SECTION TABLE OF CONTENTS

DIVISION 31 - EARTHWORK

SECTION 31 00 00

EARTHWORK

08/08

PART 1 GENERAL

- 1.1 REFERENCES
- 1.2 DEFINITIONS
 - 1.2.1 Satisfactory Materials
 - 1.2.2 Unsatisfactory Materials
 - 1.2.3 Cohesionless and Cohesive Materials
 - 1.2.4 Degree of Compaction
 - 1.2.5 Topsoil
 - 1.2.6 Hard/Unyielding Materials
 - 1.2.7 Rock
 - 1.2.8 Unstable Material
 - 1.2.9 Select Granular Material
 - 1.2.9.1 General Requirements
 - 1.2.9.2 California Bearing Ratio Values
 - 1.2.10 Initial Backfill Material
 - 1.2.11 Expansive Soils
- 1.3 SYSTEM DESCRIPTION
 - 1.3.1 Classification of Excavation
 - 1.3.1.1 Rock Excavation
 - 1.3.2 Dewatering Work Plan
- 1.4 SUBMITTALS

PART 2 PRODUCTS

- 2.1 REQUIREMENTS FOR OFFSITE SOILS
- 2.2 BURIED WARNING AND IDENTIFICATION TAPE
 - 2.2.1 Warning Tape for Metallic Piping
 - 2.2.2 Detectable Warning Tape for Non-Metallic Piping
- 2.3 DETECTION WIRE FOR NON-METALLIC PIPING

PART 3 EXECUTION

- 3.1 STRIPPING OF TOPSOIL
- 3.2 GENERAL EXCAVATION
 - 3.2.1 Ditches, Gutters, and Channel Changes
 - 3.2.2 Drainage Structures
 - 3.2.3 Drainage
 - 3.2.4 Dewatering
 - 3.2.5 Trench Excavation Requirements
 - 3.2.5.1 Bottom Preparation
 - 3.2.5.2 Removal of Unyielding Material
 - 3.2.5.3 Removal of Unstable Material
 - 3.2.5.4 Excavation for Appurtenances
 - 3.2.6 Underground Utilities
- 3.3 SELECTION OF BORROW MATERIAL

- OPENING AND DRAINAGE OF EXCAVATION AND BORROW PITS 3.4
- 3.5 SHORING
 - 3.5.1 General Requirements
- 3.6 GRADING AREAS
- 3.7 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE
- GROUND SURFACE PREPARATION
 - 3.8.1 General Requirements
 - Frozen Material 3.8.2
- 3.9 UTILIZATION OF EXCAVATED MATERIALS
- BURIED TAPE AND DETECTION WIRE 3.10
 - 3.10.1 Buried Warning and Identification Tape
 - 3.10.2 Buried Detection Wire
- 3.11 BACKFILLING AND COMPACTION
 - 3.11.1 Trench Backfill
 - 3.11.1.1 Replacement of Unyielding Material
 - 3.11.1.2 Replacement of Unstable Material
 - 3.11.1.3 Bedding and Initial Backfill 3.11.1.4 Final Backfill
 - 3.11.2 Backfill for Appurtenances
- 3.12 SPECIAL REQUIREMENTS
 - 3.12.1 Water Lines
- 3.13 EMBANKMENTS
 - 3.13.1 Earth Embankments
- 3.14 SUBGRADE PREPARATION
 - 3.14.1 Proof Rolling
 - 3.14.2 Construction
 - 3.14.3 Compaction
 - 3.14.3.1 Subgrade for Pavements
 - 3.14.3.2 Subgrade for Shoulders
- 3.15 FINISHING
 - Subgrade and Embankments 3.15.1
 - 3.15.2 Capillary Water Barrier
 - 3.15.3 Grading Around Structures
- PLACING TOPSOIL 3.16
- 3.17 TESTING
 - 3.17.1 Fill and Backfill Material Gradation
 - 3.17.2 In-Place Densities
 - 3.17.3 Check Tests on In-Place Densities
 - 3.17.4 Moisture Contents
 - 3.17.5 Optimum Moisture and Laboratory Maximum Density
 - 3.17.6 Tolerance Tests for Subgrades
 - 3.17.7 Displacement of Sewers
- DISPOSITION OF SURPLUS MATERIAL
- -- End of Section Table of Contents --

