchors and for the positioning of items having anchors to be built into masonry construction. Provide temporary bracing for such items until masonry is set.

- C. Provide anchoring devices and fasteners as shown and as necessary for securing louvers to building construction as specified. Power actuated drive pins may be used, except for removal items and where members would be deformed or substrate damaged by their use.
- D. Set wall louvers in masonry walls during progress of the work. If wall louvers are not delivered to job in time for installation in prepared openings, make provision for later installation. Set in cast-in-place concrete in prepared openings.

3.2 CLEANING AND ADJUSTING:

- A. After installation, all exposed prefinished and plated items and all items fabricated from stainless steel and aluminum are to be cleaned as recommended by the manufacturer and protected from damage until completion of the project.
- B. All movable parts, including hardware, are to be cleaned and adjusted to operate as designed without binding or deformation of the members, so as to be centered in the opening of frame, and where applicable, to have all contact surfaces fit tight and even without forcing or warping the components.
- C. Restore louvers and vents damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Contracting Officer Representative (COR) damaged units and replace with new units.

- - - E N D - - -

SECTION 09 05 16 SUBSURFACE PREPARATION FOR FLOOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies subsurface preparation requirements for areas to
- B. receive the installation of applied and resinous flooring. This section includes removal of existing floor coverings, floor leveling and repair as required.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS.
- B. Section 09 65 19, RESILIENT TILE FLOORING Section 09 68 00, CARPETING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and TEST DATA.
- B. Written approval confirming product compatibility with subfloor material manufacturer and the flooring manufacturer
- C. Product Data:
 - 1. Moisture remediation system
 - 2. Underlayment Primer
 - 3. Cementitious Self-Leveling Underlayment
 - 4. Cementitious Trowel-Applied Underlayment (Not suitable for resinous floor finishes)
- D. Test Data:
 - Moisture test and pH results performed by a qualified independent testing agency or warranty holding manufacturer's technical representative.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM): D638-14(2014).....Standard Test Method for Tensile Properties of Plastics

D4259-18(2019)	Standard Practice for Preparation of Concrete
	by Abrasion Prior to Coating Application.
C109/C109M-20b(2020)	Standard Test Method for Compressive Strength
	of Hydraulic Cement Mortars (Using 2-in. or
	[50-mm] Cube Specimens
7234-19(2020)	Standard Test Method for Pull-Off Adhesion
	Strength of Coatings on Concrete Using Portable
	Pull-Off Adhesion Testers
E96/E96M-16(2016)	Standard Test Methods for Water Vapor
	Transmission of Materials
F710-1e1(2020)	Standard Practice for Preparing Concrete Floors
	to Receive Resilient Flooring
F1869-16a	Standard Test Method for Measuring Moisture
	Vapor Emission Rate of Concrete Subfloor Using
	Anhydrous Calcium Chloride
F2170-19a(2020)	Standard Test Method for Determining Relative
	Humidity in Concrete Floor Slabs Using in situ
	Probes
C348-20(2020)	Standard Test Method for Flexural Strength of
	Hydraulic-Cement Mortars
C191-19(2020)	Standard Test Method for Time of Setting of
	Hydraulic Cement by Vicat Needle

PART 2 - PRODUCTS

2.1 MOISTURE REMEDIATION COATING

- A. System Descriptions:
 - High-solids, epoxy system designed to suppress excess moisture in concrete prior to an overlayment. For use under resinous products, VCT, tile and carpet where issues caused by moisture vapor are a concern.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify build up layers and installation method. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows: 1. Liquid applied coating:

- a. Resin: epoxy.
- b. Formulation Description: Multiple component high solids.
- c. Application: Per manufacturer's written installation
 requirements.
- d. Thickness: minimum 10 mils
- D. Material Vapor Permeance: Application shall achieve a permeance rating of less than 0.1 perm in accordance with ASTM E96/E96M.
- E. Maximum RH requirement: 100% testing in accordance with ASTM F2170.

Property	Test	Value
Tensile Strength	ASTM D638	4,400 psi
Volatile Organic Compound Limits (V.O.C.)	SCAMD Rule 1113 (Ammended 02/05/2016)	25 grams per liter
Permeance	ASTM E96	0.1 perms
Tensile Modulus	ASTM D638	1.9X10 ⁵ psi
Percent Elongation	ASTM D638	12%
Cure Rate	Per manufacture's Data	4 hours Tack free with 24hr recoat window
Bond Strength	ASTM D7234	100% bond to concrete failure

2.2 CEMENTITIOUS SELF-LEVELING UNDERLAYMENT

- A. System Descriptions:
 - High performance self-leveling underlayment resurfacer. Single component, self-leveling, cementitious material designed for easy application as an underlayment for all types of flooring materials. It is used for substrate repair and leveling.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up. Gypsum-based products are unacceptable.
- C. System Characteristics:
 - 1. Wearing Surface: smooth
 - 2. Thickness: Per architectural drawings, ranging from feathered edge to 1", per application. Applications greater than 1" require additional 3/8" aggregate to mix or as recommended by manufacturer.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 05 16 Subsurface Prep-3

- D. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- E. Compressive Strength: Minimum 4100 psi in 28 days in accordance with ASTM C109/C109M.
- F. Flexural Strength: Minimum 1000 psi in 28 days in accordance with ASTM C348
- G. Dry Time: Underlayment shall receive the application of floor coverings in 16 hours.
- H. Primer: compatible and as recommended by manufacturer for use over intended substrate
- I. System Components: Manufacturer's standard components that are compatible with each other and as follows:
 - 1. Primer:
 - a. Resin: copolymer
 - b. Formulation Description: single component ready to use.
 - c. Application Method: Squeegee and medium nap roller.
 - d. All puddles shall be removed, and material shall be allowed to dry, 1-2 hours at 70F/21C.
 - e. Number of Coats: (1) one.
 - 2. Grout Resurfacing Base:

J.

- a. Formulation Description: Single component, cementitious selfleveling high-early and high-ultimate strength grout.
- b. Application Method: colloidal mix pump, cam rake, spike roll.
 - 1) Thickness of Coats: Per architectural scope, 1" lifts.
 - 2) Number of Coats: More than one if needed.
- c. Aggregates: for applications greater than linch, require additional 3/8" aggregate to mix.

Property	Test	Value	
Compressive Strength	ASTM C109/C109M	2,200 psi @ 24 hrs 3,000 psi @ 7 days	
Initial set time Final Set time	ASTM C191	30-45 min. 1 to 1.5 hours	
Bond Strength	ASTM D7234	100% bond to concrete failure	

2.3 CEMENTITIOUS TROWEL-APPLIED UNDERLAYMENT (NOT SUITABLE FOR RESINOUS FLOOR FINISHES)

- A. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- B. Compressive Strength: Minimum 4000 psi in 28 days
- C. Trowel-applied underlayment shall not contain silica quartz (sand).
- D. Dry Time: Underlayment shall receive the application of floor covering in 15-20 minutes.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before testing and not less than three days after testing.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation.
- C. Do not install materials when the temperatures of the substrate or materials are not within 60-85 degrees F/ 16-30 degrees C.

3.2 SURFACE PREPARATION

- A. Existing concrete slabs with existing floor coverings:
 - Conduct visual observation of existing floor covering for adhesion, water damage, alkaline deposits, and other defects.
 - Remove existing floor covering and adhesives. Comply with local, state and federal regulations and the RFCI Recommended Work Practices for Removal of Resilient Floor Coverings, as applicable to the floor covering being removed.
- B. Concrete shall meet the requirements of ASTM F710 and be sound, solid, clean, and free of all oil, grease, dirt, curing compounds, and any substance that might act as a bond-breaker before application. As required prepare slab by mechanical methods. No chemicals or solvents shall be used.
- C. General: Prepare and clean substrates according to flooring manufacturer's written instructions for substrate indicated.
- D. Prepare concrete substrates per ASTM D4259 as follows:
 - 1. Dry abrasive blasting.
 - 2. Wet abrasive blasting.
 - 3. Vacuum-assisted abrasive blasting.

FARGO VA HEALTHCARE SYSTEM V EHRM - TRAINING AND ADMIN. SPACE SUPPORT 09

VA PROJECT NO: 437-21-225 09 05 16 Subsurface Prep-5

- 4. Centrifugal-shot abrasive blasting.
- 5. Comply with manufacturer's written instructions.
- E. Repair damaged and deteriorated concrete according to flooring manufacturer's written recommendations.
- F. Verify that concrete substrates are dry.
- G. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisture-vapor-emission rate of per flooring manufactures formal and project specific written recommendation.
- H. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity per flooring manufacture's formal and project specific written recommendation.
- I. Provide a written report showing test placement and results.
- J. Prepare joints in accordance with material manufacturer's instructions.
- K. Alkalinity: Measure surface pH in accordance with procedures provided in ASTM F710 or as outlined by qualified testing agency or flooring manufacturer's technical representative.
- L. Tolerances: Subsurface shall meet the flatness and levelness tolerance specified on drawings or recommended by the floor finish manufacturer. Tolerance shall also not to exceed 1/4" deviation in 10'. As required, install underlayment to achieve required tolerance.
- M. Other Subsurface: For all other subsurface conditions, such as wood or metal, contact the floor finish or underlayment manufacturer, as appropriate, for proper preparation practices.

3.3 MOISTURE REMEDIATION COATING

- A. Where results of relative humidity testing (ASTM F2170) exceed the requirements of the specified flooring manufacturer, apply remedial coating as specified to correct excessive moisture condition.
- B. Prior to remedial floor coating installation mechanically prepare the concrete surface to provide a concrete surface profile in accordance with ASTM D4259.
- C. Mix and apply moisture remediation coating in accordance with manufacturer's instructions.

3.4 CEMENTITOUS UNDERLAYMENT

A. Install cementitious self-leveling underlayment as required to correct surface defects, provide a smooth surface for the installation of floor covering.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT B. Mix and apply in accordance with manufacturer's instructions.

3.5 PROTECTION

A. Prior to the installation of the finish flooring, the surface of the underlayment should be protected from abuse by other trades by the use of plywood, tempered hardwood, or other suitable protection course

3.6 FIELD QUALITY CONTROL

A. Where specified, field sampling of products shall be conducted by a qualified, independent testing facility.

- - - E N D - - -

SECTION 09 06 00 SCHEDULE FOR FINISHES

SECTION 09 06 00-SCHEDULE FOR FINISHES

VAMC: FARGO VA HEALTHCARE SYSTEM Location: FARGO, ND Project no. and Name: EHRM TRAINING AND ADMIN. SPACE SUPPORT, 437-21-225 Submission: 100% Date: JANUARY 2022

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-1

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

A. Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITTALS

A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES-provide quadruplicate samples for color approval of materials and finishes specified in this section.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)

6/1/2019.....Architectural Painting Specification Manual

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-2

PART 2 - PRODUCTS

2.1 DIVISION 03 - CONCRETE

A. SECTION 03 30 00, CAST IN PLACE CONCRETE

Surface			Finish Description				
Exposed	Exposed and finished surface			Troweled finish per specifications			
B. SECTION 07 95 1	B. SECTION 07 95 13, EXPANSION JOINT COVER ASSEMBLIES						
	Material	Finis	h	Manufacturer	Mfg. Color Name/No.		
Floor Component Cover Plate Frame Casket or Sealant (interior only)	Aluminum	Anodiz	ed	CS Group	Flooring Match - Color TBD		
Wall Component Cover Plate Frame Casket or Sealant (interior only)	Alum/Thermoplastic	Anodiz	ed	CS Group	Wall Surface Match - Color TBD		
Ceiling Component Cover Plate, Gasket or Sealant (interior only)	Aluminum	Anodiz	ed	CS Group	Ceiling Surface Match - Color TBD		

2.2 DIVISION 08 - OPENINGS

Г

A. SECTION 08 11 13, HOLLOW METAL DOORS AND FRAMES

 Paint both sides of door and frames same colo attached to door 	or including ferrous metal louvers, and hardware
Component	Color of Paint Type and Gloss
Door	P2, Gloss Level 5
Frame	P2, Gloss Level 5
FARGO VA HEALTHCARE SYSTEM	VA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

00 01 10 Table of Contents-3

B. SECTION 08 14 00, INTERIOR WOOD DOORS

Component	Finish/Color	
Doors	Match Existing	
Frames	P2, Gloss Level 5	

C. SECTION 08 31 13, ACCESS DOORS AND FRAMES

Material	Finish/Color
Steel	Р2

D. SECTION 08 51 13, WINDOWS

Туре	Finish	Glazing	Manufacturer	Mfg. Color Name/No.
Hung, Salvaged	Match existing	EXISTING	EXISTING	EXISTING

E. SECTION 08 71 00, BUILDERS HARDWARE

Item	Material	Finish	
Hinges	Per specification	Match Existing	
Door Closers	Per specification	Match Existing	
Closer/ Holder	Per specification	Match Existing	
Lock/ Latches	Per specification	Match Existing	
Armor Plates	Stainless Steel	Brushed	
Kick Mop Plates	Plastic	Clear Acrylic	
Door Edging	Per specification	Match Existing	
Exit Device	Per specification	Match Existing	
Flush Bolts	Per specification	Match Existing	
Door Pulls	Per specification	Match Existing	

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225

00 01 10 Table of Contents-4

Push Plates	Per specification	Match Existing	
Threshold	Existing	Existing	

2.3 DIVISION 09 - FINISHES

A. SECTION 09 30 13, CERAMIC/PORCELAIN TILING

1. CERAMIC MOSAIC TILE

Finisl	h Code	Size	Shape	Pattern	Manufacturer	Mfg. Color Name/No.
PI	-3	VARIES	LINEAR HEX	ALAIR	AMERICAN OLEAN	SLATE AL17

2. SECTION 09 30 13, CERAMIC/PORCELAIN TILING				
Finish Code	Manufacturer	Mfg. Color Name/No		
PT-1	DALTILE	UNITY/GRIGIO TEXTURED P402		
PT-2	DALTILE	FABRIQUE/CRÈME LINEN P686		

3. SECTION 09 30 13, [CERAMIC/PORCELAIN TILING] QUARRY TILE (QT)					
Finish Code	Size	Shape	Pattern	Manufacturer	Mfg. Color Name/No.
QT-1	6″X6″	SQUARE	QUARRY TEXTURES	DALTILE	ASHEN GRAY 0T03

4. SECTION 09 30 13, [CERAMIC/PORCELAIN TILING] QUARRY TILE GROUT					
Finish Code	Manufacturer	Mfg. Color Name/No.			
	MAPEI	KERAPOXY/PEWTER 02			

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

00 01 10 Table of Contents-5

5. SECTION 09 30 13, [CERAMIC/PORCELAIN TILING] METAL DIVIDER STRIPS

Size	Material	Manufacturer
1/4″	ANODIZED ALUMINUM	SCHLUTER RONDEC BULLNOSE

B. SECTION 09 51 00, ACOUSTICAL CEILINGS

Finish Code	Component	Color Pattern	Manufacturer	Mfg Name/No.
ACT-1	Type III	WHITE 815	ARMSTRONG	FISSURED TEGULAR

C. SECTION 09 65 19, RESILIENT TILE FLOORING

Finish Code	Size	Material/Component	Manufacturer	Mfg Name/No.
LVT-1	12"X12"	LVT	ARMSTRONG	PREMIUM EXCELON CROWN TEXTURE
SDT-1	12"X12"	VCT	ARMSTRONG	EXCELON PEARL WHITE 5C803

D. SECTION 09 65 13, RESILIENT BASE AND ACCESSORIES

Finish Code	Item	Height	Manufacturer	Mfg Name/No.
RB-1	Rubber Base (RB)	4″	JOHNSONITE	FAWN 80

E. SECTION 09 68 00, CARPETING (CP)

Finish Code	Pattern	Manufacture	Mfg. Color Name/No.
CPT-1	DATUM	MOHAWK COMMERCIAL	GRANITE

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-6

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

1. SECTION 09 68 00,	[CARPETING], CARPET EDGE	STRIP	
Finish Code	Material	Manufacturer	Mfg. Color Name/No.
	Vinyl	JOHNSONITE	FAWN 80

- F. SECTION 09 91 00, PAINTING
 - 1. MPI Gloss and Sheen Standards

		Gloss @60	Sheen @85
Gloss Level 1	a traditional matte finish-flat	max 5 units, and	max 10 units
Gloss Level 2	a high side sheen flat-"a velvet-like"	max 10 units, and	
	finish		10-35 units
Gloss Level 3	a traditional "egg-shell like" finish	10-25 units, and	10-35 units
Gloss Level 4		a "satin-like" finish	20-35 units, and
min. 35 units			
Gloss Level 5	a traditional semi-gloss	35-70 units	
Gloss Level 6a	traditional gloss	70-85 units	
Gloss level 7		a high gloss more than	85 units

2. Paint code	Gloss	Manufacturer	Mfg. Color Name/No.
Р	3	SHERWIN WILLIAMS	BALANCED BEIGE SW7037
Р	3	SHERWIN WILLIAMS	PURE WHITE SW7005
Р	3	SHERWIN WILLIAMS	MAGNETIC GRAY SW7058

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-7

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

G. SECTION 08 90 00, LOUVERS AND VENTS

Item	Material	Finish	Manufacturer	Mfg. Color Name/No.
	Match Existing	Match Existing	Match Existing	Match Existing

H. SECTION 10 26 00, WALL AND DOOR PROTECTION

Item	Material	Manufacturer	Mfg. Color Name/No.
Corner Guards	ACROVYN	INPRO	MATCH EXISTING
Wall Guards and Handrail	ACROVYN	INPRO	MATCH EXISTING
Wall Guard	ACROVYN	INPRO	MATCH EXISTING

I. SECTION 10 44 13, FIRE EXTNGUISHER CABINETS

Component	Material	Finish
Cabinet	JL Industries - Steel	White Enamel
Door	JL Industries - Steel	White Enamel

J. SECTION 10 28 00, TOILET, BATH AND LAUNDRY ACCESSORIES

Item	Material	Manufacturer	Mfg. Color Name/No.
PAPER TOWEL DISPENSER	Aluminum	Bobrick	Clear Anodized
SOAP DISPENSER	Aluminum	Bobrick	Clear Anodized
GRAB BARS	Aluminum	Bobrick	Clear Anodized
ROBE HOOK	Aluminum	Bobrick	Clear Anodized

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-8

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

2.4 DIVISION 12- FURNISHINGS

A. SECTION 12 32 00, MANUFACTURED WOOD CASEWORK

Item Type	Location	Finish/Color
PLASTIC LAMINATE	CABINETRY	FORMICA WALNUT RIFTWOOD 9283

B. SECTION 12 36 00, COUNTERTOPS

Туре	Finish/Color
SOLID SURFACE	FORMICA BLANCO TERRAZZO 742

C. SECTION 12 24 00, WINDOW SHADES

Component	Material	Manufacturer	Mfg. Color Name/No.
Shade Cloth	VINYL	DRAPER	ECOVEIL 1%

PART 3 - EXECUTION

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANEOUS ABBREVIATIONS		
Term	Abbreviation	
Acoustical Ceiling	AT	
Carpet Module Tile	CPT	
Concrete	С	
Existing	Е	
Gypsum Wallboard	GWB	

Material	MAT
Mortar	М
Paint	P
Plastic Laminate	PLAM
Quarry Tile	QT
Resilient Base	RB
Static Dissipative Tile	SDT
Vinyl Composition Tile	VCT
Wood	WD

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-9

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition

- ** Same finish as adjoining walls
- No color required
- E Existing
- XX To match existing
- EFTR Existing finish to remain
- RM Remove

--- E N D---

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 00 01 10 Table of Contents-10

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

A. Support for wall mounted items: Section 05 50 00, METAL FABRICATIONS.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.
- C. Shop Drawings:
 - 1. Typical ceiling suspension system.
 - 2. Typical metal stud and furring construction system including details around openings and corner details.
 - 3. Typical shaft wall assembly
 - 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 22 16 Non-Struct Metal Framing-1

D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society For Testing And Materials (ASTM)

A641-09.....Zinc-Coated (Galvanized) Carbon Steel Wire A653/653M-11.....Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by Hot-Dip Process. C11-10.....Terminology Relating to Gypsum and Related Building Materials and Systems C635-07......Manufacture, Performance, and Testing of Metal Suspension System for Acoustical Tile and Lay-in Panel Ceilings C636-08.....Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels C645-09..... Non-Structural Steel Framing Members C754-11.....Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products C841-03(R2008).....Installation of Interior Lathing and Furring C954-10.....Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness E580-11..... Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G40 or equivalent.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 22 16 Non-Struct Metal Framing-2

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 - 1. Use C 645 steel, 0.75 mm (0.0296-inch) minimum base-metal (30 mil).
 - 2. Runners same thickness as studs.
 - 3. Exception: Members that can show certified third party testing with gypsum board in accordance with ICC ES AC86 (Approved May 2012) need not meet the minimum thickness limitation or minimum section properties set forth in ASTM C 645. The submission of an evaluation report is acceptable to show conformance to this requirement. Use C 645 steel, 0.48mm (0.019 inch) minimum base-metal (19 mil).
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.
 - 2. C-H Studs or C-T Studs.
 - 3. E Studs.
 - 4. J Runners.
 - 5. Steel Jamb-Strut.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than 0.45 mm (0.0179-inch) thick bare metal.
 - Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. "Z" Furring Channels:
 - 1. Not less than 0.45 mm (0.0179-inch)-thick base metal, with 32 mm (1-1/4 inch) and 19 mm (3/4-inch) flanges.
 - 2. Web furring depth to suit thickness of insulation.
- D. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
 - Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
 - For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
- H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 09 22 16 Non-Struct Metal Framing-4 B. Space studs not more than 610 mm (24 inches) on center.

- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated partitions.
- F. Openings:
 - 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
 - Fasten back to back studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
 - 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.
- G. Fastening Studs:
 - Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
 - 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.
- H. Chase Wall Partitions:
 - 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
 - Use studs or runners as cross bracing not less than 63 mm (2-1/2 inches wide).
- I. Form building seismic or expansion joints with double studs back to back spaced 75 mm (three inches) apart plus the width of the seismic or expansion joint.
- J. Form control joint, with double studs spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - Framed with 63 mm (2-1/2 inch) or narrower studs, 600 mm (24 inches) on center.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 22 16 Non-Struct Metal Framing-5

- 2. Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish.
- 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
 - Install rigid (hat section) furring channels at 600 mm (24 inches) on center, horizontally or vertically.
 - Install "Z" furring channels vertically spaced not more than 600 mm (24 inches) on center.
 - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - Ends of spliced furring channels shall be nested not less than 200 mm (8 inches).
 - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
 - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400 mm (16 inches) on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

- A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
- B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.6 INSTALLING FURRED AND SOFFITS

- A. Install furred and soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - 1. Space framing at 400 mm (16-inch) centers for metal lath anchorage.
 - 2. Space framing at 600 mm (24-inch) centers for gypsum board anchorage.
- B. Existing concrete construction exposed or concrete on steel decking:
 - Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3 mm (1/8-inch.)
- C. Level or align ceilings within 3 mm (1/8-inch.)

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 05 40 00, COLD-FORMED METAL FRAMING, and Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
- C. Shop Drawings:
 - Typical gypsum board installation, showing corner details, edge trim details and the like.
 - 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
 - 3. Typical shaft wall assembly.
 - 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.
- D. Samples:
 - 1. Cornerbead.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 2. Edge trim.
- 3. Control joints.
- F. Certificates: Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos material.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM):

C11-15	Terminology Relating to Gypsum and Related
	Building Materials and Systems
C475-15	Joint Compound and Joint Tape for Finishing
	Gypsum Board
C840-13	Application and Finishing of Gypsum Board
C919-12	Sealants in Acoustical Applications
C954-15	Steel Drill Screws for the Application of
	Gypsum Board or Metal Plaster Bases to Steel
	Stud from 0.033 in. (0.84mm) to 0.112 in.
	(2.84mm) in thickness
C1002-14	Steel Self-Piercing Tapping Screws for the
	Application of Gypsum Panel Products or Metal
	Plaster Bases to Wood Studs or Steel Studs
C1047-14	Accessories for Gypsum Wallboard and Gypsum
	Veneer Base
C1177-13	Glass Mat Gypsum Substrate for Use as Sheathing
С1178/С1178М-18	Specification for Coated Glass Mat Water
	Resistant Backing Panel

C1658-13.....Glass Mat Gypsum Panels

- C1396-14.....Gypsum Board
- C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory
- D. Inchcape Testing Services (ITS): Latest Editions....Certification Listings

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225 09 29 00 Gypsum-2

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.
 - 2. ASTM C1658: Glass Mat Gypsum Panels,
 - 3. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Water Resistant Gypsum Backing Board: ASTM C1178, Type X, 16 mm (5/8 inch) thick.
- D. Paper facings shall contain 100 percent post-consumer recycled paper content.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
- 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
- Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 29 00 Gypsum-4

- G. Walls (Except Shaft Walls):
 - When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
 - No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
 - 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.
 - b. Fasten face layer with screw, of sufficient length to secure to framing, spaced 300 mm (12 inches) on center around perimeter, and 400 mm (16 inches) on center in the field.
 - 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 29 00 Gypsum-5

- 1. Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
- 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
- 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
 - c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
 - d. Where shown.

3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:

- 1. Gypsum board is fastened and held close to framing or furring.
- 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated smoke barrier, fire rated, sound rated, and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated, and sound rated construction. Sanding is not required of non decorated surfaces.

3.6 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non-decorated surface to provide smoke tight construction, fire protection equivalent to the fire rated construction, and STC equivalent to the sound rated construction.

- - - E N D - - -

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies tile, waterproofing membranes for thin-set applications, coupling membranes, and tile backer board.

1.2 RELATED WORK

A. Section 09 06 00, SCHEDULE FOR FINISHES: Color, Texture, Pattern, and Size of Field Tile and Trim Shapes, and Color of Grout Specified.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - 1. Tile, each type, each color, each size.
 - 2. Quarry tile, each type, color, and size.
 - 3. Porcelain tile, each type, color, patterns and size.
 - 4. Wall (or wainscot) tile, each color, size and pattern.
- C. Product Data:
 - 1. Tile, marked to show each type, size, and shape required.
 - 2. Chemical resistant mortar and grout (epoxy and furan).
 - 3. Cementitious backer unit.
- D. Installer Qualifications:
 - 1. Submit letter stating installer's experience.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 QUALITY ASSURANCE

- A. Installers to be from a company specializing in performing installation of products specified and have a minimum of three (3) years' experience.
- B. Each type and color of tile to be provided from a single source.
- C. Each type and color of mortar, adhesive, and grout to be provided from the same source.

1.6 WARRANTY

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.7 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the
extent referenced. Publications are referenced in text by basic
designation only.
B. American National Standards Institute (ANSI):
A10.20-06(R2016)Safe Operating Practices for Tile, Terrazzo and
Marble Work
A108/A118/A136.1:2019Installation of Ceramic Tile
A108.01-18Subsurfaces and Preparations by Other Trades
A108.02-19Materials, Environmental, and Workmanship
A108.1A-17Installation of Ceramic Tile in the Wet-Set
Method with Portland Cement Mortar
A108.1B-17Installation of Ceramic Tile on a Cured
Portland Cement Mortar Setting Bed with Dry-Set
or Latex-Portland Cement Mortar
A108.1C-17Contractors Option; Installation of Ceramic
Tile in the Wet-Set method with Portland Cement
Mortar or Installation of Ceramic Tile on a
Cured Portland Cement Mortar Setting Bed with
Dry-Set or Latex-Portland Cement Mortar
A108.4-09 Oeramic Tile with Organic Adhesives or Water
Cleanable Tile-Setting Epoxy Adhesive
A108.5-10Ceramic Tile with Dry-Set Portland Cement
Mortar or Latex-Portland Cement Mortar
A108.6-10Ceramic Tile with Chemical Resistant, Water
Cleanable Tile-Setting and -Grouting Epoxy
A108.8-10 Furanic Tile with Chemical Resistant Furan
Resin Mortar and Grout
A108.9-10 Eramic Tile with Modified Epoxy Emulsion
Mortar/Grout
A108.10-17Grout in Tilework
A108.11-18Backer
Units
A108.12-10Installation of Ceramic Tile with EGP (Exterior
Glue Plywood) Latex-Portland Cement Mortar
A108.13-16 Load Bearing, Bonded, Waterproof Membranes for
Thin-Set Ceramic Tile and Dimension Stone
A108.14-10Paper-Faced Glass Mosaic Tile

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 30 13 Tiling-2

A108.15-19Alternate Method: Paper-Faced Glass Mosaic Tile
A108.17-16Crack Isolation Membranes for Thin-Set Ceramic
Tile and Dimension Stone
A118.1-19Dry-Set Portland Cement Mortar
- A118.3-13Chemical Resistant, Water Cleanable Tile-
Setting and -Grouting Epoxy and Water Cleanable
Tile-Setting Epoxy Adhesive
A118.4-19
A118.5-16 Chemical Resistant Furan Mortars and Grouts
A118.6-19Standard Cement Grouts for Tile Installation
A118.7-1
Installation
A118.8-16
A118.9-19Cementitious Backer Units
A118.10-14Load Bearing, Bonded, Waterproof Membranes for
Thin-Set Ceramic Tile and Dimension Stone
Installation
A118.11-17EGP (Exterior Glue Plywood) Modified Dry-set
Mortar
A118.12-14Crack Isolation Membranes for Thin-Set Ceramic
Tile and Dimension Stone Installation
A118.13-14Bonded Sound Reduction Membranes for Thin-Set
Ceramic Tile Installation
A118.15-19Improved Modified Dry-Set Cement Mortar
A136.1-13Organic Adhesives for Installation of Ceramic
Tile
A137.1-17American National Standard Specifications for
Ceramic Tile
C. ASTM International (ASTM):
A666-15Annealed or Cold-Worked Austenitic Stainless
Steel Sheet, Strip, Plate and Flat Bar A1064/A1064M-18aCarbon-Steel Wire and Welded Wire
Reinforcement, Plain and Deformed, for Concrete
C109/C109M-20bStandard Test Method for Compressive Strength
of Hydraulic Cement Mortars (Using 2 inch. or
[50-mm] Cube Specimens)
C241/C241M-15e1Abrasion Resistance of Stone Subjected to Foot
Traffic

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 30 13 Tiling-3

C348-20	Standard Test Method for Flexural Strength
	Hydraulic-Cement Mortars
C627-18	Evaluating Ceramic Floor Tile Installation
	Systems Using the Robinson-Type Floor Teste
C954-18	Steel Drill Screws for the Application of
	Gypsum Board on Metal Plaster Base to Steel
	Studs from 0.033 in (0.84 mm) to 0.112 in (
	mm) in thickness
С979/С979М-16	Pigments for Integrally Colored Concrete
	Steel Self-Piercing Tapping Screws for the
01002 10	Application of Panel Products
C1027-19	Test Method for Determining Visible Abrasion
CIU27-19	2
01107/011078 15	Resistance of Glazed Ceramic Tile
CIIZ//CIIZ/M-15	Standard Guide for Use of High Solids Conter
	Cold Liquid-Applied Elastomeric Waterproofin
	Membrane with an Integral Wearing Surface
C1178/C1178M-18	Standard Specification for Coated Glass Mat
	Water-Resistant Gypsum Backing Panel
C1325-19	Non-Asbestos Fiber-Mat Reinforced Cementitie
	Backer Units
C1353/C1353M-20e1	Abrasion Resistance of Dimension Stone
	Subjected to Foot Traffic Using a Rotary
	Platform, Double-Head Abraser
D1204-14(2020)	Test Method for Linear Dimensional Changes
	Nonrigid Thermoplastic Sheeting or Film at
	Elevated Temperature
D2240-15e1	Test Method for Rubber Property - Durometer
	Hardness
D2497-07(2018)	Tolerances for Manufactured Organic-Base
	Filament Single Yarns
D3045-2018	Heat Aging of Plastics Without Load
D4397-16	Standard Specification for Polyethylene
	Sheeting for Construction, Industrial and
	Agricultural Applications
D5109-12(Withdrawn202	0).Standard Test Methods for Copper-Clad
	Thermosetting Laminates for Printed Wiring

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT09 30 13 Tiling-4

40 CFR 59.....Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating

- E. Marble Institute of America (MIA) / Building Stone Institute (BSI): Dimension Stone Design Manual VIII-2016
- F. Tile Council of North America, Inc. (TCNA): Handbook for Ceramic Tile Installation (2020)G. TCNA DCOF AcuTest 2012, Dynamic Coefficient of Friction Test
- PART 2 PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - c. Class IV, 6000 revolutions for remaining areas.
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ANSI A137.1 and measured per the TCNA DCOF AcuTest.
 - Equal to or greater than .42 for level interior tile floors that will be walked on when wet.
 - b. Tile Having Abrasive Grains:
 - Quarry Tile: Abrasive grains uniformly embedded in face at rate of approximately 7.5 percent of surface area.
 - Mosaic tile may be mounted or joined by a resinous bonding material along tile edges.
 - 5. Back mounted tiles in showers.
- B. Unglazed Quarry Tile: Nominal 13 mm (1/2 inch) thick, square edges.

2.2 BACKER UNITS

- A. Cementitious Backer Units:
 - 1. Use in showers or wet areas.
 - 2. Conform to ASTM C1325; Type A.
 - 3. Use in maximum lengths available to minimize end to end butt joints.

2.3 UNCOUPLING MEMBRANE:

- A. Description: 1/8 inch (3 mm) thick, orange, high-density polyethylene membrane with a grid structure of 1/2 inch by 1/2 inch (12 mm by 12 mm) square cavities, each cut back in a dovetail configuration, and a polypropylene anchoring fleece laminated to its underside. Conforms to definition for uncoupling membranes in the Tile Council of North America Handbook for Ceramic Tile Installation and is listed by cUPC to meet or exceed the requirements of the "American national standard specifications for load bearing, bonded, waterproof membranes for thin-set ceramic tile and dimension stone installation A118.10 and is listed by cUPC, and is evaluated by ICC-ES (see Report No. ESR-2467).
- B. Waterproofing seaming membrane:
- C. Provide seams and corners material 0.004 inch (0.1 mm) thick, orange polyethylene membrane, with polypropylene fleece laminated on both sides.

2.4 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS

- A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave, 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing will not be permitted.
- B. Tape Embedding Material: Latex-portland cement mortar complying with ANSI A108.01.
- C. Joint material, including reinforcing tape, and tape embedding material, are to be as specifically recommended by the backer unit manufacturer.

2.5 FASTENERS

- A. Screws for Cementitious Backer Units.
 - 1. Standard screws for gypsum board are not acceptable.
 - Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers.
 - 3. ASTM C954 for steel 1 mm (0.033 inch) thick.
 - 4. ASTM C1002 for steel framing less than 0.0329 inch thick.
- B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter.

2.6 SETTING MATERIALS OR BOND COATS

- A. Conform to TCNA Handbook for Ceramic Tile Installation.
- B. Provide mix per manufacturer's recommendations:
 - 1. Epoxy Resin Type: ANSI A118.3.
- C. Waterproofing Membrane:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 1. Description: 0.008 inch (0.2 mm) thick, orange polyethylene membrane, with polypropylene fleece laminated on both sides, which is listed by cUPC to meet or exceed requirements of the "American national standard specifications for load bearing, bonded, waterproof membranes for thin-set ceramic tile and dimension stone installation A118.10 and is listed by cUPC, and is evaluated by ICC-ES (see Report No. ESR-2467).
- 2. Corners and seals:
- 3. Provide matching preformed inside corners.
- 4. Provide matching preformed outside corners.
- 5. Provide matching preformed pipe seals.

2.7 GROUTING MATERIALS

A. Water-Cleanable Epoxy Grout: ANSI A118.3.

 Provide product capable of withstanding continuous and intermittent exposure to temperatures of up to 60 and 100 degrees C (140 and 212 degrees F), respectively, and certified by manufacturer for intended use.

2.8 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Provide a patching and leveling compound with the following minimum physical properties:
 - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M.
 - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value).
 - 3. Tensile strength 4.1 MPa (600 psi) per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 101 mm (4 inches) thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish.
- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.

2.9 WATER

A. Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.10

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degrees C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three (3) days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 38 degrees C (100 degrees F).
- D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F).
- E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after third day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - Not more than 6 mm in 3048 mm (1/4 inch in 10 feet) from required elevation where portland cement mortar setting bed is used.
 - Not more than 3 mm in 3048 mm (1/8 inch in 10 feet) where dry-set portland cement, and latex-portland cement mortar setting beds and chemical-resistant bond coats are used.

B. Variation in Plane of Wall Surfaces:

- 1. Not more than 6 mm in 2438 mm (1/4 inch in 8 feet) from required plane where portland cement mortar setting bed is used.
- Not more than 3 mm in 2438 mm (1/8 inch in 8 feet) where dry-set or latex-portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

A. Patching and Leveling:

- Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
- Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.

- a. Thickness of compound as required to bring finish tile system to elevation shown on construction documents.
- b. Float finish.
- c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment.
- 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.
- Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- B. Mortar Bed for Slopes to Drains:
 - Slope compound to drain where drains are shown on construction documents.
 - Install mortar bed in depressed slab sloped to drains not less than
 3.2 mm in 305 mm (1/8 inch per foot).
 - 3. Allow not less than 50 mm (2 inch) depression at edge of depressed slab.
 - 4. Screed for slope to drain and float finish.
 - 5. Cure mortar bed for not less than seven (7) days. Do not use curing compounds or coatings.
 - Perform flood test to verify mortar bed slopes to drain before installing tile. Contracting Officer Representative (COR) to be present during flood test.
- C. Additional preparation of concrete floors for tile set with epoxy, or furan-resin is to be in accordance with the manufacturer's printed instructions.
- D. Cleavage Membrane:
 - Install polythene sheet as cleavage membrane in depressed slab when waterproof membrane is not scheduled or indicated.
 - 2. Turn up at edge of depressed floor slab to top of floor.
- E. Walls:
 - 1. In showers or other wet areas cover studs with polyethylene sheet.
 - Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane.
 - 3. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
 - 4. Apply metal lath to framing in accordance with ANSI A108.1:

- a. Use fasteners specified in paragraph "Fasteners." Use washers when lath opening is larger than screw head.
- b. Apply scratch and leveling coats to metal lath in accordance with ANSI A108.1C.
- c. Total thickness of scratch and leveling coats:
 - Apply 9 mm to 16 mm (3/8 inch to 5/8 inch) thick over solid backing.
 - 16 mm to 19 mm (5/8 to 3/4 inch) thick on metal lath over studs.
 - Where wainscots are required to finish flush with wall surface above, adjust thickness required for flush finish.
- d. Apply scratch and leveling coats more than 19 mm (3/4 inch) thick
 in two (2) coats.
- F. Existing Floors and Walls:
 - Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow safety requirements of ANSI A10.20.
 - Remove existing concrete fill or topping to structural slab. Clean and level the substrate for new setting bed and waterproof membrane or cleavage membrane.
 - 3. Where new tile bases are required to finish flush with plaster above or where they are extensions of similar bases in conjunction with existing floor tiles, cut channel in floor slab and expose rough wall construction sufficiently to accommodate new tile base and setting material.

3.4 CEMENTITIOUS BACKER UNITS

- A. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile.
- B. Install in accordance with ANSI A118.9 except as specified otherwise.
- C. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a "V" joint for joint treatment.

- D. Secure cementitious backer units to each framing member with screws spaced not more than 203 mm (8 inches) on center and not closer than 13 mm (1/2 inch) from the edge of the backer unit or as recommended by backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit.
- E. Where backer unit joins shower pans or waterproofing, lap backer unit over turned up waterproof system. Install fasteners only through top one-inch of turned up waterproof systems.
- F. Do not install joint treatment for seven (7) days after installation of cementitious backer unit.
- G. Joint Treatment:
 - Fill horizontal and vertical joints and corners with latex-portland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar.
 - Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors.

3.5 TILE - GENERAL

- A. Comply with ANSI A108/A118/A136 series of tile installation standards applicable to methods of installation and TCNA Installation Guidelines.
- B. Workmanship:
 - 1. Lay out tile work.
 - Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise on construction documents.
 - 3. Form intersections and returns accurately.
 - 4. Cut and drill tile neatly without marring surface.
 - 5. Cut edges of tile abutting penetrations, finish, or built-in items: a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.
 - b. Seal tile joints water tight, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
 - Completed work is to be free from hollow sounding areas and loose, cracked or defective tile.
 - 7. Remove and reset tiles that are out of plane or misaligned.
 - 8. Floors:

- a. Align finish surface of new tile work flush with other and existing adjoining floor finish where indicated in construction documents.
- b. In areas where floor drains occur, slope tile to drains.
- c. Push and vibrate tiles over 203 mm (8 inches) square to achieve full support of bond coat.
- 9. Walls:
 - a. Cover walls and partitions.
- 10. Joints:
 - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise on construction documents.

3.6 GROUTING

- A. Grout Type and Location:
 - 1. Grout for wall and base tile.
- B. Workmanship:
 - 1. Install and cure grout in accordance with the applicable standard.
 - 2. Water-Cleanable Epoxy Grout: ANSI A118.3.

3.7 MOVEMENT JOINTS

- A. Prepare tile expansion, isolation, construction and contraction joints for installation of sealant as recommended by manufacturer.
- B. TCNA details EJ 171-14.
- C. At expansion joints, rake out joint full depth of tile and setting bed and mortar bed. Do not cut waterproof or isolation membrane.

3.8 CLEANING:

- A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.
- B. Methods and materials used are not permitted to damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.
- D. Clean tile grouted with epoxy, as recommended by the manufacturer of the grout and bond coat.

3.9 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is fully set and cured.
- B. Where traffic occurs over tile floor is unavoidable, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover

until time for final inspection. Clean tile of any tape, adhesive and stains.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Acoustical units.
 - 2. Metal ceiling suspension system for acoustical ceilings.
 - 3. Adhesive application.

1.2 RELATED REQUIREMENTS

A. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. A641/A641M-09a(2014) Zinc-coated (Galvanized) Carbon Steel Wire.
 - A653/A653M-15e1 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process.
 - 3. C423-09a Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.
 - 4. C634-13 Terminology Relating to Environmental Acoustics.
 - C635/C635M-13a Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings.
 - C636/C636M-13 Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels.
 - 7. D1779-98(2011) Adhesive for Acoustical Materials.
 - 8. E84-15b Surface Burning Characteristics of Building Materials.
 - 9. E119-16 Fire Tests of Building Construction and Materials.
 - 10. E413-16 Classification for Rating Sound Insulation.
 - 11. E580/E580M-14 Installation of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Subject to Earthquake Ground Motions.
 - 12. E1264-14 Classification for Acoustical Ceiling Products.
- C. International Organization for Standardization (ISO):
 - 1. ISO 14644-1 Classification of Air Cleanliness.

1.4 SUBMITTALS

A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Ceiling suspension system indicating manufacturer recommendation for each application.
 - 3. Installation instructions.
 - 4. Warranty.
- D. Samples:
 - 1. Acoustical units, 150 mm (6 inches) in size, each type.
- E. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Biobased Content:
 - a. Show type and quantity for each product.
 - b. Show volatile organic compound types and quantities.
- F. Certificates: Certify products comply with specifications.
 - 1. Acoustical units, each type.
- G. Qualifications: Substantiate qualifications comply with specifications.
- H. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions continuously, beginning 48 hours before installation until Government occupancy.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Ceiling System: Acoustical ceilings units on exposed grid suspension systems.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide acoustical units from one manufacturer.
 - 1. Provide each product exposed to view from one production run.
- C. Provide suspension system from same manufacturer.

2.3 METAL SUSPENSION SYSTEM

- A. General: ASTM C635, heavy-duty system, except as otherwise specified.
 - 1. Suspension System: Provide the following:
 - a. Galvanized cold-rolled steel, bonderized.
 - Main and Cross Runner: Use same construction Do not use lighter-duty sections for cross runners.
- B. Exposed Grid Suspension System: Support of lay-in panels.
 - Grid Width: 22 mm (7/8 inch) minimum with8 mm (5/16 inch) minimum panel bearing surface.
 - Molding: Fabricate from the same material with same exposed width and finish.
 - 3. Finish: Baked-on enamel flat texture finish.
 - a. Color: To match adjacent acoustical units unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.

- C. Concealed Grid Suspension System: Mineral base acoustical tile support.
 - Concealed grid upward access suspension system initial opening, 300 mm by 600 mm (12 by 24 inches).
 - 2. Flange Width: 22 mm (7/8 inch) minimum except:

a. Access Hook and Angle: 11 mm (7/16 inch) minimum.

- D. Suspension System Support of Metal Type V, VI, and VII Tiles: Concealed grid type with runners for snap-in attachment of metal tile (pans).
- E. Carrying Channels Secondary Framing: Cold-rolled or hot-rolled steel, black asphaltic paint finish, rust free.
 - 1. Weight per 300 m (per thousand linear feet), minimum:

Size		Cold-rolled		Hot-rolled	
mm	inches	kg	pound	kg	pound
38	1-1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

- F. Anchors and Inserts: Provide anchors or inserts to support twice the loads imposed by hangers.
 - 1. Hanger Inserts: Steel, zinc-coated (galvanized after fabrication).
 - a. Nailing type option for wood forms:
 - Upper portion designed for anchorage in concrete and positioning lower portion below surface of concrete approximately 25 mm (one inch).
 - Lower portion provided with minimum 8 mm (5/16 inch) hole to permit attachment of hangers.
 - b. Flush ceiling insert type:
 - Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
 - Insert opening inside shell approximately 16 mm (5/8 inch) wide by 9 mm (3/8 inch) high over top of wire.
 - Wire 5 mm (3/16 inch) diameter with length to provide positive hooked anchorage in concrete.
- G. Clips: Galvanized steel, designed to secure framing member in place.
- H. Tile Splines: ASTM C635.
- I. Wire: ASTM A641.
 - 1. Size:
 - a. Wire Hangers: Minimum diameter 2.68 mm (0.1055 inch).

b. Bracing Wires: Minimum diameter 3.43 mm (0.1350 inch).

2.4 ACCESSORIES

- A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.
- B. Perimeter Seal: Vinyl, polyethylene or polyurethane open cell sponge material, density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
 - Thickness: As required to fill voids between back of wall molding and finish wall.
 - 2. Size: Minimum 9 mm (3/8 inch) wide strip.
- C. Access Identification Markers: Colored markers with pressure sensitive adhesive on one side, paper or plastic, 6 to 9 mm (1/4 to 3/8 inch) diameter.
 - Color Code: Provide the following color markers for service identification:

Color	Service
Red	Sprinkler System: Valves and Controls
Green	Domestic Water: Valves and Controls
Yellow	Chilled Water and Heating Water
Orange	Ductwork: Fire Dampers
Blue	Ductwork: Dampers and Controls
Black	Gas: Laboratory, Medical, Air and Vacuum

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing acoustical panels to permit new installation.
 - 1. Retain existing suspension system for reuse.
 - 2. Dispose of removed materials.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Applications:
 - 1. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Layout acoustical unit as shown on drawings.
- C. Installation:
 - Install acoustic tiles after wet finishes have been installed and solvents have cured.
 - Install lay-in acoustic panels in exposed grid with minimum 6 mm (1/4 inch) bearing at edges on supports.
 - a. Install tile to lay level and in full contact with exposed grid.b. Replace cracked, broken, stained, dirty, or tile.
 - 3. Tile in concealed grid upward access suspension system:
 - Install acoustical tile with joints close, straight and true to line, and with exposed surfaces level and flush at joints.
 - b. Make corners and arises full, and without worn or broken places.
 - c. Locate acoustical units providing access to service systems.
 - 4. Adhesive applied tile:
 - a. Condition of surface according to ASTM D1779, Note 1,
 Cleanliness of Surface, and Note 4, Rigidity of Base Surface.
 - b. Size or seal surface as recommended by manufacturer of adhesive and allow to dry before installing units.
 - 5. Markers:
 - Install color coded markers to identify the various concealed piping, mechanical, and plumbing systems.
 - b. Attach colored markers to exposed grid on opposite sides of the units providing access.
 - c. Attach marker on exposed ceiling surface of upward access acoustical unit.
- D. Touch up damaged factory finishes.
 - 1. Repair painted surfaces with touch up primer.

3.4 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General: Install according to ASTM C636.
 - Use direct or indirect hung suspension system or combination of both.
 - Support a maximum area of 1.48 sq. m (16 sq. ft.) of ceiling per hanger.

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System09 51 00 Acoustical Ceilings -6

- Prevent deflection in excess of 1/360 of span of cross runner and main runner.
- Provide additional hangers located at each corner of support components.
- 5. Provide minimum 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown.
- 6. Provide main runners minimum 1200 mm (48 inches) in length.
- Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Direct Hung Suspension System: ASTM C635.
 - Support main runners by hanger wires attached directly to the structure overhead.
 - Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- C. Anchorage to Structure:
 - 1. Concrete:
 - a. Install hanger inserts and wire loops required for support of hanger and bracing wire. Install hanger wires with looped ends through steel deck when steel deck does not have attachment device.
 - b. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger and bracing wire. Install in sides of concrete beams or joists at mid height.
 - 2. Steel:
 - a. Install carrying channels for attachment of hanger wires.
 - Size and space carrying channels to support load within performance limit.
 - Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
 - Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fireproofing is installed. Weld or use steel clips for beam attachment.

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System09 51 00 Acoustical Ceilings -7

- c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.
- D. Indirect Hung Suspension System: ASTM C635.
 - Space carrying channels for indirect hung suspension system maximum 1200 mm (4 feet) on center. Space hangers for carrying channels maximum 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
 - Support main runners by specially designed clips attached to carrying channels.

3.5 CEILING TREATMENT

- A. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- B. Perimeter Seal:
 - Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.
- C. Existing ceiling:
 - 1. Where extension of existing ceilings occurs, match existing.
 - Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space which results in contrast between old and new acoustic units.
 - Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System09 51 00 Acoustical Ceilings -8

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Resilient base (RB) adhered to interior walls and partitions.

1.2 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

F1344-15.....Rubber Floor Tile.

F1859-14e1.....Rubber Sheet Floor Covering without Backing. F1860-14e1.....Rubber Sheet Floor Covering with Backing. F1861-16.....Resilient Wall Base. D4259-18.....Preparation of Concrete by Abrasion Prior to

Coating Application.

C. Federal Specifications (Fed. Spec.): RR-T-650E (1994).....Treads, Metallic and Non-Metallic,

Skid-Resistant.

D. International Concrete Repair Institute (ICRI): 310.2R-2013.....Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair.

1.3 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Adhesives and primers indicating manufacturer's recommendation for each application.
 - 3. Installation instructions.
- C. Samples:
 - 1. Resilient Base: 150 mm (6 inches) long, each type and color.
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials:
 - a. Stair Treads and Sheet Rubber Flooring: Submit Floor Score label.
 - b. Show volatile organic compound types and quantities.
- E. Operation and Maintenance Data:

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System09 65 13 Resilient Base and Accessories-1

1. Care instructions for each exposed finish product.

1.4 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.5 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage when handling and during construction operations.

1.6 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.7 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run.
 - Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Flooring Adhesives and Sealants.

2.2 RESILIENT BASE

- A. Resilient Base: 3 mm (1/8 inch) thick, 100 mm (4 inches) high.
 - 1. Type: Rubber or vinyl; use one type throughout.
 - ASTM F1861, Type TP thermoplastic rubber or Type TV thermoplastic vinyl, Group 2 - layered.
- B. Applications:
 - 1. Carpet Flooring Locations: Style A Straight.
 - 2. Other Locations: Style B Cove.

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System09 65 13 Resilient Base and Accessories-2

2.3 PRIMER (FOR CONCRETE FLOORS)

A. Primer: Type recommended by adhesive manufacturer.

2.4 LEVELING COMPOUND (FOR CONCRETE FLOORS)

A. Leveling Compound: Provide products mixed with latex or polyvinyl acetate resins.

2.5 ADHESIVES

A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing base to permit new installation.
 - 1. Dispose of removed materials.
- D. Correct substrate deficiencies.
 - 1. Fill cracks, pits, and depressions with leveling compound.
 - 2. Remove protrusions; grind high spots.
 - Apply leveling compound to achieve 3 mm (1/8 inch) in 3 m (10 feet) maximum surface variation.
- E. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
 - 2. Surface Profile: ICRI Guideline No. 310.2R.
- F. Allow substrate to dry and cure.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.

3.2 INSTALLATION GENERAL

- A. Install products according to manufacturer's instructions.
 - 1. When instructions deviate from specifications, submit proposed resolution for Contracting Officer consideration.

3.3 RESILIENT BASE INSTALLATION

- A. Applications:
 - 1. Install resilient base in rooms scheduled on Drawings.
 - Install resilient base on casework , and other curb supported fixed equipment.
 - Extend resilient base into closets, alcoves, and cabinet knee spaces, and around columns within scheduled room.
- B. Lay out resilient base with minimum number of joints.

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System09 65 13 Resilient Base and Accessories-3

- 1. Length: 600 mm (24 inches) minimum, each piece.
- Locate joints 150 mm (6 inches) minimum from corners and intersection of adjacent materials.
- C. Installation:
 - Apply adhesive uniformly for full contact between resilient base and substrate.
 - Set resilient base with hairline butted joints aligned along top edge.
- D. Field form corners and end stops.
 - 1. V-groove back of outside corner.
 - 2. V-groove face of inside corner and notch cove for miter joint.
- E. Roll resilient base ensuring complete adhesion.

3.4 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed resilient base. Remove contaminants and stains.
 - 1. Clean with mild detergent. Leave surfaces free of detergent residue.
- C. Polish exposed resilient base to gloss sheen.

3.5 PROTECTION

- A. Protect products from construction traffic and operations.
 - Maintain protection until directed by Contracting Officer's Representative.
- B. Replace damaged products and re-clean.
 - Damaged Products include cut, gouged, scraped, torn, and unbonded products.

- - E N D - -

SECTION 09 65 19 RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the installation of luxury vinyl tile, static dissipative vinyl tile and accessories required for a complete installation.

1.2 RELATED WORK:

- A. Resilient Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.
- B. Subfloor Testing and Preparation: Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

C. Color, Pattern and Texture for Resilient Tile Flooring and Accessories: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Resilient material manufacturer's recommendations for adhesives, underlayment, primers, and polish.
 - 3. Application, installation and maintenance instructions.
- C. Samples:
 - 1. Tile: Each type, color, thickness and finish.
 - 2. Edge Strips: Each type, color, thickness and finish.
 - 3. Feature Strips: Each type, color, thickness and finish.
- D. Shop Drawings:
 - 1. Layout of patterns as shown on the construction documents.
 - 2. Edge strip locations showing types and detail cross sections.

1.4 DELIVERY:

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation are not acceptable.

1.5 STORAGE:

A. Store materials in a clean, dry, enclosed space off the ground, protected from harmful weather conditions and at temperature and

humidity conditions recommended by the manufacturer. Protect adhesives from freezing. Store flooring, adhesives, and accessories in the spaces where they will be installed for at least 48 hours before beginning installation.

1.6 QUALITY ASSURANCE:

- A. Installer Qualifications: A company specializing in installation with minimum three (3) years' experience and employs experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program.
- B. Furnish product type materials from the same production run.

1.7 WARRANTY:

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.8 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM): of Polish-Coated Flooring Surfaces as Measured by the James Machine D2240-05(R2010).....Test Method for Rubber Property-Durometer Hardness D4078-02(R2008).....Water Emulsion Floor Finish E648-14c.....Critical Radiant Flux of Floor Covering Systems Using a Radiant Energy Source E662-14.....Specific Optical Density of Smoke Generated by Solid Materials E1155/E1155M-14.....Determining Floor Flatness and Floor Levelness Numbers F510/F510M-14.....Resistance to Abrasion of Resilient Floor Coverings Using an Abrader with a Grit Feed Method F710-11.....Preparing Concrete Floors to Receive Resilient Flooring F925-13.....Test Method for Resistance to Chemicals of Resilient Flooring

in Concrete Floor Slabs Using in Situ Probes

F2195-13.....Linoleum Floor Tile

C. Code of Federal Regulation (CFR):

40 CFR 59.....Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating

D. International Standards and Training Alliance (INSTALL):

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS:

- A. Provide adhesives, underlayment, primers, and polish recommended by resilient floor material manufacturer.
- B. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E648.
- C. Smoke Density: Less than 450 per ASTM E662.
- D. Slip Resistance Not less than 0.5 when tested with ASTM D2047.

2.5 LUXURY VINYL TILE:

- A. ASTM F1700, Class III, Printed Film Vinyl Tile, Type A.
- B. Thickness: 12 mil (1/8 inch).
- C. Size: 6"x40".

2.6 ADHESIVES:

A. Provide water resistant type adhesive for flooring, base and accessories as recommended by the manufacturer to suit substrate conditions.

2.7 PRIMER FOR CONCRETE SUBFLOORS:

A. Provide in accordance with Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

2.8 LEVELING COMPOUND FOR CONCRETE FLOORS:

A. Provide cementitious products with latex or polyvinyl acetate resins in the mix in accordance with Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

2.9 POLISH AND CLEANERS:

- A. Cleaners: As recommended in writing by floor tile manufacturer.
- B. Polish: ASTM D4078.

2.10 MOULDING:

- A. Provide tapered mouldings of vinyl and types as indicated on the construction documents for both edges and transitions of flooring materials specified. Provide vertical lip on moulding of maximum 6 mm (1/4 inch). Provide bevel change in level between 6 and 13 mm (1/4 and 1/2 inch) with a slope no greater than 1:2.
- B. Fasteners for Aluminum Mouldings: Stainless steel of type required for substrate condition.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS:

- A. Maintain flooring materials and areas to receive resilient flooring at a temperature above 20 degrees C (68 degrees F) for three (3) days before application, during application and two (2) days after application, unless otherwise directly by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 13 degrees C (55 degrees F) thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.
- B. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR TESTING AND PREPARATION:

A. Prepare and test surfaces to receive resilient tile and adhesive as per Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

3.3 INSTALLATION:

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance is not acceptable.
- C. Tile Layout:
 - If layout is not shown on construction documents, lay tile symmetrically about center of room or space with joints aligned.
 - Vary edge width as necessary to maintain full size tiles in the field, no edge tile to be less than 1/2 the field tile size, except where irregular shaped rooms make it impossible.

- Place tile pattern in the same direction; do not alternate tiles unless specifically indicated in the construction documents to the contrary.
- D. Application:
 - Adhere floor tile to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
 - Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
 - Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
 - 4. Roll tile floor with a minimum 45 kg (100 pound) roller.
- E. Seal joints at pipes with sealants in accordance with Section 07 92 00, JOINT SEALANTS.
- F. Installation of Edge Strips:
 - Locate edge strips under center line of doors unless otherwise shown on construction documents.
 - Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws.
 - 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
 - 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

3.4 CLEANING AND PROTECTION:

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions and within the recommended time frame. As required by the manufacturer, apply the recommended number of coats and type of polish and/or finish in accordance with manufacturer's written instructions.

- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by COR. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by COR.
- E. When protective materials are removed and immediately prior to acceptance, replace damaged tile and mouldings, re-clean resilient materials.

3.5 LOCATION:

- A. Unless otherwise indicated in construction documents, install tile flooring, under areas where casework, laboratory and pharmacy furniture and other equipment occur.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

SECTION 09 68 00 CARPETING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Section specifies carpet, molding, adhesives, and other items required for complete installation.

1.2 RELATED WORK

- A. Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES: Testing of Concrete Floors Before Installation.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Manufacturer, Color and Style of Carpet and Edge Strip.
- C. Section 09 65 13, RESILIENT BASE AND ACCESSORIES: Resilient Wall Base.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: A company specializing in carpet installation with a minimum three (3) years' experience and employing experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program, and a valid OSHA 10 certification.
 - 1. Installers to be certified by INSTALL or a comparable certification program with the following minimum criteria:
 - a. US Department of Labor approved four (4) year apprenticeship program, 160 hours a year.
 - b. Career long training.
 - c. Manufacturer endorsed training.
 - d. Fundamental journeyman skills certification.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Product Data:
 - Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading and flame resistance characteristics for each type of carpet material and installation accessory.
 - Manufacturer's printed installation instructions for the carpet, including preparation of installation substrate, seaming techniques and recommended adhesives and tapes.
- C. Samples:

- Carpet: "Production Quality" samples 305 x 305 mm (12 x 12 inches) of carpets, showing quality, pattern and color specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- 2. Floor Edge Strip (Molding): 152 mm (6 inches) long of each color and type specified.
- Base Edge Strip (Molding): 152 mm (6 inches) long of each color specified.
- D. Shop Drawings: Installers layout plan showing seams and cuts for sheet carpet and carpet module.
- E. Maintenance Data: Carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods and cleaning cycles.
- F. Installer's Qualifications.
- G. Manufacturer's warranty.

1.5 DELIVERY AND STORAGE

- A. Deliver carpet in manufacturer's original wrappings and packages clearly labeled with manufacturer's brand name, size, dye lot number and related information. Transport carpet to job site in a manner that prevents damage and distortion that might render it unusable. When bending or folding is unavoidable for delivery purposes, unfold carpet and lay flat immediately.
- B. Deliver adhesives in containers clearly labeled with manufacturer's brand name, number, installation instructions, safety instructions and flash points.
- C. Store in a clean, dry, well-ventilated area, protected from damage and soiling. Before installation, acclimate carpet to the atmospheric conditions of the areas in which it will be installed for 2 days prior to installation

1.6 ENVIRONMENTAL REQUIREMENTS

- A. Maintain areas in which carpeting is to be installed at a temperature between 18 - 35 degrees C (65 - 95 degrees F) with a maximum relative humidity of 65 percent for two (2) days before installation, during installation and for three (3) days after installation.
- B. Minimum Substrate Surface Temperature: 18 degrees C (65 degrees F) at time of installation.
- C. Three (3) days after installation, maintain minimum temperature of 10 degrees C (50 degrees F) for the duration of the contract.

1.7 WARRANTY

- A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".
- B. Manufacturer Warranty: Submit manufacturer warranty.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): ANSI/NSF 140-10.....Sustainable Carpet Assessment Standard
- C. American Association of Textile Chemists and Colorists (AATCC): 16-04.....Colorfastness to Light 134-11....Electric Static Propensity of Carpets 165-08....Colorfastness to Crocking: Textile Floor Coverings-AATCC Crockmeter Method 174-11....Antimicrobial Activity Assessment of New

Carpets

D. ASTM International (ASTM): D1335-17e1.....Tuft Bind of Pile Yarn Floor Coverings D3278-20.....Flash Point of Liquids by Small Scale Closed-Cup Apparatus D5116-17.....Determinations of Organic Emissions from Indoor Materials/Products D5252-20.....Operation of the Hexapod Tumble Drum Tester D5417-16.....Operation of the Vettermann Drum Tester E648-19ae1.....Critical Radiant Flux of Floor-Covering Systems

Using a Radiant Heat Energy Source

E. Code of Federal Regulation (CFR): 40 CFR 59.....Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight

Solids of Surface Coating

- F. The Carpet and Rug Institute (CRI): CIS.....Carpet Installation Standard
- G. International Standards and Training Alliance (INSTALL)
- H. International Organization for Standardization (ISO): 2551-81......Machine-Made Textile Floor Coverings
- I. U.S. Consumer Product and Safety Commission (CPSC): 16 CFR 1630.....Surface Flammability of Carpets and Rugs

PART 2 - PRODUCTS

2.1 CARPET

- A. Physical Characteristics:
 - Carpet free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains and other physical and manufacturing defects.
 - 2. Type:
 - a. Carpet Construction: Tufted.
 - b. Carpet Type: Modular tile (24 by 24 inch square) with 0.15 percent growth/shrink rate in accordance with ISO 2551.
 - c. Pile Type: Level-loop. Pile type and thickness must conform to ADA requirements.
 - d. Pile Fiber: Commercial 100 percent branded (federally registered trademark), nylon continuous filament.
 - 3. Static Control: Provide static control to permanently regulate static buildup to less than 3.5 kV when tested at 20 percent relative humidity and 21 degrees C (70 degrees F) in accordance with AATCC 134.
 - Backing Materials: Provide backing for glue-down for modular tile installations. For healthcare installations, provide impervious moisture backing that is 100 percent PVC free.
 - a. Modular Tile:
 - Primary Backing/Backcoating: Manufacturer's standard composite materials .
 - 2) Secondary Backing: Manufacturer's standard material.
 - 5. Appearance Retention Rating (ARR): Carpet to be tested and have the minimum 3.5 - 4.0 severe ARR when tested in accordance with either the ASTM D5252 (Hexapod) or ASTM D5417 (Vettermann) test methods using the number of cycles for short and long term tests as specified in the ASTM standard.
 - 6. Flammability and Critical Radiant Flux Requirements:
 - a. Comply with 16 CFR 1630.
 - b. Test Carpet in accordance with ASTM E648.Class I: Minimum critical radiant flux of 0.45 watts per square centimeter (2.9 watts per square inch).
 - 7. Average Pile Yarn Density (APYD):

- a. Corridors, lobbies, entrances, common areas or multipurpose rooms, open offices, waiting areas and dining areas: Minimum APYD 6000.
- b. Other areas: Minimum APYD 4000.

2.2 ADHESIVE AND CONCRETE PRIMER

A. Provide water resistant, mildew resistant, nonflammable, and nonstaining adhesives and concrete primers for carpet installation. Provide release adhesive for modular tile carpet as recommended by the carpet manufacturer. Provide adhesives flashpoint of minimum 60 degrees C (140 degrees F) in accordance with ASTM D3278.

2.3 SEAMING TAPE

Provide tape for seams as recommended by the carpet manufacturer for the type of seam used in installation.

2.4 EDGE STRIPS (MOLDING)

- A. Vinyl Edge Strip:
 - For use in low traffic areas. Beveled floor flange minimum 50 mm (2 inches) wide.
 - Beveled surface to finish flush with carpet for tight joint and other side to floor finish.
 - 3. Color as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Carpet Base Top Edge Strip:
 - Vinyl "J" strip wall flange minimum of 38 mm (1-1/2 inches) wide with cap beveled from wall to finish flush with carpet being installed.
 - 2. Color as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION

A. Contractor to prepare and test surfaces to receive carpet and adhesives as per Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

3.2 GENERAL INSTALLATION

- A. Isolate area of installation from rest of building.
- B. Perform all work by manufacturer's approved installers. Conduct installation in accordance with the manufacturer's printed instructions and CRI CIS.
- C. Protect edges of carpet meeting hard surface flooring with molding and install in accordance with the molding manufacturer's printed instructions.

- D. Follow ventilation, personal protection, and other safety precautions recommended by the adhesive manufacturer. Continue ventilation during installation and for at least three (3) days following installation.
- E. Do not permit traffic or movement of furniture or equipment in carpeted area for 24 hours after installation.
- F. Complete other work which would damage the carpet prior to installation of carpet.
- G. Follow carpet manufacturer's recommendations for matching pattern and texture directions.
- H. Cut openings in carpet where required for installing equipment, pipes, outlets, and penetrations. Bind or seal cut edge of sheet carpet. Use additional adhesive to secure carpets around pipes and other vertical projections.
- 3.3

3.4 MODULAR TILE INSTALLATION

- A. Install per CRI CIS, Adhesive Application.
- B. Lay carpet modules with pile in same direction unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Install carpet modules so that cleaning methods and solutions do not cause dislocation of modules.
- D. Lay carpet modules uniformly to provide tight flush joints free from movement when subject to traffic.

3.5 EDGE STRIPS INSTALLATION

- A. Install edge strips over exposed carpet edges adjacent to uncarpeted finish flooring.
- B. Anchor vinyl edge strip to floor with adhesive. Apply adhesive to edge strip and insert carpet into lip and press lip down over carpet.

3.6 PROTECTION AND CLEANING

- A. Once a carpet installation is complete, clean up scrap materials and debris, and vacuum the area, using manufacturer-approved equipment. Inspect seams carefully for evenness and protruding backing yarns, and inspect the perimeter of the installation for an acceptable finished appearance.
- B. Protect installed carpet if furniture is being moved, by laying plywood, fiberboard or porous non-staining sheeting material for minimum time practical. Based on manufacturer guidelines, protect carpet from rolling or foot traffic. Protect against other materials or

renovation or construction activities, including dust, debris, paint, contractor traffic, until it is ready for its final use.

- C. Do not move furniture or equipment on unprotected carpeted surfaces.
- D. Just before final acceptance of work, remove protection and vacuum carpet clean.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the painting and finishing as shown on the construction documents and/or specified herein, including, but not limited to, the following:
 - 1. Prime coats which may be applied in shop under other sections.
 - 2. Prime painting unprimed surfaces to be painted under this Section.
 - Painting items furnished with a prime coat of paint, including touching up of or repairing of abraded, damaged or rusted prime coats applied by others.
 - 4. Painting ferrous metal (except stainless steel) exposed to view.
 - 5. Painting galvanized ferrous metals exposed to view.
 - 6. Painting interior concrete block exposed to view.
 - 7. Painting gypsum drywall exposed to view.
 - Painting of wood exposed to view, except items which are specified to be painted or finished under other Sections of these specifications. Back painting of all wood in contact with concrete, masonry or other moisture areas.
 - Painting pipes, pipe coverings, conduit, ducts, insulation, hangers, supports and other mechanical and electrical items and equipment exposed to view.
 - 10. Painting surfaces above, behind or below grilles, gratings, diffusers, louvers lighting fixtures, and the like, which are exposed to view through these items.
 - 11. Incidental painting and touching up as required to produce proper finish for painted surfaces, including touching up of factory finished items.
 - 12. Painting of any surface not specifically mentioned to be painted herein or on construction documents, but for which painting is obviously necessary to complete the job, or work which comes within the intent of these specifications, is to be included as though specified.

1.2 RELATED WORK

A. Section 09 06 00, SCHEDULE FOR FINISHES: Type of Finish, Color, and Gloss Level of Finish Coat.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Painter qualifications.
- C. Manufacturer's Literature and Data:
 - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature and technical data, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one (1) list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.
- D. Sample Panels:
 - After painters' materials have been approved and before work is started, submit sample panels showing each type of finish and color specified.
 - 2. Panels to Show Color: Composition board, $100 \times 250 \text{ mm}$ (4 x 10 inch).
 - 3. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.
 - d. Name of project.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:

- 1. Federal Specification Number, where applicable, and name of material.
- 2. Surface upon which material is to be applied.
- 3. Specify Coat Types: Prime; body; finish; etc.
- C. Maintain space for storage, and handling of painting materials and equipment in a ventilated, neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 7 and 30 degrees C (45 and 85 degrees F).

1.5 QUALITY ASSURANCE

- A. Qualification of Painters: Use only qualified journeyman painters for the mixing and application of paint on exposed surfaces. Submit evidence that key personnel have successfully performed surface preparation and application of coating on a minimum of three (3) similar projects within the past three (3) years.
- B. Paint Coordination: Provide finish coats which are compatible with the prime paints used. Review other Sections of these specifications in which prime paints are to be provided to ensure compatibility of the total coatings system for the various substrates. Upon request from other subcontractors, furnish information on the characteristics of the finish materials proposed to be used, to ensure that compatible prime coats are used. Provide barrier coats over incompatible primers or remove and reprime as required. Notify the Contracting Officer Representative (COR) in writing of any anticipated problems using the coating systems as specified with substrates primed by others.

1.6 SAFETY AND HEALTH

- A. Apply paint materials using safety methods and equipment in accordance with the following:
 - Comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis (AHA) as specified in Section 01 35 26, SAFETY REQUIREMENTS. The AHA is to include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.
- B. Safety Methods Used During Paint Application: Comply with the requirements of SSPC PA Guide 10.
- C. Toxic Materials: To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:

- The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
- 2. 29 CFR 1910.1000.
- 3. ACHIH-BKLT and ACGHI-DOC, threshold limit values.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIS)

ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

- C. ASME International (ASME): A13.1-07(R2013).....Scheme for the Identification of Piping Systems
- D. Code of Federal Regulation (CFR):
- 40 CFR 59.....Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating

E. Commercial Item Description (CID): A-A-1272A.....Plaster Gypsum (Spackling Compound)

F. Federal Specifications (Fed Spec):

TT-P-1411A..... Paint, Copolymer-Resin, Cementitious (For

- Waterproofing Concrete and Masonry Walls) (CEP)
- G. Master Painters Institute (MPI):

1.....Aluminum Paint
3.....Primer, Alkali Resistant, Water Based
4.....Interior/ Exterior Latex Block Filler
5....Exterior Alkyd Wood Primer
6....Exterior, Latex for Exterior Wood Primer
7....Exterior Oil Wood Primer
8....Exterior Alkyd, Flat MPI Gloss Level 1
9....Exterior Alkyd Enamel MPI Gloss Level 6
10....Exterior Latex, Flat
11....Exterior Latex, Semi-Gloss
15....Exterior Latex, Low Sheen (MPI Gloss Level 3-4)
17....Primer, Bonding, Waterbased

18Organic Zinc Rich Primer
22
23Primer, Metal, Surface Tolerant
27Exterior / Interior Alkyd Floor Enamel, Gloss
31Polyurethane, Moisture Cured, Clear Gloss
36Knot Sealer
39 Wood Primer, Latex, for Interior Wood
40Exterior, Latex High Build
42 Flat
43 MPI Gloss Level 4
44 MPI Gloss Level 2
45Interior Primer Sealer
46Interior Enamel Undercoat
47
48 Interior Alkyd, Gloss, MPI Gloss Level 6
50 Sealer
51 MPI Gloss Level 3
52 MPI Gloss Level 3
53 Flat, MPI Gloss Level 1
54Gloss, MPI Gloss Level 5
59 & Floor Enamel, Low
Gloss
60 & Floor Paint, Low
Gloss
66 Clear Top-Coat (ULC
Approved)
67
Approved)
68 & Floor Paint,
Gloss
71Cured, Clear, Flat
77Epoxy Cold Cured, Gloss
79Marine Alkyd Metal Primer
90Semi-Transparent
91Wood Filler Paste
94Exterior Alkyd, Semi-Gloss
95Fast Drying Metal Primer

	98
	99for Concrete Floors
	101 Metal Primer
	107Water-based
	108Low Gloss
	113 Elastomeric, Pigmented, Exterior, Water-based,
	Flat
	114Interior Latex, Gloss
	115Gloss (MPI gloss)
	level 6)
	118Dry Fall, Latex Flat
	119Exterior Latex, High Gloss (acrylic)
	134Galvanized Water Based Primer
	135 Galvanized Primer
	138 Latex, MPI Gloss Level 2
	139 Latex, MPI Gloss Level 3
	140 Interior High Performance Latex, MPI Gloss Level
	141
	Level 5
	144Latex, Interior, Institutional Low Odor / VOC,
	(MPI Gloss Level 2)
	145Latex, Interior, Institutional Low Odor / VOC,
	(MPI Gloss Level 3)
	146Latex, Interior, Institutional Low Odor / VOC,
	(MPI Gloss Level 4)
	151
	(MPI Gloss Level 3)
	153 Interior, Water-based,
	(MPI Gloss Level 4)
	163Gloss Light Industrial
	Coating, MPI Gloss Level 5
	164
	Coating, MPI Gloss Level 6
H.	Society for Protective Coatings (SSPC):
	SSPC SP 1-82(R2004)Solvent Cleaning
	SSPC SP 2-82(R2004)Hand Tool Cleaning
	SSPC SP 3-28(R2004)Power Tool Cleaning

SSPC SP 10/NACE No.2....Near-White Blast Cleaning

SSPC PA Guide 10.....Guide to Safety and Health Requirements

- I. Maple Flooring Manufacturer's Association (MFMA):
- J. U.S. National Archives and Records Administration (NARA): 29 CFR 1910.1000.....Air Contaminants
- K. Underwriter's Laboratory (UL)

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents.

2.2 PAINT PROPERTIES:

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.
- C. Provide undercoat paint produced by the same manufacturer as the finish coats. Use only thinners approved by the paint manufacturer and use only to recommended limits.
- D. VOC Content: For field applications that are inside the weatherproofing system, paints and coating to comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Flat Paints and Coatings: 50 gram/liter.
 - 2. Non-flat Paints and Coatings: 150 gram/liter.
 - 3. Dry-Fog Coatings: 400 gram/liter.
 - 4. Primers, Sealers, and Undercoaters: 200 gram/liter.
 - 5. Anticorrosive and Antirust Paints applied to Ferrous Metals: 250 gram/liter.
 - 6. Zinc-Rich Industrial Maintenance Primers: 340 gram/liter.
 - 7. Pretreatment Wash Primers: 420 gram/liter.
 - 8. Shellacs, Clear: 730 gram/liter.
 - 9. Shellacs, Pigmented: 550 gram/liter.

PART 3 - EXECUTION

3.1 JOB CONDITIONS:

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the COR and the product manufacturer. Under no circumstances are application conditions to exceed manufacturer recommendations.
 - c. When the relative humidity exceeds 85 percent; or to damp or wet surfaces; unless otherwise permitted by the paint manufacturer's printed instructions.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will warm.
 - 5. Apply only on clean, dry and frost-free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces only when allowed by manufacturer's printed instructions.
 - b. Concrete and masonry when permitted by manufacturer's recommendations, dampen surfaces to which water thinned acrylic and cementitious paints are applied with a fine mist of water on hot dry days to prevent excessive suction and to cool surface.
 - 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 INSPECTION:

A. Examine the areas and conditions where painting and finishing are to be applied and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.3 GENERAL WORKMANSHIP REQUIREMENTS:

- A. Application may be by brush or roller. Spray application only upon acceptance from the COR in writing.
- B. Furnish to the COR a painting schedule indicating when the respective coats of paint for the various areas and surfaces will be completed. This schedule is to be kept current as the job progresses.
- C. Protect work at all times. Protect all adjacent work and materials by suitable covering or other method during progress of work. Upon completion of the work, remove all paint and varnish spots from floors, glass and other surfaces. Remove from the premises all rubbish and accumulated materials of whatever nature not caused by others and leave work in a clean condition.
- D. Remove and protect hardware, accessories, device plates, lighting fixtures, and factory finished work, and similar items, or provide in place protection. Upon completion of each space, carefully replace all removed items by workmen skilled in the trades involved.
- E. When indicated to be painted, remove electrical panel box covers and doors before painting walls. Paint separately and re-install after all paint is dry.
- F. Materials are to be applied under adequate illumination, evenly spread and flowed on smoothly to avoid runs, sags, holidays, brush marks, air bubbles and excessive roller stipple.
- G. Apply materials with a coverage to hide substrate completely. When color, stain, dirt or undercoats show through final coat of paint, the surface is to be covered by additional coats until the paint film is of uniform finish, color, appearance and coverage, at no additional cost to the Government.
- H. All coats are to be dry to manufacturer's recommendations before applying succeeding coats.
- I. All suction spots or "hot spots" in plaster after the application of the first coat are to be touched up before applying the second coat.
- J. Do not apply paint behind frameless mirrors that use mastic for adhering to wall surface.

3.4 SURFACE PREPARATION:

- A. General:
 - The Contractor shall be held wholly responsible for the finished appearance and satisfactory completion of painting work. Properly prepare all surfaces to receive paint, which includes cleaning, sanding, and touching-up of all prime coats applied under other Sections of the work. Broom clean all spaces before painting is started. All surfaces to be painted or finished are to be completely dry, clean and smooth.
 - See other sections of specifications for specified surface conditions and prime coat.
 - 3. Perform preparation and cleaning procedures in strict accordance with the paint manufacturer's instructions and as herein specified, for each particular substrate condition.
 - 4. Clean surfaces before applying paint or surface treatments with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall in wet, newly painted surfaces.
 - 5. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - a. Concrete: 12 percent.
 - b. Fiber-Cement Board: 12 percent.
 - c. Masonry (Clay and CMU's): 12 percent.
 - d. Wood: 15 percent.
 - e. Gypsum Board: 12 percent.
 - f. Plaster: 12 percent.

B. Wood:

- 1. Sand to a smooth even surface and then dust off.
- 2. Sand surfaces showing raised grain smooth between each coat.
- 3. Wipe surface with a tack rag prior to applying finish.
- 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.

- 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
- Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.
- C. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning).
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. Fill flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- D. Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.

3. Fill holes, cracks, and other depressions with CID-A-A-1272A finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.5 PAINT PREPARATION:

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two (2) component and two (2) part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.6 APPLICATION:

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three (3) coats; prime, body, and finish. When two (2) coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Apply by brush or roller. Spray application for new or existing occupied spaces only upon approval by acceptance from COR in writing.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In new construction and in existing occupied spaces, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in "Building and Structural Work Field Painting"; "Work not Painted"; motors, controls, telephone, and electrical equipment, fronts

of sterilizes and other recessed equipment and similar prefinished items.

F. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.7 PRIME PAINTING:

- A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rabbets for stop and face glazing of wood, and for face glazing of steel.
- E. Metals
- F. Gypsum Board and Hardboard:
 - 1. Primer: As recommended by paint manufacturer for applications.

3.8 INTERIOR FINISHES:

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) unless specified otherwise.
- C. Gypsum Board:
 - 1. One (1) coat of MPI 45 (Interior Primer Sealer).
 - Two (2) coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2).
 - 3. Sealers:
 - a. MPI 31 (gloss) or MPI 71 (flat) thinned as recommended by manufacturer at rate of one (1) part of thinner to four (4) parts of varnish.
 - b. Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used.

- c. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather.
- d. Sand as specified.
- 4. Paint Finish:
 - a. One (1) coat of MPI 45 (Interior Primer Sealer).

3.9 REFINISHING EXISTING PAINTED SURFACES:

- A. Clean, patch and repair existing surfaces as specified under "Surface Preparation". No "telegraphing" of lines, ridges, flakes, etc., through new surfacing is permitted. Where this occurs, sand smooth and re-finish until surface meets with COR's approval.
- B. Remove and reinstall items as specified under "General Workmanship Requirements".
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- H. Sand or dull glossy surfaces prior to painting.
- Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.10 PAINT COLOR:

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, "REFINISHING EXISTING PAINTED SURFACE" and "MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE".
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.

- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.11 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE:

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified below.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in "BUILDING AND STRUCTURAL WORK FIELD PAINTING"; "Building and Structural Work not Painted".
- H. Color:
 - 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.
 - Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. White: Exterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping.
 - b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.

- c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe).
- d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
- e. Federal Safety Orange: Entire lengths of electrical conduits containing feeders 600 volts or more.
- f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.

3.12 IDENTITY PAINTING SCHEDULE:

- A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing.
 - Legend may be identified using snap-on coil plastic markers or by paint stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12.2 M (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow using black stencil paint.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on construction documents where asterisk appears for High, Medium, and Low Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
 - 6. Legend name in full or in abbreviated form as follows:

PIPING	COLOR OF EXPOSED PIPING	COLOR OF BACKGROUND		LEGEND ABBREVIATIONS
Blow-off		Green	White	Blow-off
Boiler Feedwater		Green	White	Blr Feed
A/C Condenser Wate	r			
Supply		Green	White	A/C Cond Wtr Sup
A/C Condenser Wate	r			,
Return		Green	White	A/C Cond Wtr Ret
Chilled Water Supp	lv	Green	White	Ch. Wtr Sup
Chilled Water Retu	-	Green	White	Ch. Wtr Ret
Shop Compressed Ai	r	Blue	White	Shop Air
Air-Instrument Con		Green	White	Air-Inst Cont
Drain Line	01010	Green	White	Drain
Emergency Shower		Green	White	Emg Shower
High Pressure Stea	m	Green	White	H.P*
High Pressure Cond				
Return		Green	White	H.P. Ret *
Medium Pressure St	eam	Green	White	M. P. Stm *
Medium Pressure Co	ndensate			
Return		Green	White	M.P. Ret *
Low Pressure Steam		Green	White	L.P. Stm *
Low Pressure Conde	nsate			
Return		Green	White	L.P. Ret *
High Temperature W	ater			
Supply		Green	White	H. Temp Wtr Sup
High Temperature W	ater			
Return		Green	White	H. Temp Wtr Ret
Hot Water Heating	Supply	Green	White	H. W. Htg Sup
Hot Water Heating	Return	Green	White	H. W. Htg Ret
Gravity Condensate	Return	Green	White	Gravity Cond Ret
Pumped Condensate	Return	Green	White	Pumped Cond Ret
Vacuum Condensate	Return	Green	White	Vac Cond Ret
Fuel Oil - Grade	Brown	White	Fuel	Oil-Grade
(Diesel Fuel inclu	ded under Fuel Oil)		
Boiler Water Sampl	ing	Green	White	Sample
Chemical Feed		Green	White	Chem Feed
Continuous Blow-Do	wn	Green	White	Cont. B D
Pumped Condensate		Green	White	Pump Cond
Pump Recirculating		Green	White	Pump-Recirc.
Vent Line		Green	White	Vent
Alkali		Orange	Black	Alk
Bleach		Orange	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup

Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domestic)	White	Green	White	C.W. Dom
Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Reagent Grade Water		Green	White	RG
Reverse Osmosis		Green	White	RO
Sanitary Waste		Green	White	San Waste
Sanitary Vent		Green	White	San Vent
Storm Drainage		Green	White	St Drain
Pump Drainage		Green	White	Pump Disch
Chemical Resistant Pipe				
Waste		Orange	Black	Acid Waste
Vent		Orange	Black	Acid Vent
Atmospheric Vent		Green	White	ATV
Silver Recovery		Green	White	Silver Rec
Oral Evacuation		Green	White	Oral Evac
Fuel Gas		Yellow	Black	Gas
Fire Protection Water				
Sprinkler	Red	Red	White	Auto Spr
Standpipe	Red	Red	White	Stand
Sprinkler	Red	Red	White	Drain
Hot Water Supply Dom.				
Solar Water		Green	White	H.W. Sup Dom/SW
		010011		n bup bom bw
Hot Water Return Dom.				
				1 -

7. See Sections for methods of identification, legends, and abbreviations of the following:

Green White H.W. Ret Dom/SW

- a. Regular compressed air lines: Section 22 15 00, GENERAL SERVICE COMPRESSED-AIR SYSTEMS.
- b. Dental compressed air lines: Section 22 61 13.74, DENTAL COMPRESSED-AIR PIPING / Section 22 61 19.74, DENTAL COMPRESSED-AIR EQUIPMENT.

Solar Water

- c. Laboratory gas and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES / Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
- d. Oral evacuation lines: Section 22 62 19.74, DENTAL VACUUM AND EVACUATION EQUIPMENT.
- e. Medical Gases and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES / Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
- f. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS / Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS / Section 28 05 28.33, CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY.
- B. Fire and Smoke Partitions:
 - Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
 - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
 - Locate not more than 6096 mm (20 feet) on center on corridor sides of partitions, and with a least one (1) message per room on room side of partition.
 - 4. Use semi-gloss paint of color that contrasts with color of substrate.

3.13 PROTECTION CLEAN UP, AND TOUCH-UP:

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 10 21 13 TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies metal toilet partitions, and urinal screens.