SECTION 31 00 00

EARTHWORK 08/08

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

> AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO T 180 (2010) Standard Method of Test for

Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm

(18-in.) Drop

AASHTO T 224 (2010) Standard Method of Test for

Correction for Coarse Particles in the

Soil Compaction Test

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C600 (2010) Installation of Ductile-Iron Water

Mains and Their Appurtenances

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2010; Errata 2011) Structural Welding

Code - Steel

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

AWPA C2 (2003) Lumber, Timber, Bridge Ties and

Mine Ties - Preservative Treatment by

Pressure Processes

(2007) Standard for Waterborne AWPA P5

Preservatives

ASTM INTERNATIONAL (ASTM)

ASTM A139/A139M (2004; R 2010) Standard Specification for

Electric-Fusion (ARC)-Welded Steel Pipe

(NPS 4 and over)

ASTM A252 (2010) Standard Specification for Welded

and Seamless Steel Pipe Piles

ASTM C136 (2006) Standard Test Method for Sieve

Analysis of Fine and Coarse Aggregates

ASTM C33/C33M	(2013) Standard Specification for Concrete Aggregates
ASTM D1140	(2014) Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve
ASTM D1556	(2007) Density and Unit Weight of Soil in Place by the Sand-Cone Method
ASTM D1557	(2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3) (2700 kN-m/m3)
ASTM D1883	(2007; E 2009; E 2009) CBR (California Bearing Ratio) of Laboratory-Compacted Soils
ASTM D2167	(2008) Density and Unit Weight of Soil in Place by the Rubber Balloon Method
ASTM D2434	(1968; R 2006) Permeability of Granular Soils (Constant Head)
ASTM D2487	(2011) Soils for Engineering Purposes (Unified Soil Classification System)
ASTM D2937	(2010) Density of Soil in Place by the Drive-Cylinder Method
ASTM D422	(1963; R 2007) Particle-Size Analysis of Soils
ASTM D4318	(2010) Liquid Limit, Plastic Limit, and Plasticity Index of Soils
ASTM D6938	(2010) Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

U.S. ARMY CORPS OF ENGINEERS (USACE)

EM 385-1-1 (2008; Errata 1-2010; Changes 1-3 2010; Changes 4-6 2011; Change 7 2012) Safety and Health Requirements Manual

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

EPA 600/4-79/020 (1983) Methods for Chemical Analysis of Water and Wastes

EPA SW-846.3-3 (1999, Third Edition, Update III-A) Test Methods for Evaluating Solid Waste:

Physical/Chemical Methods

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

CID A-A-203

(Rev C; Notice 3) Paper, Kraft, Untreated

1.2 DEFINITIONS

1.2.1 Satisfactory Materials

Satisfactory materials comprise any materials classified by ASTM D2487 as GW, GP, GM, GP-GM, GW-GM, GC, GP-GC, GM-GC, SW, SP, SM, SW-SM, SC, SW-SC, SP-SM, SP-SC, CL, ML, and CL-ML. Satisfactory materials for general grading will not containt stones larger than 8 inches in any dimension, except that fill material for beneath pavements and railroads will not contain stones larger than 3 inches in any dimension.

1.2.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include man-made fills; trash; refuse; backfills from previous construction; and material classified as satisfactory which contains root and other organic matter or frozen material. Notify the Contracting Officer when encountering any contaminated materials.

1.2.3 Cohesionless and Cohesive Materials

Cohesionless materials include materials classified in ASTM D2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM will be identified as cohesionless only when the fines are nonplastic. Perform testing, required for classifying materials, in accordance with ASTM D4318, ASTM C136, ASTM D422, and ASTM D1140.

1.2.4 Degree of Compaction

Degree of compaction required, except as noted in the second sentence, is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D1557 abbreviated as a percent of laboratory maximum density. Since ASTM D1557 applies only to soils that have 30 percent or less by weight of their particles retained on the 3/4 inch sieve, express the degree of compaction for material having more than 30 percent by weight of their particles retained on the 3/4 inch sieve as a percentage of the maximum density in accordance with AASHTO T 180 and corrected with AASHTO T 224. To maintain the same percentage of coarse material, use the "remove and replace" procedure as described in NOTE 8 of Paragraph 7.2 in AASHTO T 180.