1.2 RELATED WORK

- A. Section 05 50 00, METAL FABRICATIONS: Overhead structural steel supports for ceiling hung pilasters.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Color of baked enamel finish.
- C. Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES: Grab bars and toilet tissue holders.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples: Prime coat of paint on 150 mm (six-inch) square of metal panel with baked enamel finish coat over half of panel.
- C. Manufacturer's Literature and Data: Specified items indicating all hardware and fittings, material, finish, and latching.
- D. Shop Drawings: Construction details at 1/2 scale, showing installation details, anchoring and leveling devices.
- E. Manufacturer's certificate, attesting that zinc-coatings conform to specified requirements.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): FF-B-575C.....Bolt, Hexagon and Square
- C. Code of Federal Regulations (CFR): 40 CFR 247.....Comprehensive Procurement Guidelines for Products Containing Recovered Materials
- D. Commercial Item Descriptions (CID): A-A-1925.....Shield, Expansion (Nail Anchors) A-A-60003.....Partitions, Toilet, Complete
- PART 2 PRODUCTS

2.1 TOILET PARTITIONS

- A. Toilet Enclosures:
 - 1. Type 1, Style C (overhead braced).
 - Toilet partitions used in Mental Health and Behavioral Patient Care Units shall be free of anchor points. Partitions shall have no overhead connecting framing that could be used as an anchor point for hanging.
 - Reinforce panels shown to receive toilet tissue holders or grab bars.
 - Upper pivots and lower hinges adjustable to hold doors open 30 degrees.
 - 5. Latching devices and hinges for handicap compartments shall comply with ADA requirements.
 - 6. Keeper:
 - a. U-slot to engage bar of throw latch.
 - b. Combined with rubber bumper stop.
 - 7. Wheelchair Toilets:
 - a. Upper pivots and lower hinges to hold out swinging doors in closed position.
 - b. Provide U-type doors pulls, approximately 100 mm (four inches) long on pull side.
 - c. Toilet Partition products shall comply with following standards for biobased materials:

Material Type	Percent by Weight		
Phenolic Partition	55 percent biobased material		

- 8. Finish:
 - a. Finish 1 (baked enamel) on steel doors, pilasters, and enclosure panels except those adjacent to urinals and as specified.
 - b. Finish 3 (stainless steel) on panel of enclosure panels adjacent to urinals .
 - c. Toilet Partition products shall comply with following standards for biobased materials:

Material Type	Percent by Weight		
Phenolic Partition	55 percent biobased material		

- d. The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.
- B. Urinal Screens:
 - 1. Type III, Style E (wall hung), finish 2 or 3.
 - a. With integral flanges and continuous, full height wall anchor plate.
 - b. Option: Full height U-Type bracket.
 - c. Wall anchor plate drilled for 4 anchors on both sides of screen.
 - 2. Screen 600 mm (24 inches) wide and 1060 mm (42 inches high).
 - 3. Urinal screens used in Mental Health and Behavioral Patient Care Units shall be angled downward at the top of the screen at least 30 degrees to eliminate a possible anchor point to prevent hanging

2.2 FASTENERS

- A. Partition Fasteners: CID A-A-60003.
- B. Use expansion bolts, CID A-A-60003, for anchoring to solid masonry or concrete.
- C. Use toggle bolts, CID A-A-60003, for anchoring to hollow masonry or stud framed walls.
- D. Use steel bolts FS-B-575, for anchoring pilasters to overhead steel supports.
- E. Fasteners used in Mental Health and Behavioral Patient Care Units shall be tamper resistant

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Install in rigid manner, straight, plumb and with all horizontal lines level.
 - 2. Conceal evidence of drilling, cutting and fitting in finish work.
 - 3. Use hex-bolts for through-bolting.
 - 4. Adjust hardware and leave in freely working order.
 - 5. Clean finished surfaces and leave free of imperfections.
- B. Panels and Pilasters:
 - Support panels, except urinal screens, and pilaster abutting building walls near top and bottom by stirrup supports secured to partitions with through-bolts.
 - Secure stirrups to walls with two suitable anchoring devices for each stirrup.

- Secure panels to faces of pilaster near top and bottom with stirrup supports, through-bolted to panels and machine screwed to each pilaster.
- Secure edges of panels to edges of pilasters near top and bottom with "U" shaped brackets.
- C. Urinal Screens:
 - Anchor urinal screen flange to walls with minimum of four bolts both side of panel.
 - 2. Space anchors at top and bottom and equally in between.

- - - E N D - - -

SECTION 10 26 00 WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies wall guards, handrails, wall guards, corner guards, door/door frame protectors and high impact wall covering.

1.2 RELATED WORK

- A. Section 08 71 00, DOOR HARDWARE: Armor plates and kick plates not specified in this section.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Color and texture of aluminum and resilient material.

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer with a minimum of three (3) years' experience in providing items of type specified.
 - 1. Obtain wall and door protection from single manufacturer.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: show design and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Handrails.
 - 2. Wall Guards.
 - 3. Corner Guards.
 - 4. High Impact Wall covering.
- D. Test Report: Showing that resilient material complies with specified fire and safety code requirements.
- E. Manufacturer's qualifications.
- F. Installer's qualifications.
- G. Manufacturer's warranty.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers marked with the name and brand, or trademark of the manufacturer.
- B. Protect from damage from handling and construction operations before, during and after installation.
- C. Store in a dry environment of approximately 21 degrees C (70 degrees F) for at least 48 hours prior to installation.

EHRM Training and Admin Space Support VA Fargo Healthcare System 10 26

1.6 WARRANTY

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their wall and door protection for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.7 APPLICABLE PUBLICATIONS

- A. publications listed below form a part of this specification to extent referenced. publications are referenced in text by basic designation only.
- Donly.
 B. ASTM International (ASTM):
 A240/A240M-20.....Chromium and Chromium-Nickel Stainless Steel
 Plate, Sheet, and Strip for Pressure Vessels
 and For General Applications
 B221-14....Aluminum and Aluminum-Alloy Extruded Bars,
 Rods, Wire, Profiles, and Tubes
 B221M-13....Aluminum and Aluminum-Alloy Extruded Bars,
 Rods, Wire, Profiles, and Tubes
 B221M-13....Determining the Izod Pendulum Impact Resistance
 of Plastics
 D635-18.....Rate of Burning and/or Extent and Time of
 Burning of Plastics in a Horizontal Position
 E84-20....Surface Burning Characteristics of Building

```
Materials
```

- C. Aluminum Association (AA): DAF 45-09.....Designation System for Aluminum Finishes
- D. American Architectural Manufacturers Association (AAMA): 611-14.....Voluntary Specification for Anodized Architectural Aluminum

E. Code of Federal Regulation (CFR): 40 CFR 59(2020) Subpart D National Volatile Organic Compound Emission Standards for Architectural Coatings

- F. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- G. National Fire Protection Association (NFPA): 80-2019.....Standard for Fire Doors and Other Opening Protectives
- H. SAE International (SAE):

EHRM Training and Admin Space SupportVA Project No: 437-21-225VA Fargo Healthcare System10 26 00 Wall and Door Protection-2

J 1545-2014-10.....Instrumental Color Difference Measurement for Exterior Finishes, Textiles and Colored Trim.

I. Underwriters Laboratories Inc. (UL):
 Annual Issue.....Building Materials Directory

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum Extruded: ASTM B221M (B221), Alloy 6063, Temper T5 or T6.
- B. Resilient Material:
 - Provide resilient material consisting of high impact resistant extruded acrylic vinyl, polyvinyl chloride, or injection molded thermal plastic conforming to the following:
 - a. Minimum impact resistance of 960.8 N-m/m (18 feet-pounds/square inch) when tested in accordance with ASTM D256 (Izod impact, feet-pounds per inch notched).
 - b. Class 1 fire rating when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less.
 - c. Rated self-extinguishing when tested in accordance with ASTM D635.
 - d. Provide material labeled and tested by Underwriters Laboratories or other approved independent testing laboratory.
 - e. Provide resilient material for protection on fire rated doors and frames assemblies that is listed by the testing laboratory performing the tests.
 - f. Provide resilient material installed on fire rated wood/steel door and frame assemblies that have been tested on similar type assemblies. Test results of material tested on any other combination of door and frame assembly are not acceptable.
 - g. Provide integral color with colored components matched in accordance with SAE J 1545 to within plus or minus 1.0 on the CIE-LCH scales.

2.2 CORNER GUARDS

- A. Corner Guards:
 - 1. High Impact Corner Guard Profile:
 - a. 2" (51mm) x 2" (51mm) wing, 90 degree; 4'-0" height
 - b. Provide vinyl covers and retainers with custom angles as needed.
 Custom angles shall be between 112.5° and 157.5°. Provide flexible top caps to bend to retainer angle.

EHRM Training and Admin Space Support VA Fargo Healthcare System VA Project No: 437-21-225 10 26 00 Wall and Door Protection-3

- B. Materials:
 - Vinyl: Snap on cover of .080" (2mm) thickness shall be extruded from chemical and stain resistant polyvinyl chloride with the addition of impact modifiers. No plasticizers shall be added (plasticizers may aid in bacterial growth).
 - Aluminum: Continuous aluminum retainer of .070" (1.8mm) thickness shall be fabricated from 6063-T5 aluminum, with a mill finish.
- C. Components:
- D. Top caps and bottom caps shall be made of injection molded thermoplastics.
 - 1. Fasteners: All mounting system accessories appropriate for substrates indicated on the drawings shall be provided.
 - 2. Optional flexible top caps shall be made of injection molded PVC.
- E. Finishes:
 - 1. Vinyl Covers: Refer to specification 09 06 00. Surface shall have a pebblette texture.
 - 2. Molded Components: Top caps and bottom caps shall be of a color matching the corner guards. Surface shall have a pebblette texture.

2.3 WALL GUARDS AND HANDRAILS

- A. Resilient Wall Guards and Handrails:
 - 1. Handrail:
 - a. Snap-on covers of resilient material, minimum 2 mm (0.078-inch) thick.
 - b. Free-floating on a continuous, extruded aluminum retainer, minimum 1.82 mm (0.072-inch) thick.
 - c. Anchor to wall at maximum 762 mm (30 inches) on center.
 - 2. Wall Guards:
 - a. Snap-on covers of resilient material, minimum 2.54 mm (0.100inch) thick. Free-floating over 51 mm (2 inch) wide aluminum retainer clips, minimum 2.28 mm (0.090-inch) thick, anchored to wall at maximum 610 mm (24 inches) on center, supporting a continuous aluminum retainer, minimum 1.57 mm (0.062-inch) thick free-floated over a continuous extruded aluminum retainer, minimum 2.03 mm (0.080-inch) thick anchored to wall at maximum 610 mm (24 inches) on center.
 - Provide handrails and wall guards with prefabricated end closure caps, inside and outside corners, concealed splices, cushions, mounting hardware and other accessories as required. End caps and

EHRM Training and Admin Space Support VA Fargo Healthcare System

VA Project No: 437-21-225 10 26 00 Wall and Door Protection-4 corners to be field adjustable to assure close alignment with handrails and wall guards. Screw or bolt closure caps to aluminum retainer in a concealed manner.

2.4 DOOR AND DOOR FRAME PROTECTION

- A. Fabricate door protection items from vinyl acrylic or polyvinyl chloride resilient material, minimum 1.52 mm (0.060-inch) thick, for doors.
- B. Provide adhesive as recommended by resilient material manufacturer.

2.5 HIGH IMPACT WALL COVERING

- A. Provide wall covering/panels consisting of high impact rigid acrylic vinyl or polyvinyl chloride resilient material.
- B. Panel sizes to be 4ft x 8ft $(1.22mm \times 2.44mm) \cdot 0.030'' = 1/32'' (.8mm)$.
- C. Submit fire rating and extinguishing test results for resilient material.
- D. Submit statements attesting that the items comply with specified fire and safety code requirements.
- E. Rigid Vinyl Acrylic Wall Covering: Wall covering thickness to be 0.56 mm (0.022 inch).
- F. High Impact Wall Panels: Wall panel face and edge thickness to be 0.56 mm (0.022 inch). Panel face to be factory banded to a 9.53 mm (0.375 inch) thick fiberboard core. The backside of the panel is to be laminated with a moisture resistant vapor barrier.
- G. Provide adhesive as recommended by the wall covering manufacturer.

2.6 FASTENERS AND ANCHORS

- A. Provide fasteners and anchors as required for each specific type of installation.
- B. Where type, size, spacing or method of fastening is not shown or specified in construction documents, submit shop drawings showing proposed installation details.

PART 3 - INSTALLATION

3.1 RESILIENT CORNER GUARDS

A. Install corner guards on walls in accordance with manufacturer's instructions.

3.2 WALL GUARDS

A. Secure guards to walls with mounting cushions, brackets and fasteners in accordance with manufacturer's details and instructions.

3.3 WALL COVERINGS

A. Install Rigid Sheet Vinyl Sheet in accordance with manufacturer's details and instructions.

3.4 HANDRAILS

A. Secure brackets to walls with fasteners, spaced in accordance with manufacturer's installation instructions.

3.5 DOOR PROTECTION AND HIGH IMPACT WALL COVERING

- A. Surfaces to receive protection to be clean, smooth and free of obstructions.
- B. Install protectors after frames are in place but preceding installation of doors in accordance with approved shop drawings and manufacturer's specific instructions.
- C. Apply with adhesive in controlled environment according to manufacturer's recommendations.
- D. Protection installed on fire rated doors and frames to be installed according to NFPA 80 and installation procedures listed in UL Building Materials Directory; or, equal listing by other approved independent testing laboratory establishing the procedures.

- - - E N D - - -

SECTION 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. SUMMARY:

- Section Includes: Toilet and bath accessories at toilets, baths, locker rooms and other areas indicated on drawings.
- 2. Items Specified: Contractor provided, contractor installed.
 - a. Toilet tissue dispenser.
 - b. Grab bars.
 - c. Shower curtain rods.
 - d. Clothes hooks.
 - e. Metal framed mirror.

1.2 RELATED WORK

A. Section 09 06 00, SCHEDULE FOR FINISHES: Color of finishes.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Society of Mechanical Engineers (ASME):
 - B18.6.4-98(R2005) Thread Forming and Thread Cutting Tapping Screws and Metallic Drive Screws inch.
- C. American Welding Society (AWS): D10.4-86(2000).....Welding Austenitic Chromium-Nickle Stainless Steel Piping and Tubing.
- D. ASTM International (ASTM):

A269/A269M-15a(2019)....Seamless and Welded Austenitic Stainless Steel Tubing for General Service.

A312/A312M-19.....Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes.

A653/A653M-20.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the

Hot-Dip Process.

- A666-15.....Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar.
- A1011/A1011M-18a.....Steel, Sheet and Strip, Hot-Rolled, Carbon,

Structural, High-Strength Low-Alloy,

High-Strength Low-Alloy with Improved

Formability, and Ultra-High Strength.

B30-20..... Form.

B75/B75M-20.....Seamless Copper Tube. B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes. B221M-13.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric). B456-17.....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium. B824-17.....General Requirements for Copper Alloy Castings. C1036-16.....Flat Glass. C1048-18.....Heat-Strengthened and Fully Tempered Flat Glass. D635-18.....Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position. F446-19.....Grab Bars and Accessories Installed in the Bathing Area. E. Federal Specifications (Fed. Spec.): A-A-3002..... Mirror, Glass. FF-S-107C(2).....Screws, Tapping and Drive. WW-P-541/8B(1).....Plumbing Fixtures (Accessories, Land Use).

F. National Architectural Metal Manufacturers(NAAMM): AMP 500-06.....Metal Finishes Manual.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings: Of each product specified.
 - Show size, configuration, and fabrication, anchorage and installation details.
 - 2. Show mounting locations and heights.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Manufacturer
- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Stainless Steel:
- B. Steel Sheet: ASTM A653/A653M, zinc-coated (galvanized) coating designation G90.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer.

2.3 PAPER TOWEL DISPENSERS

- A. Surface mounted type with sloping top.
- B. Dispensing capacity for 300 sheets of any type of paper toweling.
- C. Fabricate of stainless steel.
- D. Provide door with continuous hinge at bottom, and spring tension cam lock or tumbler lock, keyed alike, at top, and refill sight slot in front.

2.4 TOILET TISSUE DISPENSERS

- A. Double roll surface mounted type.
- B. Mount on continuous backplate.
- C. Removable spindle ABS plastic or chrome plated plastic.
- D. Wood rollers are not acceptable.

2.5 GRAB BARS AT TOILETS/SHOWERS - STANDARD

- A. Fed. Spec. WW-P-541/8B, Type IV, bars, surface mounted, Class 2, grab bars and complying with ASTM F446.
- B. Fabricate from stainless steel or nylon coated steel, use one type throughout project:

- Stainless steel: Grab bars, flanges, mounting plates, supports, screws, bolts, and exposed nuts and washers.
- Nylon Coated Steel: Grab bars and flanges complete with mounting plates and fasteners. Color as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Mounting:
 - 1. Swing Up Grab Bars: Exposed type.
 - 2. Other Types and Locations: Concealed type.
- D. Bars:
 - 1. Fabricate to 38 mm (1-1/2 inch) outside diameter.
 - a. Stainless steel, minimum 1.2 mm (0.05 inch) thick.
 - b. Nylon coated bars, minimum 1.5 mm (0.06 inch) thick.
 - 2. Fabricate in one continuous piece with ends turned toward walls.
 - a. Swing up grab bars and grab bars continuous around three sides of showers may be fabricated in two sections, with concealed slip joint between.
 - 3. Continuously weld intermediate support to grab bar.
 - 4. Swing Up Bars: Manually operated; designed to prevent bar from falling when in raised position.
- E. Flange for Concealed Mounting:
 - Minimum 2.65 mm (0.1 inch) thick, maximum 79 mm (3-1/8 inch) diameter by 13 mm (1/2 inch) deep, with minimum three set screws for securing flange to back plate.
 - Insert grab bar through center of flange and continuously weld perimeter of grab bar flush to back side of flange.
 - In lieu of providing flange for concealed mounting, and back plate as specified, grab bar may be welded to back plate covered with flange.
- F. Back Plates:
 - 1. Minimum 2.65 mm (0.1046 inch) thick metal.
 - Fabricate in one piece, maximum 6 mm (1/4 inch) deep, with diameter sized to fit flange. Provide slotted holes to accommodate anchor bolts.
 - Provide spreaders, through bolt fasteners, and cap nuts, where grab bars are mounted on partitions.

2.6 SHOWER CURTAIN RODS

A. Stainless steel tubing, minimum 1.27 mm (0.050 inch) wall thickness, 32 mm (1-1/4 inch) outside diameter.

B. Flanges, stainless steel rings, 66 mm (2.6 inch) minimum outside diameter, with 2 holes opposite each other for 6 mm (1/4 inch) stainless steel fastening bolts. Provide set screw within curvature of each flange for securing rod.

2.7 CLOTHES HOOKS, ROBE OR COAT

- A. Satin stainless steel. Contoured 4" (100mm) wide bar forms hook at each end. Flange is 2" x 2" (50 x 50mm). Projects 2 5/16" (60mm) from wall.
- B. Surface-mounted double robe hook shall be type-304 stainless steel. Flange and support arm shall be 22 gauge and equipped with a concealed, 16-gauge mounting bracket that is secured to a concealed, 16-gauge wall plate with a stainless steel setscrew. Cap shall be 10 gauge, welded to the support arm.

2.8 METAL FRAMED MIRRORS

- A. Fed. Spec. A-A-3002 metal frame; stainless steel.
- B. Mirror Glass:
 - 1. Heat tempered glass.
 - 2. Minimum 6 mm (1/4 inch) thick.
 - 3. Set mirror in a protective vinyl glazing tape.
- C. Frames:
 - Channel or angle shaped section with face of frame minimum 9 mm (3/8 inch) wide. Fabricate with square corners.
 - 2. Metal Thickness 0.9 mm (0.035 inch).
 - 3. Filler:
 - a. Where mirrors are mounted on walls having ceramic tile wainscots not flush with wall above, provide fillers contoured to conceal void between back of mirror and wall surface.

b. Fabricate fillers from same material and finish as mirror frame.

- D. Back Plate:
 - Fabricate backplate for concealed wall hanging from zinc-coated, or cadmium plated 0.9 mm (0.036 inch) thick sheet steel, die cut to fit face of mirror frame.
 - 2. Provide set screw type theft resistant concealed fastening system for mounting mirrors.
- E. Mounting Bracket:
 - 1. Designed to support mirror tight to wall.
 - 2. Designed to retain mirror with concealed set screw fastenings.

2.9 FABRICATION - GENERAL

- A. Welding, AWS D10.4.
- B. Grind, dress, and finish welded joints to match finish of adjacent surface.
- C. Form exposed surfaces from one sheet of stock, free of joints.
- D. Provide steel anchors and components required for secure installation.
- E. Form flat surfaces without distortion. Keep exposed surfaces free from scratches and dents. Reinforce doors to prevent warp or twist.
- F. Isolate aluminum from dissimilar metals and from contact with building materials as required to prevent electrolysis and corrosion.
- G. Hot-dip galvanized steel or stainless steel, anchors and fastening devices.
- H. Shop assemble accessories and package with components, anchors, fittings, fasteners and keys.
- I. Key items alike.
- J. Provide templates and rough-in measurements.
- K. Round and deburr edges of sheets to remove sharp edges.

2.10 FINISH

- A. Steel Paint Finish:
 - Powder-Coat Finish: Manufacturer's standard two-coat finish system consisting of the following:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: Refer to Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Nylon Coated Steel: Nylon coating powder formulated for fluidized bonding process to steel to provide hard smooth, medium gloss finish, minimum 0.3 mm (0.012 inch) thick, rated as self-extinguishing when tested according to ASTM D635.
- C. Stainless Steel: NAAMM AMP 500; No. 4 polished finish.
- D. Aluminum Anodized Finish: NAAMM AMP 500.
 - Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 2. Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.
- E. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2.

2.11 ACCESSORIES

- A. Fasteners:
 - 1. Fasteners in Mental Health and Behavioral Patient Care Units: Tamper resistant hot-dipped galvanized or stainless steel.
 - 2. Exposed Fasteners: Stainless steel or chromium plated brass, finish to match adjacent surface.
 - 3. Concealed Fasteners:
 - a. Shower, Bath Tubs, and High Moisture Areas: Stainless steel.
 - b. Other Locations: Steel, hot-dipped galvanized.
 - 4. Toggle Bolts: For use in hollow masonry or frame construction.
 - 5. Sex bolts: For through bolting on thin panels.
 - Expansion Shields: Lead or plastic for solid masonry and concrete substrate as recommended by accessory manufacturer to suit application.
 - 7. Screws:
 - a. ASME B18.6.4.
 - b. Fed. Spec. FF-S-107, Stainless steel Type A.
- B. Adhesive: As recommended by manufacturer to suit application.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - Verify blocking to support accessories is installed and located correctly.
- B. Verify location of accessories with Contracting Officer's Representative.

3.2 INSTALLATION

- A. Install products according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install grab bars according to ASTM F446.
- C. Set work accurately, in alignment and where indicated, parallel or perpendicular as required to line and plane of surface. Install accessories plumb, level, free of rack and twist.
- D. Toggle bolt to steel anchorage plates in frame partitions and hollow masonry. Expansion bolt to concrete or solid masonry.
- E. Install accessories to function as designed. Perform maintenance service without interference with performance of other devices.

- F. Position and install dispensers, and other devices in countertops, clear of drawers, permitting ample clearance below countertop between devices, and ready access for maintenance.
- G. Align mirrors, dispensers and other accessories even and level, when installed in battery.
- H. Install accessories to prevent striking by other moving, items or interference with accessibility.
- I. Install accessories in Mental Health and Behavioral Units with tamper resistant screws that are flush mounted so that they will not support a rope or material for hanging.

3.3 CLEANING

A. After installation, clean toilet accessories according to manufacturer's instructions.

3.4 PROTECTION

A. Protect accessories from damage until project completion.

- - E N D - -

SECTION 10 44 13 FIRE EXTINGUISHER CABINETS

SPEC WRITER NOTE:

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section covers recessed fire extinguisher cabinets.

1.2 RELATED WORK

A. Field Painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Fire extinguisher cabinet including installation instruction and rough opening required.

1.4 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): D4802-15.....Poly (Methyl Methacrylate) Acrylic Plastic Sheet.

PART 2 - PRODUCTS

2.1 FIRE EXTINGUISHER CABINET

A. Fire Extinguisher Cabinet will be equal to JL Industries clear VU model no. 2515 with fx option and will accommodate a 7 ¼" diameter multipurpose dry chemical extinguisher as located on the drawings.

2.2 FABRICATION

- A. Form body of cabinet from 0.9 mm (0.0359 inch) thick sheet steel.
- B. Fabricate door and trim from 1.2 mm (0.0478 inch) thick sheet steel with all face joints fully welded and ground smooth.
 - Glaze doors with 6 mm (1/4 inch) thick ASTM D4802, clear acrylic sheet, Category B-1, Finish 1.
 - 2. Design doors to open 180 degrees.
- 3. Provide continuous hinge, pull handle, and adjustable roller catch.

2.3 FINISH

A. Finish interior of cabinet body with baked-on semigloss white enamel.

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225

B. Finish door, frame with manufacturer's standard baked-on prime coat suitable for field painting.

PART 3 - EXECUTION

- A. Install fire extinguisher cabinets in prepared openings and secure in accordance with manufacturer's instructions.
- B. Install cabinet so that the extinguisher height within meets the requirements of NFPA 10

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225

SECTION 12 24 00 WINDOW SHADES

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section includes cloth shades, vertical blinds and venetian blinds. Provide window shades complete, including brackets, fittings and hardware.

1.2 RELATED WORK:

A. Color of vinyl shade cloth and color of exposed parts: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 QUALITY ASSURANCE:

- A. Manufacturer's Qualification: Submit evidence that the manufacture has a minimum of three (3) years' experience in providing item of type specified, and that the blinds have performed satisfactorily on similar installations. Submit qualifications.
- B. Submit qualifications for installers who are trained and approved by manufacturer for installation of units provided.
- C. Electrical Requirements:
 - 1. NFPA 70 Article 100.
 - 2. Listed and labeled in accordance with UL 325.
 - 3. Marked for intended use, and tested as a system.
 - Individual testing of components is not acceptable in lieu of system testing.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Samples:
 - Vinyl shade cloth, each type, 610 mm (24 inch) square, including cord and ring, showing color, finish and texture.
- C. Manufacturer's literature and data; showing details of construction and hardware for:

Vinyl Cloth and window shades

- D. Shop Drawings: Provide fabrication and installation details for cloth shades, including shade cloth materials, their orientation to rollers, and their seam and batten locations.
- E. Fire Testing: Submit report of flame spread and smoke developed during product material tests by independent testing laboratory.

F. Manufacturer's warranty.

1.5 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their window shades for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer's warranty.

1.6 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced to in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.): AA-V-00200B.....Venetian Blinds, Shade, Roller, Window, Roller, Slat, Cord, and Accessories
- C. ASTM International (ASTM):

A240/A240M-14.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications B221-14.....Aluminum-Alloy Extruded Bars, Rods, Wire,

Shapes, and Tubes

B221M-13.....Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes (Metric)

- G21-13.....Determining Resistance of Synthetic Polymeric Materials to Fungi
- D. National Electric Manufacturer's Association (NEMA): ICS 6-93(R2006).....Industrial Control and Systems Closures
- E. National Fire Protection Association (NFPA):

70-14.....National Electrical Code (NEC)

701-15..... Fire Tests for Flame Propagation of Textiles and Films

F. Underwriters Laboratories Inc. (UL): 325-06(R2013).....Door, Drapery, Gate, Louver, and Window Operators and Systems

PART 2 - PRODUCTS

2.1 CLOTH SHADES:

- A. Light-Filtering Shade Cloth: Woven fabric, stain and fade resistant.
 - 1. Type: Vinyl.
 - 2. Weave: Mesh.

- 5. Orientation on Shadeband: Railroaded.
- 6. Openness Factor: 1 percent.
- 7. Fire-Test-Response Characteristics: Passes NFPA 701 small and largescale vertical burn. Submit report for testing of shade cloth materials identical to products provided.
- 8. Drive-End Location: Right side of inside face of shade.
- 9. Shade Cloth Anti-Microbial Characteristics: 'No Growth' per ASTM G21 results for fungi ATCC9642, ATCC9677, and ATCC9645.

2.5 MATERIALS:

- A. Stainless Steel: ASTM A240/A240M.
- B. Extruded Aluminum: ASTM B221M (B221).
- C. Cords for Vinyl Cloth roller shades: #10 stainless steel chain having not less than 80 kg (175 pounds) breaking strength.

2.6 FASTENINGS:

A. Zinc-coated or cadmium plated steel or stainless steel fastenings of length and type recommended by manufacturer. Except as otherwise specified, provide fastenings for installation with various structural materials as follows:

Type of Fastening	Structural Material		
Wood screw	Wood		
Tap screw	Metal		
Case-hardened, self- tapping screw in pre- drilled hole	Solid masonry, concrete		
Screw or bolt in expansion shields	Solid masonry, concrete		
Toggle bolts	Hollow blocks, gypsum wallboard, plaster		

2.7 FABRICATION:

- A. Fabricate vinyl cloth shades to fit measurements of finished openings obtained at site.
- B. Cloth Shades: Rolling type, constructed of shade cloth mounted on rollers. Provide shade cloth with plain sides, and with hem at bottom to accommodate weight bar.
 - Provide separate shades for each individual sash within opening. Provide shade length that exceeds height of window by 305 mm

(12 inches) measured from head to sill, in addition to material required to make-up hem:

- a. Provide rollers with spindles, nylon bearings, tempered steel springs, and other related accessories required for positive action.
- b. Provide rollers of diameter and wall thicknesses required to accommodate operating mechanisms, weights, and widths of shadebands indicated without deflection.
- c. Provide rollers with permanently lubricated drive-end assemblies and idle-end assemblies designed to facilitate removal of shadebands for service.
- d. Secure shade cloth to rollers to prevent wrinkling or folding, and on line parallel to axis of rollers so that shade hangs plumb.
- e. Secure shade cloth with zinc-coated steel or stainless steel machine screws spaced not over 228 mm (9 inches) on centers.
- f. Do not attach shade cloth to rollers with tacks.
- g. Provide hem bar of extruded aluminum for entire width of shade band. Heat seal hem bar on all sides to prevent removal.
- h. Provide eyelets with clear openings large enough to accommodate cords, without cutting into cloth when set.
- Provide cords of sufficient length to permit shades to be drawn to bottom of opening with ends looped and held with cord rings. Attach cords to hems through metal eyelets in center of slats in bottom hems.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Measure openings before fabrication. Do not scale construction documents.
- B. Vinyl cloth Shades: Mount window shades on end of face brackets, set on metal gussets, or casing of windows as required. Provide extension face brackets where necessary at mullions.
 - Locate rollers in level position as high as practicable at heads of windows.
 - 2. Install shades to prevent infiltration of light over rollers.
 - Where extension brackets are necessary for alignment of shades, provide metal lugs, and rigidly anchor lugs and brackets.

- 4. Place brackets and rollers so that shades do not interfere with window and screen hardware.
- 6. Mount shade to allow clearances for window operation hardware.
- 7. Shade installation methods not specifically described, are subject to approval of Contracting Officer Representative (COR).

3.2 ADJUSTING:

A. Adjust and shades to operate smoothly, free from binding or malfunction throughout entire operational range.

3.3 CLEANING AND PROTECTION:

- A. Clean shade surfaces after installation, according to manufacturer's written instructions.
- B. Provide final protection and maintain conditions that ensure that shades are without damage or deterioration at time of Substantial Completion.
- C. Replace damaged shades that cannot be repaired, in a manner approved by COR before time of Substantial Completion.

- - - E N D - - -

SECTION 12 32 00 MANUFACTURED WOOD CASEWORK

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies plastic laminate casework as detailed on the construction documents, including related components and accessories required to form integral units. Wood casework items shown on the construction documents, but not specified below are to be included as part of the work under this section, and applicable portions of the specification are to apply to these items.

1.2 RELATED WORK

- A. Section 09 06 00, SCHEDULE OF FINISHES: Color of Casework Finish.
- B. Section 12 36 00, COUNTERTOPS: Countertop Construction and Materials and Items Installed in Countertops.
- C. Division 22, PLUMBING: Plumbing Requirements Related to Casework.
- D. Division 26, ELECTRICAL: Electrical Lighting and Power Requirements Related to Casework.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Locks for doors and drawers.
 - 2. Adhesive cements.
 - 3. Casework hardware.
- C. Samples:
 - 1. Wood Face Veneer or Hardwood Plywood.
 - 2. Plastic laminate.
- D. Shop Drawings (1/2 full size):
 - Each casework type, showing details of construction, including materials, hardware and accessories.
 - 2. Fastenings and method of installation.
- E. Certification:
 - 1. Manufacturer's qualifications specified.
 - 2. Installer's qualifications specified.

1.4 QUALITY ASSURANCE

A. Approval by COR is required of manufacturer and installer based upon certification of qualifications specified.

EHRM Training and Admin Space Support VA Fargo Healthcare System

- B. Manufacturer's qualifications:
 - Manufacturer is regularly engaged in design and manufacture of modular plastic laminate casework, casework components and accessories of scope and type similar to indicated requirements for a period of not less than five (5) years.
 - Manufacturer has successfully completed at least three (3) projects of scope and type similar to indicated requirements.
 - 3. Submit manufacturer's qualifications and list of projects, including owner contact information.
- C. Installer Qualifications:
 - Installer has completed at least three (3) projects in last five (5) years in which these products were installed.
 - 2. Submit installer qualifications.

1.5 WARRANTY

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their wood casework for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. ASTM International (ASTM):
 - A240/A240M-20.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications

A1008/A1008M-18.....Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy

C1036-16.....Flat Glass

- C. Builders Hardware Manufacturers Association (BHMA):
 - A156.1-16.....Butts and Hinges

A156.5-20.....Auxiliary Locks and Associated Products

A156.9-15.....Cabinet Hardware

A156.11-19.....Cabinet Locks

A156.16-18.....Auxiliary Hardware

D. Composite Panel Association (CPA): A208.1-09.....Particleboard A208.2-09......Medium Density Fiberboard (MDF) for Interior Applications

- E. U.S. Department of Commerce Product Standards (Prod. Std): PS 1-09.....Construction and Industrial Plywood
- G. Architectural Woodwork Institute (AWI): Architectural Woodwork Standards, Edition 2 Certification Program -2014
- H. American Society of Mechanical Engineers (ASME): A112.18.1-18.....Plumbing Fixture Fittings
- I. National Electrical Manufacturers Association (NEMA): LD 3-05.....High Pressure Decorative Laminates
- J. Scientific Equipment and Furniture Association (SEFA): 2.3-10......Installation of Scientific Laboratory Furniture
 - and Equipment
- K. Underwriters Laboratories Inc. (UL): 437-13.....Key Locks

PART 2 - PRODUCTS

2.1 PLYWOOD, HARDWOOD FACE VENEER

A. HPVA HP-1, Premium Grade Rotary cut Select White Birch.

2.2 PLASTIC LAMINATE

- A. NEMA LD 3.
- B. Exposed decorative surfaces, both sides of cabinet doors, and for items having plastic laminate finish. General purpose Type HGL.
- C. Cabinet Interiors Including Shelving: Both of following options to comply with NEMA LD 3 as a minimum.
 - 1. Plastic laminate clad plywood or particleboard, MDF (excluding shelves).
- D. Backing sheet on bottom of plastic laminate covered wood tops. Backer Type BKL.
- E. Post Forming Fabrication, Decorative Surface: Post forming Type HGP.

2.3 PLYWOOD, SOFTWOOD

A. Prod. Std. PS1, five (5) ply construction from 13 mm to 28 mm (1/2 inch to 1-1/8 inch) thickness, and seven (7) ply for 31 mm (1 1/4 inch) thickness.

2.4 PARTICLEBOARD

A. CPA A208.1, Type 1, Grade M or medium density.

2.5 MEDIUM DENSITY FIBERBOARD (MDF)

A. Fully waterproof bond conforming to CPA A208.1 and CPA A208.2.

2.6 GLASS

- A. ASTM C1048 Kind FT Type I, Class 1, Quality q3.
- B. For Doors: 6 mm (1/4 inch) thick; except where laminated glass is shown on construction documents.
- C. For Shelves: 9 mm (3/8 inch) thick.
- D. Laminated Glass: Fabricate of two (2) sheets of 3 mm (1/8 inch) thick clear ASTM C1172 Kind LT glass, laminated together with a 1.5 mm (0.060 inch) thick vinyl interlayer, to a total overall thickness of 8 mm (5/16 inch).

2.7 HARDWARE

- A. Cabinet Locks:
 - 1. Provide where locks are indicated on construction documents.
 - 2. Locked pair of hinged doors over 915 mm (36 inches) high:
 - a. ANSI/BHMA A156.5, key one side.
 - b. On active leaf use three (3) point locking device, consisting of two (2) steel rods and lever controlled cam at lock, to operate by lever having lock cylinder housed therein.
 - c. On inactive leaf provide dummy lever of same design.
 - d. Provide keeper holes for locking device rods and cam.
 - 3. Door and Drawer: ANSI/BHMA A156.11 cam locks. Provide one (1) type for each condition as follows:
 - a. Drawer and Hinged Door up to 915 mm (36 inches) high: E07261.
 - b. Drawer and Hinged Door: Pin-tumbler, cylinder type lock with not less than four (4) pins or a UL 437 rated wafer lock with brass working parts and case.
 - c. Sliding Door: E07161.
 - 4. Key locks differently for each type casework and master key for each service.
 - a. Key drug locker inner door different from outer door.
 - b. Furnish two (2) keys per lock.
 - c. Furnish six (6) master keys per service or Nursing Unit.
 - 5. Marking of Locks and Keys:

- a. Name of manufacturer, or trademark which can readily be identified legibly marked on each lock and key change number marked on exposed face of lock.
- b. Key change numbers stamped on keys.
- c. Key change numbers to provide sufficient information for manufacturer to replace key.
- B. Hinged Doors:
 - Provide doors 915 mm (36 inches) and more in height with three (3) hinges and doors less than 915 mm (36 inches) in height is to have two (2) hinges. Each door is to close against two (2) rubber bumpers.
 - 2. Hinges: Fabricate hinges with minimum 1.8 mm (0.072 inch) thick chromium plated steel leaves, and with minimum 3.5 mm (0.139 inch) diameter stainless steel pin. Hinges to be five (5) knuckle design with 63 mm (2-1/2 inch) high leaves and hospital type tips. //
 - 3. Concealed Hinges: BHMA A156.9, Type B01602, 135 degrees of opening .
 - 4. 4. Fasteners: Provide full thread wood screws to fasten hinge leaves to door and cabinet frame. Finish screws to match finish of hinges.
- C. Door Catches:
 - 1. Friction or Magnetic type fabricated with metal housing.
 - Provide one (1) catch for cabinet doors 1220 mm (48 inches) high and under, and two (2) for doors over 1220 mm (48 inches) high.
- D. Drawer and Door Pulls:
 - Doors and drawers to have flush pulls, fabricated of either chromium-plated brass, chromium plated steel, stainless steel, or anodized aluminum. Drawer and door pulls to be of a design that can be operated with a force of 22.2 N (5 pounds) or less, with one (1) hand and not require tight grasping, pinching or twisting of the wrist.
- E. Drawer Slides:
 - 1. Full extension steel slides with nylon ball-bearing rollers.
 - 2. Slides to have positive stop.
 - 3. Equip drawers with rubber bumpers.
- F. Sliding Doors:
 - Each door to be supported by two ball bearing bronze or nylon rollers, or sheaves riding on a stainless steel track at top or bottom, and to be restrained by a nylon or stainless steel guide at the opposite end.

- 2. Plastic guides are not acceptable.
- 3. Each door to have rubber silencers set near top and bottom of each jamb.
- G. Shelf Standards (Except For Fixed Shelves):
 - Bright zinc-plated steel for recessed mounting with screws, 16 mm (5/8 inch) wide by 5 mm (3/16 inch) high providing 13 mm (1/2 inch) adjustment, complete with shelf supports.

2.8 MANUFACTURED PRODUCTS

- A. When two (2) or more units are required, use products of one (1) manufacturer.
- B. Manufacturer of casework assemblies is to assume complete responsibility for the final assembled unit.
- C. Provide products of a single manufacturer for parts which are alike.

2.9 FABRICATION

- A. Casework to be of the reveal overlay design and, except as otherwise specified, be of Premium Grade construction and of component thickness in conformance with AWI Quality Standards.
- B. Fabricate casework of plastic laminated covered plywood or particleboard as follows:
 - 1. Where shown, doors, drawers and shelves to be plastic laminated.
 - 2. Horizontal and vertical reveals between doors and drawer for reveal overlay design to be 19 mm (3/4 inch) unless otherwise shown.
- C. Support Members for Tops of Tables and Countertops:
 - 1. Construct as detailed on construction documents.
 - 2. Provide miscellaneous steel members and anchor as shown on construction drawings.

2.10 PRODUCTS OF OTHER COMPONENTS DIRECTLY RELATED TO CASEWORK

- A. Refer to Section 07 92 00, JOINT SEALANTS for work related to sealants used in conjunction with joints of countertops, casework systems, and adjacent materials.
- B. Refer to Section 09 65 13, RESILIENT BASE AND ACCESSORIES for work related to rubber base adhered to casework systems.
- C. Refer to Section 09 22 16, NON-STRUCTURAL METAL FRAMING for backing plates used in conjunction with wall assemblies for the attachment of casework systems.
- D. Refer to Section 12 36 11, COUNTERTOPS for work related to plastic laminate, acid-resistant plastic laminate, metal, molded resin, wood,

and methyl methacrylic polymer countertops and/or shelving used in conjunction with casework systems. When countertop materials are provided by the casework manufacturer, they are to include the following features:

- Capable of being suspended from vertical support rails or horizontal wall strips or service modules.
- Provided with rounded corners and impact resistant material on exposed edges.
- 3. Capable of being easily relocated and installed without tools.
- 4. Capable of being suspended and easily changed under counter mounted storage units.
- 5. Provide leveling adjustment capability so units can be brought into a level position.
- 6. Secured using fasteners. Show detail on shop drawings.
- E. Refer to Section 12 36 11, COUNTERTOPS for work related to and integral with countertop systems such as pegboards, funnel and graduate racks.
- F. Refer to Division 22, PLUMBING for the following work related to casework systems:
 - Sinks, faucets and other plumbing service fixtures, venting, and piping systems.
 - 2. Compressed air, gas, vacuum and piping systems.
- G. Refer to Division 26, ELECTRICAL for the following work related to casework systems:
 - 1. Connections and wiring devices.
 - 2. Connections and lighting fixtures except when factory installed by the manufacturer.

PART 3 - EXECUTION

3.1 COORDINATION

- A. Begin only after work of other trades is complete, including wall and floor finish completed, ceilings installed, light fixtures and diffusers installed and connected and area free of trash and debris.
- B. Verify location and size of mechanical and electrical services as required and perform cutting of components of work installed by other trades.
- C. Verify reinforcement of walls and partitions for support and anchorage of casework.

D. Coordinate with other Divisions and Sections of the specification for work related to installation of casework systems to avoid interference and completion of service connections.

3.2 INSTALLATION

- A. Install casework in accordance with manufacturer's written instructions
 - Install in available space; arranged for safe and convenient operation and maintenance.
 - 2. Align cabinets for flush joints except where shown otherwise.
 - Install with bottom of wall cabinets in alignment and tops of base cabinets aligned level, plumb, true, and straight to a tolerance of 3.2 mm in 2438 mm (1/8 inch in 96 inches).
 - 4. Install corner cabinets with hinges on corner side with filler or spacers sufficient to allow opening of drawers.
- B. Support Rails:
 - Install true to horizontal at heights shown on construction documents; maximum tolerance for uneven floors is plus or minus 13 mm (1/2 inch).
 - Shim as necessary to accommodate variations in wall surface not exceeding 5 mm (3/16 inch) at fastener.
- C. Wall Strips:
 - Install true to vertical and spaced as shown on construction documents.
 - 2. Align slots to assure that hanging units will be level.
- D. Plug Buttons:
 - Install plug buttons in predrilled or prepunched perforations not used.
 - 2. Use chromium plate plug buttons or buttons finish to match adjacent surfaces.
- E. Seal junctures of casework systems with mildew-resistant silicone sealants as specified in Section 07 92 00, JOINT SEALANTS.

3.3. CLOSURES AND FILLER PLATES

A. Close openings larger than 6 mm (1/4 inch) wide between cabinets and adjacent walls with flat, steel closure strips, scribed to required contours, or machined formed steel fillers with returns, and secured with sheet metal screws to tubular or channel members of units, or bolts where exposed on inside.

- B. Where ceilings interfere with installation of sloping tops, omit sloping tops and provide flat steel filler plates.
- C. Secure filler plates to casework top members, unless shown otherwise on construction documents.
- D. Secure filler plates more than 152 mm (6 inches) in width top edge to a continuous 25 x 25 mm (1 x 1 inch) 0.889 mm (1/16 inch) thick steel formed steel angle with screws.
- E. Anchor angle to ceiling with toggle bolts.
- F. Install closure strips at exposed ends of pipe space and offset opening into concealed space.
- G. Finish closure strips and fillers with same finishes as cabinets.

3.4 FASTENINGS AND ANCHORAGE

- A. Do not anchor to wood ground strips.
- B. Provide hat shape metal spacers where fasteners span gaps or spaces.
- C. Use 6 mm (1/4 inch) diameter toggle or expansion bolts, or other appropriate size and type fastening device for securing casework to walls or floor. Use expansion bolts shields having holding power beyond tensile and shear strength of bolt and breaking strength of bolt head.
- D. Use 6 mm (1/4 inch) diameter hex bolts for securing cabinets together.
- E. Use 6 mm (1/4 inch) by minimum 38 mm (1-1/2 inch) length lag bolt anchorage to wood blocking for concealed fasteners.
- F. Use not less than No. 12 or 14 wood screws with not less than 38 mm (1-1/2 inch) penetration into wood blocking.
- G. Space fastening devices 305 mm (12 inches) on center with minimum of three (3) fasteners in 915 or 1220 mm (3 or 4 foot) unit width.
- H. Anchor floor mounted cabinets with a minimum of four (4) bolts through corner gussets. Anchor bolts may be combined with or separate from leveling device.
- Secure cabinets in alignment with hex bolts or other internal fastener devices removable from interior of cabinets without special tools. Do not use fastener devices which require removal of tops for access.
- J. Where units abut end to end, anchor together at top and bottom of sides at front and back. Where units are back to back, anchor backs together at corners with hex bolts placed inconspicuously inside casework.
- K. Where type, size, or spacing of fastenings is not shown on construction documents or specified, show on shop drawings proposed fastenings and method of installation.

3.5 ADJUSTMENTS

- A. Adjust equipment to insure proper alignment and operation.
- B. Replace or repair damaged or improperly operating materials, components or equipment.

3.6 CLEANING

- A. Immediately following installation, clean each item, removing finger marks, soil and foreign matter.
- B. Remove from job site trash, debris and packing materials.
- C. Leave installed areas clean of dust and debris.

3.7 INSTRUCTIONS

- A. Provide operational and cleaning manuals and verbal instructions in accordance with Article INSTRUCTIONS, SECTION 01 00 00, GENERAL REQUIREMENTS.
- B. Provide in service training both prior to and after facility opening. Coordinate in service activities with COR.
- C. Commencing at least seven (7) days prior to opening of facility, provide one (1) four (4) hour day of on-site orientation and technical instruction on use and cleaning procedures application to products and systems specified herein.

- - - E N D - - -

SECTION 12 36 00 COUNTERTOPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies casework countertops with integral accessories.
- B. Integral accessories include:
 - 1. Sinks with traps and drains.
 - 2. Eye and Face Wash Units.

1.2 RELATED WORK

- A. Color and patterns of plastic laminate: SECTION 09 06 00, SCHEDULE FOR FINISHES.
- B. DIVISION 22, PLUMBING.
- C. DIVISION 26, ELECTRICAL.
- D. Equipment Reference Manual for SECTION 12 36 00, COUNTERTOPS.

1.3 SUBMITTALS

- A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings
 - 1. Show dimensions of section and method of assembly.
 - 2. Show details of construction at a scale of $\frac{1}{2}$ inch to a foot.
- C. Samples:
 - 1. 150 mm (6 inch) square samples each top.
 - 2. Front edge, back splash, end splash and core with surface material and booking.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Hardboard Association (AHA): A135.4-95.....Basic Hardboard
- C. Composite Panel Association (CPA):

A208.1-09.....Particleboard

D. American Society of Mechanical Engineers (ASME): A112.18.1-12.....Plumbing Supply Fittings A112.1.2-12....Air Gaps in Plumbing System A112.19.3-08(R2004)....Stainless Steel Plumbing Fixtures (Designed for Residential Use) E. American Society for Testing and Materials (ASTM):

A167-99 (R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip A1008-10....Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength, Low Alloy D256-10....Pendulum Impact Resistance of Plastic D570-98 (R2005).....Water Absorption of Plastics D638-10....Tensile Properties of Plastics D785-08....Rockwell Hardness of Plastics and Electrical Insulating Materials D790-10....Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials D4690-99 (2005)....Urea-Formaldehyde Resin Adhesives F. Federal Specifications (FS):

- A-A-1936..... Adhesive, Contact, Neoprene Rubber
- G. U.S. Department of Commerce, Product Standards (PS): PS 1-95.....Construction and Industrial Plywood

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Plastic Laminate: NEMA LD 3.
 - 1. Concealed backing sheet Type BKL.
 - 2. Decorative surfaces:
 - a. Flat components: Type GP-HGL.
 - b. Post forming: Type PF-HGP.
 - 3. Chemical Resistant Surfaces
 - a. Flat components: Type GP-HGL.
 - b. Post forming: Type PF-HGP.
 - c. Resistance to reagents:
 - Test with five 0.25 mil drops remaining on surface for 16 hours followed by washing off with tap water, then cleaned with liquid soap and water, dried with soft cotton cloth and then cleaned with naphtha.

2) No change in color, surface texture, and original protectability remaining from test results of following reagents:

98% Acetic Acid	Butyl Alcohol	Acetone
90% Formic Acid	Benzine	Chloroform
28% Ammonium Hydroxide	Xylene	Carbon Tetrachloride
Zinc Chloride (Sat.)	Toluene	Cresol
Sodium Carbonate (Sat.)	Gasoline	Ether
Calcium Hypochlorite (Sat.)	Kerosene	Cottonseed Oil
Sodium Chloride (Sat.)	Mineral Oil	40% Formaldehyde
Methyl Alcohol	Ethyl Acetate	Trichlorethylene
Ethyl Alcohol	Amyl Acetate	Monochlorobenzine

3) Superficial effects only: Slight color change, spot, or residue only with original protectability remaining from test results of following reagents:

77%	Sulfuric Acid	37% H	ydrochloric Acid	85% Phenol
33%	Sulfuric Acid	20% N	itric Acid	Furfural
85%	Phosphoric Acid	30% N	itric Acid	Dioxane

- 4) Minimum height of impact resistance: 300 mm (12 inches).B. Molded Resin:
 - Non-glare epoxy resin or furan resin compounded and cured for minimum physical properties specified:

Flexural strength	70 MPa (10,000 psi)	ASTM D790
Rockwell hardness	105	ASTM D785
Water absorption, 14 hours (weight)	.01%	ASTM D570

2. Material of uniform mixture throughout.

- C. Stainless Steel: ASTM A167, Type 304.
- D. Sheet Steel: ASTM A1008, cold rolled, Class 1 finish, stretcher leveled.
- E. Particleboard: CPA A208.1, Grade 2-M-2.
- F. Plywood: PS 1, Exterior type, veneer grade AC not less than five ply construction.

- G. Adhesive
 - 1. For plastic laminate FS A-A-1936.
 - 2. For wood products: ASTM D4690, unextended urea resin or unextended melamine resin, phenol resin, or resorcinol resin.
 - 3. For Field Joints:
 - Epoxy type, resistant to chemicals as specified for plastic laminate laboratory surfaces.
 - b. Fungi resistant: ASTM G-21, rating of 0.
- J. Fasteners:
 - 1. Metals used for welding same metal as materials joined.
 - Use studs, bolts, spaces, threaded rods with nuts or screws suitable for materials being joined with metal splice plates, channels or other supporting shape.
- K. Solid Polymer Material:
 - 1. Filled Methyl Methacrylic Polymer.
 - 2. Performance properties required:

Property	Result	Test
Elongation	0.3% min.	ASTM D638
Hardness	90 Rockwell M	ASTM D785
Gloss (60° Gordon)	5-20	NEMA LD3.1
Color stability	No change	NEMA LD3 except 200 hour
Abrasion resistance	No loss of pattern Max wear depth 0.0762 mm (0.003 in) - 10000 cycles	NEMA LD3
Water absorption weight (5 max)	24 hours 0.9	ASTM D-570
Izod impact	14 N·m/m (0.25 ft-lb/in)	ASTM D256 (Method A)
Impact resistance	No fracture	NEMA LD-3 900 mm (36") drop 1 kg (2 lb.) ball
Boiling water surface resistance	No visible change	NEMA LD3
High temperature resistance	Slight surface dulling	NEMA LD3

- 3. Cast into sheet form and bowl form.
- 4. Color throughout with subtle veining through thickness.

- 5. Joint adhesive and sealer: Manufacturers silicone adhesive and sealant for joining methyl methacrylic polymer sheet.
- 6. Bio-based products will be preferred.

2.2 SINKS

A. Molded Resin:

- Cast or molded in one piece with interior corners 25 mm (one inch) minimum radius.
- 2. Minimum thickness of sides and ends 13 mm (1/2 inch), bottom 16 mm (5/8 inch).
- 3. Molded resin outlet for drain and standpipe overflow.
- Provide clamping collar permitting connection to 38 mm (1-1/2 inch) or 50 mm (2 inch) waste outlet and trap, making sealed but not permanent connection.
- B. Stainless Steel:
 - 1. ANSI/ASME A112.19.3, Type 304.
 - 2. Self rim for plastic laminate or similar tops with concealed fasteners.
 - 3. Flat rim for welded into stainless steel tops.
 - Ledge back or ledge sides with holes to receive required fixtures when mounted on countertop.
 - 5. Apply fire resistant sound deadening material to underside.
- C. Stainless steel circular or oval shaped bowl.
- D. Sinks of Methyl Methacrylic Polymer:
 - Minimum 19 mm (3/4 inch) thick, cast into bowl shape with overflow to drain.
 - 2. Provide for underhung installation to countertop.
 - 3. Provide openings for drain.

2.3 TRAPS AND FITTINGS

- A. Material as specified in DIVISION 22, PLUMBING.
- B. For Molded Resin Sinks:
 - 1. Chemical resisting P-traps and fittings for chemical waste service.
 - 2. Provide traps with cleanout plug easily removable without tools.
- C. For Stainless Steel Sinks:
 - 1. Either cast or wrought brass or stainless steel P-traps and drain fittings; ASME A112.18.1
 - Flat strainer, except where cup strainer or overflow standpipe specified.

- a. Provide cup strainer in cabinet type 1B.
- b. Provide stainless steel overflow stand pipe to within 38 mm (1-1/2 inches) of sink rim.
- 3. Exposed surface chromium plated finish.
- D. Plaster traps:
 - 1. Cast iron body with porcelain enamel exterior finish.
 - 2. 50 mm (2 inch) female threaded side inlet and outlet.
 - 3. Removable galvanized cage having integral baffles and replaceable brass screens.
 - 4. Removable gasketed cover.
 - 5. Minimum overall dimensions: 350 x 350 x 400 mm high (14 x 14 x 16 inches) with 175 mm (7 inch) water seal.
 - 6. Non-siphoning and easily accessible for cleaning.
- E. Air Gap Fittings: ASME A112.1.2.
- F. Methyl Methacrylic Polymer Sink Traps:
 - 1. Cast or wrought brass with flat grid strainer, off-set tail piece, adjustable 38 x 32 mm $(1-1/2 \times 1 1/4-inch)$ P trap.
 - 2. Chromium plated finish.

2.4 WATER FAUCETS

- A. ASME A112.18.1.
 - 1. Cast or forged brass, compression type with replaceable seat and stem assembly or replaceable cartridge.
 - 2. Indexed lever handles either with or without head.
 - Gooseneck minimum clearance above countertop of 190 mm (7-1/2 inches), bent 180 degrees for vertical discharge.
 - 4. Swing spouts elevated to clear handles.
 - 5. Exposed brass surfaces chromium plated.
 - Cast combination hot and cold fixture with one piece body for multiple outlets.
 - 7. Adapter type connection which will permit field conversion of swing spouts to fixed or gooseneck grouts or vice versa.
 - 8. Pedestals Top for Laboratory or Pharmacy:
 - a. Modern design tapered to a round base, factory assembled and tested.

b. Brass shanks, locknuts and washers for attaching to top or curbs.C. Automatic Controlled Faucets.

 Infra-red photocell sensor and a solenoid valve to control water flow automatically.

- 2. Breaking light beam activates water flow.
- 3. Water stops when user moves away from light beam.
- F. Eye and Face Bath, Counter Mounted:
 - Stainless Steel circular or oval shaped self rimmed sink, as shown on drawings.
 - 2. Two fully enclosed rubber bound spray heads to provide an aerated flow of water simultaneously into both eyes and across face.
 - 3. Push-pull hand operated valve.
 - 4. Volume regulator for each spray.
- H. Vanity or Lavatory Faucets in Methyl Methacrylic Polymer tops:
 - 1. Extra long center set single lever handle control.
 - 2. Cast or wrought copper alloy, vandal resistant.
 - 3. Stainless steel ball type with replaceable non-metallic seats, stainless steel lined sockets.
 - 4. Handle always returning to the neutral position or cartridge body construction.

2.6 FIXTURE IDENTIFICATION

- A. Code fixtures with full view plastic index buttons.
- B. Use following colors and codes:

SERVICE	COLOR	CODE	COLOR OF LETTERS
Cold Water	Dark Green	CW	White
Hot Water	Red	HW	White
Laboratory Air	Orange	AIR	Black
Fuel Gas	Dark Blue	GAS	White
Laboratory Vacuum	Yellow	VAC	Black
Distilled Water	White	DW	Black
Deionized Water	White	DI	Black
Oxygen	Light Green	OXY	White
Hydrogen	Pink	Н	Black
Nitrogen	Gray	Ν	Black
All Other Gases	Light Blue	CHEM.SYM.	Black

2.10 COUNTERTOPS

- A. Fabricate in largest sections practicable.
- B. Fabricate with joints flush on top surface.

- C. Fabricate countertops to overhang front of cabinets and end of assemblies 25 mm (one inch) except where against walls or cabinets.
- D. Provide 1 mm (0.039 inch) thick metal plate connectors or fastening devices (except epoxy resin tops).
- E. Join edges in a chemical resistant waterproof cement or epoxy cement, except weld metal tops.
- F. Fabricate with end splashes where against walls or cabinets.
- G. Splash Backs and End Splashes:
 - 1. Not less than 19 mm (3/4 inch) thick.
 - 2. Height 100 mm (4 inches) unless noted otherwise.
 - 3. Laboratories and pharmacy heights or where fixtures or outlets occur: Not less than 150 mm (6 inches) unless noted otherwise.
 - Fabricate epoxy splash back in maximum lengths practical of the same material.
- H. Drill or cutout for sinks, and penetrations.
 - 1. Accurately cut for size of penetration.
 - 2. Cutout for VL 81 photographic enlarger cabinet.
 - a. Finish cutout to fit flush with vertical side of cabinet, allowing adjustable shelf to fit into cutout space of cabinet at counter top level. Finish cutout surface as an exposed edge.
 - b. Provide braces under enlarger space to support not less than 45 kg (100 pounds) centered on opening side along backsplash.
- I. Plastic Laminate Countertops:
 - Fabricate plastic laminate on five-ply plywood or particleboard core
 19 mm (3/4 inch) thick with plastic laminate backing sheet.
 - 2. Front edge over cabinets not less than 38 mm (1-1/2 inches) thick except where plastic "T" insert is used, not less than 19 mm (3/4 inch) thick.
 - 3. Exposed Surface and edges of decorative laminated plastic or laboratory chemical resistant surface.
 - a. Use chemical resistant surface on tops 6A, 6B, and 6C.
 - b. Use decorative surface tops when noted plastic laminate, for tops 10A, 10B and 10C.

S. Countertop products shall comply with following standards for biobased materials:

Material Type	Percent by Weight
Composite Panel	89 percent biobased material
Hardwood	89 percent biobased material
Particleboard	89 percent biobased material
Plywood	89 percent biobased material

The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Before installing countertops verify that wall surfaces have been finished as specified and that mechanical and electrical service locations are as required.
- B. Secure countertops to supporting rails of cabinets with metal fastening devices, or screws through pierced slots in rails.
 - Where type, size or spacing of fastenings is not shown or specified, submit shop drawings showing proposed fastenings and method of installation.
 - 2. Use round head bolts or screws.
 - 3. Use epoxy or silicone to fasten the epoxy resin countertops to the cabinets.
 - Use wood or sheet metal screws for wood or plastic laminate tops; minimum penetration into top 16 mm (5/8 inch), screw size No 8, or 10.
- C. Rubber Moldings:
 - Where shown install molding with butt joints in horizontal runs and mitered joints at corners where ceramic tile occurs omit molding.
 - 2. Fasten molding to wall and to splashbacks and splashends with adhesive.
- D. Sinks
 - 1. Install stainless steel sink in plastic laminate tops with epoxy compound to form watertight seal under shelf rim.
 - a. In laboratory and pharmacy fit stainless steel sink with overflow standpipe.

- b. Install faucets and fittings on sink ledges with watertight seals where shown.
- 2. Install molded resin sinks with epoxy compound to form watertight seal with underside of molded resin top.
 - a. Install sink with not less than two channel supports with threaded rods and nuts at each end, expansion bolted to molded resin top.
 - b. Design support for a twice the full sink weight.
 - c. Install with overflow standpipes.
- Install methyl methacrylic polymer sinks in manufacturers recommended adhesive sealer or epoxy compound to underside of methyl methacrylic polymer countertop.
 - a. Bolt or screw to countertop to prevent separation of bowl and fracture of adhesive sealant joint.
 - b. Install drain and traps to sink.
- E. Faucets, Fixtures, and Outlets:
 - 1. Seal opening between fixture and top.
 - 2. Secure to top with manufacturers standard fittings.
- F. Range Tops, Electrical Outlets, Film Viewer:
 - 1. Set in cutouts with manufacturers gasket sealing joint with top to prevent water leakage.
 - Install control unit and electric outlets where shown. Seal escutcheon plate at lap if on counter or top to prevent water leakage.

3.2 PROTECTION AND CLEANING

- A. Tightly cover and protect against dirt, water, and chemical or mechanical injury.
- B. Clean at completion of work.

- - - E N D - - -

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 09 91 00, PAINTING.
- D. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
 - b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
 - c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage,

laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).

- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Contractor responsible for waterflow/pump test data.
- 5. Zoning:
 - a. Utilize existing control valve, flow switch, and test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.

1.4 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:
 - 1. Qualifications:
 - a. Provide a copy of the installing contractors state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.

- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.

- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Colorado fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-19.....Installation of Sprinkler Systems

25-20.....Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

101-21....Life Safety Code

170-21.....Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 - Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
 - 4. Use nonferrous piping in MRI Scanning Rooms.
 - 5. Plastic piping shall not be permitted except for drain piping.
 - 6. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

A. General:

- 1. Valves shall be in accordance with NFPA 13.
- 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.3 SPRINKLERS

- A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.
- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.5 SPRINKLER CABINET

- A. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.6 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT21 13 13 Wet Pipe Sprinkler-6

2.7 SWITCHES:

- A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- C. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.8 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.11 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as

possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of seven feet six inches. Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls,

floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.

- L. Where dry pendent sprinklers are used for freezers or similar spaces and they are connected to the wet pipe system, provide an EPDM boot around the dry pendent sprinkler on the heated side and securely seal to the pipe and freezer to prevent condensation from entering the freezer.
- M. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- N. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 2400 to 3000 mm (8 to 10 feet) above each connection location. Size the sign to 450 by 450 mm (18 by 18 inches) with the symbol being at least 350 by 350 mm (14 by 14 inches).
- O. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- P. MRI Suite: Provide no more than one penetration of the MRI shield enclosure.
- Q. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- R. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone

(if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)

- 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
- 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- S. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- T. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation

foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping and equipment exposed to weather be it temperature, humidity, precipitation, wind or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. A/E: Architect/Engineer
 - 2. AFG: Above Finish Grade
 - 3. AISI: American Iron and Steel Institute
 - 4. ASHRAE: American Society of Heating Refrigeration, Air Conditioning Engineers
 - 5. ASME: American Society of Mechanical Engineers
 - 6. ASPE: American Society of Plumbing Engineers
 - 7. AWG: American Wire Gauge
 - 8. Btu: British Thermal Unit
 - 9. Btu/h: British Thermal Unit per Hour
 - 10. C: Celsius
 - 11. CD: Compact Disk
 - 12. CFM: Cubic Feet per Minute
 - 13. CI: Cast Iron
 - 14. CO: Contracting Officer
 - 15. COR: Contracting Officer's Representative
 - 16. CxA: Commissioning Agent
 - 17. DCW: Domestic Cold Water
 - 18. DDC: Direct Digital Control
 - 19. DFU: Drainage Fixture Units
 - 20. DHW: Domestic Hot Water
 - 21. DHWR: Domestic Hot Water Return
 - 22. DHWS: Domestic How Water Supply
 - 23. DISS: Diameter Index Safety System
 - 24. DOE: Department of Energy
 - 25. DVD: Digital Video Disc
 - 26. DWG: Drawing

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 22 05 11 Common Work-1

- 27. DWH: Domestic Water Heater
- 28. DWS: Domestic Water Supply
- 29. DWV: Drainage, Waste and Vent
- 30. ECC: Engineering Control Center
- 31. EL: Elevation
- 32. EPA: Environmental Protection Agency
- 33. EPACT: Energy Policy Act
- 34. F: Fahrenheit
- 35. FAR: Federal Acquisition Regulations
- 36. FD: Floor Drain
- 37. FDC: Fire Department (Hose) Connection
- 38. FED: Federal
- 39. FNPT: Female National Pipe Thread
- 40. FU: Fixture Units
- 41. GAL: Gallon
- 42. GPH: Gallons per Hour
- 43. GPM: Gallons per Minute
- 44. HEX: Heat Exchanger
- 45. Hg: Mercury
- 46. HP: Horsepower
- 47. Hz: Hertz
- 48. ID: Inside Diameter
- 49. IE: Invert Elevation
- 50. INV: Invert
- 51. IPC: International Plumbing Code
- 52. IPS: Iron Pipe Size
- 53. IW: Indirect Waste
- 54. Kg: Kilogram
- 55. kPa: Kilopascal
- 56. KW: Kilowatt
- 57. KWH: Kilowatt Hour
- 58. lb: Pound
- 59. lbs/hr: Pounds per Hour
- 60. LNG: Liquid Natural Gas
- 61. L/min: Liters per Minute
- 62. L/s: Liters per Second
- 63. m: Meter
- 64. MA: Medical Air

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

65. MAX: Maximum 66. MBH: 1000 Btu per Hour 67. MED: Medical 68. MFG: Manufacturer 69. mg: Milligram 70. mg/L: Milligrams per Liter 71. ml: Milliliter 72. mm: Millimeter 73. MIN: Minimum 74. NC: Normally Closed 75. NF: Oil Free Dry (Nitrogen) 76. NIC: Not in Contract 77. NO: Normally Open 78. NOM: Nominal 79. NPTF: National Pipe Thread Female 80. NPS: Nominal Pipe Size 81. NPT: Nominal Pipe Thread 82. NTS: Not to Scale 83. 02: Oxygen 84. OC: On Center 85. OD: Outside Diameter 86. OSD: Open Sight Drain 87. PD: Pressure Drop or Difference 88. PID: Proportional-Integral-Differential 89. PLC: Programmable Logic Controllers 90. PP: Polypropylene 91. ppb: Parts per Billion 92. ppm: Parts per Million 93. PSI: Pounds per Square Inch 94. PSIA: Pounds per Square Inch Atmosphere 95. PSIG: Pounds per Square Inch Gauge 96. PTFE: Polytetrafluoroethylene 97. PVC: Polyvinyl Chloride 98. PVDF: Polyvinylidene Fluoride 99. RPM: Revolutions Per Minute 100. RTD: Resistance Temperature Detectors 101. RTRP: Reinforced Thermosetting Resin Pipe 102. SAN: Sanitary Sewer FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225 22 05 11 Common Work-3

- 103. SCFM: Standard Cubic Feet per Minute
- 104. SPEC: Specification
- 105. SPS: Sterile Processing Services
- 106. SQFT/SF: Square Feet
- 107.SS: Stainless Steel
- 108. STD: Standard
- 109. TEMP: Temperature
- 110. THERM: 100,000 Btu
- 111. TIL: Technical Information Library
 http//www.cfm.va.gov/til/indes.asp
- 112. T/P: Temperature and Pressure
- 113. TYP: Typical
- 114. USDA: U.S. Department of Agriculture
- 115.V: Vent
- 116.V: Volt
- 117. VA: Veterans Administration
- 118. VA CFM: VA Construction & Facilities Management
- 119. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 120. VAC: Vacuum
- 121. VAC: Voltage in Alternating Current
- 122. VAMC: Veterans Administration Medical Center
- 123. VHA OCAMES: This has been replaced by HEFP.
- 124. VSD: Variable Speed Drive
- 125. VTR: Vent through Roof
- 126.W: Waste
- 127. WAGD: Waste Anesthesia Gas Disposal
- 128. WC: Water Closet
- 129. WG: Water Gauge
- 130. WPD: Water Pressure Drop
- 131. WSFU: Water Supply Fixture Units

http://www.cfm.va.gov/til/sDetail.asp.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 22 05 11 Common Work-4

- E. Section 05 36 00, COMPOSITE METAL DECKING: Building Components for Attachment of Hangers.
- F. Section 05 50 00, METAL FABRICATIONS.
- G. Section 07 84 00, FIRESTOPPING.
- H. Section 07 92 00, JOINT SEALANTS.
- I. Section 09 91 00, PAINTING.
- J. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- K. Section 22 07 11, PLUMBING INSULATION.
- L. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- M. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- N. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- O. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B31.1-2013.....Power Piping

- ASME Boiler and Pressure Vessel Code -
- BPVC Section IX-2019.... Welding, Brazing, and Fusing Qualifications
- C. American Society for Testing and Materials (ASTM):
 - A36/A36M-2019.....Standard Specification for Carbon Structural Steel
 - A575-96(2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades
 - E84-2013a.....Standard Test Method for Surface Burning Characteristics of Building Materials
 - E119-2012a.....Standard Test Methods for Fire Tests of Building Construction and Materials
- D. International Code Council, (ICC): IBC-2018.....International Building Code IPC-2018.....International Plumbing Code
- E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc:

SP-58-2018......Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation

- G. National Electrical Manufacturers Association (NEMA): MG 1-2016.....Motors and Generators
- H. National Fire Protection Association (NFPA):
 - 51B-2019..... During Welding, Cutting and Other Hot Work
 - 54-2018.....National Fuel Gas Code
 - 70-2020.....National Electrical Code (NEC)
 - 99-2018.....Healthcare Facilities Code
- I. NSF International (NSF):

5-2019.....Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment

- 14-2019.....Plastic Piping System Components and Related Materials
- 61-2019.....Drinking Water System Components Health Effects

372-2016.....Drinking Water System Components - Lead Content J. Department of Veterans Affairs (VA):

PG-18-102014(R18).....Plumbing Design Manual PG-18-13-2017(R18).....Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. If the project is phased, contractors shall submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet

contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- H. Manufacturer's Literature and Data including: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 22 05 11 Common Work-7

- 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- 5. Wall, floor, and ceiling plates.
- I. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to 1 foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - In addition, for plumbing systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- J. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- K. Plumbing Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.

- b. Include complete diagrams of the internal wiring for each item of equipment.
- c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- L. Provide copies of approved plumbing equipment submittals to the TAB and Commissioning Subcontractor.
- M. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- N. Submit training plans, trainer qualifications and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical, and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional plumbing.
- B. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service

09-01-20

to restore operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos is prohibited.
- 9. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 22 05 11 Common Work-10 information regarding the product categories covered by the Bio-Preferred Program, visit http:www.biopreferred.gov.

- C. Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC, Section IX, "Welding and Brazing Qualifications". Provide proof of current certification to CO.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the association code.
- D. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- E. Execution (Installation, Construction) Quality:
 - All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution. Failure of

the Contractor to resolve or call attention to any discrepancies or deficiencies to the COR will result in the Contractor correcting at no additional cost or time to the Government.

- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- F. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- G. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- H. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- I. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be hardcopy and in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 22 05 11 Common Work-13 breach of the 'third party testing company' requirement. Provide record drawings as follows:

- 1. Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- As-built drawings are to be provided, with a copy of them on AutoCAD version provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- 3. As-built drawings are to be provided, with a copy of them in threedimensional Building Information Modeling (BIM) software version provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Solder or flux containing lead shall not be used with copper pipe.
- B. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372.

- C. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- D. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.

B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

A. All material and equipment furnished and installation methods used shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.

B. Special Requirements:

- Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 at no additional cost or time to the Government.
- 2. Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71° C (160°F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers and water heaters.
 - b. Other wiring at boilers and water heaters, and to control panels, shall be NFPA 70 designation THWN.
 - c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.

- 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act (EPACT), revised 2005. Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.
- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC).
- E. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- F. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. The combination of controller and motor shall be provided by the respective pump manufacturer and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficient type, "invertor duty", and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical

equipment, etc., nor shall be affected from other devices on the AC power system.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown in the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Plumbing: Provide for all valves (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. Coordinate the valve tags with the Shops Foreman prior to installation for compliance.
 - a.Valve number shall be labeled as follows: M-V-XXX-XXXX-XXXX.
 - The first letter of the valve tag refers to the building number. M refers to Main Hospital.
 - 2) V stands for "Valve."
 - 3) The first grouping of XXX indicates the type of piping. Refer to 09 91 00 Painting specification for labels for different types of piping (i.e. HWH is Hot Water Heating, DC is Domestic

Cold Water, DH is Domestic Hot Water, and DR is Domestic Recirculating Hot Water).

- 4) The second grouping of XXXXX indicates the room number.
- 5) The final grouping of XXX refers to the valve number in the room.
- 3. Valve lists: Typed (using a word processing program) plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets of the valve list for a 3-ring notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
- 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. Additionally provide a hardcopy drawing and AutoCADD copy (compatible with current Fargo VA version of CADD) of valve locations.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC). Submittals based on the International Building Code (IBC), or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.

- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Attachment to Metal Pan or Deck: As required for materials specified in
- F. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gauge), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 22 05 11 Common Work-20

- c. Wall brackets: Types 31, 32 or 33.
- d. Roller supports: Type 41, 43, 44 and 46.
- e. Saddle support: Type 36, 37 or 38.
- f. Turnbuckle: Types 13 or 15.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gauge) minimum.

2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are prohibited through beams or ribs. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters, thermostatic mixing valves and control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access

provisions that are shown in the drawings shall not be changed nor reduced.

- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
 - 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR.
 - Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
 - 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided at no additional cost to the government.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- J. Gauges, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gauges shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Domestic cold and hot water systems interface with the HVAC control system for the temperature, pressure and flow monitoring requirements to mitigate legionella. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- N. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers' putty.
- O. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.
- P. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.

2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are prohibited in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.

F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated in the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided at no additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of building personnel and maintenance of building operation and environment of the building.
- B. In an operating building, cleanliness and safety shall be maintained. The building shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VAMC, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment

pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

D. The Contractor shall remove all material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.

- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory-built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

- A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.
- B. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and CxA. Provide a minimum of weeks prior notice.

3.10 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.

- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. Perform tests as required for commissioning provisions in accordance with Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT B. Components provided under this section of the specification will be tested as part of a larger system.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): A112.14.1-2003.....Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2017.....Performance Requirements for Atmospheric Type
Vacuum Breakers

1003-2009.....Performance Requirements for Water Pressure Reducing Valves for Domestic Water Distribution Systems

1011-2017.....Performance Requirements for Hose Connection Vacuum Breakers

- 1013-2011.....Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers
- 1015-2011.....Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies

	1017-2009Performance Requirements for Temperature	
	Actuated Mixing Valves for Hot Water	
	Distribution Systems	
	1020-2004Performance Requirements for Pressure Vacuu	m
	Breaker Assembly	
	1035-2008Performance Requirements for Laboratory Fau	cet
	Backflow Preventers	
	1069-2005Performance Requirements for Automatic	
	Temperature Control Mixing Valves	
	1070-2015Performance Requirements for Water Temperat	ure
	Limiting Devices	
	1071-2012Performance Requirements for Temperature	
	Actuated Mixing Valves for Plumbed Emergenc	Y
	Equipment	
D.	American Society for Testing and Materials (ASTM):	
	A126-2004(R2019)Standard Specification for Gray Iron Castin	gs
	for Valves, Flanges, and Pipe Fittings	
	A276/A276M-2017Standard Specification for Stainless Steel	Bars
	and Shapes	
	A536-1984(R2019e)Standard Specification for Ductile Iron	
	Castings	
	B62-2017Standard Specification for Composition Bron	ze
	or Ounce Metal Castings	
	B584-2014Standard Specification for Copper Alloy San	d
	Castings for General Applications	
Ε.	International Code Council (ICC):	
	IPC-2018International Plumbing Code	
F.	Manufacturers Standardization Society of the Valve and Fittings	
	Industry, Inc. (MSS):	
	SP-25-2018Standard Marking Systems for Valves, Fittin	gs,
	Flanges and Unions	
	SP-67-2017Butterfly Valves	
	SP-70-2011Gray Iron Gate Valves, Flanged and Threaded	
	Ends	
	SP-71-2018Gray Iron Swing Check Valves, Flanged and	
	Threaded Ends	
	SP-80-2019Bronze Gate, Globe, Angle, and Check Valves	

SP-85-2011.....Gray Iron Globe & Angle Valves, Flanged and Threaded Ends

SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

G. National Environmental Balancing Bureau (NEBB): 8th Edition 2015 Procedural Standards for Testing, Adjusting,

Balancing of Environmental Systems

H. NSF International (NSF): 61-2019..... Drinking Water System Components - Health Effects

372-2016..... Drinking Water System Components - Lead Content

I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR): 10th Edition......Manual of Cross-Connection Control

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Gate Valves.
 - 3. Balancing Valves.
 - 4. Check Valves.
 - 5. Globe Valves.
 - 6. Water Pressure Reducing Valves and Connections.
 - 7. Backwater Valves.
 - 8. Thermostatic Mixing Valves.
- D. Test and Balance reports for balancing valves.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.

- Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- 4. Piping diagrams of thermostatic mixing valves to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

1.6 AS BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing greater than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- E. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA

recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 75 mm or DN50 (3 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
- 2. 100 mm DN100 (4 inches) and greater:
 - a. Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS SP-70 type I standard. The gate valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall meet ASTM A126, grey iron with bolted bonnet, flanged ends, bronze trim, and positiveseal resilient solid wedge disc. The gate valve shall be gear operated for sizes under 200 mm or DN200 (8 inches) and crank operated for sizes 200 mm or DN200 (8 inches) and greater.

2.3 GLOBE VALVES

- A. 75 mm or DN75 (3 inches) or smaller: Class 150, bronze globe valve with non-metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B62 with solder ends, copper-silicon bronze stem, PTFE or TFE disc, and malleable iron hand wheel.
- B. Greater than 75 mm or DN75 (3 inches): Similar to above, except with cast iron body and bronze trim, Class 125, iron globe valve. The globe valve shall meet MSS SP-85, Type 1 standard. The globe valve shall have a CWP rating of 1380 kPa (200 psig). The valve material shall be gray iron with bolted bonnet conforming to ASTM A126 with flanged ends, bronze trim, and malleable iron handwheel.

2.4 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

A. 75 mm or DN75 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The pressure reducing valve shall meet ASSE 1003. The bronze bell housing and access

cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.

- B. 100 mm or DN100 (4 inches) and greater: The pressure reducing valve shall consist of a flanged cast iron body and rated to 1380 kPa (200 psig). The valve shall have a large elastomer diaphragm for sensitive response. The pressure reducing valve shall meet ASSE 1003.
- C. The regulator shall have a tap for pressure gauge.
- D. The regulator shall have a temperature rating of 100 degrees C (212 degrees F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9 kPa (+/- 1 psig).
- E. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- F. Connections Valves and Strainers: Shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gauge shall be installed on the inlet and outlet of the valve.

2.5 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
 - No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
 - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
 - 5. Valve finish shall be chrome plated in exposed areas.
 - 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures

up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.

- 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
- 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
- 9. Provide mixing values with integral check values with screens and stop values.
- B. Water Temperature Limiting Devices:
 - 1. Application: Single plumbing fixture point-of-use such as sinks or lavatories.
 - 2. Standard: ASSE 1070.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
 - 5. Connections: Threaded union, compression or soldered inlets and outlet.
 - Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.
- C. Temperature Activated Mixing Valves:
 - 1. Application: Emergency eye/face/drench shower equipment.
 - 2. Standard: ASSE 1071.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 24-30 degrees C (75-85 degrees F).
 - 5. Connections: Soldered or threaded union inlets and outlet.
 - Cabinet: Factory-fabricated, stainless steel, for recessed or surface mounting and with hinged, stainless-steel door.
 - 7. Thermometers shall be provided to indicate mixed water temperature.
 - Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Check valves shall be installed for proper direction of flow and as follows:
 - Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- F. Install pressure gauges on outlet of backflow preventers.
- G. Do not install bypass piping around backflow preventers.
- H. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - Install cabinet-type units recessed in or surface mounted on wall as specified.

- I. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- J. Install thermostatic balancing valves with inlet strainer and inlet and outlet isolation valves.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Master, thermostatic, water mixing valves.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.
- C. DEMONSTRATION AND TRAINING
- D. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- E. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

s- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
- B. Definitions:
 - 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
 - Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
 - 5. Concealed: Piping above ceilings and in chases, and pipe spaces.
 - 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 7. FSK: Foil-scrim-Kraft facing.
 - Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.

- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- F. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- H. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.
- I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- J. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- K. Section 23 21 13, HYDRONIC PIPING: electrical heat tracing systems.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

B. American Society for Testing and Materials (ASTM): B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011.....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013).....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014).....Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450.....Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C533-2013.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534/C534M-2014.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2015..... Standard Specification for Mineral Fiber Pipe Insulation C552-2014.....Standard Specification for Cellular Glass Thermal Insulation C553-2013.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C591-2013.....Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation C680-2014..... Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs C612-2014.....Standard Specification for Mineral Fiber Block and Board Thermal Insulation C1126-2014.....Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation

C1136-2012.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation C1710-2011.....Standard Guide for Installation of Flexible Closed Cell Preformed Insulation in Tube and Sheet Form D1668/D1668M-1997a (2014)e1 Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-2015a.....Standard Test Method for Surface Burning Characteristics of Building Materials E2231-2015.....Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics C. Federal Specifications (Fed. Spec.): L-P-535E-1979......Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988. Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass F. National Fire Protection Association (NFPA): 90A-2015......of Air-Conditioning and Ventilating Systems G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013).....Standard for Test for Surface Burning Characteristics of Building Materials 1887-2004 (R2013).....Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; https:insulationinstitute.org/toolsresources/

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the quidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.
- Ε. Samples:
 - 1. Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square).

3. Each accessory material: Minimum 120 ml (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe and duct insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.
 - D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http:www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification. As-built drawings are to be provided, and a copy of them in Auto-CAD version 17 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (nominal 1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), foruse at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. When all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inchpounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- G. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other

fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.5 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be mineral fiber/ wool insulation of the same thickness as adjacent insulation.

Nominal Pipe Size and Accessories Material (Insert Blocks)		
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)	
Up through 125 (5)	150 (6) long	
150 (6)	150 (6) long	
200 (8), 250 (10), 300 (12)	225 (9) long	
350 (14), 400 (16)	300 (12) long	
450 through 600 (18 through 24)	350 (14) long	

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.

- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.8 REINFORCEMENT AND FINISHES

- A. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- B. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- C. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary

supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.

- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at all corridor walls, and fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
 - f. All corridor walls
- M. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity locations.

- N. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- O. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain unfaced board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - 3. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with unsealed ASJ or FSK.

a. Domestic heat exchangers (not factory insulated).

- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 1) Insulation in place before coating.
 - 2) After coating.
- C. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply

it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.

- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- G. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified below for piping other than in boiler plant.

Nominal Thickness Of Calcium Silicate Insulation (Non-Boiler Plant)				
Nominal Pipe Size Millimeters (Inches)	Thru 25 (1)	32 to 75 (1-1/4 to 3)	100-200 (4 to 8)	Greater than 200 (8)
93-260 degrees C (199-500 degrees F)(HPS, HPR)	100(4)	125(5)	150(6)	Greater than 150(6)

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
Nominal Pipe Size Millimete		illimeters	(Inches)		
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 22 07 11 Plumbing Insulation-17

SECTION 22 08 00

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 22 08 00 Commissioning of Plumbing-2

11-1-16

resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 21 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements. ----- END -----

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 07 11, PLUMBING INSULATION.
- I. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300 B16.9-2012.....Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings B16.15-2013Cast Copper Alloy Threaded Fittings: Classes 125 and 250 B16.18-2012.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings

B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.51-2013.....Copper and Copper Alloy Press-Connect Fittings ASME Boiler and Pressure Vessel Code -BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications C. American Society of Sanitary Engineers (ASSE): 1010-2004..... Performance Requirements for Water Hammer Arresters D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A183-2014.....Standard Specification for Carbon Steel Track Bolts and Nuts A269/A269M-2014e1.....Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A403/A403M-2014.....Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-2008 (R2014).....Standard Specification for Solder Metal B43-2014.....Standard Specification for Seamless Red Brass Pipe, Standard Sizes B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube

```
B88-2014.....Standard Specification for Seamless Copper
                        Water Tube
  B584-2014.....Standard Specification for Copper Alloy Sand
                        Castings for General Applications
  B687-1999 (R2011).....Standard Specification for Brass, Copper, and
                        Chromium-Plated Pipe Nipples
  C919-2012.....Standard Practice for Use of Sealants in
                        Acoustical Applications
  D1785-2012.....Standard Specification for Poly (Vinyl
                        Chloride) (PVC) Plastic Pipe, Schedules 40, 80,
                        and 120
  D2000-2012.....Standard Classification System for Rubber
                        Products in Automotive Applications
  D2564-2012.....Standard Specification for Solvent Cements for
                        Poly (Vinyl Chloride) (PVC) Plastic Piping
                        Systems
  D2657-2007.....Standard Practice for Heat Fusion Joining of
                        Polyolefin Pipe and Fittings
  D2855-1996 (R2010).....Standard Practice for Making Solvent-Cemented
                        Joints with Poly (Vinyl Chloride) (PVC) Pipe
                        and Fittings
  D4101-2014.....Standard Specification for Polypropylene
                        Injection and Extrusion Materials
  E1120-2008.....Standard Specification for Liquid Chlorine
  E1229-2008.....Standard Specification for Calcium Hypochlorite
  F2389-2010.....Standard Specification for Pressure-rated
                        Polypropylene (PP) Piping Systems
  F2620-2013.....Standard Practice for Heat Fusion Joining of
                        Polyethylene Pipe and Fittings
  F2769-2014.....Standard Specification for Polyethylene of
                        Raised Temperature (PE-RT) Plastic Hot and
                        Cold-Water Tubing and Distribution Systems
E. American Water Works Association (AWWA):
  C110-2012..... Ductile-Iron and Gray-Iron Fittings
  C151-2009.....Ductile Iron Pipe, Centrifugally Cast
  C153-2011.....Ductile-Iron Compact Fittings
```

C203-2008.....Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot Applied C213-2007.....Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines C651-2014.....Disinfecting Water Mains F. American Welding Society (AWS): A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and Braze Welding G. International Code Council (ICC): IPC-2012..... International Plumbing Code H. Manufacturers Specification Society (MSS): SP-58-2009......Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application, and Installation SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends I. NSF International (NSF): 14-2015..... Plastics Piping System Components and Related Materials 61-2014a.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content J. Plumbing and Drainage Institute (PDI): PDI-WH 201-2010.....Water Hammer Arrestors K. Department of Veterans Affairs: H-18-8-2013.....Seismic Design Handbook **1.4 SUBMITTALS** A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND

- SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights,

materials, applications, standard compliance, model numbers, size, and capacity.

1. All items listed in Part 2 - Products.

- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual

shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2019 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

 A. Material or equipment containing lead are prohibited. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.

2.2 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 150 mm (6 inches) and larger, stainless steel, ASTM A312, schedule 10 40 shall be used.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12),

or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.

- 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical pressconnect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.
- 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Fittings for Stainless Steel:
 - Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ASME B16.9.
 - 2. Grooved fittings, stainless steel, Type 316, Schedule 10 40, conforming to ASTM A403/A403M. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, 4138 kPa (600 psig), ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- D. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- E. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.

2.3 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, and equipment when not concealed by apron including those furnished by the Government or specified in other sections.
 1. Pipe: ASTM B43, standard weight.
- FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
- 3. Nipples: ASTM B687, Chromium-plated.
- 4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.4 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.5 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.6 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.

2.7 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:
 - 1. All groups of two or more flush valves.
 - 2. All quick opening or closing valves.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - 3. All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.
 - Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield

centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.

- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through corridor walls, fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in

accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.

- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain values at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 21 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.
- C. Turn over test results(passing) to COR for approval prior to opening up to water main.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- D. Section 07 92 00, JOINT SEALANTS: Sealant products.
- E. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- G. Section 22 07 11, PLUMBING INSULATION.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- I. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

A.		below form a part of this specification to the ublications are referenced in the text by the
		Where conflicts occur these specifications and
	the VHA standard will go	vern.
в.	American Society of Mecha	anical Engineers (ASME):
	A13.1-2007	Identification of Piping Systems
	A112.36.2M-1991	Cleanouts
	A112.6.3-2019	Floor and Trench Drains
	B1.20.1-2013	Pipe Threads, General Purpose (Inch)
	B16.1-2015	Gray Iron Pipe Flanges and Flanged Fittings
	(Classes 25, 125, and 250
	B16.4-2016	Grey Iron Threaded Fittings Classes 125 and 250
	B16.15-2018	Cast Copper Alloy Threaded Fittings, Classes
		125 and 250
	B16.18-2018	Cast Copper Alloy Solder Joint Pressure
]	Fittings
	B16.21-2016	Nonmetallic Flat Gaskets for Pipe Flanges
	B16.22-2018	Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.23-2016	Cast Copper Alloy Solder Joint Drainage
	1	Fittings: DWV
	B16.24-2016	Cast Copper Alloy Pipe Flanges and Flanged
	1	Fittings, and Valves: Classes 150, 300, 600,
		900, 1500, and 2500
	B16.29-2017	Wrought Copper and Wrought Copper Alloy Solder-
	,	Joint Drainage Fittings: DWV
	B16.39-2014	Malleable Iron Threaded Pipe Unions Classes
		150, 250, and 300
	B18.2.1-2012	Square, Hex, Heavy Hex, and Askew Head Bolts
	i	and Hex, Heavy Hex, Hex Flange, Lobed Head, and
	:	Lag Screws (Inch Series)
C.	American Society of Sani	tary Engineers (ASSE):
	1001-2017	Performance Requirements for Atmospheric Type
		Vacuum Breakers
	1018-2001	Performance Requirements for Trap Seal Primer
		Valves - Potable Water Supplied

	1044-2015			
		Devices - Drainage Types and Electronic Design		
		Types		
	1079-2012	.Performance Requirements for Dielectric Pipe		
		Unions		
D.	American Society for Te	sting and Materials (ASTM):		
	A53/A53M-2018	.Standard Specification for Pipe, Steel, Black		
		And Hot-Dipped, Zinc-coated, Welded and		
		Seamless		
	A74-2017	.Standard Specification for Cast Iron Soil Pipe		
		and Fittings		
	A888-2018a	.Standard Specification for Hubless Cast Iron		
		Soil Pipe and Fittings for Sanitary and Storm		
		Drain, Waste, and Vent Piping Applications		
	B32-2008(R2014)	.Standard Specification for Solder Metal		
	В43-2015	.Standard Specification for Seamless Red Brass		
		Pipe, Standard Sizes		
	B88-2016	.Standard Specification for Seamless Copper		
		Water Tube		
	B306-2013	.Standard Specification for Copper Drainage Tube		
		(DWV)		
	B687-1999(R2016)	.Standard Specification for Brass, Copper, and		
		Chromium-Plated Pipe Nipples		
	B813-2016	.Standard Specification for Liquid and Paste		
		Fluxes for Soldering of Copper and Copper Alloy		
		Tube		
	B828-2016	.Standard Practice for Making Capillary Joints		
		by Soldering of Copper and Copper Alloy Tube		
		and Fittings		
	C564-2014	.Standard Specification for Rubber Gaskets for		
		Cast Iron Soil Pipe and Fittings		
	D2321-2018	.Standard Practice for Underground Installation		
	of Thermoplastic Pipe for Sewers and Other			
		Gravity-Flow Applications		
	D2564-2012(R3018)	.Standard Specification for Solvent Cements for		
		Poly(Vinyl Chloride) (PVC) Plastic Piping		
		Systems		

	D2665-2014	.Standard Specificat	ion for Poly(Vinyl Chloride)
		(PVC) Plastic Drair	n, Waste, and Vent Pipe and
		Fittings	
	D2855-2015	.Standard Practice f	for Two-Step (Primer and
		Solvent Cement) Met	hod of Joining Poly(Vinyl
		Chloride) (PVC) or	Chlorinated Poly (Vinyl
		Chloride) CPVCP Pig	be and Piping Components with
		Tapered Sockets	
	D5926-2015	.Standard Specificat	tion for Poly(Vinyl Chloride)
		(PVC) Gaskets for I	Drain, Waste, and Vent (DWV),
		Sewer, Sanitary, ar	nd Storm Plumbing Systems
	F402-2018	.Standard Practice f	for Safe Handling of Solvent
		Cements, Primers, a	and Cleaners Used for Joining
		Thermoplastic Pipe	and Fittings
	F477-2014	.Standard Specificat	tion for Elastomeric Seals
		(Gaskets) for Joini	ing Plastic Pipe
	F1545-2015e1	.Standard Specificat	tion for Plastic-Lined
		Ferrous Metal Pipe,	Fittings, and Flanges
E.	Cast Iron Soil Pipe Ins	titute (CISPI):	
	2006	.Cast Iron Soil Pipe	e and Fittings Handbook
	301-2012	.Standard Specificat	tion for Hubless Cast Iron
		Soil Pipe and Fitti	ings for Sanitary and Storm
		Drain, Waste, and W	Vent Piping Applications
	310-2012	.Specification for (Coupling for Use in
		Connection with Hub	oless Cast Iron Soil Pipe and
		Fittings for Sanita	ary and Storm Drain, Waste,
		and Vent Piping App	olications
F.	Copper Development Asso	ciation, Inc. (CDA):	
	A4015-14/19	.Copper Tube Handboo	ok
G.	International Code Coun	cil (ICC):	
	IPC-2018	.International Plumb	ping Code
н.	Manufacturers Standardi	zation Society (MSS)	:
	SP-123-2018	.Non-Ferrous Threade	ed and Solder-Joint Unions
		for Use with Copper	Water Tube
I.	National Fire Protectio	n Association (NFPA)	:
	70-2020	.National Electrical	Code (NEC)
J.	Underwriters' Laborator	ies, Inc. (UL):	
	508-99 (R2013)	.Standard For Indust	crial Control Equipment
ENDOO			
	VA HEALTHCARE SYSTEM		VA PROJECT NO: 437-21-225
⊾пкм -	- TRAINING AND ADMIN. SPA	ACE SUPPORT	22 13 00 Facility Sanitary-4

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Cleanouts.
 - 4. Penetration Sleeves.
 - 5. Pipe Fittings.
 - 6. Traps.
 - 7. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Copper Tube, (DWV):
 - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
 - 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15

- 3. Nipples shall conform to ASTM B687, Chromium-plated.
- Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be

09-01-20

easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated in the contract document and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening shall not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a .45 kg (16-ounce) soft copper 1.1 to 1.8 Kg (2.5 to 4 lbs.) flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.
- B. Type C (FD-C) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty nickel bronze adjustable strainer with round or square grate of 150 mm (6 inches) width or diameter minimum for toilet rooms, and showers.
- C. Type S (FD-S) floor sink shall comply with ASME Al12.6.3. The type S floor sink shall be constructed from type 304 stainless steel and shall be 300 mm (12 inches) square, and 200 mm (8 inches deep). The interior surface shall be polished. The double drainage flange shall be provided with weep holes, internal dome strainer, and heavy duty non-tilting loose set grate. A clamping device shall be provided.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are prohibited on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device

that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that shall extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that shall extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow greater than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated in the drawings with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- L. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead-free alloy solder conforming to ASTM B32 shall be used.
- F. Only underground, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendices.

3.3 SPECIALTY PIPE FITTINGS

A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT22 13 00 Facility Sanitary-11

B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.

- 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser clamps shall be malleable iron or steel.
- 7. Rollers shall be cast iron.
- See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted in the contract documents for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- I. Penetrations:
 - Fire Stopping: Where pipes pass through corridor walls, fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- J. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections,

tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 34 kPa (5 psig) gauge shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gauge shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification shall be tested as part of a larger system.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- E. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.
- H. 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME): A112.6.1M-1997 (R2012)..Supports for Off-the-Floor Plumbing Fixtures

for Public Use

A112.19.1-2013.....Enameled Cast Iron and Enameled Steel Plumbing Fixtures

A112.19.2-2013.....Ceramic Plumbing Fixtures

A112.19.3-2008.....Stainless Steel Plumbing Fixtures

C. American Society for Testing and Materials (ASTM):

A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes

B584-2008.....Standard Specification for Copper Alloy Sand Castings for General Applications

D. CSA Group:

- B45.4-2008 (R2013).....Stainless Steel Plumbing Fixtures
- E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-2006......Metal Finishes Manual
- F. American Society of Sanitary Engineering (ASSE): 1016-2011.....Automatic Compensating Valves for Individual Showers and Tub/Shower Combinations
- G. NSF International (NSF):
 14-2013.....Plastics Piping System Components and Related
 Materials
 61-2013.....Drinking Water System Components Health
 Effects

372-2011.....Drinking Water System Components - Lead Content

- H. American with Disabilities Act (A.D.A)
- I. International Code Council (ICC):
 IPC-2015.....International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD version _____ provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the `third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

 A. Material or equipment containing lead is prohibited. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.5 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. Aerators are prohibited.
- B. Flow Control Restrictor:
 - Capable of restricting flow from 32 ml/s to 95 ml/s (0.5 gpm to 1.5 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 174 ml/s to 190 ml/s (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.

- 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psig and 80 psig).
- Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.6 CARRIERS

- A. ASME A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME A112.6.1M, lavatory, chair carrier for thin wall construction concealed arm support steel plate as detailed on drawing. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture. Water closet, marked in drawings, accessible to bariatric patients shall be rated for bariatric use - 1000 pound capacity.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

2.7 WATER CLOSETS

- A. (P-103) Water Closet (Wall Hung/ Wall Hung bariatric use, ASME A112.19.2) office and industrial, elongated bowl, siphon jet 6 L (1.6 gallons) 6 L (1.6 gallon) per flush, wall outlet. Top of seat shall be between 400 mm and 432 mm (16 inches and 17 inches) above finished floor. Handicapped water closet shall have seat set 450 mm (18 inches) above finished floor. Water Closet, marked in the drawings, for bariatric use shall have 1000 pounds load capacity.
 - Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.
 - 2. Fittings and Accessories: Gaskets-neoprene; bolts with chromium plated caps nuts and washers and carrier.
 - 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, electric solenoid operated flush

09-01-15

valve for remote operation by a minimum 40 mm (1-1/2 inches) diameter push button, provide 24 volt transformer active infra-red sensor for automatic operation with courtesy flush button for manual operation, 25 mm (1 inch) screwdriver back check angle stop with vandal resistant cap, adjustable tailpiece, a high back pressure vacuum breaker, spud coupling for 40 mm (1-1/2 inches) top spud, wall and spud flanges, solid-ring pipe support, and sweat solder adapter with cover tube and set screw wall flange. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM alloy classification for semi-red brass. Seat bumpers shall be integral part of flush valve. Set centerline of inlet 292 mm (11-1/2 inches) above seat.

2.8 URINALS

- A. (P-201) Urinal (Wall Hung, ASME A112.19.2) bowl with integral flush distribution, wall to front of flare 343 mm (13.5 inches) minimum. Wall hung with integral trap, siphon jet flushing action 1.9 L (0.5 gallons) per flush with 50 mm (2 inches) back outlet and 20 mm (3/4 inch) top inlet spud.
 - Support urinal with chair carrier and install with rim 600 mm (24 inches) above finished floor.
 - 2. Flushing Device: Large chloramines resistant diaphragm, semi-red brass body, exposed flush valve electronic sensor operated hardwired active infrared sensor for automatic operation non-hold open, water saver design, solid-ring pipe support, and 20 mm (3/4 inch) capped screwdriver angle stop valve. Set centerline of inlet 292 mm (11-1/2 inches) above urinal. Valve body, cover, tailpiece, and control stop shall be in conformance with ASTM alloy classification for semi-red brass.

2.9 LAVATORIES

- A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
- B. Brass components in contact with water shall contain no more than 0.25 percent lead content by dry weight. Faucet flow rates shall be 3.9 L/m (1.5 gpm) for private lavatories and either 1.9 L/m (0.5 gpm) or 1.0 liter (0.25 gallons) per cycle for public lavatories.
- C. (P-420) Lavatory (Sensor Control, Counter Mounted ASME A112.19.2) vitreous china, self-rimming, approximately 483 mm (19 inches) in diameter with punching for faucet on 102 mm (4 inches) centers. Mount

unit in countertop. Support countertop with ASME All2.19.1, Type 1, chair carrier with exposed arms.

- 1. Faucet: Brass, chrome plated, gooseneck spout with outlet 102 mm to 127 mm (4 inches to 5 inches) above rim. Faucets shall have automatic flushing capabilities to purge hot and cold-water branch lines serving each faucet and thermostatic mixing valve shall be provided. Electronic sensor operated, 102 mm (4 inches) center set mounting, wiring box 120/24 volt solenoid plug in transformer remote mounted transformer back check valves solid brass hot/cold water mixer adjusted from top deck with barrier free design control handle and inline filter. Provide laminar flow control device. Breaking the light beam shall activate the water flow. Flow shall stop when user moves away from light beam. All connecting wiring between transformer, solenoid valve and sensor shall be cut to length with no excess hanging or wrapped up wiring allowed.
- Drain: Cast or wrought brass with flat grid strainer, offset tailpiece, chrome plated. Set trap parallel to wall.
- 3. Stops: Angle type. See paragraph "Stops".
- 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap, adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension to wall. Set trap parallel to the wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish.
- 5. Provide cover for exposed piping, drain, stops and trap per A.D.A.

2.10 SINKS AND LAUNDRY TUBS

- A. Dimensions for sinks and laundry tubs are specified, length by width (distance from wall) and depth.
- B. (P-502) Service Sink (Floor Mounted) stain resistant terrazzo, 711 mm by 711 mm by 305 mm (28 inches by 28 inches by 12 inches) with 152 mm (6 inches) drop front. Terrazzo, composed of marble chips and white Portland cement, shall develop compressive strength of 20684 kPa (3000 psig) seven days after casting. Provide extruded aluminum cap on front side.
 - Faucet: Solid brass construction, 9.5 L/m (2.5 gpm) combination faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, integral check/stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch) hose coupling threads, vacuum breaker, and top or bottom brace to

wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Provide 914 mm (36 inches) hose with wall hook. Centerline of rough in is 1219 mm (48 inches) above finished floor. Faucets shall have automatic flushing capabilities to purge hot and cold-water branch lines serving each faucet and thermostatic mixing valve shall be provided.

- Drain: Seventy six millimeter (3 inches) cast brass drain with nickel bronze strainer.
- 3. Trap: P-trap, drain through floor.
- C. (P-528) Sink (CRS, Single Compartment, Counter Top ASME All2.19.2, Kitchen Sinks) self-rimming, back faucet ledge, approximately 533 mm by 559 mm (21 inches by 22 inches) with single compartment inside dimensions approximately 406 mm by 483 mm by 191 mm (16 inches by 19 inches by 7 1/2 inches) deep. Shall be minimum of 1.3 mm thick (18 gauge) CRS. Corners and edges shall be well rounded:
 - 1. Faucet: Solid brass construction, 8.3 L/m (2.2 gpm) deck mounted combination faucet with Monel or ceramic seats, removable replacement unit containing all parts subject to ware, swivel gooseneck spout with approximately 203 mm (8 inches) reach with spout outlet 152 mm (6 inches above deck and 102 mm (4 inches) wrist blades . Faucet shall be polished chrome plated. Faucets shall have automatic flushing capabilities to purge hot and coldwater branch lines serving each faucet and thermostatic mixing valve shall be provided.
 - 2. Drain: Drain plug with cup strainer, stainless steel.
 - 3. Trap: Cast copper alloy 38 mm (1 1/2 inches) P-trap with cleanout plug. Provide wall connection and escutcheon.
 - 4. Provide cover for exposed piping, drain, stops and trap per A.D.A.

2.11 DISPENSER, DRINKING WATER

- A. Standard rating conditions: 10 degrees C (50 degrees F) water with 27 degrees C (80 degrees F) inlet water temperature and 32 degrees C (90 degrees F) ambient air temperature.
- B. (P-609) Electric Water Cooler: Mechanically cooled, self contained, wheel chair, bubbler style fully exposed dual height stainless steel fountain, recessed in wall refrigeration system, stainless steel

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT grille, stainless steel support arm, wall mounting box, energy efficient cooling system consisting of a hermetically sealed reciprocating type compressor, 115v, 60 Hz, single phase, fan cooled condenser, permanently lubricated fan motor. Set highest bubbler 1016 mm (40 inches) above finished floor. Provide with bottle filler option.

2.12 HYDRANT, HOSE BIBB AND MISCELLANEOUS DEVICES

A. (P-801) Wall Hydrant: Cast bronze non-freeze hydrant with detachable T-handle. Brass operating rod within casing of bronze pipe of sufficient length to extend through wall and place valve inside building. Brass valve with coupling and union elbow having metal-to-metal seat. Valve rod and seat washer removable through face of hydrant; 19 mm (3/4 inch) hose thread on spout; 19 mm (3/4 inch) pipe thread on inlet. Finish may be rough; exposed surfaces shall be chrome plated. Set not less than 457 mm (18 inches) nor more than 914 mm (36 inches) above grade. On porches and platforms, set approximately 762 mm (30 inches) above finished floor. Provide integral vacuum breaker which automatically drains when shut off.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS.
 Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Toggle Bolts: For hollow masonry units, finished or unfinished.
- D. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
- E. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- F. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.

- G. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- H. Aerators are prohibited on lavatories and sinks.
- I. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.3 WATERLESS URINAL

A. Manufacturer shall provide an operating manual and onsite training for the proper care and maintenance of the urinals.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. ACR: Air Conditioning and Refrigeration
 - 3. AI: Analog Input
 - 4. AISI: American Iron and Steel Institute
 - 5. AO: Analog Output
 - 6. ASJ: All Service Jacket
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Networking Protocol
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. bhp: Brake Horsepower
 - 13. Btu: British Thermal Unit
 - 14. Btu/h: British Thermal Unit Per Hour
 - 15. CDA: Copper Development Association
 - 16. C: Celsius
 - 17. CD: Compact Disk
 - 18. CFM: Cubic Foot Per Minute
 - 19. CH: Chilled Water Supply
 - 20. CHR: Chilled Water Return
 - 21. CLR: Color
 - 22. CO: Carbon Monoxide
 - 23. COR: Contracting Officer's Representative
 - 24. CPD: Condensate Pump Discharge
 - 25. CPM: Cycles Per Minute
 - 26. CPVC: Chlorinated Polyvinyl Chloride
 - 27. CRS: Corrosion Resistant Steel

FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225

23 05 11 Common Work HVAC-1

- 28. CTPD: Condensate Transfer Pump Discharge
- 29. CTPS: Condensate Transfer Pump Suction
- 30. CW: Cold Water
- 31. CWP: Cold Working Pressure
- 32. CxA: Commissioning Agent
- 33. dB: Decibels
- 34. dB(A): Decibels (A weighted)
- 35. DDC: Direct Digital Control
- 36. DI: Digital Input
- 37. DO: Digital Output
- 38. DVD: Digital Video Disc
- 39. DN: Diameter Nominal
- 40. DWV: Drainage, Waste and Vent
- 41. EPDM: Ethylene Propylene Diene Monomer
- 42. EPT: Ethylene Propylene Terpolymer
- 43. ETO: Ethylene Oxide
- 44. F: Fahrenheit
- 45. FAR: Federal Acquisition Regulations
- 46. FD: Floor Drain
- 47. FED: Federal
- 48. FG: Fiberglass
- 49. FGR: Flue Gas Recirculation
- 50. FOS: Fuel Oil Supply
- 51. FOR: Fuel Oil Return
- 52. FSK: Foil-Scrim-Kraft facing
- 53. FWPD: Feedwater Pump Discharge
- 54. FWPS: Feedwater Pump Suction
- 55. GC: Chilled Glycol Water Supply
- 56. GCR: Chilled Glycol Water Return
- 57. GH: Hot Glycol Water Heating Supply
- 58. GHR: Hot Glycol Water Heating Return
- 59. gpm: Gallons Per Minute
- 60. HDPE: High Density Polyethylene
- 61. Hg: Mercury
- 62. HOA: Hands-Off-Automatic
- 63. hp: Horsepower
- 64. HPS: High Pressure Steam (414 kPa (60 psig) and above)
- 65. HPR: High Pressure Steam Condensate Return

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

23 05 11 Common Work HVAC-2

66.	HW: Hot Water
67.	HWH: Hot Water Heating Supply
68.	HWHR: Hot Water Heating Return
69.	Hz: Hertz
70.	ID: Inside Diameter
71.	IPS: Iron Pipe Size
72.	kg: Kilogram
73.	klb: 1000 lb
74.	kPa: Kilopascal
75.	lb: Pound
76.	lb/hr: Pounds Per Hour
77.	L/s: Liters Per Second
78.	L/min: Liters Per Minute
79.	LPS: Low Pressure Steam (103 kPa (15 psig) and below)
80.	LPR: Low Pressure Steam Condensate Gravity Return
81.	MAWP: Maximum Allowable Working Pressure
82.	MAX: Maximum
83.	MBtu/h: 1000 Btu/h
84.	MBtu: 1000 Btu
85.	MED: Medical
86.	m: Meter
87.	MFG: Manufacturer
88.	mg: Milligram
89.	mg/L: Milligrams Per Liter
90.	MIN: Minimum
91.	MJ: Megajoules
92.	ml: Milliliter
93.	mm: Millimeter
94.	MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60
	psig))
95.	MPR: Medium Pressure Steam Condensate Return
96.	MW: Megawatt
97.	NC: Normally Closed
98.	NF: Oil Free Dry (Nitrogen)
99.	Nm: Newton Meter
100.	NO: Normally Open
101.	NOx: Nitrous Oxide
102.	NPT: National Pipe Thread

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 23 05 11 Common Work HVAC-3

VA PROJECT NO: 437-21-225

04 - 01 - 20

103. NPS: Nominal Pipe Size 104. OD: Outside Diameter 105. OSD: Open Sight Drain 106. OS&Y: Outside Stem and Yoke 107. PC: Pumped Condensate 108. PID: Proportional-Integral-Differential 109. PLC: Programmable Logic Controllers 110. PP: Polypropylene 111. PPE: Personal Protection Equipment 112. ppb: Parts Per Billion 113. ppm: Parts Per Million 114. PRV: Pressure Reducing Valve \ 115. PSIA: Pounds Per Square Inch Absolute 116. psig: Pounds Per Square Inch Gauge 117. PTFE: Polytetrafluoroethylene 118. PVC: Polyvinyl Chloride 119. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 120. PVDF: Polyvinylidene Fluoride 121. rad: Radians 122. RH: Relative Humidity 123. RO: Reverse Osmosis 124. rms: Root Mean Square 125. RPM: Revolutions Per Minute 126. RS: Refrigerant Suction 127. RTD: Resistance Temperature Detectors 128. RTRF: Reinforced Thermosetting Resin Fittings 129. RTRP: Reinforced Thermosetting Resin Pipe 130. SCFM: Standard Cubic Feet Per Minute 131. SPEC: Specification 132. SPS: Sterile Processing Services 133. STD: Standard 134. SDR: Standard Dimension Ratio 135. SUS: Saybolt Universal Second 136.SW: Soft water 137. SWP: Steam Working Pressure 138. TAB: Testing, Adjusting, and Balancing 139. TDH: Total Dynamic Head 140. TEFC: Totally Enclosed Fan-Cooled VA PROJECT NO: 437-21-225 FARGO VA HEALTHCARE SYSTEM

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

23 05 11 Common Work HVAC-4

04 - 01 - 20

- 141. TFE: Tetrafluoroethylene
- 142. THERM: 100,000 Btu
- 143. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 144. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 145. T/P: Temperature and Pressure
- 146. USDA: U.S. Department of Agriculture
- 147.V: Volt
- 148. VAC: Vacuum
- 149. VA: Veterans Administration
- 150. VAC: Voltage in Alternating Current
- 151. VA CFM: VA Construction & Facilities Management
- 152. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 153. VAMC: Veterans Administration Medical Center
- 154. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 155. VR: Vacuum condensate return
- 156. WCB: Wrought Carbon Steel, Grade B
- 157. WG: Water Gauge or Water Column
- 158. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- F. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- G. Section 05 50 00, METAL FABRICATIONS.
- H. Section 07 84 00, FIRESTOPPING.
- I. Section 07 92 00, JOINT SEALANTS.
- J. Section 09 91 00, PAINTING.
- K. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- L. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- M. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- N. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- O. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

23 05 11 Common Work HVAC-5

P. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Q. Section 23 36 00, AIR TERMINAL UNITS. R. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS. S. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. T. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. U. Section 26 29 11, MOTOR CONTROLLERS. **1.3 APPLICABLE PUBLICATIONS** A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern. B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans C. American Society of Mechanical Engineers (ASME): B31.1-2014.....Power Piping B31.9-2014.....Building Services Piping ASME Boiler and Pressure Vessel Code: BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications D. American Society for Testing and Materials (ASTM): A36/A36M-2014.....Standard Specification for Carbon Structural Steel A575-1996(R2013)el.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E. Association for Rubber Products Manufacturers (ARPM): IP-20-2015.....Specifications for Drives Using Classical V-Belts and Sheaves IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal) Belts IP-24-2010.....Specifications for Drives Using Synchronous Belts IP-27-2015......Specifications for Drives Using Curvilinear Toothed Synchronous Belts F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.: SP-58-2009......Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 05 11 Common Work HVAC-6

SP-127-2014a.....Bracing for Piping Systems: Seismic-Wind-

- Dynamic Design, Selection, and Application
- G. Military Specifications (MIL): MIL-P-21035B-2003.....Paint High Zinc Dust Content, Galvanizing

Repair (Metric)

- H. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC) 101-2015....Life Safety Code
- I. Department of Veterans Affairs (VA):
 PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225

23 05 11 Common Work HVAC-7

foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 23 (

- I. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- K. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- L. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- M. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

N. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.

- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24/ hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 23 05 11 Common Work HVAC-11

- Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
- Comply with provisions of ASME B31 series "Code for Pressure Piping".
- 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 23 05 11 Common Work HVAC-12

- Complete coordination/shop drawings shall be required in accordance with Paragraph, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
 - 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
 - 3. Repair damaged equipment in first class, new operating condition and appearance, or replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
 - Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be hard copy and in electronic version on CD or DVD and inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version compatible with the AutoCad software currently in use at the Fargo VA provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 23 05 11 Common Work HVAC-14

- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 21 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The

phasing plan shall be detailed enough to provide milestones in the process that can be verified.

- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- G. Temporary Facilities: Refer to Paragraph, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 05 11 Common Work HVAC-17

- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustablepitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

VA PROJECT NO: 437-21-225 23 05 11 Common Work HVAC-19

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.

- D. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. Coordinate the valve tags with the Shops Foreman prior to installation for compliance.
 - a. Valve number shall be labeled as follows: M-V-XXX-XXXX-XXX.
 - The first letter of the valve tag refers to the building number. M refers to Main Hospital.
 - 2) V stands for "Valve."
 - 3) The first grouping of XXX indicates the type of piping. Refer to 09 91 00 Painting specification for labels for different types of piping (i.e. HWH is Hot Water Heating, DC is Domestic Cold Water, DH is Domestic Hot Water, and DR is Domestic Recirculating Hot Water).
 - 4) The second grouping of XXXXX indicates the room number.
 - 5) The final grouping of XXX refers to the valve number in the room.
 - 3. Valve lists: Typed (using a word processing program) plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets of the valve list for a 3-ring notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. Additionally provide a hardcopy drawing and AutoCAD copy (compatible with current Fargo VA version of CADD) of valve locations.
- F. Ceiling Grid Labels:
 - 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil)
 thick UV resistant metalized polyester label with red border color

and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.

2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- B. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- C. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- D. Attachment to existing structure: Support from existing floor/roof frame.
- E. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by

41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.

- 1. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- G. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
 - c. Piping with Vertical Expansion and Contraction:
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- H. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, builtin cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR.
 - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided at no additional cost to the government.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided at no additional cost to the government. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, values and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of liquid filled pipe above electrical and data/telephone switchgear and panels. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and

VA PROJECT NO: 437-21-225 23 05 11 Common Work HVAC-28 extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).

- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.

- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Do not drill or burn holes in structural steel.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating building, provide approved protection from dust and debris at all times for the safety of building personnel and maintenance of building operation and environment of the building.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection

VA PROJECT NO: 437-21-225 23 05 11 Common Work HVAC-31 standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All indicated valves including gate, globe, ball, and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - The following material and equipment shall not be painted:
 a. Motors, controllers, control switches, and safety switches.

- b. Control and interlock devices.
- c. Regulators.
- d. Pressure reducing valves.
- e. Control valves and thermostatic elements.
- f. Lubrication devices and grease fittings.
- g. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Valve stems and rotating shafts.
- i. Pressure gauges and thermometers.
- j. Glass.
- k. Nameplates.
- Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.

- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

- C. The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 21 working days prior to startup and testing.
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 8 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- G. Section 26 24 19, MOTOR CONTROL CENTERS.
- H. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):
 - 9-2015.....Load Ratings and Fatigue Life for Ball Bearings
 - 11-2015.....Load Ratings and Fatigue Life for Roller Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2013.....Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings

D. Institute of Electrical and Electronics Engineers (IEEE):

112-2004..... Standard Test Procedure for Polyphase Induction Motors and Generators

841-2009.....IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors--Up to and Including 370 kW (500 hp)

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 05 12 Motor Requirements-1

E. National Electrical Manufacturers Association (NEMA):

MG 1-2014.....Motors and Generators

MG 2-2014.....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators

250-2014..... Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 05 12 Motor Requirements-2

- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be hard copy and in electronic version on CD or DVD and inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - 1. As-built drawings are to be provided, with a copy of them on AutoCAD version compatible with the AutoCad software currently in use at the

VA PROJECT NO: 437-21-225

Fargo VA provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.

- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

- Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt: 230 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 hp), connected to 240-volt volt systems: 208-230 volts, dual connection.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - Shall be the NEMA types as specified and/or shown in the Contract Documents.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:

- a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of Class B, 130 degrees
 C (266 degrees F).
 - The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31.
- L. Mechanical Design Requirements:
 - Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
 - 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 05 12 Motor Requirements-6

- 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- M. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees
 C (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-

Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.

- N. Additional requirements for specific motors, as indicated in the other sections listed in paragraph, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

-	Premium D pen Drip-		ies	Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC)							
Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM				
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%				
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%				
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%				
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%				
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%				
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%				
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%				
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%				
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%				

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyph Average f	nase Oper ull load		Capacitor-start capacitor-run and capacitor-start induction run open motors Average full load efficiency							
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles			
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6			
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5			
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4			
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2			

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures and vibration control techniques to boiler plant rotating equipment and parts including chillers, cooling towers, boilers, pumps, fans, compressors, motors and steam turbines.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Corridors(Public)	40
Lobbies, Waiting Areas	40
Offices, Large Open	40
Offices, Small Private	35

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect

between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- 5. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
 - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent of the weight of the equipment furnished.
- 6. Piping: Refer to specification Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- 7. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers

- d. Thrust restraints
- 2. Bases.
- 3. Seismic restraint provisions and bolting.
- 4. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Handbook 2017.....Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM):

A123/A123M-2017.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-2016.....Standard Specification for Carbon Steel Bolts

and Studs, 60,000 PSI Tensile Strength

D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness

D. Manufacturers Standardization (MSS): SP-58-2018......Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1960.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-2017.....Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC): IBC 2018.....International Building Code.
- I. Department of Veterans Affairs (VA):
 H-18-8 2016.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring

height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.

- 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
- 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall

permit a 15 degree angular misalignment without rubbing on hanger box.

- 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
- 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do

not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.

- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections,

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 23 05 42 Noise and Vibration-7 and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.

- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- 4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPM	EQUIPMENT ON GRADE		E	20FT FLOOR SPAN			30FT FLOOR SPAN			40FT	FLOOR	SPAN	50FT FLOOR SPAN			
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
REFRIGER	ATION M	ACHIN	IES													
ABSORPTIO	N		D	0.3		SP	0.8		SP	1.5		SP	1.5		SP	2.0
PACKAGED	HERMETIC		D	0.3		SP	0.8		SP	1.5		SP	1.5	R	SP	2.5
OPEN CENT	RIFUGAL	В	D	0.3	В	SP	0.8		SP	1.5	В	SP	1.5	В	SP	3.5
RECIPROCA	TING:	_			-		·	-	·	•	_	·		-	·	
ALL			D	0.3		SP	0.8	R	SP	2.0	R	SP	2.5	R	SP	3.5
			1			D I				1 -		D 7	1 5		D 7	
UP THROUGH HP	1-1/2		D,L, W	0.8		D,L, W	0.8		D,L, W	1.5		D,L, W	1.5		D,L, W	
2 HP AND O	VER:															
500 - 750	RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM &	OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
PUMPS																
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0

EQUIPMENT		c	N GRAD	E	20FT FLOOR SPAN			30FT FLOOR SPAN			40FT	FLOOR	SPAN	50FT FLOOR SPAN		
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
LARGE INLINE	Up to 25 HP					S	0.75		S	1.50		S	1.50			NA
	26 HP THRU 30 HP					S	1.0		S	1.50		S	2.50			NA
	UP TO 10 HP					D,L, W			D,L, W			D,L, W			D,L, W	
BASE MOUNTED	15 HP THRU 40 HP	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.0	I	S	2.0
	50 HP & OVER	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.5	I	S	2.5
ROOF FAN	IS	_			-						_			_		
ABOVE OCCU	PIED AREA	s:														
5 HP & OV	ER				CB	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0
CENTRIFU	GAL FAN	IS														
UP TO 50 H	P:															
UP TO 200	RPM	В	Ν	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300	RPM	В	Ν	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500	RPM	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM &	OVER	В	Ν	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5

EQUIPMENT	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
60 HP & OVER:															
UP TO 300 RPM	В	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5	I	S	3.5
301 - 500 RPM	В	S	2.0	I	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5
501 RPM & OVER	В	S	1.0	I	S	2.0	I	S	2.0	I	S	2.5	I	S	2.5
COOLING TOWERS															
UP TO 500 RPM					SP	2.5		SP	2.5		SP	2.5		SP	3.5
501 RPM & OVER					SP	0.75		SP	0.75		SP	1.5		SP	2.5
INTERNAL COMBUSTION	ENGINE	IS													
UP TO 25 HP	I	Ν	0.75	I	Ν	1.5	I	S	2.5	I	S	3.5	I	S	4.5
30 THRU 100 HP	I	Ν	0.75	I	Ν	1.5	I	S	2.5	I	S	3.5	I	S	4.5
125 HP & OVER	I	Ν	0.75	I	Ν	1.5	I	S	2.5	I	S	3.5	I	S	4.5
AIR HANDLING UNIT PA	ACKAGES	5													
SUSPENDED:															
UP THRU 5 HP					Н	1.0									
7-1/2 HP & OVER:															
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0

EQUIPMENT	c	N GRAD	E	20FT	20FT FLOOR SPAN 30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN					
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
FLOOR MOUNTED:	LOOR MOUNTED:														
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
HEAT PUMPS					•				•					•	
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA
CONDENSING UNITS															
ALL		SS	0.25		SS	0.75		SS	1.5	СВ	SS	1.5			NA
IN-LINE CENTRIFUGAL	AND VA	ANE AXI	AL FAN	S, FLO	OR MOUN	ITED: (APR 9)								
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:															
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Systems Inspection report.
 - 3. Duct Air Leakage test report.
 - 4. Systems Readiness Report.
 - 5. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 6. Vibration measurements.
 - 7. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes chilled water, heating hot water, and glycol-water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION:
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- G. Section 23 31 00, HVAC DUCTS AND CASINGS

H. Section 23 36 00, AIR TERMINAL UNITS:

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses

its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
- b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
- c. Minimum outside air: 0 percent to plus 10 percent.
- d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- e. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
- f. Chilled water pumps: Minus 0 percent to plus 5 percent.
- g. Chilled water coils: Minus 0 percent to plus 5 percent.
- Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the COR for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the COR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Systems inspection report on equipment and installation for conformance with design.
 - 2. Duct Air Leakage Test Report.
 - 3. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.

- 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

2011HVAC Applications ASHRAE Handbook, Chapter 38, Testing, Adjusting, and Balancing and Chapter 48, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 2002......AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

A. Refer to TAB Criteria in Article, Quality Assurance.

B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.3 DUCT AIR LEAKAGE TEST REPORT

A. TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.4 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COR.

3.5 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the CORif there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and

all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.

D. Do not proceed with the remaining systems until intermediate report is approved by theCOR.

3.6 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 21 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, and room diffusers/outlets/inlets.
 - Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats

and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).

- c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 3. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.7 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the COR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COR.

3.8 MARKING OF SETTINGS

A. Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

3.9 IDENTIFICATION OF TEST PORTS

A. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation.All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.10 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - Re-insulation of HVAC piping, ductwork and equipment, plumbing piping and equipment and boiler plant piping, breeching and stacks and equipment after asbestos abatement.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F);HVAC equipment or piping handling media above 41 degrees C (105 degrees F.
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.

41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 21 13, HYDRONIC PIPING.
- G. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- H. Section 23 22 23, STEAM CONDENSATE PUMPS

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted or not as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal

insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.):
 - MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88....Coating Compounds, Thermal Insulation, Fire-and
 - MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

Water-Resistant, Vapor-Barrier

- D. American Society for Testing and Materials (ASTM):
 - A167-99(2004)....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 - C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation
 - C449-07.....for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
 - C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

	C534-08	.Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	.Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-09c	.Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Ε.	National Fire Protectio	n Association (NFPA):
	90A-09	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-08	.Standard s for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-09	.Life Safety Code
	251-06	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials

255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.4 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity areasconveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- F. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- G. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT H. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.5 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of
 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)						
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)					
Up through 125 (5)	150 (6) long					
150 (6)	150 (6) long					
200 (8), 250 (10), 300 (12)	225 (9) long					
350 (14), 400 (16)	300 (12) long					
450 through 600 (18 through 24)	350 (14) long					

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), or cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- 2.7 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.

- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.9 REINFORCEMENT AND FINISHES

- A. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- B. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- C. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.10 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.11 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.

- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Insulate PRVs, flow meters, and steam traps.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Hot water pumps, steam condensate pumps.
 - 5. In hot piping: Unions, flexible connectors, control valves, PRVs, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at all corridor walls, fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Corridor walls
- M. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity areas.
- N. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
 - 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:

- a. 40 mm (1-1/2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct and afterfilter housing.
- b. 40 mm (1-1/2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
- c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
- d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
 - 4. Concealed return air and exhaust duct:
 - a. In attics (where not subject to damage) and where exposed to outdoor weather: 50mmm (2 inch)thick insulation faced with FSK.

- b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
- c. In interstitial spaces (where not subject to damage): 40 mm (1-1/2 inch thick insulation faced with FSK.
- d. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

- D. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
 - 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
 - 6. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- E. Calcium Silicate:
 - Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping.

3.3 APPLICATION -BOILER PLANT, PIPE, VALVES, STRAINERS AND FITTINGS:

- A. Temperature range 120 to 230 degrees C (251 to 450 degrees F);
 - Application; Steam service 110 kpa (16 psig nominal) and higher, high pressure condensate to trap assembly.
 - 2. Insulation and Jacket:

- a. Calcium silicate for piping from zero to 1800 mm (6 feet) above platforms on which tanks or pumps are located.
- b. Mineral fiber for remaining locations.
- c. ASJ with PVC premolded fitting coverings.
- d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on atomizing steam and condensate lines at boilers and burners.
- 3. Thickness:

Nominal Thickness	Of Calcium Silicate Insulation
	(Boiler Plant)
Pipe Diameter mm	Insulation Thickness mm
(in)	(in)
25 (1 and below)	125 (5)
25 to 38 (1-1/4 to 1-	125 (5)
1/2)	
38 (1-1/2) and above	150 (6)

- B. Temperature range 100 to 121 degrees C (211 to 250 degrees F):
 - 1. Application: Steam service 103 kpa (15 psig) and below, trap assembly discharge piping.
 - 2. Insulation and Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (0 to 6 feet) above boiler room floor, feedwater heater mezzanine floor and access platform, and any floors or access platforms on which tanks or pumps are located.
 - b. Mineral Fiber or rigid closed cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on condensate lines at boilers and burners.
 - 3. Thickness-calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation						
Pipe Diameter mm (in)	Insulation Thickness mm (in)					
25 (1 and below)	50 (2)					
25 to 38 (1-1/4 to 1-	50 (2)					
1/2)						
38 (1-1/2) and above	75 (3)					

4.	Thickness-rigid	closed-cell	phenolic	foam	insulation:
----	-----------------	-------------	----------	------	-------------

Nominal Thickness Of Insulation					
Pipe Diameter mm (in)	Insulation Thickness mm (in)				
25 (1 and below)	38 (1.5)				
25 to 38 (1-1/4 to 1-	38 (1.5)				
1/2)					
38 (1-1/2) and above	75(3)				

- C. Temperature range 32 to 99 degrees C (90 to 211 degrees F):
 - Application: Pumped condensate, condensate transfer, condensate transfer pump recirculation, and condensate return from convertors.
 - 2. Insulation Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (six feet above boiler room floor, feedwater heater mezzanine floor and access platform and any floor or access platform on which tanks or pumps are located.
 - b. Mineral fiber or rigid closed-cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - 3. Thickness-calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation						
Pipe Diameter mm (in)	Insulation Thickness mm (in)					
25 (1 and below)	38 (1.5)					
25 to 38 (1-1/4 to 1-1/2)	50(2)					
38 (1-1/2) and above	75 (3)					

4. Thickness-rigid closed-cell phenolic foam insulation:

Nominal Thickness Of Insulation						
Pipe Diameter mm (in) Insulation Thickness mm (in)						
25 (1 and below)	19 (0.75)					
25 to 38 (1-1/4 to 1-1/2)	19 (0.75)					
38 (1-1/2) and above	25 (1)					

D. Protective insulation to prevent personnel injury:

1. Insulation thickness: 25 mm (1 inch).

- Insulation and jacket: Calcium silicate with ASJ except provide aluminum jacket on piping at boilers within 1800 mm (6 feet) of floor. Use PVC premolded fitting coverings when all service jacket is utilized.
- E. Installation:
 - At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.
 - Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 300 mm (12 inch) centers.
 - 3. At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.
 - 4. Terminate insulation and jacket hard and tight at anchor points.
 - 5. Terminate insulation at piping facilities not insulated with a 45 degree chamfered section of insulating and finishing cement covered with jacket.
 - 6. On calcium silicate, mineral fiber, insulated flanged fittings, strainers and valves with sections of pipe insulation cut, fitted and arranged neatly and firmly wired in place. Fill all cracks, voids and coat outer surface with insulating cement. Install jacket. Provide similar construction on welded and threaded fittings on calcium silicate systems or use premolded fitting insulation.
 - 7. On mineral fiber systems, insulate welded and threaded fittings more than 50 mm (2 inches) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.
 - Insulate fittings 50 mm (2 inches) and smaller with mastic finishing material and cover with jacket.
 - 9. Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.
 - 10. Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless steel bands 300 mm (12 inches) on center or aluminum screws on 200 mm (4 inch) centers.
 - 11. Do not insulate basket removal flanges on strainers.

3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)							
		Nominal	Pipe Size	Millimeters	(Inches)		
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above		
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)		
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)		
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping	38 (1.5)	38 (1.5)				

	only)				
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent

02-1-20

will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.

B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident EngineCOR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an all new DDC/ECC/BA Engineering Control Center..
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a computer at the Fargo VA interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.
 - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor

administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.

- 5. The control system shall accommodate 2 Engineering Control Center(s) and the control system shall accommodate 20 Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - 1. Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays,

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT which are provided and installed by the fire alarm system contractor, to be monitored.

- 2. Terminal units' velocity sensors
- 3. Unitary HVAC equipment Indoor Central-Station Air-Handling Units) controls. These include but are not limited to:
 - a. Discharge temperature control.
 - b. Economizer control.
 - c. Flowrate control.
 - d. Setpoint reset.
 - e. Time of day indexing.
 - f. Status alarm.
- Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 5. The following systems have limited control (as individually noted below) from the ECC:
 - a. Constant temperature rooms: temperature out of acceptable range and status alarms.
 - b. Domestic water heating systems: low temperature, high temperature and status alarms.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
VFDs	23 09 23	26	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Indoor Central-Station Air-Handling Units	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26

- F. This facility's existing direct-digital control system is manufactured by // //, and its ECC is located at // //. The existing system's top-end communications is via // //. The existing system's ECC and top-end controllers were installed in // //. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work. NOTE: NEED THIS INFO FROM FARGO VA
 - a. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.
 - b. The performance requirement for the combined system: the combined system shall operate and function as one complete system

including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.

I The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators.

1.2 RELATED WORK

- A. Section 21 10 00, Water-Based Fire-Suppression Systems.
- B. Section 22 35 00, Domestic Water Heat Exchangers.
- C. Section 23 21 13, Hydronic Piping.
- D. Section 23 22 13, Steam and Condensate Heating Piping.
- E. Section 23 31 00, HVAC Ducts and Casings.
- F. Section 23 36 00, Air Terminal Units.
- G. Section 23 73 00, Indoor Central-Station Air-Handling Units.
- H. Section 26 05 11, Requirements for Electrical Installations.
- I. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- J. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- K. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- L. Section 26 29 11, Motor Starters.
- M. Section 27 15 00, Communications Horizontal Cabling
- N. Section 28 31 00, Fire Detection and Alarm.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications

protocol allows diverse building automation devices to communicate data over and services over a network.

- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls

- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.

- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN
 paths. User Datagram Protocol (UDP) conveys information to "sockets"

without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It uses twisted-pair wiring for relatively low speed and low cost communication. Note: Do not use at Fargo VA.
- 00. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.

- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such

that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.

- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.

- 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading

Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 6. Color prints of proposed graphics with a list of points for display.
 - 7. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
 - 8. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
 - 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table

shall show element name, type of device, manufacturer, model number, and product data sheet number.

- Riser diagrams of wiring between central control unit and all control panels.
- 11. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 13. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.

- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.

- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-08	Standard Specification for Solder Metal
B88-09	Standard Specifications for Seamless Copper
	Water Tube
B88M-09	Standard Specification for Seamless Copper
	Water Tube (Metric)
B280-08	Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	Standard Specification for Polyethylene (PE)
	Plastic Tubing

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

94-10.....Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10....Access Control System Units 486A/486B-10....Wire Connectors 555S-11....Standard for Smoke Dampers 916-10....Energy Management Equipment 1076-10....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.

- c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
- d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
- e. Addressable elements, sensors, transducers and end devices.
- f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.

- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.
- E. Contractor option to expand existing controls architecture.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - 3. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.

- 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- E. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
- C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - 1. ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive or at contractor's option to expand existing.
 - c. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:

1) All required operator workstation software

- 2) A DDC database at least twice the size of the delivered system database
- One year of trend data based on the points specified to be trended at their specified trend intervals.
- d. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
- e. Parallel port: Enhanced.
- f. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.
- g. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.
- h. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- i. Mouse: Standard, compatible with installed software.
- i. Removable disk storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- 2. Audible Alarm: Manufacturer's standard.
- 5. Printers:
 - a. Provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface.
 - If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - 2) RAM: 512 MB, minimum.

- Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).
- Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x 11 inch paper cassette and with automatic feed.
- b. Provide a dedicated black/white tractor-feed dot matrix printer for status/alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.
 - Paper: One box of 2000 sheets of 8-1/2x11 multi-fold type printer paper.
- 6. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
 - e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

1) NFPA 70, Type CMP.

- 2) Flame Resistance: NFPA 262, Flame Test.
- 7. Self-contained uninterruptible power supply (UPS):
 - a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation.
 - b. Batteries: Sealed, valve regulated, recombinant, lead calcium.

- c. Accessories:
 - 1) Transient voltage suppression.
 - 2) Input-harmonics reduction.
 - 3) Rectifier/charger.
 - 4) Battery disconnect device.
 - 5) Static bypass transfer switch.
 - 6) Internal maintenance bypass/isolation switch.
 - 7) External maintenance bypass/isolation switch.
 - 8) Output isolation transformer.
 - 9) Remote UPS monitoring.
 - 10) Battery monitoring.
 - 11) Remote battery monitoring.
- D. ECC Software:
 - Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
 - 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
 - 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
 - Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems areWindows System 7.
 - 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a

graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.

- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows, and shall support the third party software.
- 9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.
- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the

relevant data for that particular screen. Additional help information shall be available through the use of hypertext.

- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - a. Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.
 - h. Program editing.
 - i. Operating activity log and system security.
 - j. Transfer data to third party software.
- 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System

security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.

- 15. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
 - d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
 - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
 - f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
 - g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work

in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.

- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.
 - j. Custom reports.
 - k. System diagnostic reports, including, list of digital controllers on the network.
 - 1. List of programs.
- 17. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE Standard 147. At a minimum, this report shall include:
 - a. Chilled water inlet and outlet temperature
 - b. Chilled water flow
 - c. Chilled water inlet and outlet pressures
 - d. Vibration levels or observation that vibration is not excessive
 - e. Motor amperes per phase
 - f. Motor volts per phase
 - g. Ambient temperature (dry-bulb and wet-bulb)
 - h. Date and time logged
- 18. Electrical, Gas, and Weather Reports
 - a. Electrical Meter Report: Provide a monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each building meter.

- b. Provide an annual (12-month) summary report showing the monthly electrical consumption and peak demand with time and date stamp for each meter.
- c. Gas Meter Report: Provide a monthly report showing the daily natural gas consumption for each meter. Provide an annual (12month) report that shows the monthly consumption for each meter.
- d. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.
- 19. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.

20. Collection and Analysis of Historical Data:

- a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
- b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word

processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.

- c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
- d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
- 21. Alarm Management:
 - Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
 - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
 - d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
 - e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- 22. System Configuration:

- a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies.
- b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

2.5 PORTABLE OPERATOR'S TERMINAL (POT)

- A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required. Provide operator terminal and interface on terminals.
- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - 1. POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.
- C. Software: POT shall include software equal to the software on the ECC.

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length,

08-01-20

without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.

6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
 - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
 - 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.

- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.

- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.

- d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
- e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
 - b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
 - c. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day

schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.10 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of

well is to be consistent with the system pressure in which it is to be installed.

- c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:

- a. Integral to unit.
- b. Locally display flow rate and total.
- c. Output flow signal to BMCS: Digital pulse type.
- 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
- Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100% humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.
 - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier.
 - e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
 - f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.

- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- F. Steam Flow Sensor/Transmitter:
 - Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.
 - e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent noncondensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
 - f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.
- G. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall
 be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale
 range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.11 CONTROL CABLES

A. General:

- Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for

singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.12 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Wall mounted thermostats shall have polished or brushed aluminum or manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.13 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.

- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).

c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).

- D. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.

- b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
- c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- E. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
 - 3. See drawings for required control operation.

2.14 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
 - 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on

the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.

- b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
- c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
 - c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
 - d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from $-45^{\circ}C$ to $70^{\circ}C$ ($-50^{\circ}F$ to $160^{\circ}F$).
 - 5) Analog output resolution (full scale output) of 0.025%.
 - e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	

<=1	2
>1 to <4	4
4 to <8	б
8 to <12	8
12 to <16	12
>=16	16

- a. Complete installation shall not exhibit more than ± 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within ± 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring

station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.

- F. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
 - 2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.

- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- A. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible

coaxial cables in a radius less than ten times the cable outside diameter.

- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.
 - h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting

or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.

- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days

prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.

- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - i. Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Glycol-water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- I. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- J. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- K. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B1.20.1-2013.....Pipe Threads, General Purpose (Inch)

B16.3-2011......Malleable Iron Threaded Fittings: Classes 150 and 300

B16.4-2011.....Gray Iron Threaded Fittings: (Classes 125 and 250)

B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 21 13 Piping-1

	B16.9-2012	Factory Made Wrought Buttwelding Fittings
	B16.11-2011	Forged Fittings, Socket-Welding and Threaded
	B16.18-2012	Cast Copper Alloy Solder Joint Pressure
		Fittings
	B16.22-2013	Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.24-2011	Cast Copper Alloy Pipe Flanges and Flanged
		Fittings: Classes 150, 300, 600, 900, 1500, and
		2500
	B16.39-2014	Malleable Iron Threaded Pipe Unions: Classes
		150, 250, and 300
	B16.42-06	Ductile Iron Pipe Flanges and Flanged Fittings
	В31.9-2014	Building Services Piping
	B40.100-2013	Pressure Gauges and Gauge Attachments
	ASME Boiler and Pressure	e Vessel Code:
	BPVC Section VIII-2015	Rules for Construction of Pressure Vessels
С.	American Society for Tes	sting and Materials (ASTM):
	A47/A47M-1999 (R2014)	Standard Specification for Ferritic Malleable
		Iron Castings
	A53/A53M-2012	Standard Specification for Pipe, Steel, Black
		and Hot-Dipped, Zinc-Coated, Welded and
		Seamless
	A106/A106M-2015	Standard Specification for Seamless Carbon
		Steel Pipe for High-Temperature Service
	A126-2004 (R2014)	Standard Specification for Gray Iron Castings
		for Valves, Flanges, and Pipe Fittings
	A183-2014	Standard Specification for Carbon Steel Track
		Bolts and Nuts
	A216/A216M-2014e1	Standard Specification for Steel Castings,
		Carbon, Suitable for Fusion Welding, for High-
		Temperature Service
	A307-2014	Standard Specification for Carbon Steel Bolts,
		Studs, and Threaded Rod 60,000 PSI Tensile
		Strength
	A536-1984 (R2014)	Standard Specification for Ductile Iron
		Castings
	B62-2015	Standard Specification for Composition Bronze
		or Ounce Metal Castings

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 21 13 Piping-2

B88-2014.....Standard Specification for Seamless Copper Water Tube F439-2013.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-2015.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 D. American Welding Society (AWS): B2.1/B2.1M-2014.....Standard for Welding Procedure and Performance Specification E. Expansion Joint Manufacturer's Association, Inc. (EJMA): EJMA..... Sanction Expansion Joint Manufacturer's Association Standards, Tenth Edition F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-2011.....Butterfly Valves SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2011.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-2010.....Gray Iron and Ductile Iron In-line, Spring-Loaded, Center-Guided Check Valves G. Tubular Exchanger Manufacturers Association (TEMA):

TEMA Standards-2007.....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.

- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gauges.
 - 15. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam to Water).
 - 2. Air separators.
 - 3. Expansion tanks.
 - 4. Buffer tanks.
- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.

- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- I. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than oneyear old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in hard copy and electronic version on CD or DVD and inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and

quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version compatible with the AutoCad software currently in use at the Fargo VA provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Condenser Water, Heating Hot Water, and Glycol-Water, and Vent Piping:
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:

1. From air handling units: Copper water tube, ASTM B88, Type M.

- D. From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.Chemical Feed Piping for Condenser Water Treatment: Copper water tube, ASTM B88, Type M.
- E. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).

- 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chromeplated ball with full port and Teflon seat at 2758 kPa (400 psigworking pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.

F. Check Valves:

- 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.
- Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.

- a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
- b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62.Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball or Globe style valve.
 - 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
 - Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.

- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless-steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.
- G. Portable Water Flow Indicating Meters:
 - Minimum 150 mm (6 inch) diameter dial, forged brass body, berylliumcopper bellows, designed for 1200 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 3 m (10 feet) lengths of hose with quick disconnect connections.
 - Factory-fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- H. Permanently Mounted Water Flow Indicating Meters: Minimum 150 mm (6 inch) diameter, or 457 mm (18 inch) long scale, for 120 percent of design flow rate, direct reading in gpm, with three valve manifold and two shut-off valves.

2.9 STRAINERS

- A. Basket or Y Type.
 - 1. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225 23 21 13 Piping-11

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.11 HYDRONIC SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Water): Shell and tube type, U-bend removable tube bundle, steam in shell, heated fluid in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.001.
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.
 - 4. Construction: In accordance with ASME BPVC Section VIII for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Air Purger: Cast iron or fabricated steel, 861 kPa (125 psig) water working pressure, for in-line installation.
- C. Tangential Air Separator: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless-steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless-steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the crosssectional area of connecting piping.

EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- D. Diaphragm Type Pre-Pressurized Expansion Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, welded steel shell, rustproof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 115 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- E. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless-steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).
- F. Pressure Relief Valve: Bronze or iron body and bronze or stainlesssteel trim, with testing lever. Comply with ASME BPVC Section VIII and bear ASME stamp.
- G. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.12 WATER FILTERS AND POT CHEMICAL FEEDERS

A. See Section 23 25 00, HVAC WATER TREATMENT, paragraph, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.13 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.

2.15 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - Chilled Water and Glycol-Water: 0 to 38 degrees C (32 to 100 degrees F).
 - Hot Water and Glycol-Water: 38 to 93 degrees C (100 to 200 degrees F).

2.16 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.

- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system

components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.5 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.6 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 21 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.8 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Hydronic pumps for Heating, Ventilating and Air Conditioning.
- B. Definitions:
 - Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
 - 3. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 21 13, HYDRONIC PIPING.
- J. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings:

Classes 25, 125, and 250

C. American Society for Testing and Materials (ASTM): A48/48M-2003 (R2012)....Standard Specification for Gray Iron Castings B62-2015.....Standard Specification for Composition Bronze or Ounce Metal Castings

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 23, HYDRONIC PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.

- 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
- 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
- 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
- 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- B. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be hard copy and in electronic version on CD or DVD and inserted into a three ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual

shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version compatible with the AutoCad software currently in use at the Fargo VA provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the COR.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1-1/2 times the designed pressure.
 - Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. Motors shall be open drip proof and operate at 1750 RPM unless noted otherwise.
 - d. Heating pumps shall be suitable for handling water to 107 degreesC (225 degrees F).
 - e. Provide coupling guards that meet OSHA requirements.
 - f. Pump Connections: Flanged.
 - g. Pump shall be factory tested.
 - h. Performance: As scheduled on the Contract Drawings.
 - 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip proof motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, MOTOR CONTROLLERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC paragraph, VARIABLE SPEED MOTOR CONTROLLERS. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.

- d. Direct drive pumps with integrated variable frequency drive (VFD) utilizing the design pump curve programmed on board the built-in controller (also known as sensor-less, or self-sensing). Pump to comply with paragraphs in this section. VFD and motor to comply with Section 26 29 11, MOTOR CONTROLLERS and Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- B. In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48/A48M.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 861 kPa (125 psig), ASME B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - Casing Drain and Gauge Taps: 15 mm (1/2 inch) plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, Type 1045 or stainless steel.
 - Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
 - 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.
 - e. Provide lip seal and slinger outboard of each bearing.
 - f. Base: Cast iron or fabricated steel for common mounting to a concrete base.
 - 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:

- a. Body: Cast iron with steel inlet vanes and combination diffuserstrainer-orifice cylinder with 5 mm (3/16 inch) diameter openings for pump protection. Provide taps for strainer blowdown and gauge connections.
- b. Provide adjustable foot support for suction piping.
- c. Strainer free area: Not less than five times the suction piping.
- d. Provide disposable startup strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- D. Coordinate location of thermometer and pressure gauges as per Section23 21 13, HYDRONIC PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 21 working days prior to startup and testing.
- D. Verify that the piping system has been flushed, cleaned and filled.
- E. Lubricate pumps before startup.
- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.

- H. Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- I. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- J. After several days of operation, replace the disposable startup strainer with a regular strainer in the suction diffuser.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 09 91 00, PAINTING.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Section 23 22 23, STEAM CONDENSATE PUMPS.
- L. Section 23 25 00, HVAC WATER TREATMENT.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B1.20.1-2013Pipe Threads, General Purpose (Inch)
B16.5-2013Pipe Flanges and Flanged Fittings: NPS 1/2
through NPS 24 Metric/Inch Standard
B16.9-2012Factory Made Wrought Buttwelding Fittings
B16.11-2011 Forged Fittings, Socket-Welding and Threaded
B16.42-2011Ductile Iron Pipe Flanges and Flanged Fittings:
Classes 150 and 300
B31.1-2014Power Piping
B31.9-2014Building Services Piping
B40.100-2013Pressure Gauges and Gauge Attachments
ASME Boiler and Pressure Vessel Code -
BPVC Section II-2015Materials

FARGO	VA HEALTHCARE	SYSTEM	VA PROJECT NO: 437-21-225
EHRM -	TRAINING AND	ADMIN. SPACE SUPPORT	23 22 13 Steam Cond Pipe-1

	BPVC Section VIII-2015.	.Rules for Construction of Pressure Vessels,	
		Division 1	
	BPVC Section IX-2015	.Welding, Brazing, and Fusing Qualifications	
C.	American Society for Te	sting and Materials (ASTM):	
	A53/A53M-2012	.Standard Specification for Pipe, Steel, Black	
		and Hot-Dipped, Zinc-Coated, Welded and	
		Seamless	
	A106/A106M-2015	.Standard Specification for Seamless Carbon	
		Steel Pipe for High-Temperature Service	
	A216/A216M-2014e1	.Standard Specification for Steel Castings,	
		Carbon, Suitable for Fusion Welding, for High-	
		Temperature Service	
	A285/A285M-2012	.Standard Specification for Pressure Vessel	
		Plates, Carbon Steel, Low-and Intermediate-	
		Tensile Strength	
	A307-2014	.Standard Specification for Carbon Steel Bolts,	
		Studs, and Threaded Rod 60,000 PSI Tensile	
		Strength	
	A516/A516M-2010 (R2015)	.Standard Specification for Pressure Vessel	
		Plates, Carbon Steel, for Moderate- and Lower-	
		Temperature Service	
	A536-1984 (R2014)	.Standard Specification for Ductile Iron	
		Castings	
	в62-2015	.Standard Specification for Composition Bronze	
		or Ounce Metal Castings	
D.	American Welding Societ		
		.Specification for Welding Procedure and	
		Performance Qualifications	
	Z49.1-2012	.Safety in Welding and Cutting and Allied	
		Processes	
Е.	Manufacturers Standardization Society (MSS) of the Valve and Fitting		
	Industry, Inc.:		
	SP-80-2013	.Bronze Gate, Globe, Angle, and Check Valves	
F.	Military Specifications	(Mil. Spec.):	
	MIL-S-901D-1989	.Shock Tests, H.I. (High Impact) Shipboard	
		Machinery, Equipment, and Systems	
G.	National Board of Boile	r and Pressure Vessel Inspectors (NB):	
		Safety Valves and Relief Valves	
FARGO	VA HEALTHCARE SYSTEM	VA PROJECT NO: 437-21-225	

EHRM - TRAINING AND ADMIN. SPACE SUPPORT 23 22 13 Steam Cond Pipe-2

H. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2007....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gauges.
 - 13. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.

- 2. One set of reproducible drawings.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
 - 2. Comply with provisions in ASME B31.9 and ASME B31.1.
 - 3. Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.

D. ASME Compliance: Comply with ASME B31.9 and ASME B31.1 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be hard copy and in electronic version on CD or DVD and inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version compatible with the AutoCad software currently in use at the Fargo VA provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.

- 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 3. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with nonasbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750 degrees F) and 10,342 kPa (1500 psig).
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT232213Steam Cond Pipe-7

- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.
 - b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 - High pressure steam 110 kPa (16 psig) and above system): Cast steel body, ASTM A216/A216M grade WCB, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.

E. Globe and Angle Valves:

- 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
 - b. 65 mm (2-1/2 inches) and larger:
 - Globe valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronzefaced disc (Teflon or composition facing permitted) and seat, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.

- b. 65 mm (2-1/2 inches) and larger:
 - Angle valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- F. Swing Check Valves:
 - 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45degree swing disc.
 - 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 110 kPa (16 psig) and above system: Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1035 kPa (150 psig) saturated steam.
 - 50 mm (2 inches) and smaller: Cast steel, rated for saturated steam at 1034 kPa (150 psig) threaded ends.
 - 2. 65 mm (2-1/2 inches) and larger: Cast steel rated for 1034 kPa (150 psig) saturated steam with 1034 kPa (150 psig) ASME flanged ends or forged steel with 1724 kPa (250 psig) ASME flanged ends.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.

2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft²hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components, pre-piped and pre-wired and supported on a welded steel frame or skid.
- C. Steam Pressure Reducing Valves in PRV Stations:
 - Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
 - Service: Provide controlled reduced pressure to steam piping systems.
 - Pressure control shall be smooth and continuous with maximum drop of 10 percent deviation from set pressure. Maximum flow capacity of each valve shall not exceed capacity of downstream safety valve(s).

- 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, Monel, or similar durable material.
 - a. Pressure rating for high pressure steam: Not less than 1035 kPa (150 psig) saturated steam.
 - b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.
- 5. Select pressure reducing valves to develop less than 85 db(A) at 1.5 m (5 feet) elevation above adjacent floor, and 1.5 m (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing valves shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.
- 6. Direct-Digital Control PRV Valves: May be furnished in lieu of steam operated valves. All specification requirements for steam operated valves apply. In the event of signal failure, valves shall be normally closed. Install per manufacturer's recommendation.
- D. Safety Valves and Accessories: Comply with ASME BPVC Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown. Valve shall have stainless steel seats and trim.
- E. Steam PRV for Individual Equipment: Cast steel body, screwed or flanged ends, rated 861 kPa (125 psig), or 20 percent above the working pressure, whichever is greater. Single-seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.
- F. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516/A516M or ASTM A285/A285M, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53/A53M Grade B, seamless or ERW, or ASTM A106/A106M Grade B seamless, Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 22 13 Steam Cond Pipe-11

Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:

- a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
- b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
- 2. Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of 4 bolt raised face flange is required. The use of unions is unacceptable for steam trap maintenance. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.
- Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- H. Pressure Driven Condensate Pump Trap:
 - Unit shall automatically trap and pump condensate from process and heating equipment under all operating conditions including vacuum.
 - Body shall be constructed of cast iron with all stainless-steel internals. The mechanism shall incorporate Inconel alloy or stainless steel springs.
 - 3. Motive Force: The pump trap shall utilize steam, compressed air, or inert gas to remove condensate from the receiving vessel. If two types of motive forces are used (e.g., primary and back-up force) the two systems shall never be permanently interconnected.
 - 4. Pumps shall require no electricity for operation.
 - 5. The pump trap shall include a bronze water level gauge with shut off valves.
 - 6. Check valves at inlet and outlet shall be steel or stainless steel.
 - 7. ASME BPVC Section VIII.
 - 8. Provide pump trap with removable insulation cove.
 - 9. Manufacturer standard paint finish.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 22 13 Steam Cond Pipe-12

- I. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- J. Steam Humidifiers:
 - 1. Fabrication requirements:
 - a. Tank: Stainless steel.
 - b. Enclosed cabinet, coated steel construction and air gap between cabinet and insulated tank.
 - c. Steam outlet on top of tank configured to connect to hose, pipe, or flange connection.
 - d. Tubular copper heat exchanger and header with nickel coating.
 - Mounting: Humidifier shall be mounted in central station air handling unit.
 - Steam trap and strainer: Humidifier shall include a float/thermostatic steam trap and steam supply line strainer.
 - 4. Controls: Control subpanel shall be factory-attached to central station air handling unit with all wiring between subpanel and humidifier completed at factory. A wiring diagram shall be included. The controller shall be microprocessor based and shall have the following features or functions:
 - a. Fully modulating (0 to 100 percent) control of humidifier outputs.
 - b. Up-time optimizer function to keep humidifier(s) operating through conditions such as but not limited to run-time faults, as long as safety conditions are met, minimizing production downtime.
 - c. Real-time clock to allow time-stamped alarm/message tracking, and scheduled events.
 - d. Factory commissioning of humidifier and control board, including system configuration as-ordered, factory unit testing, and operation before shipping.
 - e. Alarms, unit configuration, and usage timer values shall remain in nonvolatile memory indefinitely during a power outage.
 - f. The controls shall monitor, control, and/or adjust the following parameters:

- 1) Relative humidity (RH) set point, actual conditions in the space (from humidity transmitter), RH offset.
- Dew point set point, actual conditions in the space (from dew point transmitter), dew point offset.
- Relative humidity (RH) duct high limit set point (switch) and actual conditions.
- Relative humidity (RH) duct high limit set point, actual conditions (from transmitter), high limit span, and high limit offset.
- 5) Total system demand in % of humidifier capacity.
- 6) Total system output in kg/hr (lb/hr).
- Drain/flush duration, allowed days, and frequency based on usage.
- End-of-season drain status and hours humidifier is idle before end of season occurs.
- 9) Window glass surface temperature with programmable offset.
- Air temperature or other auxiliary temperature monitoring with programmable offset.
- 11) System alarms and system messages, current and previous.
- g. Programmable outputs for remote signaling of alarms and/or messages, device activation (such as a fan).
- h. System diagnostics that include:
 - 1) Test outputs function to verify component operation.
 - Test humidifier function by simulating demand to validate performance.
 - Data collection of RH, air temperature, alarms, and service messages for viewing from the keypad/display.
 - 4) Service notification scheduling.
 - 5) Password-protected system parameters.
 - 6) Keypad/display or Web interface displays in English.
 - 7) Numerical units displayed in inch-pound or SI units.
- 5. Other humidifier control features:
 - a. Interoperability using BACnet.
 - b. Removable keypad/display: Provide a keypad/display with cable for remote use.
 - c. Control input accessory:
 - 1) Airflow proving switch, pressure type: Airflow proving switch shall be diaphragm-operated with pitot tube for field

installation. Switch shall have an adjustable control point range of 12.5 to 2988 Pa (0.05 to 12 inch WG) Operating temperature range -40 to 82 degrees C (-40 to 180 degrees F). Compatible with 24, 120, and 240 VAC.

- 6. Distribution Manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 - a. If within 900 mm (3 feet) upstream of fan, damper or pre-filter.
 - b. If within 3 m (10 feet) upstream of after-filter.
- K. Steam Flow Meter/Recorder: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Steam Exhaust Head: Cast iron, fitted with baffle plates, to trap and drain condensed water.

2.9 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.
- C. Pressure gauge ranges shall be selected such that the normal operating pressure for each gauge is displayed near the midpoint of each gauge's range. Gauges with ranges selected such that the normal pressure is displayed at less than 30 percent or more than 70 percent of the gauge's range are prohibited. The units of pressure shall be psig.

2.10 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug. Pressure/temperature plug is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 762 mm (30 inches) Hg to 690 kPa (100 psig) range.

3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.11 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one

end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.

- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40 feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.

- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.
 - 2. An approved independent contractor hired, VA approved testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III

radiographer, employed by the testing firm, who shall sign the reading report.

- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.

3.5 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT232213Steam Cond Pipe-19

- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.7 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.9 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
 - - E N D - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

SECTION 23 22 23 STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.
- B. Definitions:
 - Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 23, STEAM CONDENSATE PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.

- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and if specified, for dual parallel pump operation.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.4 QUALITY ASSURANCE

- A. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Select pumps so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.
 - Provide all electric-powered pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
 - 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.

- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- 9. Furnish one spare seal and casing gasket for each pump to the (COR)Project Manager.
- B. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be hard copy and in electronic version on CD or DVD and inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version compatible with the AutoCad software currently in use at the Fargo VA provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 CONDENSATE PUMP, PAD-MOUNTED

- A. General: Factory assembled unit consisting of vented receiver tank, motor-driven pumps, interconnecting piping and wiring, motor controls (including starters, if necessary) and accessories, designed to receive, store, and pump steam condensate.
- B. Receiver Tank: Cast iron with threaded openings for connection of piping and accessories and facilities for mounting float switches. Receivers for simplex pumps shall include all facilities for future mounting of additional pump and controls.
- C. Furnish seals for condensate pump with a minimum temperature rating of 121 degrees C (250 degrees F).
- D. Centrifugal Pumps: Bronze fitted with mechanical shaft seals.
 - Designed to allow removal of rotating elements without disturbing connecting piping or pump casing mounting.
 - Shafts: Stainless steel, Type 416 or alloy steel with bronze shaft sleeves.
 - 3. Bearings: Regreaseable ball or roller type.
 - 4. Casing wearing rings: Bronze.
- E. Motors: Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.

FARGO VA HEALTHCARE SYSTEM V EHRM - TRAINING AND ADMIN. SPACE SUPPORT 23

- F. Pump Operation:
 - Float Switches: NEMA 4, mounted on receiver tank, to start and stop pumps in response to changes in the water level in the receiver and adjustable to permit the controlled water levels to be changed. Floats and connecting rods shall be copper, bronze or stainless steel.
 - 2. Alternator: Provide for duplex units to automatically start the second pump when the first pump fails in keeping the receiver water level from rising and to alternate the order of starting the pumps to equalize wear. For units 0.25 kW (1/3 hp) and smaller, the alternator may be the mechanical type for use in lieu of float switches.
- G. Electric Wiring: Suitable for 94 degrees C (200 degrees F) service; enclosed in liquid-tight flexible metal conduit where located outside of control cabinet.
- H. Receiver Accessories:
 - Thermometer: 38 to 216 degrees C (100 to 420 degrees F), mounted below minimum water level.
 - 2. Water level gauge glass: Brass with gauge cocks which automatically stop the flow of water when the glass is broken. Provide drain on the lower gauge cock and protection rods for the glass.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C. Sequence of installation for base-mounted pumps:
 - 1. Level and shim the unit base and grout to the concrete pad.
 - Shim the driver and realign the pump and driver. Correct axial, angular or parallel misalignment of the shafts.
 - 3. Connect properly aligned and independently supported piping.
 - 4. Recheck alignment.
- D. Pad-mounted Condensate Pump or Vacuum Pump: Level, shim, bolt, and grout the unit base onto the concrete pad.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT23 22 23 Steam Comd Pumps-5

E. Coordinate location of thermometer and pressure gauges as per Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Verify that the piping system has been flushed, cleaned and filled.
- E. Lubricate pumps before startup.
- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H. Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Field Quality Control and Certified Laboratory Reports: During the one year guarantee period, the water treatment laboratory shall provide not less than 12 reports based on on-site periodic visits, as stated in paragraph 1.3.B, sample taking and testing, and review with VA personnel, of water treatment control for the previous period. In addition to field tests, the water treatment laboratory shall provide certified laboratory test reports. These monitoring reports shall assess chemical treatment accuracy, scale formation, fouling and corrosion control, and shall contain instructions for the correction of any out-of-control condition.

- D. Log Forms: Provide one year supply of preprinted water treatment test log forms.
- E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Chemical treatment for open loop systems, including installation and operating instructions.
 - 4. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2008.....National Electric Code (NEC)

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.
- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with polypropylene or stainless steel core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 13.8 kPa (2 psig) at design flow rate when clean, and maximum pressure drop of 172 kPa (25 psig) when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 40 percent for chilled water system and 25 percent for preheat hydronic system.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- C. Do not valve in or operate system pumps until after system has been cleaned.
- D. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- E. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- F. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- G. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- F. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- G. Air Flow Control Valves and Terminal Units: Section 23 36 00, AIR TERMINAL UNITS.
- H. Supply Air Fans: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- J. Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- K. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

M. Smoke Detectors: Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - c. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Access sections.
 - d. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, with installation instructions.
 - Flexible ducts and clamps, with manufacturer's installation instructions.
 - 7. Flexible connections.
 - 8. Instrument test fittings.
 - 9. Details and design analysis of alternate or optional duct systems.
 - 10. COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other

Structures

- C. American Society for Testing and Materials (ASTM):
 - A167-99(2009).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - A653-09.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy
 - coated (Galvannealed) by the Hot-Dip process A1011-09a.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength
 - B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 - C1071-05e1.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)
 - E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials
- D. National Fire Protection Association (NFPA):
 - 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
 - 96-08..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 2nd Edition 2005.....HVAC Duct Construction Standards, Metal and Flexible

1st Edition - 1985.....HVAC Air Duct Leakage Test Manual

02-01-20

6th Edition - 2003.....Fibrous Glass Duct Construction Standards

F. Underwriters Laboratories, Inc. (UL):

181-08......Factory-Made Air Ducts and Air Connectors
555-06Standard for Fire Dampers
555S-06Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - 2. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:

0 to 50 mm (2 inch)downstream of terminal units, return duct, and exhaust duct.

- > 75 mm to 100 mm (3 inch to 4 inch)between central station air handling unit and terminal units.
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints

- Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
- Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.
 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service) and automatic control damper.
 - 3. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire barrier. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F)

mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).

- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.6 FLEXIBLE DUCT CONNECTIONS

A. Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.7 FIRESTOPPING MATERIAL

A. Refer to Section 07 84 00, FIRESTOPPING.

2.8 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B.Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers at locations indicated and where ducts penetrate fire rated walls, shafts and where required by the COR. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers to the COR.

- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing

ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Section 23 82 16, AIR COILS.
- J. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - All steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually

	300-08 Reverberant Room Method for Sound Testing of
	Fans
C.	American Society for Testing and Materials (ASTM):
	B117-07aStandard Practice for Operating Salt Spray
	(Fog) Apparatus
	D1735-08 Water Resistance
	of Coatings Using Water Fog Apparatus
	D3359-08 Adhesion by
	Tape Test
	G152-06 Open Flame
	Carbon Arc Light Apparatus for Exposure of Non-
	Metallic Materials
	G153-04 Standard Practice for Operating Enclosed Carbon
	Arc Light Apparatus for Exposure of Non-
	Metallic Materials
D.	National Fire Protection Association (NFPA):
	NFPA 96-08 Standard for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
Ε.	National Sanitation Foundation (NSF):
	37-07 Ways in Food and Food
	Service Establishments
F.	Underwriters Laboratories, Inc. (UL):
	181-2005

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

A. Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 1, 3, 9 or 10.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.

- 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
- 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
- 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
- 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
- 5. Belts: Oil resistant, non-sparking and non-static.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for controller/motor combination requirements.
- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air terminal units.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.
- G. Section 23 82 16, AIR COILS.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:

1. Air Terminal Units: Submit test data.

- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI):
 - 880-08.....to ARI 888-98

incorporated into standard posted 15th December 2002

C. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air

Conditioning and Ventilating Systems

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 23 36 00 Air Term Units-1 D. Underwriters Laboratories, Inc. (UL):

181-08.....Standard for Factory-Made Air Ducts and Air Connectors

E. American Society for Testing and Materials (ASTM):

C 665-06.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

A. In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - 1. All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
 - 2. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.

- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 613 Liters/second (1,300 CFM).
- C. Sound Power Levels:

Equipment submittal shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.
 - 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
 - Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.

- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.
- I. Fan powered terminal units:
 - 1. General: The fan will be in a series configuration inside the unit casing.
 - 2. Fan assembly: Forward curved centrifugal direct drive blower with adjustable speed controller.
 - a. Motor: Integral thermal overload protection.
 - 1) 115 V single phase.
 - 208/240 V single phase.
 - 277 V single phase.
 - b. Motor assembly: Completely isolated from cabinet with rubber vibration mounts.
 - 3. Wiring: Factory mounted and wire controls. Mount electrical components NEMA-1 control box with removable cover. Incorporate single point electrical connection to power source. Provide terminal strip in control box for field wiring of power source. Provide factory wired non-fused disconnect switch on each terminal unit.
 - 4. Provide 1-inch thick throwaway filter in the return air inlet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 08 90 00, LOUVERS and VENTS.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM): A167-99 (2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate,

Sheet and Strip

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

- E. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air
- F. Underwriters Laboratories, Inc. (UL):
 181-08.....UL Standard for Safety Factory-Made Air Ducts

Conditioning and Ventilating Systems

and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

A.Refer to Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 AIR OUTLETS AND INLETS

A. Materials:

- Steel or aluminum Use aluminum air outlets and inlets for facilities located in high-humidity areas. Exhaust air registers located in combination toilets and shower stalls shall be constructed from aluminum. Provide manufacturer's standard gasket.
- 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.

- 2. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- B. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 5. Linear Type: To match supply units.
 - 6. Door Grilles: Are furnished with the doors.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 40 00 HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.
- C. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, and rated efficiency.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):

52.2-2007......Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by

Particle Size, including Appendix J

- C. American Society of Mechanical Engineers (ASME): NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL): 900;Revision 15 July 2009 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the COR. B. The COR will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.

HVAC Filter Types

Table 2.2C			
MERV-A	Application	Particle Size	Thickness /Type
Value			
ASHRAE 62.2			
Appendix J			
8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch)
			Throwaway
11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300
			mm (12-inch) Rigid
			Cartridge
13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300
			mm (12-inch) Rigid
			Cartridge
14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300
			mm (12-inch) Rigid
			Cartridge
	Value ASHRAE 62.2 Appendix J 8-A 11-A 13-A	MERV-A Application Value ASHRAE 62.2 Appendix J 8-A Pre-Filter 11-A After-Filter 13-A After-Filter	MERV-A Value ASHRAE 62.2 Appendix JApplication Particle Size8-APre-Filter3 to 10 Microns11-AAfter-Filter1 to 3 Microns13-AAfter-Filter0.3 to 1 Microns

C. HVAC Filter Types

D. HEPA Filters

HEPA Filters Table 2.2D				
Efficiency at 0.3 Micron	Application	Initial Resistance (inches w.g.)	Rated CFM	Construction
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.

- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.5 HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTERS STANDARD CAPACITY (FINAL FILTER APPLICATION)

- A. Air filters shall be HEPA grade standard capacity air filters with waterproof micro glass fiber media, corrugated aluminum separators, urethane sealant, 16-gauge steel enclosing frame and fluid sealing gasket. Sizes shall be as noted on drawings or other supporting materials.
- B. Construction: Filter media shall be one continuous pleating of microfine glass fiber media. Pleats shall be uniformly separated by corrugated aluminum separators incorporating a hemmed edge to prevent

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 23 40 00 Air Clean Device-5 damage to the media. The media pack shall be potted into the enclosing frame with a fire-retardant urethane sealant. The enclosing frame shall be of 16-gauge steel, with a zinc aluminum alloy finish, and shall be bonded to the media pack to form a rugged and durable enclosure. The filter shall be assembled without the use of fasteners to ensure no frame penetrations. Overall dimensional tolerance shall be correct within -1/8", +0", and square within 1/8". A poured-in-place seamless sealing gasket shall be included on the downstream side of the enclosing frame to form a positive seal upon installation.

C. Performance: The filter shall have a tested efficiency of 99.97%when evaluated according to IEST Recommended Practice. Initial resistance to airflow shall not exceed 1.0" w.g. at rated capacity. Filter shall be listed by Underwriters Laboratories as UL 900. The filter shall be capable of withstanding 10" w.g. without failure of the media pack. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

HEPA Performance (Standard Capacity) Table 2.5A			
Nominal Size	Airflow Capacity	Media Area	
(inches)	(cfm)	(Square Feet)	
24H by 24W by 12D	1080 at 1.0" w.g.	153	
24H by 12W by 12D	500 at 1.0" w.g.	33	
Follow manufacturers' recommendation for change out resistance, typically double the initial.			

D. Supporting Data: The filter shall be labeled as to tested efficiency, rated/tested cfm, pressure drop and shall be serialized for identification. The manufacturer shall supply a Certificate of Conformance for each HEPA filter supplied to the facility.

- 2.6 HEPA FILTERS HIGH CAPACITY V-BANK HIGH CAPACITY FILTERS (FINAL FILTER APPLICATION)
 - A. Air filters shall be absolute grade HEPA filters consisting of pleated media packs assembled in a V-bank configuration, polyurethane sealant, anodized aluminum enclosure and seamless fluid sealing gasket. Sizes shall be as noted on enclosed drawings or other supporting materials.
 - B. Construction: Filter media shall be micro fiber glass formed into minipleat pleat-in-pleat V-bank design. The media packs shall be potted into the enclosing frame with fire retardant polyurethane sealant. An enclosing frame of anodized extruded aluminum shall form a rugged and durable enclosure. A seamless sealing gasket shall be included on the downstream side of the filter to form a positive seal upon installation.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT C. Performance: Filter efficiency at 0.3 micron shall be 99.99% when evaluated according to the IEST Recommended Practice for applicable type. Each filter shall be labeled as to tested performance. Initial resistance target shall not exceed 1.0" w.g. at rated airflow.

HEPA Performance V-Bank Style (High Capacity)				
Table 2.5B				
Nominal Size	Airflow Capacity	Media Area		
(inches)	(cfm)	(Square Feet)		
24H by 24W by 12D	2000 at 1.0″ w.g.	390		
24H by 12W by 12D	900 at 1.0″ w.g.	174		
Follow manufacturers' recommendation for change out				
resistance, typically double the initial.				

- D. Supporting Data: The filter shall be labeled as to tested efficiency, rated/tested cfm, pressure drop and shall be serialized for identification. The manufacturer shall supply a Certificate of Conformance for each HEPA filter supplied to the facility.
- E. Filter must be listed as UL 586 and UL 900 per Underwriters Laboratories. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

2.7 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal

holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of high-efficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.

- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- Manufacturer shall provide evidence of facility certification to ISO 9001:2000.
- B. Holding Frame System (HVAC Grade):
 - Air filter-holding frames shall be 16-gauge galvanized steel with filter sealing flange, centering dimples, sealing gasket and lances for appropriate air filter fasteners. Sizes shall be noted on drawings or other supporting materials.
 - 2. Construction: Filter holding frame shall be constructed of 16-gauge galvanized steel. The frame shall be assembled from two corner sections and welded to assure a rigid and durable frame assembly. The frame shall include a variety of pre-punched lances for filter fastener attachment. Fastener shall be capable of being installed without the use of tools, nuts or bolts. Lance penetrations shall be upstream of filter flange to assure leak-free integrity. The frame shall include filter-centering dimples on each frame wall to facilitate ease of filter installation and assure filter centering against filter sealing flange. A 3/4" filter-sealing flange shall be flush mitered and a permanently mounted polyurethane foam gasket shall be mounted on the sealing flange to assure filter to frame sealing integrity.
 - Manufacturer shall provide evidence of facility certification to ISO 9001:2000.
 - C. Side-Access Housing (HEPA Grade)

- Filter housing shall be two-stage filter system consisting of 14gauge galvanized steel enclosure, spring-loaded crank-type sealing assembly for gasket seal type final filters, insulated dual-access doors with gasketing and positive sealing doorknobs. In-line housing depth shall not exceed 25". Sizes shall be as noted on enclosed drawings or other supporting materials.
- 2. Construction: The housing shall be constructed of 14-gauge galvanized steel with mating flanges to facilitate attachment to other system components. All pressure boundaries shall be of all welded construction. The housing shall be weatherproof and suitable for rooftop/outdoor installation. A prefilter track to accommodate nominal 2" deep prefilters, shall be an integral component of the housing. The housing shall incorporate a spring-loaded crank-type final filter sealing mechanism. The mechanism shall be geared to exert 700 pounds of pressure against each filter. The clamping frame shall have a continuous flat surface seal to compress all four downstream gasketed surfaces of the downstream seal filter. The final filter locking mechanism shall include a 3/4" socket adapter to facilitate opening or closing the mechanism. Insulated dual access doors shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable UV-resistant positive sealing knobs. The access doors shall be both hinged for swing open operation or designed to be completely removable. The housing shall include static pressure ports (1/8" NPT male) to facilitate pressure drop measurements across prefilter, final filter, or combination thereof.
- 3. Performance: Manufacturer shall provide evidence of facility certification to ISO 9001:2008.
- D. Built-up Bank HEPA Holding Frames
 - Holding frames shall be constructed of 14-guage galvanized steel. Frames shall be welded and include centering dimples, pre-drilled mounting holes, filter sealing flange and swing bolt assemblies. An appropriate number of swing bolts to match air filters shall also be included. Sizes shall be as noted on drawings or other supporting materials.
 - 2. Construction: Filter frame shall be all-welded construction of 14guage galvanized steel. The frame shall include pre-drilled mounting holes to align frame-to-frame and ensure built-up bank support.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 23 40 00 Air Clean Device-9 Annular based centering dimples shall be an integral component to assist in proper seating of filter gasket to filter sealing flange. Assembly holes shall be within dimples to recess assembly bolts. Filter securing swing bolt assemblies, of the same construction as the frame, shall be offset to facilitate multiple filter installations. The assembly shall include appropriate swing bolts to match filter depth and equi-bearing clamps to allow uniform filter gasket sealing.

- 3. Performance: The sealing assembly shall be capable of sealing each element with 30 inch/lbs. of torque to 50% filter gasket compression. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.
- E. Equipment Identification: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.8 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.9 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install supports, filters and gages in accordance with manufacturer's instructions.

B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the Resident Engineer.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of single or multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Sound and vibration requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- C. Piping and duct insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- D. Piping and valves: Section 23 21 13 / 23 22 13, HYDRONIC PIPING / STEAM AND CONDENSATE HEATING PIPING.
- E. Heating and cooling coils and pressure requirements: Section 23 82 16, AIR COILS.
- F. Return and exhaust fans: Section 23 34 00, HVAC FANS.
- G. Requirements for flexible duct connectors and sound absorbing duct lining, and air leakage: Section 23 31 00, HVAC DUCTS and CASINGS.
- H. Air filters and filters' efficiency: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. HVAC controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Testing, adjusting and balancing of air and water flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- K. Types of motors: Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- L. Types of motor starters: Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- M. General Commissioning: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- N. HVAC Commissioning: Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including PlenumFans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - Submittals for AHUs shall include fans, drives, motors, coils, humidifiers, mixing box with outside/return air dampers, filter housings, blender sections, and all other related accessories. The

contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).

- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing. Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.

- 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-01......Standard for Forced-Circulation Air-Heating and Air-Cooling Coils

430-09.....Central Station Air Handling Units

- C. Air Movement and Control Association International, Inc. (AMCA): 210-07.....Laboratory Methods of Testing Fans for Rating
- D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):

170-2008.....Ventilation of Health Care Facilities

- E. American Society for Testing and Materials (ASTM):
 - ASTM B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus
 - ASTM D1654-08.....Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
 - ASTM D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus

ASTM D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test

F. Military Specifications (Mil. Spec.): MIL-P-21035B-2003.....Paint, High Zinc Dust Content, Galvanizing

Repair (Metric)

G. National Fire Protection Association (NFPA):

NFPA 90A.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009

H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

- A. General:
 - 1. AHUS shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.
 - 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
 - 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job

site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.

- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.
- B. Base:
 - 1. Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (6 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.
 - AHUs shall be completely self supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.

- 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Table	2.	1.	C.	2

Outer Panel	0.8 mm (22 Gage) Minimum	
Inner Panel	0.8 mm (22 Gage) Minimum	
Insulation	Foam	
Thickness	50 mm (2 inch) Minimum	
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum	
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)	
	Minimum	

3. Casing Construction (Contractor's Option):

Table 2.1.C.3

Outer Panel	1.3 mm (18 Gage) Minimum		
Inner Panel	1.0 mm (20 Gage) Minimum		
Insulation	Fiberglass		
Thickness	50 mm (2 inch) Minimum		
Density	24 kg/m ³ (1.5 lb/ft ³) Minimum		
Total R Value	1.4 m ² .K/W (8.0 ft ² .°F.hr/Btu)		
	Minimum		

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for

future maintenance, repair, or modifications. Welded exterior panels are not acceptable.

- 6. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier, and coil sections shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting.

No cutting by torches will be allowed. Neatly seal all openings airtight.

- D. Floor:
 - 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
 - 2. Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - Installation, including frame, shall be designed and sealed to prevent blow-by.
- H. Plenum Fans Single and/or Multiple Fans in an Array:
 - General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan

wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.

- 2. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- 5. Fan Accessories
 - a. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- I. Fan Motor, Drive, and Mounting Assembly (Plenum Fans): Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown

in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

- J. Multi-zone damper blades shall be galvanized steel or aluminum type. Dampers shall have metal compressible jamb seals and extruded vinyl or metal blade edge seals. Dampers shall rotate on stainless steel bearings or bronze bushings. Leakage rate shall not exceed 2.5 cubic meters/minute/square meter (8 CFM per sq. foot) at 250 Pa (1 inch WG). Dampers and operators shall be furnished and factory installed by AHU manufacturer. Damper operators shall be of the same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 2.8 cubic meters/min/square meter (9 CFM per square foot) at 995 Pa (4 inch WG) Electronic operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Blenders: Construction of the blender section shall be of welded aluminum 2 mm (0.081 inch) thick framing and turbulators. The mixer shall have no moving parts and shall contain a primary set of directional changing vanes, a secondary set of turbulator vanes, and a cone design for mixing of air streams. Certify blender performance to achieve no more than a 5°F variation across the cross section of the AHU measured 12 inches downstream of the blender over a face velocity range of 1-4 m/s (200-800 FPM).

- M. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- N. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections.
 - 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.
 - 2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)

- c. Water Immersion (Minimum 260 Hours)
- d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
- e. Impact Resistance (Up to 160 Inch/Pound)
- 3. Water Coils, Including Glycol-Water.
- 4. Integral Face and Bypass Steam Coils: Provide integral vertical face and bypass dampers. Electric damper operators shall be furnished and mounted by the AHU manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- 5. Steam Distributing Tube Coils
- O. Humidifier: Coordinate the humidification requirements with section 23 22 13 Steam and Condensate Heating Piping. Provide air-handling unitmounted humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.
- P. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- Q. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Provide a convenience duplex receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies finned-tube radiation.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- G. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- I. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- J. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- K. Section 23 82 16, AIR COILS: Additional coil requirements.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide guarantee in accordance with FAR clause 52.246-21

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Finned-tube radiation.
- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.

- D. Operation and Maintenance Manuals: Submit in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI): National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air Conditioning and Ventilating Systems 70-2017.....National Electrical Code
 C. Underwriters Laboratories, Inc. (UL): 181-2013.....Standard for Factory-Made Air Ducts and Air Connectors

1995-2015..... Heating and Cooling Equipment

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. General: vertical or horizontal type for steam, hot water or electric heating medium, as indicated.
- B. Cabinet: not less than 1.3 mm (18 gage) steel with front panel for vertical units and hinged front panel for horizontal units. Finish on exposed cabinet shall be factory-baked enamel in manufacturer's standard color as selected by the architect. Provide 76 mm (3-inch) high sub-base for vertical floor mounted units.
- C. Fan: centrifugal blower, direct driven by a single phase, ECM, electric motor with inherent overload protection. Provide resilient motor/fan mount.
- D. Filter: manufacturer's standard, one-inch thick, throwaway type merv 7 filters.
- E. Hot water coil: aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kpa (75 psi) steam working pressure.
- F. Factory mounted controls: Standard factory controls enclosure for proportional ECM fan motor. Provide field installed remote wall mounted line voltage electric space thermostats to control the unit fan. Provide an aquastat on hot water units to prevent fan operation when the heating system is off.

2.8 RADIANT CEILING PANELS

A. Hydronic Radiant Panels: Lay-in type, 1.00 mm (0.040) inch aluminum faceplate with 13 mm (l/2-inch) I.D copper serpentine water coil mechanically bonded to faceplate, finished with two coats baked white polyester finish with a light reflection value of 70 to 80 percent. Panels shall weigh no more than 0.68 kg (l.5 pounds) per square foot when filled with water. Provide 75 mm (3-inch) un-faced fiberglass blanket insulation pre-cut for installation above panels. Panels shall be arranged as shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they always remain stationary. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS
- C. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- D. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- F. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 36 00, or AIR TERMINAL UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-01.....Forced-Circulation Air-Cooling and Air-Heating

```
Coils
```

C. American Society for Testing and Materials (ASTM): B75/75M-02.....Standard Specifications for Seamless Copper

Tube

- D. National Fire Protection Association (NFPA): 70-11.....National Electric Code
- E. National Electric Manufacturers Association (NEMA): 250-11.....Enclosures for Electrical Equipment (1,000

Volts Maximum)

F. Underwriters Laboratories, Inc. (UL):
 1996-09.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- C. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- F. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- G. Pressures kPa (PSIG):

Pressure	Water Coil	Steam Coil	Refrigerant Coil
Test	2070 (300)	1725 (250)	2070 (300)
Working	1380 (200)	520 (75)	1725 (250)

- H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- J. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.K. Steam Distributing Coils: Conform to ASTM B75 and ARI 410. Minimum 9.5 mm (3/8-inch) steam distributing tubing installed concentrically in 25 mm (one-inch) OD condensing coil tubes.
- L. Integral Face and Bypass Type Steam Coil:
 - 1. Exempt from ARI Test and Certification.
 - 2. Conform to ASTM B75 and ARI 410.
 - Minimum 16 mm (5/8-inch) steam tube installed in concentrically 25 mm (one-inch) OD diameter tube.
 - 4. Casing: 1.9 mm (14 gage) galvanized steel with corrosion resistant paint.
 - 5. Tubes and Bypasses: Vertical or horizontal.
- M. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (l6 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and electric operators. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.2 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:l. Cooling, all types.
 - 2. Heating or preheat.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing

schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, conductors and cable, panelboards, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 - Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of forty five (45) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR twenty one (21) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.

3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.

- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Provide temporary power during site power excavation and relocation to assure minimal interference with normal functioning of the facility.
 - a. Where temporary power requirements are not shown directly on construction documents contractor to verify downstream power load before ordering rental generators. Generator to be onsite prior to performing work.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, separately enclosed

circuit breakers, individual breakers and controllers in switchboards, control devices and other significant equipment.

- 1. Install all device labelling per site specific standards.
- 2. Provide sample of all equipment labels to COR for approval prior to installation.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

".

be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing

the system or equipment and the local representatives for the material or equipment.

- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved

nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.

b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-14.....Thermoset-Insulated Wires and Cables 83-14.....Thermoplastic-Insulated Wires and Cables 467-13.....Grounding and Bonding Equipment 486A-486B-13.....Wire Connectors 486C-13.....Splicing Wire Connectors

 - 486D-15.....Sealed Wire Connector Systems
 - 486E-15.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
 - 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables
 - 514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:

- 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
- 2. No. 8 AWG and larger: Stranded.
- 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
- 4. Insulation: THHN-THWN.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper conductors.
 - The integral insulator shall have a skirt to completely cover the stripped conductors.

- The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes or junction boxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench. B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:

- a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
- b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
- c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.
 - 3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-13.....Standard Specification for Hard-Drawn Copper Wire

- B3-13.....for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

81-12..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements

- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-15.....National Electrical Safety Code
 - 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):

83-14Thermoplastic-Insulated Wires and Cables 467-13Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN.

2.2 GROUND CONNECTIONS

- A. Above Grade:
 - Bonding Jumpers: Listed for use with copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.

- 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Panelboards, Motor Control Centers, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.4 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.

- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes.
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - 1. Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.5 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.6 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.7 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.

- b. Size and location of panels and pull-boxes.
- c. Layout of required conduit penetrations. Penetrations through structural elements will not be allowed.
- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12......for the Design of

Cold-Formed Steel Structural Members

C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13..... Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic

Tubing)

FB2.20-14.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-16..... Surface Metal Raceway and Fittings 6-07.....Electrical Rigid Metal Conduit - Steel 50-15..... Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13.....Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-14.....Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 3/4-inch unless otherwise shown. Where permitted by the NEC, 3/4-inch flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 3/4-inch.
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.

- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
 - a. Flexible conduit shall only be allowed on a case by case basis and will require COR approval prior to ordering or installation.
 - b. Flexible conduit shall be limited to lengths of 6 ft unprotected by rigid conduit.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
 - a. Flexible conduit shall only be allowed on a case by case basis and will require COR approval prior to ordering or installation.
 - b. Flexible conduit shall be limited to lengths of 6 ft unprotected by rigid conduit.
- 7. Surface Metal Raceway: Shall conform to UL 5.
 - a. Surface mounted raceway shall only be allowed on a case by case basis and will require COR approval prior to ordering or installation.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor.

In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.

- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and Connectors: Concrete-tight and rain-tight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:

01-01-18

- 1. Comply with UL-50 and UL-514A.
- 2. Rustproof cast metal where required by the NEC or shown on drawings.
- 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- 4. Support boxes on 2 sides or from behind to prevent movement.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through walls or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.

- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown on drawings.
 - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.

- 2. Align and run conduit parallel or perpendicular to the building lines.
- 3. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
- 4. Tightening set screws with pliers is prohibited.
- 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.

- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits shall not be run on roof.

3.6 MOTORS AND VIBRATING EOUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.7 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.

01-01-18

- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.8 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.

- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device downstream from Building 9 switchgear.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - Certifications: Two weeks prior to final inspection, submit the following.

a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE):

241-90.....Recommended Practice Electrical Systems in Commercial Buildings

- 242-03.....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
- 399-97.....Recommended Practice for Industrial and Commercial Power Systems Analysis
- 1584-02.....Performing Arc-Flash Hazards Calculations
- 1584A-04.....Performing Arc-Flash Hazards Calculations -Amendment 1
- 1584B-11.....Performing Arc-Flash Hazards Calculations Amendment 2
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-18....Standard for Electrical Safety in the Workplace 99-18.....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.

- d. Voltage at each bus.
- e. Identification of each bus, matching the identification on the drawings.
- f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Selective Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.

- f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table: a. Device identification.

 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 2. Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
 - 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 26 08 00 Commissioning of Elec-2

VA PROJECT NO: 437-21-225

11-1-16

resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements. ----- END -----

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 26 08 00 Commissioning of Elec-4

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data

sheets, wiring diagrams, and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA):
 - C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements
 - ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
 - ICS-6-16.....Standard for Industrial Controls and Systems Enclosures
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

20-10.....Standard for General-Use Snap Switches

98-16..... Switches

773-16..... Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

773A-16..... Nonindustrial Photoelectric Switches for

Lighting Control

916-15..... Standard for Energy Management Equipment

Systems

917-06.....Clock Operated Switches

924-16.....Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 30 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Provide single pole double throw toggle switch with center off for full bypass of automatic controls. Label three positions of switch as:
 - a. Top: On.
 - b. Center: Off.
 - c. Bottom: Auto.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - 9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.

- 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.2 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- C. Aiming for wall-mounted and ceiling-mounted, occupancy or vacancy sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy or vacancy sensor "on" duration to 30 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.

- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- G. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):
 IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-14....Enclosures for Electrical Equipment (1,000V)

Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

70E-18.....Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-15.....Enclosures for Electrical Equipment

67-09....Panelboards

489-16..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.

- B. Trims:
 - 1. Hinged "door-in-door" type Keyed to Square D 251.
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
 - 4. Inner and outer doors shall open left to right.
 - 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.

- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards.
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure.
- G. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.

- b. Inspect physical, electrical, and mechanical condition.
- c. Verify appropriate anchorage and required area clearances.
- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015).....General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16.....Surface Metal Raceways and Fittings 20-10.....General-Use Snap Switches
 - 231-16.....Power Outlets
 - 467-13.....Grounding and Bonding Equipment
 - 498-17.....Attachment Plugs and Receptacles
 - 943-16.....Ground-Fault Circuit-Interrupters
 - 1449-14.....Surge Protective Devices

1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Normal Utility power Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:

a. Bodies Shall be red in color.

- 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.

- b. Tamper proof receptacles shall be installed in office spaces, waiting rooms, reception, patient toilets, corridors, and exam rooms in accordance with NEC 406.12.
- C. Duplex Receptacles Non-hospital Grade: shall not be allowed on this project.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.

- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Install horizontally mounted receptacles with the ground pin to the right.
- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - 2. Receptacle testing such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

- c. Certification from the manufacturer that representative motor controllers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-14.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems

C37.90.1-12.....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C. International Code Council (ICC): IBC-15..... International Building Code D. National Electrical Manufacturers Association (NEMA): ICS 1-00(R2015).....Industrial Control and Systems: General Requirements ICS 1.1-84(R2015).....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-00(R2005).....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-15.....Industrial Control and Systems: Terminal Blocks ICS 6-93 (R2016) Industrial Control and Systems: Enclosures ICS 7-14.....Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-14.....Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL): 508A-13.....Industrial Control Panels 508C-16..... Power Conversion Equipment

1449-14..... Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with fused switch disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.

- 1. Fused Switches:
 - a. Quick-make, quick-break type.
 - b. Minimum duty rating shall be NEMA classification General Duty (GD) for 240 Volts and NEMA classification Heavy Duty (HD) for 480 Volts.
 - c. Horsepower rated, and shall have the following features:
 - 1) Copper blades, visible in the OFF position.
 - 2) An arc chute for each pole.
 - 3) Fuse holders for the sizes and types of fuses specified or as shown on the drawings.
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - 2. Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - 3. For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermal type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - 4. Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.

- 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - Units shall include thermal overload relays, on-off operator, pilot light, normally open and normally closed auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT

- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 899 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +89°F Minimum -18°F
 - 3. Relative Humidity: 50%
 - 4. VSMC Location: Air conditioned space.
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 26 29 11 Motor Controllers-6

- 3. Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
- 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
- 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
- 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
- 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - q. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- 9. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- 10. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.

- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.

- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- C. Install manual motor controllers in flush enclosures in finished areas.
- D. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- E. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- F. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COR before increasing settings.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 26 29 11 Motor Controllers-9

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - q. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COR. ---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - c. Certification from the manufacturer that representative enclosed switches and circuit breakers have been seismically tested to International Building Code requirements. Certification shall be

based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

- 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-12.....Low Voltage Cartridge Fuses
 - KS 1-13......Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL): 98-16.....Enclosed and Dead-Front Switches 248 1-11....Low Voltage Fuses

489-13..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.4 CARTRIDGE FUSES

A. Shall be in accordance with NEMA FU 1.

- B. Service Entrance: Class RK1, time delay.
- C. Feeders: Class RK1, time delay or Class RK5, time delay.
- D. Motor Branch Circuits: Class RK1 or Class RK5, time delay.
- E. Other Branch Circuits: Class RK1, time delay or Class RK5, time delay.
- F. Control Circuits: Class CC, time delay.

2.5 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the SPD has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits

IEEE C62.45-08.....Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits

C. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

UL 1283-15.....Electromagnetic Interference Filters

UL 1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.

- B. Factory-installed SPD: Panelboard manufacturer shall install SPD at the factory.
- D. Do not perform insulation resistance tests on switchgear, switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the COR.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.

- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-

in Panel Ceilings

- C. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA): LM-79-08.....Electrical and Photometric Measurements of Solid-State Lighting Products

LM-80-15..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995).....Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15..... International Building Code H. National Electrical Manufacturer's Association (NEMA): C78.376-14.....Chromaticity of Fluorescent Lamps C82.1-04(R2015)..... Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02(R2016).....Method of Measurement of Fluorescent Lamp Ballasts C82.4-17.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-17..... Eamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL 9-11.....Dimming of T8 Fluorescent Lighting Systems SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18.....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17....Lampholders 542-05..... Sluorescent Lamp Starters Locations 924-16..... Emergency Lighting and Power Equipment 935-01..... Ballasts 1029-94......High-Intensity-Discharge Lamp Ballasts 1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts 1598-08.....Luminaires 1574-04.....Track Lighting Systems

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT26 51 00 Interior Lighting-3

2108-15.....Low-Voltage Lighting Systems

8750-15.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - 1. Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

LED LIGHT FIXTURES 2.2

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - 2. LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.

- f. Total Harmonic Distortion: ≤ 20%.
- g. Comply with FCC 47 CFR Part 15.
- 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed lighting fixtures:
 - All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a

horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.

- b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
- c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 5. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 26 51 00 Interior Lighting-6

- b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- c. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform the following:

- 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
- 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
 - b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - 1. Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere	
AC	Alternating Current	
AE	Architect and Engineer	
AFF	Above Finished Floor	
AHJ	Authority Having Jurisdiction	
ANSI	American National Standards Institute	
AWG	American Wire Gauge (refer to STP and UTP)	
AWS	Advanced Wireless Services	
BCT	Bonding Conductor for Telecommunications (also	
	Telecommunications Bonding Conductor (TBC))	
BDA	Bi-Directional Amplifier	
BICSI	Building Industry Consulting Service International	
BIM	Building Information Modeling	
BOM	Bill of Materials	
BTU	British Thermal Units	
BUCR	Back-up Computer Room	
BTS	Base Transceiver Station	
CAD	AutoCAD	
CBOPC	Community Based Out Patient Clinic	

CBC	Coupled Bonding Conductor	
CBOC	Community Based Out Patient Clinic (refer to CBOPC,	
	OPC, VAMC)	
CCS	TIP's Cross Connection System (refer to VCCS and	
	HCCS)	
CFE	Contractor Furnished Equipment	
CFM	US Department of Veterans Affairs Office of	
	Construction and Facilities Management	
CFR	Consolidated Federal Regulations	
CIO	Communication Information Officer (Facility, VISN or	
	Region)	
CM	Centimeters	
CO	Central Office	
COR	Contracting Officer Representative	
CPU	Central Processing Unit	
CSU	Customer Service Unit	
CUP	Conditional Use Permit(s) - Federal/GSA for VA	
dB	Decibel	
dBm	Decibel Measured	
dBmV	Decibel per milli-Volt	
DC	Direct Current	
DEA	United States Drug Enforcement Administration	
DSU	Data Service Unit	
EBC	Equipment Bonding Conductor	
ECC	Engineering Control Center (refer to DCR, EMCR)	
EDGE	Enhanced Data (Rates) for GSM Evolution	
EDM	Electrical Design Manual	
EMCR	Emergency Management Control Room (refer to DCR, ECC)	
EMI	Electromagnetic Interference (refer to RFI)	
EMS	Emergency Medical Service	
EMT	Electrical Metallic Tubing or thin wall conduit	
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,	
	LEC)	

EPBX	Electronic Digital Private Branch Exchange	
ESR	Vendor's Engineering Service Report	
FA	Fire Alarm	
FAR	Federal Acquisition Regulations in Chapter 1 of Title	
	48 of Code of Federal Regulations	
FMS	VA's Headquarters or Medical Center Facility's	
	Management Service	
FR	Frequency (refer to RF)	
FTS	Federal Telephone Service	
GFE	Government Furnished Equipment	
GPS	Global Positioning System	
GRC	Galvanized Rigid Metal Conduit	
GSM	Global System (Station) for Mobile	
HCCS	TIP's Horizontal Cross Connection System (refer to	
	CCS & VCCS)	
HDPE High Density Polyethylene Conduit		
HDTV	Advanced Television Standards Committee High-	
	Definition Digital Television	
HEC	Head End Cabinets(refer to HEIC, PA)	
HEIC	Head End Interface Cabinets(refer to HEC, PA)	
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)	
HSPA	High Speed Packet Access	
ΗZ	Hertz	
IBT	Intersystem Bonding Termination (NEC 250.94)	
IC	Intercom	
ICRA	Infectious Control Risk Assessment	
IDEN	Integrated Digital Enhanced Network	
IDC	Insulation Displacement Contact	
IDF	Intermediate Distribution Frame	
ILSM	Interim Life Safety Measures	
IMC	Rigid Intermediate Steel Conduit	
IRM	Department of Veterans Affairs Office of Information	
	Resources Management	

ISDN	Integrated Services Digital Network	
ISM	Industrial, Scientific, Medical	
IWS	Intra-Building Wireless System	
LAN	Local Area Network	
LBS	Location Based Services, Leased Based Systems	
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)	
LED	Light Emitting Diode	
LMR	Land Mobile Radio	
LTE	Long Term Evolution, or 4G Standard for Wireless Data	
	Communications Technology	
М	Meter	
MAS	Medical Administration Service	
MATV	Master Antenna Television	
MCR	Main Computer Room	
MCOR	Main Computer Operators Room	
MDF	Main Distribution Frame	
MH	Manholes or Maintenance Holes	
MHz	Megaherts (10 ⁶ Hz)	
mm	Millimeter	
MOU	Memorandum of Understanding	
MW	Microwave (RF Band, Equipment or Services)	
NID	Network Interface Device (refer to DEMARC)	
NEC	National Electric Code	
NOR	Network Operations Room	
NRTL	OSHA Nationally Recognized Testing Laboratory	
NS	Nurse Stations	
NTIA	U.S. Department of Commerce National	
	Telecommunications and Information Administration	
OEM	Original Equipment Manufacturer	
OI&T	Office of Information and Technology	
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)	
OSH	Department of Veterans Affairs Office of Occupational	
	Safety and Health	

OSHA	United States Department of Labor Occupational Safety
	and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be
	designated SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,
	PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,
	PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security
	(COMSEC)

SFO	Solicitation for Offers	
SME	Subject Matter Experts (refer to AHJ)	
SMR	Specialized Mobile Radio	
SMS	Security Management System	
SNMP	Simple Network Management Protocol	
SPCC	Security Police Control Center (refer to PCR, SMS)	
STP	Shielded Balanced Twisted Pair (refer to UTP)	
STR	Stacked Telecommunications Room	
TAC	VA's Technology Acquisition Center, Austin, Texas	
TCO	Telecommunications Outlet	
TER	Telephone Equipment Room	
TGB	Telecommunications Grounding Busbar (also Secondary	
	Bonding Busbar (SBB))	
TIP	Telecommunications Infrastructure Plant	
TMGB	Telecommunications Main Grounding Busbar (also	
	Primary Bonding Busbar (PBB))	
TMS	Traffic Management System	
TOR	Telephone Operators Room	
TP	Balanced Twisted Pair (refer to STP and UTP)	
TR	Telecommunications Room (refer to STR)	
TWP	Twisted Pair	
UHF	Ultra High Frequency (Radio)	
UMTS	Universal Mobile Telecommunications System	
UPCS	Unlicensed Personal Communications Service (refer to	
	PCS)	
UPS	Uninterruptible Power Supply	
USC	United States Code	
UTP	Unshielded Balanced Twisted Pair (refer to TP and	
	STP)	
UV	Ultraviolet	
V	Volts	
VAAR	Veterans Affairs Acquisition Regulation	
VACO	Veterans Affairs Central Office	

VAMC	VA Medical Center (refer to CBOC, OPC, VACO)	
VCCS	TIP's Vertical Cross Connection System (refer to CCS	
	and HCCS)	
VHF	Very High Frequency (Radio)	
VISN	Veterans Integrated Services Network (refers to	
	geographical region)	
VSWR	Voltage Standing Wave Radio	
W	Watts	
WEB	World Electronic Broadcast	
WiMAX	Worldwide Interoperability (for MW Access)	
WI-FI	Wireless Fidelity	
WMTS	Wireless Medical Telemetry Service	
WSP	Wireless Service Providers	

B. Definitions:

- 1. Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.

- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected

equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.

- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.

- 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
- Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to

http://www.cfm.va.gov/TIL/cPro.asp:

1. Federal Communications Commission, (FCC) CFR, Title 47:

- Part 15 Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions and Equipment Locations Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration Chapter XXIII National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book' - Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
- 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design RUS Bull 1751F-815 Electrical Protection of Outside Plants, RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4) RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2) Trunk Carrier Systems (PE-60) RUS Bull 345-50 RUS Bull 345-65 Shield Bonding Connectors (PE-65) RUS Bull 345-72 Filled Splice Closures (PE-74) RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80)

3.	US Department of Com	merce/National Institute of Standards
	Technology, (NIST):	
	FIPS PUB 1-1	Telecommunications Information Exchange
	FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
		Circuit Terminating Equipment for operation
		with Packet Switched Networks, or Between Two
		DTEs, by Dedicated Circuit
	FIPS PUB 140/2	Telecommunications Information Security
		Algorithms
	FIPS PUB 143	General Purpose 37 Position Interface between
		DTE and Data Circuit Terminating Equipment
	FIPS 160/2	Electronic Data Interchange (EDI),
	FIPS 175	Federal Building Standard for
		Telecommunications Pathway and Spaces
	FIPS 191	Guideline for the Analysis of Local Area
		Network Security
	FIPS 197	Advanced Encryption Standard (AES)
	FIPS 199	Standards for Security Categorization of
		Federal Information and Information Systems
4. US Department of Defense, (DoD):		ense, (DoD):
	MIL-STD-188-110	Interoperability and Performance Standards for
		Data Modems
	MIL-STD-188-114	Electrical Characteristics of Digital Interface
		Circuits
	MIL-STD-188-115	Communications Timing and Synchronizations
		Subsystems
	MIL-C-28883	Advanced Narrowband Digital Voice Terminals
	MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,
		Radio Frequency, (Series BNC (Uncabled), Socket
		Contact, Jam Nut Mounted, Class 2)

5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules

6. US Department of Justice: 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).

7.	US Department of Labo	or, (DoL) - Public Law 426-62 - CFR, Title 29,
	Part 1910, Chapter X	VII - Occupational Safety and Health
	Administration (OSHA)), Occupational Safety and Health Standards):
	Subpart 7	Approved NRTLs; obtain a copy at
		https://www.osha.gov/dts/otpca/nrtl/nrtllist.ht
		ml
	Subpart 35	Compliance with NFPA 101, Life Safety Code
	Subpart 36	Design and Construction Requirements for Exit
		Routes
	Subpart 268	Telecommunications
	Subpart 305	Wiring Methods, Components, and Equipment for
		General Use

- Subpart 508 Americans with Disabilities Act Accessibility Guidelines; technical requirement for accessibility to buildings and facilities by individuals with disabilities
- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.

- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/lawsregs/regulations/standardnumber/1926
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components

96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests

	1685-2007	Vertical Tray Fire Protection and Smoke Release
		Test for Electrical and Fiber Optic Cables
	1861-2012	Communication Circuit Accessories
	1863-2013	Standard for Safety, communications Circuits
		Accessories
	1865-2007	Standard for Safety for Vertical-Tray Fire
		Protection and Smoke-Release Test for
		Electrical and Optical-Fiber Cables
	2024-2011	Standard for Optical Fiber Raceways
	2024-2014	Standard for Cable Routing Assemblies and
		Communications Raceways
	2196-2001	Standard for Test of Fire Resistive Cable
	60950-1 ed. 2-2014	Information Technology Equipment Safety
Ind	dustry Standards:	
1.	Advanced Television	Systems Committee (ATSC):
	A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
		Digital Television System
	A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
		RF/Transmission System Characteristics
	A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
		Service Multiplex and Transport System
		Characteristics
	A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
		2 Video System Characteristics
	A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
		Audio System Characteristics
	A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
		Enhanced AC-3 Audio System Characteristics
2.	American Institute o	f Architects (AIA): 2006 Guidelines for Design &
	Construction of Heal	th Care Facilities.
3.	American Society of D	Mechanical Engineers (ASME):
	A17.1 (2013)	Safety Code for Elevators and Escalators
		Includes Requirements for Elevators,
		Escalators, Dumbwaiters, Moving Walks, Material
		Lifts, and Dumbwaiters with Automatic Transfer
		Devices
	17.3 (2011)	Safety Code for Existing Elevators and
		Escalators

D.

	17.4 (2009)	Guide for Emergency Personnel			
	17.5 (2011)	Elevator and Escalator Electrical Equipment			
4.	American Society for	Testing and Materials (ASTM):			
	B1 (2001)	Standard Specification for Hard-Drawn Copper			
		Wire			
	B8 (2004)	Standard Specification for Concentric-Lay-			
		Stranded Copper Conductors, Hard, Medium-Hard,			
		or Soft			
	D1557 (2012)	Standard Test Methods for Laboratory Compaction			
		Characteristics of Soil Using Modified Effort			
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)			
	D2301 (2004)	Standard Specification for Vinyl Chloride			
		Plastic Pressure Sensitive Electrical			
		Insulating Tape			
	B258-02 (2008)	Standard Specification for Standard Nominal			
		Diameters and Cross-Sectional Areas of AWG			
		Sizes of Solid Round Wires Used as Electrical			
		Conductors			
	D709-01(2007)	Standard Specification for Laminated			
		Thermosetting Materials			
	D4566 (2008)	Standard Test Methods for Electrical			
		Performance Properties of Insulations and			
		Jackets for Telecommunications Wire and Cable			
5.	American Telephone and Telegraph Corporation (AT&T) - Obtain				
	following AT&T Public	cations at https://ebiznet.sbc.com/sbcnebs/			
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,			
		Environmental, and Physical Design Requirements			
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation			
		Requirements			
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and			
		Removal Requirements - Cable Racks and Raceways			
	ATT-TP-76306 (2009)	Electrostatic Discharge Control			
	ATT-TP-76400 (2012)	Detail Engineering Requirements			
	ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and			
		Installation Requirements			
	ATT-TP-76405 (2011)	Technical Requirements for Supplemental Cooling			
		Systems in Network Equipment Environments			

	ATT-TP-76416 (2011)	Grounding and Bonding Requirements for Network				
		Facilities				
	ATT-TP-76440 (2005)	Ethernet Specification				
	ATT-TP-76450 (2013)	Common Systems Equipment Interconnection				
		Standards for AT&T Network Equipment Spaces				
	ATT-TP-76461 (2008)	Fiber Optic Cleaning				
	ATT-TP-76900 (2010)	AT&T Installation Testing Requirement				
	ATT-TP-76911 (1999)	AT&T LEC Technical Publication Notice				
6.	British Standards In	stitution (BSI):				
	BS EN 50109-2	Hand Crimping Tools - Tools for The Crimp				
		Termination of Electric Cables and Wires for				
		Low Frequency and Radio Frequency Applications				
		- All Parts & Sections. October 1997				
7.	Building Industry Co	nsulting Service International(BICSI):				
	ANSI/BICSI 002-2011	Data Center Design and Implementation Best				
		Practices				
	ANSI/BICSI 004-2012	Information Technology Systems Design and				
		Implementation Best Practices for Healthcare				
		Institutions and Facilities				
	ANSI/NECA/BICSI					
	568-2006	Standard for Installing Commercial Building				
		Telecommunications Cabling				
	NECA/BICSI 607-2011	Standard for Telecommunications Bonding and				
		Grounding Planning and Installation Methods for				
		Commercial Buildings				
	ANSI/BICSI 005-2013	Electronic Safety and Security (ESS) System				
		Design and Implementation Best Practices				
8.	Electronic Component	Electronic Components Assemblies and Materials Association,(ECA).				
	ECA EIA/RS-270 (1973)Tools, Crimping, Solderless Wiring Devices -				
		Recommended Procedures for User Certification				
	EIA/ECA 310-E (2005)	Cabinets, and Associated Equipment				
9.	Facility Guidelines	Institute: 2010 Guidelines for Design and				
	Construction of Health Care Facilities.					
10.	Insulated Cable Engineers Association (ICEA):					
	ANSI/ICEA					
	S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-				
		Pair Indoor Cables for Use in Communications				
		Wiring Systems				

FARGO V	VA HEALTHCARE	SYSTEM			VA	PROJ	ECT NO: 437-21-225
EHRM -	TRAINING AND	ADMIN. SPACE	SUPPORT	27 05	5 11	Req.	Communications-17

ANSI/ICEA

S-84-608-2010 Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber Outside Plant Communications Cable

ANSI/ICEA

C62.41.2-2002/

- S-90-661-2012 Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems S-98-688 (2012) Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors S-99-689 (2012) Broadband Twisted Pair Cable Filled, Polyolefin
- Insulated, Copper Conductors ICEA S-102-700
- (2004) Category 6 Individually Unshielded Twisted Pair Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements

11. Institute of Electrical and Electronics Engineers (IEEE):

ISSN 0739-5175 March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue:2) Medical Grade-Mission Critical-Wireless Networks

IEEE C2-2012 National Electrical Safety Code (NESC)

- Cor 1-2012 IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4)
- C62.45-2002 IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits
- 81-2012 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System
- 100-1992 IEEE the New IEEE Standards Dictionary of Electrical and Electronics Terms 602-2007 IEEE Recommended Practice for Electric Systems in Health Care Facilities

	1100-2005	IEEE Recommended Practice for Powering and
		Grounding Electronic Equipment
12.	International Code C	ouncil:
	AC193 (2014)	Mechanical Anchors in Concrete Elements
13.	International Organi	zation for Standardization (ISO):
	ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and
		Computing Technology in Healthcare Facilities -
		Recommendations for Electromagnetic
		Compatibility (Management of Unintentional
		Electromagnetic Interference) with Medical
		Devices
14.	National Electrical	Manufacturers Association (NEMA):
	NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V
		Maximum)
	ANSI C62.61 (1993)	American National Standard for Gas Tube Surge
		Arresters on Wire Line Telephone Circuits
	ANSI/NEMA FB 1 (2012)Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing EMT)
		and Cable
	ANSI/NEMA OS 1 (2009)Sheet-Steel Outlet Boxes, Device Boxes, Covers,
		and Box Supports
	NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems
	TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with
		Rigid PVC Conduit and Tubing
	NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15.	National Fire Protec	tion Association (NFPA):
	70E-2015	Standard for Electrical Safety in the Workplace
	70-2014	National Electrical Code (NEC)
	72-2013	National Fire Alarm Code
	75-2013	Standard for the Fire Protection of Information
		Technological Equipment
	76-2012	Recommended Practice for the Fire Protection of
		Telecommunications Facilities
	77-2014	Recommended Practice on Static Electricity
	90A-2015	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	99-2015	Health Care Facilities Code
	101-2015	Life Safety Code

241	Safeguarding construction, alternation and
	Demolition Operations
255-2006	Standard Method of Test of Surface Burning
	Characteristics of Building Materials
262 - 2011	Standard Method of Test for Flame Travel and
	Smoke of Wires and Cables for Use in Air-
	Handling Spaces
780-2014	Standard for the Installation of Lightning
	Protection Systems
1221-2013	Standard for the Installation, Maintenance, and
	Use of Emergency Services Communications
	Systems
5000-2015	Building Construction and Safety Code
16. Society for Protect	ive Coatings (SSPC):
SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17. Society of Cable Te	lecommunications Engineers (SCTE):
ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
	Distribution Coaxial Cable
18. Telecommunications	Industry Association (TIA):
TIA-120 Series	Telecommunications Land Mobile communications
	(APCO/Project 25) (January 2014)
TIA TSB-140	Additional Guidelines for Field-Testing Length,
	Loss and Polarity of Optical Fiber Cabling
	Systems (2004)
TIA-155	Guidelines for the Assessment and Mitigation of
	Installed Category 6 Cabling to Support
	10GBASE-T (2010)
TIA TSB-162-A	Telecommunications Cabling Guidelines for
	Wireless Access Points (2013)
TIA-222-G	Structural Standard for Antenna Supporting
	Structures and Antennas (2014)
TIA/EIA-423-B	Electrical Characteristics of Unbalanced
	Voltage Digital Interface Circuits (2012)
TIA-455-C	General Requirements for Standard Test
	Procedures for Optical Fibers, Cables,
	Transducers, Sensors, Connecting and
	Terminating Devices, and other Fiber Optic
	Components (August 2014)

TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-µ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	- Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4

	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
 - 4. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
 - 5. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
 - 6. Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
 - 7. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 8. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
 - 9. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 10. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
 - 11. Wiring devices: Section 26 27 26, WIRING DEVICES.
 - 12. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
 - 13. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.

- 14. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 15. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 16. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - 2. Movement of materials: Unload materials and equipment delivered to site. Pay costs for rigging, hoisting, lowering and moving equipment on and around site, in building or on roof.
 - 3. Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Communications Project Manager Responsibilities:
 - 1. Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.

- H. Test Equipment List:
 - 1. Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Optical time domain reflectometer (OTDR).
 - c. Volt-Ohm meter.
 - 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
 - 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.

- 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).

- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:

- 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
- 2. Government reserves the right to require a list of installations where products have been in operation before approval.
- 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - 4. Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 21 working days prior to manufacturer performing the factory tests.
 - 1. When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.4 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.5 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT27 05 11 Req. Communications-31

- 3. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
- 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
- Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
- Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in floors and walls, to prevent passage of air, smoke and fumes.
- Install sleeves through floors watertight and extend minimum 50.8 mm
 (2 inches) above floor surface.
- Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- Comply with requirements for firestopping, for sleeves through walls and floors.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:

- 1. Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 21 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.

- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
- E. EQUIPMENT IDENTIFICATION
 - Install an identification sign which clearly indicates information required for use and maintenance of equipment.

2. Secure identification signs with screws.

3.4 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.5 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and

acceptance testing and demonstrations after verification of system operation and completeness by Contractor.

- F. Tests:
 - 1. Interim inspection is required at approximately 50 percent of installation.
 - 2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - 3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, and facility.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568A pin assignments and cabling connections are in compliance with TIA standards.
 - 6. Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
 - 7. Review cable tray, conduit and path/wire way installation practice.
 - 8. OEM and contractor to perform:
 - a. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
 - 9. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
 - 10. Provide results of interim inspections to COR.
 - 11. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.

- 12. Contractor will ensure test documents become a part of system's official documentation package.
- G. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
 - a. System interfaces in locations listed herein.
 - b. HE interconnections.
 - c. Each general floor areas.
 - 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- H. Acceptance Test:
 - 1. Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
 - 2. Give COR 21 working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
 - 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.

- 4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - 4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- I. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - 2. A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - 5. Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - 6. Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- J. Operational Test:
 - 1. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.

- b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- K. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR. Perform retesting to comply with these specifications at contractor's expense.
- L. Proof of Performance Certification:
 - 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.6 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.

J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.7 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.8 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - 2. Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - 1. Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (14 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- C. Irreversible Compression Lugs:

- 1. Electroplated tinned copper.
- 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
- 3. Sized to fit the specific size conductor.
- 4. Listed as wire connectors.
- D. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- B. Boxes, Cabinets, and Enclosures:
 - 1. Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- C. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- D. Telecommunications Grounding System:
 - 1. Provide hardware as required to effectively bond metallic cable shields, communications pathways, cable runway, and equipment chassis to ground.
 - 2. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - 3. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 4. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
 - 5. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.

- c. Apply corrosion inhibitor to surfaces before joining.
- 6. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
- 7. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
 - d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- E. Communications Cable Grounding:
 - 1. Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - 2. Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- F. Communications Cable Tray Systems:
 - 1. Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.

- 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is 0.010 ohms or less, as verified by measuring across splice plate connection.
 - b. Install 16 mm² (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
- 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.
- G. Communications Raceway Grounding:
 - 1. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - 2. Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.
- H. Ground Resistance:
 - 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
 - 3. Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD OUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB.
- D. Visually inspect to verify that screened and shielded cables are bonded to TGB.
- E. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- C. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. In accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 3. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 4. Flexible Galvanized Steel Conduit: Conform to UL 1.

- a. Flexible conduit shall only be allowed on a case by case basis and will require COR approval prior to ordering or installation.
- b. Flexible conduit shall be limited to lengths of 6 ft unprotected by rigid conduit.
- 5. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
 - a. Flexible conduit shall only be allowed on a case by case basis and will require COR approval prior to ordering or installation.
 - b. Flexible conduit shall be limited to lengths of 6 ft unprotected by rigid conduit.
- 6. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - 1. Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run.
 - 2) Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.

- 2. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 2) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 3. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 5. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - 2. Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

- 5. Caddy style supports will not be accepted for use.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- G. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - 2. Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
 - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 - 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to

MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.

- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- H. Outlet Boxes:
 - 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- I. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.
- J. Cable Tray:
 - 1. Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
 - 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
 - 3. Provide continuous welded top side wire to protect cable insulation and installers.
 - 4. High strength steel wires formed into a 50 x 100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
 - 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inch).
 - c. Width: 300 mm (12 inches).
 - 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
 - 7. Provide accessories to protect, support and install wire basket tray system.
- K. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.

L. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Fire Detection and Alarm	28 31 00	Complete Conduit

- B. Penetrations:
 - 1. Cutting or Holes:
 - a. Locate holes in advance of installation.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through walls or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits

to enter telecommunication rooms next to wall and flush with backboard.

- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with fire stop/caulk to prevent entrance of moisture and gases and to meet fire resistance requirements.
- 8. Minimum radius of communication conduit bends:

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- 9. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 10. Complete each entire conduit run installation before pulling in cables.
- 11. Flattened, dented, or deformed conduit is not permitted.
- 12. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 13. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 14. Install conduit mechanically continuous.
- 15. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 16. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.

- 17. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 18. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 19. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 20. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 21. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel, IMC, or EMT. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- E. Exposed Work Installation:
 - 1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC, or EMT.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - 4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.

- c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- F. Conduit Supports, Installation:
 - 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - 2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - 1) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch)embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - 3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
 - 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
 - 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
 - 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
 - 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
 - 10. Do not support conduit from chain, wire, or perforated strap.
 - 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
 - 12. Vertical Supports:

- a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
- b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- G. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
 - 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes requirements for commissioning facility communications systems, related subsystems and related equipment. This Section supplements general requirements specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- B. Complete list of equipment and systems to be commissioned is specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Specification 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Commissioned Systems:
 - Commissioning of systems specified in Division 27 is part of project's construction process including documentation and proof of performance testing of these systems, as well as training of VA's Operation and Maintenance personnel in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Division 27, in cooperation with Government and Commissioning Agent.
 - The facility exterior closure systems commissioning includes communications systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS and 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

1.2 RELATED WORK

- A. System tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Commissioning process requires review of selected submittals that pertain to systems to be commissioned: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Construction phase commissioning process and procedures including roles and responsibilities of commissioning team members and user training: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

1.3 COORDINATION

- A. Commissioning Agent will provide a list of submittals that must be reviewed by Commissioning Agent simultaneously with engineering review; do not proceed with work of sections identified without engineering and Commissioning Agent's review completed.
- B. Commissioning of communications systems require inspection of individual elements of communications system construction throughout construction period. Coordinate with Commissioning Agent in accordance

with Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and commissioning plan to schedule communications systems inspections as required to support the commissioning process.

1.4 CLOSEOUT SUBMITTALS

- A. Refer to Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for pre-functional checklists, equipment startup reports, and other commissioning documents.
- B. Pre-Functional Checklists:
 - Complete pre-functional checklists provided by commissioning agent to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing.
 - 2. Submit completed checklists to COR and to Commissioning Agent. Commissioning Agent can spot check a sample of completed checklists. If Commissioning Agent determines that information provided on the checklist is not accurate, Commissioning Agent then returns the marked-up checklist to Contractor for correction and resubmission.
 - 3. If Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, Commissioning Agent can select a broader sample of checklists for review.
 - 4. If Commissioning Agent determines that a significant number of broader sample of checklists is also inaccurate, all checklists for the type of equipment will be returned to Contractor for correction and resubmission.
- C. Submit training agendas and trainer resumes in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Contractor's Tests:
 - Scheduled tests required by other sections of Division 27 must be documented in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Incorporate all testing into project schedule. Provide minimum seven calendar days' notice of testing for Commissioning Agent to witness selected Contractor tests at sole discretion of Commissioning Agent.

- Complete tests prior to scheduling Systems Functional Performance Testing.
- B. Systems Functional Performance Testing:
 - Commissioning process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions.
 - 2. Commissioning Agent prepares detailed Systems Functional Performance Test procedures for review and acceptance by COR.
 - 3. Provide required labor, materials, and test equipment identified in test procedure to perform tests.
 - 4. Commissioning Agent must witness and document the testing.
 - Provide test reports to Commissioning Agent. Commissioning Agent will sign test reports to verify tests were performed.

3.2 TRAINING

- A. Training of Government's operation and maintenance personnel is required in cooperation with COR and Commissioning Agent.
- B. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning location, operation, and troubleshooting of installed systems.
- C. Schedule instruction in coordination with COR after submission and approval of formal training plans.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
 - 2. Pre-acceptance Certification: Submit in accordance with test procedures.
 - Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
 - Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- B. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
 - 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6A for specialized powered systems' requirements.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)

- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and videotele communications cabling system, including backbone cabling system, and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors. Do not leave unused or spare twisted pair wire, coaxial cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
 - c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
 - 2. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.

- 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
- 3) Label and test complete riser cabling system.
- 3. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6A requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 500 MHz.
 - c. Provide four pair 0.326 mm2 (22 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 6A Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- B. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
- C. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - 1. Provide a gas surge protector/module and bond to earth ground.
- D. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - Provide the following for each Category 6A for specialized powered systems, OI&T and FMS Services and COR) Cabling System termination; RJ-45 patch cord connector to RJ-45 patch cord connector.
 - a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
 - b. Provide removable designation strips or labels to allow for inspection of terminations.

c. Provide cable management system as a part of IDC.

- Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
- Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
- 5. Provide inputs from PBX, FTS, Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A blocks with RJ45 connections are acceptable alternates to IDC) of MCCS.
- Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS.
- Do not split pairs within cables between different jacks or connections.
- Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- E. Copper Outside Plant Cable: Minimum of STP or UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flex gel waterproof Rural Electric Association (REA) listed PE 39 code) between outer armor or jacket and inner conductors protective lining.
- F. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - 2. Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of four orange colored data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate to match existing Fargo TCO's. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.

- 3. Provide wall outlet with a Ivory colord nylon face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications.
- 4. Data Multi-Conductor:
 - a. Unshielded F/UTP cable with solid conductors.
 - b. Able to handle the power and voltage used over the distance required.
 - c. Meets TIA transmission performance requirements of Category 6A.
 - d. Technical Characteristics:
 - 1) 0.205 mm2 (24 AWG) 0.326 mm2 (22 AWG) cable
 - 2) Bend Radius: 10 times cable outside diameter.
 - 3) Impedance: 100 Ohms + 15%, BAL.
 - 4) Bandwidth: 500 MHz.
 - 5) DC Resistance: Maximum 9.38 Ohms/100m (328 ft.) at 20 degrees C.
 - 6) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.).
 - 7) Shield Coverage:
 - a) Overall Outside (if OEM specified): 100 percent.
 - b) Individual Pairs (if OEM specified): 100 percent.
 - 8) Maximum attenuation for 100m (328 ft.) at 20° C:

Frequency (MHz)	Category 6A (dB)
1	2.1
4	3.8
8	5.3
10	5.9
16	7.5
20	8.4
25	9.4
31.25	10.5
62.5	15.0

Frequency (MHz)	Category 6A (dB)
100	19.1
200	27.6
250	31.1
300	34.3
400	40.1
500	45.3

B. Outlet Connection Cables:

- 1. Voice (Telephone):
 - a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Voice Grade.
 - 3) Connector: RJ-11/45 compatible male on each end.
 - 4) Size: Minimum 24 AWG.
 - 5) Color Coding: Required, telephone industry standard.
- 2. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Data grade Category 6A.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.
- C. System Connectors:
 - 1. Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice

(telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.

- a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 µA.
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- D. Conduit and Signal Ducts:
 - 1. Conduit:
 - Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. Maximum 40 percent conduit fill for cable installation.
 - 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800

communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.

- Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
- 3. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS.
- D. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - 2. Print lettering of labels; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
- 2. Check each item of installed equipment to ensure appropriate NRTL label.
- Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568A pin assignments and cabling connections comply with TIA standards.
- Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
- 5. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- 6. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim

inspection before permitting contractor to continue with system installation.

- 7. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
 - Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Microduct Tests:
 - Furnish COR, obstruction and pressure test data for each microduct installed. Complete pressure and obstruction tests per manufacturer's recommended procedures prior to installing fiber, and ensure 100 percent of all microducts are compliant with manufacturer.
 - 2. Complete microduct pressure testing before proceeding with end-toend microduct obstruction testing.
 - Notify COR at least three weeks in advance of test date so that Government and design professional may be present to witness testing.
 - 4. Maintain close contact with chosen and technically-approved OEM throughout installation, testing and certification process.

D. Acceptance Test:

- After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
- 2. Test only in presence of a COR.
- Test utilizing approved test equipment to certify proof of performance.
- 4. Verify that total system meets the requirements of this section.
- 5. Include expected duration oftest time, with notification of the acceptance test.

- E. Verification Tests:
 - Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
- F. Performance Testing:
 - Perform Category 6A powered systems accepted by IT and FMS Services and COR tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- G. Total System Acceptance Test: Perform verification tests for UTP and copper cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
 - Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - B. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.

4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to the fire alarm interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 00 Common Work Results-1

VA PROJECT NO: 437-21-225

specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - 4. Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.

I. Section 28 05 28.33 - CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.

- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT28 05 00 Common Work Results-4

- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- 00. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 OUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Contractor Qualification:

- 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] <insert number> miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.
- 2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 00 Common Work Results-6 consistent oversight of the project cabling throughout design, layout, installation, termination and testing.

D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.
- B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.

".

- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or piping so that the proposed installation can be properly reviewed.
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - 1. The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.

- 2. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 3. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
- 4. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.
- 5. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - 1) Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - 2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.

- b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
- c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - 1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1) Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

- 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate

04-01-18

identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.

- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.

- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 6. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 8. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents.

The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:

- 1) Security devices by symbol,
- The associated device point number (derived from the loading sheets),
- 3) Wire & cable types and counts
- 4) Conduit sizing and routing
- 5) Conduit riser systems
- 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components,

backboard size, wire through size and location, and power circuit requirements.

- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- 6) Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.

- 4. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 5. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
 - b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
 - c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 6. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.

- 2. System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to: a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- H. Group III Technical Data Package
 - 1. Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system

administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.

- b. New Unit Control Room:
 - 1) Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the Resident Engineer. Instruction is not to begin until the system is operational as designed.
 - 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
 - 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
 - 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
 - 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior

in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.

- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,

5) All other security subsystems shown in the contract documents.

- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning quidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any

additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - 1. Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
 - 2. Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.

- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Resident Engineer a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.

- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
 - j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Resident Engineer or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master

Redline document to the Resident Engineer for review and approval of all changes or modifications to the documents. Each sheet shall have Resident Engineer initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for Resident Engineer review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous

records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the Resident Engineer prior to development of Record construction documents. The Resident Engineer shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the Resident Engineer, the Resident Engineer will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the Resident Engineer a complete set of "as-built" drawings and original master redlined marked "asbuilt" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.

- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact infield conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):

A117.1.....Standard on Accessible and Usable Buildings and Facilities

C. American National Standards Institute (ANSI) / Security Industry Association (SIA): AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards CP-01-00......Control Panel Standard-Features for False Alarm Reduction PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity TVAC-01..... CCTV to Access Control Standard - Message Set for System Integration D. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA): 330-09..... Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems F. American Society for Testing and Materials (ASTM) B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07......Standard Specification for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape G. Architectural Barriers Act (ABA), 1968 H. Department of Justice: American Disability Act (ADA) 28 CFR Part 36-2010 ADA Standards for Accessible Design I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006

VA BIM Guide, V1.0 10 J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems K. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD): HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... EEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810..... Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts

	7816-3Identification cards - Integrated circuit cards
	- Part 3: Cards with contacts - Electrical
	interface and transmission protocols
	7816-4Identification cards - Integrated circuit cards
	- Part 11: Personal verification through
	biometric methods
	7816-10Identification cards - Integrated circuit cards
	- Part 4: Organization, security and commands
	for interchange
	14443 Contactless integrated
	circuit cards; Contactless Proximity Cards
	Operating at 13.56 MHz in up to 5 inches
	distance
	15693Contactless integrated
	circuit cards - Vicinity cards; Contactless
	Vicinity Cards Operating at 13.56 MHz in up to
	50 inches distance
	19794 Biometric data
	interchange formats
Q.	National Electrical Contractors Association
	303-2005 (CCTV)
	Systems
R.	National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
	TC-3-04PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
	Tubing
	Tubing FB1-07Cittings, Cast Metal Boxes and Conduit Bodies
s.	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and
s.	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
s.	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable National Fire Protection Association (NFPA):
s.	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable National Fire Protection Association (NFPA): 70-11National Electrical Code (NEC)
S.	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable National Fire Protection Association (NFPA): 70-11National Electrical Code (NEC) 731-08Standards for the Installation of Electric
	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable National Fire Protection Association (NFPA): 70-11National Electrical Code (NEC) 731-08Standards for the Installation of Electric Premises Security Systems
	Tubing FB1-07Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable National Fire Protection Association (NFPA): 70-11National Electrical Code (NEC) 731-08Standards for the Installation of Electric Premises Security Systems 99-2005Health Care Facilities

FARGO V	VA HEALTHCARE	SYSTEM					VA	PROJEC	T NO:	437-21-225
EHRM -	TRAINING AND	ADMIN.	SPACE	SUPPORT	28	05	00	Common	Work	Results-28

0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04..... and Fittings 6-07.....Rigid Metal Conduit

44-05 Thermoset-Insulated Wires and Cables
50-07 Enclosures for Electrical Equipment
83-08 And Cables
294-99 Control
System Units
305-08Biandard for Panic Hardware
360-09Ciquid-Tight Flexible Steel Conduit
444-08 Cables
464-09Audible Signal Appliances
467-07 Electrical Grounding and Bonding Equipment
486A-03Wire Connectors and Soldering Lugs for Use with
Copper Conductors
486C-04Splicing Wire Connectors
486D-05 Systems for
Underground Use or in Damp or Wet Locations
486E-00 Equipment Wiring Terminals for Use with
Aluminum and/or Copper Conductors
493-07 Thermoplastic-Insulated Underground Feeder and
Branch Circuit Cable
514A-04Metallic Outlet Boxes
514B-04Fittings for Cable and Conduit
51-05Schedule 40 and 80 Rigid PVC Conduit
609-96 And Systems
634-07 With Burglar-Alarm
Systems
636-01Units and Systems
639-97Detection Units
651-05Conduit
651A-07 and HDPE EB and A Rigid PVC Conduit and HDPE
Conduit
752-05 Equipment
797-07Electrical Metallic Tubing
827-08Central Station Alarm Services
1037-09 Anti-theft Alarms and Devices
1635-10Digital Alarm Communicator System Units
1076-95Burglar Alarm Units
and Systems
1242-06Intermediate Metal Conduit

FARGO V	/A HEALTHCARE	SYSTEM				VA	PROJEC	T NO:	437-21-225
EHRM -	TRAINING AND	ADMIN. SI	PACE SUPPORT	28	05	00	Common	Work	Results-30

1479-03.....Fire Tests of Through-Penetration Fire Stops
1981-03....Central Station Automation System
2058-05....High Security Electronic Locks
60950....Safety of Information Technology Equipment
60950-1....Information Technology Equipment - Safety -

Part 1: General Requirements

- Z. Uniform Federal Accessibility Standards (UFAS) 1984
- AA. United States Department of Commerce: Special Pub 500-101Care and Handling of Computer Magnetic Storage

Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled

adjustments or other non-scheduled work. See also General Project Requirements.

- B. Description of Work
 - 1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.
- C. Personnel
 - 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - 1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections
 - 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - 1) Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics

and correct all problems; and resolve any previous outstanding problems.

- F. Emergency Service
 - 1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- G. Operation
 - 1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - 1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the

amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

- J. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the Resident Engineer. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the Resident Engineer. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

K. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

FARGO V	VA HEALTHCARE	SYSTEM					VA	PROJEC	T NO:	437-21-225
EHRM -	TRAINING AND	ADMIN.	SPACE	SUPPORT	28	05	00	Common	Work	Results-34

- During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
- Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
- B. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6

to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 00 Common Work Results-36

interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.

- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for 20 minutes of operation at actual connected load. Facility power is fully backed up by emergency generators.
- 1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING
 - A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building facade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.
 - 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - 3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
 - 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
 - B. Grounding and Surge Suppression
 - 1. The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such

as fuses, circuit breakers, and relays, under ground-fault conditions.

- 2. Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
- 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
- 4. Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
- 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - 1. Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
 - 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal

enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.

- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
 - b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
 - c. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
 - 2. Console racks:
 - a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
 - b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.
- C. Tamper Provisions and Tamper Switches:
 - 1. Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.

- 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
- 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.
- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The Resident Engineer shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the Resident Engineer stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - 1. Identity of the material or devices specified for which there is a proposed substitution.
 - 2. Description of the segment of the specification where the material or devices are referenced.
 - 3. Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the

Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the Resident Engineer shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The Resident Engineer shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.

D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer. All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COTR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 00 Common Work Results-42

VA PROJECT NO: 437-21-225

causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. All equipment associated within the Fire Protection Control Room, Console and Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 00 Common Work Results-43

- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.
- E. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- F. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)

FARGO VA HEALTHCARE	SYSTEM	VA PROJECT NO: 437-21-225
EHRM - TRAINING AND	ADMIN. SPACE SUPPORT	28 05 00 Common Work Results-44

- 6. Weight: 2.88 g (0.18 lbs)
- 7. Housing: ABS

2.2 INSTALLATION KIT

- A. General:
 - 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
 - 3. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.

- 4. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 5. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 6. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 7. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION 3.1

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
- 2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISIONIN OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 -COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for a minimum of 4 hours to instruct VA personnel in operation and maintenance of units.

Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the Resident Engineer on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to

the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the Resident Engineer has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:

- a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with Resident Engineer for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss.
- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- 2. The Contractor shall identify and request from the Resident Engineer, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and Resident Engineer coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by

contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the Resident Engineer at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COTR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the Resident Engineer before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the Resident Engineer at the conclusion of each phase of testing and prior to Resident Engineer approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the Resident Engineer within seven (7) calendar days after completion of each test.
- B. Pre-Delivery Testing
 - 1. The purpose of the pre-delivery test is to establish that a system is suitable for installation. As such, pre-delivery test shall be a mock-up of the system as planned in the contract documents. The Contractor shall assemble the Security Test System at the Contractors local project within 50-miles of the project site, and perform tests to demonstrate the performance of the system complies with the contract requirements in accordance with the approved predelivery test procedures. The tests shall take place during regular

daytime working hours on weekdays. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of all data produced during pre-delivery testing, including results of each test procedure, shall be documented and delivered to the Resident Engineer at the conclusion of pre-delivery testing and prior to Resident Engineer's approval of the test. The test report shall be arranged so all commands, stimuli, and responses are correlated to allow logical interpretation. For Existing System modifications, the contractor shall provide their own server with loaded applicable software to support PDT.

- 2. Test Setup: The pre-delivery test setup shall include the following:
 - a. All console equipment.
 - 1) At least one of each type of data transmission media (DTM) and associated equipment to provide a fully integrated PACS.
 - 2) The number of local processors shall equal the amount required by the site design.
 - 3) Enough sensor simulators to provide alarm signal inputs to the system equal to the number of sensors required by the design. The alarm signals shall be manually or software generated.
 - 4) Contractor to prove to owner all systems are appropriately sized and configured as sized.
 - 5) Integration of VASS, intercom systems, other subsystems.
- 3. During the bidding process the contractor shall submit a request for information to the Owner to determine if a pre-delivery test will be required. If a pre-delivery test is not required, the contractor shall provide a written notification that the Pre-delivery Test is not required in their shop drawings submission.
- C. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the Resident Engineer (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.
- D. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within

the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to Resident Engineer approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the Resident Engineer's acceptance testing procedures. The Contractor shall provide the Resident Engineer with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the Resident Engineer stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

- E. Performance Verification Test (PVT)
 - 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the Resident Engineer, then the Contractor shall schedule an acceptance test to date and give the Resident Engineer written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the Resident Engineer. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for outof-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.
- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the Resident Engineer or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- 4. Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the Resident Engineer prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - 1) Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for Resident Engineers approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item

problem, date noted, date corrected, and details of how item was corrected.

- 6. Partial PVT At the discretion of Resident engineer, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.
- F. Endurance Test
 - 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the Resident Engineer notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The Resident Engineer may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Resident Engineer prior to acceptance of the system.
 - 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the Resident Engineer. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the Resident Engineer.
 - 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the Resident Engineer.

The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.

- b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the Resident Engineer. The meeting shall not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase I be repeated.
- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COTR.
- 5. Phase IV (Assessment):
 - 1. After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COTR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COTR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COTR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the

performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the Resident Engineer may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

- F. Exclusions
 - 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.

- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - 2. Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 13 Conductors and Cables-2

VA PROJECT NO: 437-21-225

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only. B. American Society of Testing Material (ASTM): D2301-04..... Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-05.....Thermoset-Insulated Wires and Cables 83-08..... Thermoplastic-Insulated Wires and Cables 467-07..... Electrical Grounding and Bonding Equipment 486A-03..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Systems for Underground Use or in Damp or Wet Locations 486E-00.......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07......Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Fittings for Cable and Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Test cables upon receipt at Project site.
 - Test optical fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight or optical loss test set.
 - Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars and spools.
 - 3. Straps and other devices.
- B. Cable Trays:
 - Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick or hot-dip galvanizing, complying with ASTM A 123/A 123M Grade 0.55, not less than 0.002165 inch (0.055 mm) thick.
 - Basket Cable Trays: 12 inches (150 mm) wide and 6 inches (50 mm) deep. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
 - 3. Ladder Cable Trays: Nominally 18 inches (455 mm) wide, and a rung spacing of 12 inches (305 mm).
- C. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems." Flexible metal conduit shall not be used.
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm).

2.3 UTP CABLE

A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.

- 1. Comply with ICEA S-90-661 for mechanical properties.
- 2. Comply with TIA/EIA-568-B.1 for performance specifications.
- 3. Comply with TIA/EIA-568-B.2, Category 6A.
- 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6A. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, 62.5/125-micrometer, 24-fiber, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
 - 5. Conductive cable shall be steel armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.

- 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- B. Jacket:
 - 1. Jacket Color: Orange for 62.5/125-micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 - Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 1. Quick-connect, simplex and duplex, Type LC connectors. Insertion loss shall be not more than 0.75 dB.
 - 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.8 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.9 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.10 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.11 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.12 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.13 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.

10-01-18

- Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
- 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/COTR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a nonhardening approved compound.

- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] < Insert dimension> apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - 2. Install cabling after the flooring system has been installed in raised floor areas.

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 13 Conductors and Cables-

10

- 3. Coil cable [72 inches (1830 mm)] <Insert size> long shall be neatly coiled not less than [12 inches (300 mm)] <Insert size> in diameter below each feed point.
- N. Outdoor Coaxial Cable Installation:
 - Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors to keep out moisture.
 - Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).
- O. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 - 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:a. Electrical Equipment Rating Less Than 2 kVA: No requirement.

- b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.
 - 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 13 Conductors and Cables-12

VA PROJECT NO: 437-21-225

- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

A. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:

- 1) Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
- 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 13 Conductors and Cables-15

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- D. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - 1. Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American Society for Testing and Materials (ASTM): B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07.....for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C2-07.....National Electrical Safety Code D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-2005.....Health Care Facilities E. Underwriters Laboratories, Inc. (UL): 44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT28 05 26 Grounding and Bonding-3

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.6 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.

3.7 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

b. Perform tests by fall-of-potential method according to IEEE 81.

- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 - 2. Manhole Grounds: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- F. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. FMC: Flexible metal conduit.
- D. IMC: Intermediate metal conduit.
- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible nonmetallic conduit.
- G. NBR: Acrylonitrile-butadiene rubber.

FARGO VA HEALTHCARE SYSTEM

VA PROJECT NO: 437-21-225

EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 28.33 Conduits & Backboxes-1

H. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion., in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
- G. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07.....Enclosures for Electrical Equipment 360-09.....Liquid-Tight Flexible Steel Conduit 467-07.....Grounding and Bonding Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- C. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- D. Flexible galvanized steel conduit: Shall Conform to UL 1.
- E. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT28 05 28.33 Conduits & Backboxes-3

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- C. Flexible steel conduit fittings:
 - Conform to UL 514B. Only steel or malleable iron materials are acceptable.

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 28.33 Conduits & Backboxes-4

- 2. Clamp type, with insulated throat.
- D. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- E. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- F. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - 2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall.

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 28.33 Conduits & Backboxes-5 Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- C. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.10 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Plastic. Include two for each sealing element.
 - Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.11 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time. WIRELINE DATA TRANSMISSION MEDIA FOR SECURITY SYSTEMS

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COTR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 28.33 Conduits & Backboxes-7

- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COTR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT28 05 28.33 Conduits & Backboxes-8

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 05 28.33 Conduits & Backboxes-9

- b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
- c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.6 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.

FARGO VA HEALTHCARE SYSTEMVA PROJECT NO: 437-21-225EHRM - TRAINING AND ADMIN. SPACE SUPPORT28 05 28.33 Conduits & Backboxes-10

- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.7 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3⁄4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 28 08 00

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

FARGO VA HEALTHCARE SYSTEM EHRM - TRAINING AND ADMIN. SPACE SUPPORT VA PROJECT NO: 437-21-225 28 08 00 Commissioning-2 type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of integration to an existing system server, and a field-installed Controller connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors
 - b. Anti-passback
 - c. Visitor assignment
 - d. Surge and tamper protection
 - e. Credential cards and readers
 - f. Push-button switches
 - g. RS-232 ASCII interface
 - h. Credential creation and credential holder database and management
 - i. Monitoring of field-installed devices
 - j. Reporting
 - 2. Security:
 - a. Real-time guard tour.
 - b. Time and attendance.

C. System Architecture:

- Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.
- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Existing Head-End equipment server,
 - 2. One or more existing networked PC-based workstations,

- Existing Physical Access Control System and Database Management Software,
- 4. Existing Credential validation software/hardware,
- 5. Field installed controllers,
- 6. PIV Middelware,
- 7. Card readers,
- 9. PIV <PIV-I>, <Legacy CAC>, <CAC NG>, <CAC EP>, <TWIC>, <FRAC> cards,
- 10. Supportive information system,
- 11. Door locks and sensors,
- 12. Power supplies,
- 13. Interfaces with:
 - c. Automatic door operators,
 - f. Fire Protection System,
 - g. HVAC,
 - h. Building Management System,
- F. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- E. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.

- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.4 SUBMITTALS

A. REFER TO 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, PART 11.5 APPLICABLE PUBLICATIONS

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.6 DEFINITIONS

A. REFER TO 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, PART 11.7 COORDINATION

A. REFER TO 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, PART 11.8 MAINTENANCE & SERVICE

A. REFER TO 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, PART 11.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door
- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
 - 2. Two authentication factors for access to Limited security areas
 - 3. Three authentication factors for access to Exclusion security areas

- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.
- G. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- H. Data Capacity:
 - 1. 130 different card-reader formats.
 - 2. 999 comments.
 - 3. 16 graphic file types for importing maps.
- I. Location Capacity:
 - 1. 128 reader-controlled doors.
 - 2. 50,000 total access credentials.
 - 3. 2048 supervised alarm inputs.
 - 4. 2048 programmable outputs.
 - 5. 32,000 custom action messages per Location to instruct operator on action required when alarm is received.
- J. System Network Requirements:
 - Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.

- 2. Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
- 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- K. Existing Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall control system networks to interconnect all system components, including workstations and field-installed Controllers.
- L. Field equipment shall include Controllers, sensors, and controls. Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records. Controllers are classified as alarm-annunciation or entry-control type.
- M. System Response to Alarms: Alarms shall be annunciated at the Central Station within 1 second of the alarm occurring at a Controller or device controlled by a local Controller, and within 100 ms if the alarm occurs at the Central Station. Alarm and status changes shall be displayed within 100 ms after receipt of data by the Central Station. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within 5 seconds of alarm receipt at the security console.[This response time shall be maintained during system heavy load.]
- N. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- O. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect singleand double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions. Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each

communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.

- P. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.
- Q. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- R. References to industry and trade association standards and codes are minimum installation requirement standards.
- S. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

A. REFER TO 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, PART 11.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and

8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Existing Application Software
 - 3. Existing System Database
 - 4. Surge and Tamper Protection
 - 5. Existing Standard Workstation Hardware
 - 6. Existing Communications Workstation
 - 7. Controllers (Data Gathering Panel)
 - 8. Card Readers
 - 9. Credential Cards
 - 10. Enrolment Center (To be provided in accordance with the VA PIV enrollment and issuance system.)
 - 11. System Sensors and Related Equipment
 - 12. Push Button Switches
 - 13. Interfaces
 - 14. Door and Gate Hardware interface
 - 15. RS-232 ASCII Interface
 - 16. Real Time Guard Tour
 - 17. Cables
 - 18. Transformers

2.2 SURGE AND TAMPER PROTECTION

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

2.3 CONTROLLERS

A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar

data downloaded from the Central Station or workstation for controlling its operation.

- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network with dc line supervision on each of its alarm inputs.
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal by monitoring for abnormal open, grounded, or shorted conditions using dc change measurements. System shall initiate an alarm in response to an abnormal current, which is a dc change of 10 percent or more for longer than 500 ms.
 - Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
 - c. Outputs: Managed by Central Station software.
 - 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:
 - Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, door strikes, magnetic latches, door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:

- On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
- Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
- c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
- 2. Inputs:
 - a. Data from entry-control devices; use this input to change modes between access and secure.
 - b. Database downloads and updates from the Central Station that include enrollment and privilege information.
- 3. Outputs:
 - a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
 - b. Grant or deny entry by sending control signals to portal-control devices and mask intrusion alarm annunciation from sensors stimulated by authorized entries.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.
 - d. Door Prop Alarm: If a portal is held open for longer than 60 seconds, alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.

- a. Store up to 1000transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constantvoltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - c. Backup Power Supply Capacity: 90 minutes of battery supply.Submit battery and charger calculations.
 - d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
 - 1) Trouble Alarm: Normal power off load assumed by battery.
 - 2) Trouble Alarm: Low battery.
 - 3) Alarm: Power off.

2.4 PIV MIDDLEWARE

A. PIV Middleware shall provide three-factor authentication, including biometric matching using a fingerprint capture device capable of single fingerprint capture. Unit shall enable digital certificates can to be verified by security personnel using the issuer's certificate authority, SCVP, OCSP responder/repeater, orthe TSA hot list for TWIC cardholders. All cards shall be validated using FIPS-201 challengeresponse protocol in order to identify forged or cloned cards. PIV Middleware solution shall validate all PIV, TWIC, NG CAC, and FRAC cards. TWIC card FASC-Ns shall also be verified against a live or cached TSA hot list.

- B. PIV Middleware shall have ability to:
 - Verify cardholder identity and validates FIPS 201-compliant PIV-II, next-generation (NG) CAC, TWIC, or FRAC credentials in real-time
 - Perform three-factor authentication of cardholder using PIN, biometrics, and certificate (or serial numbers) detecting forged or cloned cards
 - 3. Enroll FASC-N, photo, and pertinent cardholder information into PACS software
 - Automatically suspend a cardholder's badge if his or her PIV, TWIC, or CAC card certificate serial number is on the Certificate Revocation List (CRL)
 - 5. Upload a cardholder transaction audit trail to central database or exports it to a .csv file for centralized transaction management
 - Be compatible with biometric mobile terminal for off-site verification and enrollment
 - Re-validate imported cardholder certificates on a periodic basis via the Internet
 - 8. Operate with commercial, off-the-shelf (COTS) FIPS 201 PIV-II and ANSI INCITS 378-compliant fingerprint capture devices
 - 9. Revalidate imported cardholder certificates at regular intervals, ensuring that the credentials used in PACS system are backed by a valid set of digital certificates. Digital certificates are verified against local OCSP repeater/validation authority using the issuer's validation authority, or Microsoft Crypto Application Programming Interface (API) on Windows XP SP3 or Vista.
 - Certificate Manager shall fully support SCVP and OCSP for fast, online validation.
 - Provide verification of TWIC credentials against a live TSA hot list.
 - 12. Support uploading local transactions to a central database for consolidated activity reporting. This application shall support a variety of ODBC- or ADO-compliant databases, including Oracle, SQL Server 2005, Informix, DB2, and Firebird.
 - Provide user with ability to produce canned transaction log queries as well as creating queries directly from the SQL database.
- C. PIV Middleware PC requirements:

- PIV Middleware software shall operate on Intel-based PC with minimum
 1.8 GHz CPU, 1 GB RAM, 40 GB hard disk, and Microsoft Windows XP SP2 with Microsoft .NET Framework 2.0
- 2. Unit shall fingerprint capture devices and smart card reader.
- D. PIV Middleware shall be FIPS 201 approved product.

2.5 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be 800ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:

1. Indoors, controlled environment.

- D. Display: LED or other type of visual indicator display shall provide visual and audible status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.

- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.
- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.
- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- O. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
 - Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
 - Shall be powered from the source as designed and shall not dissipate more than 150 Watts.
 - Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
 - 4. Shall provide a means for users to indicate a duress situation by entering a special code.
- R. PIV Contact Card Reader
 - Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - 2. Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International

Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.

- Programming Voltage: PIV Readers shall not generate a Programming Voltage.
- 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
- Retrieval Time: Retrieval time¹ for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
- 6. Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.
- 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.
- S. Contactless Smart Cards and Readers
 - Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
 - The readers shall have "flash" download capability to accommodate card format changes.
 - 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
 - 4. The card reader shall be contactless and meet or exceed the following technical characteristics:
 - a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 - 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 - 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
 - b. FIPS 201 readers shall be able to read, but not be limited to, DESfire and iCLASS cards.

- c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1" to 2" (2.5 - 5 cm).
- d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
- f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
- g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.
- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.
- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (~106 kbits/s), fc/64(~212 kbits/s), and configurable to allow activation/deactivation.
- Readibility Range: The reader shall not be able to read PIV card more than 10cm(4inch) from the reader

2.6 KEYPADS

A. Designed for use with unique combinations of alphanumeric and other symbols as an Identifier. Keys of keypads shall contain an integral alphanumeric/special symbol keyboard with symbols arranged in ascending ASCII-code ordinal sequence. Communications protocol shall be compatible with Controller.

10-11

- Keypad display or enclosure shall limit viewing angles of the keypad as follows:
 - a. Maximum Horizontal Viewing Angle: 5 degrees or less off in either direction of a vertical plane perpendicular to the plane of the face of the keypad display.
 - b. Maximum Vertical Viewing Angle: 15 degrees or less off in either direction of a horizontal plane perpendicular to the plane of the face of the keypad display.
- Duress Codes: Provide duress situation indication by entering a special code.

2.7 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.
- C. PIV logical credentials shall contain multiple data elements for the purpose of verifying the cardholder's identity at graduated assurance levels. These mandatory data elements shall collectively comprise the data model for PIV logical credentials, and include the following:
 - 1. CHUID
 - 2. PIV authentication data (one asymmetric key pair and corresponding certificate)
- D. The credential card (PIV) shall be an ISO 14443 type smart card with contactless interface that operates at 13.56 MHZ.

2.8 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable

plus or minus fourteen (\pm 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

C. Guard tour stations:

- The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.
- D. Delayed Egress (DE)
 - 1. General:
 - a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
 - The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode
 - The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 13 00 Physical Access Control-17 time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2) Delayed egress doors will have bond sensors.
- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
 - The delay egress device shall automatically reset upon fire alarm system reset.
 - 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.

- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read: EMERGENCY EXIT. PUSH UNTIL ALARM SOUNDS DOOR CAN BE OPENED,

IN 30 SECONDS.

- Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control

interface shall support extended periods of automated and/or manual lock and unlock cycles.

- E. Key Bypass:
 - 1. Shall be utilized for all doors that have a mortise or rim mounted door hardware.
 - Each door shall be individually keyed with one master key per secured area.
 - 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
 - All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
 - 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.

F. Automatic Door Opener and Closer:

- 1. Shall be low energy operators.
- 2. Door closing force shall be adjustable to ensure adequate closing control.
- Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
- 4. Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
- 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
- Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.

- d. Have push button controls for setting door close and door open positions.
- e. Have open obstruction detection and close obstruction detection built into the unit.
- f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
- g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
- h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.
- G. Door Status Indicators:
 - 1. Shall monitor and report door status to the SMS.
 - 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.9 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:
 - a. Minimum continuous current rating of 10 A at 120 V ac.
 - b. Contacts that will make 720 VA at and that will break at 720 VA.
 - 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
 - Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.10 INTERFACES

- A. Power Supplies:
 - 1. Shall be UL rated and able to adequately power entry control devices on a continuous base without failure.

TNDUE DOMED	
INPUT POWER	110 VAC 60 HZ 1.2 A
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide 210 Ah min
OUTPUT CURRENT	10 amp max. @ 13.8 VDC
	5 amp max. @ 27.6 VDC
PRIMARY FUSE SIZE	6.3 amp (non-removable)
BATTERY FUSE SIZE	12 amp, 3AG
CHARGING CIRCUIT	Built-in standard

2. Shall meet the following minimum technical characteristics:

2.11 REAL TIME GUARD TOUR

- A. Guard tour module shall provide the ability to plan, track, and route tours. Module shall input an alarm during tour if guard fails to make a station. Tours can be programmed for sequential or random tourstation order.
 - Guard tour setup shall define specific routes or tours for the guard to take, with time restrictions in which to reach every predefined tour station.
 - 2. Guard tour activity shall be automatically logged to the centralstation PC's hard drive.
 - If the guard is early or late to a tour station, a unique alarm per station shall appear at the Central Station to indicate the time and station.
 - 4. Guard tour setup shall allow the tours to be executed sequentially or in a random order with an overall time limit set for the entire tour instead of individual times for each tour station.
 - 5. Setup shall allow recording of predefined responses that will display for the operator at the control station should a "Failed to Check-in" alarm occur.
- B. A tour station is a physical location a guard shall reach and perform an action indicating that the guard has arrived. This action, performed at the tour station, shall be 1 of 13 different events with any combination of station types within the same tour. A tour station shall be one of the following event types:

- 1. Access Granted.
- 2. Access Denied Code.
- 3. Access Denied Card plus PIN.
- 4. Access Denied Time Zone.
- 5. Access Denied Level.
- 6. Access Denied Facility.
- 7. Access Denied Code Timer.
- 8. Access Denied Anti-Passback.
- 9. Access Granted Passback Violation.
- 10. Alarm.
- 11. Restored.
- 12. Input Normal.
- 13. Input Abnormal.
- C. Guard tour and other system features shall operate simultaneously with no interference.
- D. Guard Tour Module Capacity: 999 possible guard tour definitions with each tour having up to 99 tour stations. System shall allow all 999 tours to be running at same time.

2.12 WIRES AND CABLES

A. Refer to section 280513 "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY".

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported

solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - 6. Set up alarms.
 - 7. Prepare and install alarm graphic maps.
 - 8. Develop user-defined fields.

10-11

- 9. Develop screen layout formats.
- 10. Propose setups for guard tours and key control.
- 11. Discuss badge layout options; design badges.
- 12. Complete system diagnostics and operation verification.
- Prepare a specific plan for system testing, startup, and demonstration.
- 14. Develop acceptance test concept and, on approval, develop specifics of the test.
- 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 27.
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- E. Install LAN cables using techniques, practices, and methods that are consistent with Category 6 rating of components and that ensure Category 6A performance of completed and linked signal paths, end to end.
- F. Install cables without damaging conductors, shield, or jacket.
- G. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- H. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."

- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet (75 m).
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet (8 m).

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.

- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems: 1. EPPS:
 - a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment:

- 1. The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
- 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate

FARGO VA HEALTHCARE SYSTEM VA PROJECT NO: 437-21-225 EHRM - TRAINING AND ADMIN. SPACE SUPPORT 28 13 00 Physical Access Control-28

in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- N. SMS:
 - Coordinate with the VA agency's IT personnel to place the computer on the local LAN or Intranet and provide the security system protection levels required to insure only authorized VA personnel have access to the system.
 - 2. Program and set-up the SMS to ensure it is in fully operation.
- O. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.
 - Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- P. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.
 - 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
 - 3. Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2'' (5 cm).
- Q. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.

- 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
- 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.

R. System Start-Up:

- The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
 - b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - c. System wiring has been tested and verified as correctly connected as indicated.
 - d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- S. Supplemental Contractor Quality Control:
 - The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.

4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Modify, and test existing software and databases for the complete and proper operation of systems involved.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect[, test, and adjust] field-assembled components and equipment installation, including connections[, and to assist in field testing]. Report results in writing.
- B. Testing Agency: [Owner will engage] [Engage] a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 - 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Develop separate training modules for the following:
 - Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- C. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building 9 has an existing automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. Contractor to modify the existing digitized voice message to identify the modified areas of the building (smoke zone) from which the alarm was initiated.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.

1.2 SCOPE

A. A fully addressable fire alarm system as an extension of an existing fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown on the drawings are intended to be reused. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.

 Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.
- D. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- E. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- F. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- G. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes,

risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.

- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.

- b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
- c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
- d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.

- b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
- c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
- d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
- e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.

D. Certifications:

- 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period

of 5 years from the date of acceptance of the entire installation by the Contracting Officer.

- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA CORor his authorized representative.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the CORor his authorized representative.
 - Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.

- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2022 edition NFPA 14Standard for the Installation of Standpipes and Hose Systems, 2019 edition NFPA 20Standard for the Installation of Stationary Pumps for Fire Protection, 2022 edition NFPA 70.....National Electrical Code (NEC), 2020 edition NFPA 72.....National Fire Alarm Code, 2022 edition NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2021 edition

NFPA 101.....Life Safety Code, 2021 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI):
 - S3.41.....Sudible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2021 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. Existing equipment is intended to be reused. All new devices shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduit shall be installed in accordance with NFPA 70.
 - Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - Wiring shall be in accordance with NEC article 760, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.
 - Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment

from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.

- 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 ALARM NOTIFICATION APPLIANCES

- A. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - Strobes may be combined with the audible notification appliances specified herein.
- B. Horns:
 - Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.

4. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.4 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-break glass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon

testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

- C. Water Flow and Pressure Switches:
 - Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
 - 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 12 00, FIRE-SUPPRESSION STANDPIPES and Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
 - 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

2.5 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 2
 - 2. Fire alarm strobes 2
 - 3. Smoke detectors 5
 - 4. Sprinkler system water flow switch 1 of each size
 - 5. Sprinkler system water pressure switch 1 of each type
 - 6. Fire alarm SLC cable (same as installed) 100 feet (152 m)
- B. Spare and replacement parts shall be in original packaging and submitted to the COR.
- C. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COTR.
- D. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.6 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.

- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in Building 9.
 Flash strobes continuously only in the zone of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm zone until reset at the local fire alarm control unit in Building 9.
 - 3. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 4. Unlock the electrically locked exit doors within the zone of alarm.
- B. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- C. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- D. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm

equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.

- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:

- Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 SMOKE ZONE DESCRIPTIONS:

A. New smoke zones shall be as shown on the drawings.

4.2 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall be provided for each smoke zone of Buildings 9. The messages shall be arranged with a 3 second alert tone, a "Code Red" message and a description of the fire alarm area (building number, floor level, and smoke zone). A sample of such a message is as follows: Alert Tone Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing

4.3 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall automatically transmit a 3 second tone alert and a pre-recorded fire alarm message throughout the floor in alarm, the floor above and the floor below.

- - END - -