1.2.5 Topsoil

Material suitable for topsoils obtained from on-site and offsite areas is defined as: Natural, friable soil representative of productive, well-drained soils in the area, free of subsoil, stumps, rocks larger than one inch diameter, brush, weeds, toxic substances, and other material detrimental to plant growth. Amend topsoil pH range to obtain a pH of 5.5 to 7.

1.2.6 Hard/Unyielding Materials

Hard/Unyielding materials comprise weathered rock, dense consolidated

deposits, or conglomerate materials which are not included in the definition of "rock" with stones greater than 6 inches in any dimension or as defined by the pipe manufacturer, whichever is smaller. These materials usually require the use of heavy excavation equipment, ripper teeth, or jack hammers for removal.

1.2.7 Rock

Solid homogeneous interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits, neither of which can be removed without systematic drilling and blasting, drilling and the use of expansion jacks or feather wedges, or the use of backhoe-mounted pneumatic hole punchers or rock breakers; also large boulders, buried masonry, or concrete other than pavement exceeding 1/2 cubic yard in volume. Removal of hard material will not be considered rock excavation because of intermittent drilling and blasting that is performed merely to increase production.

1.2.8 Unstable Material

Unstable materials are too wet to properly support the utility pipe, conduit, or appurtenant structure.

1.2.9 Select Granular Material

1.2.9.1 General Requirements

Select granular material consist of materials classified as GW, GP, SW, SP, by ASTM D2487 where indicated. The liquid limit of such material must not exceed 15 percent when tested in accordance with ASTM D1140. The plasticity index must not be greater than 12 percent when tested in accordance with ASTM D4318, and not more than 35 percent by weight may be finer than No. 200 sieve when tested in accordance with ASTM D1140.

1.2.9.2 California Bearing Ratio Values

Bearing Ratio: At 0.1 inch penetration, provide a bearing ratio of 50 percent at 95 percent ASTM D1557 maximum density as determined in accordance with ASTM D1883 for a laboratory soaking period of not less than 4 days. Conform the combined material to the following sieve analysis:

Sieve Size	Percent Passing by Weight
2-1/2 inches	100
No. 4	40 - 85
No. 10	20 - 80
No. 40	10 - 60
No. 200	5 - 25

1.2.10 Initial Backfill Material

Initial backfill consists of select granular material or satisfactory materials free from rocks 2 inches or larger in any dimension or free from rocks of such size as recommended by the pipe manufacturer, whichever is

smaller.

1.2.11 Expansive Soils

Expansive soils are defined as soils that have a plasticity index equal to or greater than 20 when tested in accordance with ASTM D4318.

1.3 SYSTEM DESCRIPTION

Subsurface soil boring logs are provided in the Geotechnical Engineering Report, Proposed Street Reconstruction, Bomber Boulevard, Minot Air Force Base, North Dakota, dated February 26, 2014, and is included at the end of this specification manual. This data represents the best subsurface information available; however, variations may exist in the subsurface between boring locations. This report is provided for information only.

1.3.1 Classification of Excavation

No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation.

1.3.1.1 Rock Excavation

Submit notification of encountering rock in the project. Include rock excavation with blasting, excavating, grading, disposing of material classified as rock, and the satisfactory removal and disposal of boulders 1/2 cubic yard or more in volume; solid rock; rock material that is in ledges, bedded deposits, and unstratified masses, which cannot be removed without systematic drilling and blasting; firmly cemented conglomerate deposits possessing the characteristics of solid rock impossible to remove without systematic drilling and blasting; and hard materials (see Definitions). Include the removal of any concrete or masonry structures, except pavements, exceeding 1/2 cubic yard in volume that may be encountered in the work in this classification. If at any time during excavation, including excavation from borrow areas, the Contractor encounters material that may be classified as rock excavation, uncover such material and notify the Contracting Officer. Do not proceed with the excavation of this material until the Contracting Officer has classified the materials as common excavation or rock excavation and has taken cross sections as required. Failure on the part of the Contractor to uncover such material, notify the Contracting Officer, and allow ample time for classification and cross sectioning of the undisturbed surface of such material will cause the forfeiture of the Contractor's right of claim to any classification or volume of material to be paid for other than that allowed by the Contracting Officer for the areas of work in which such deposits occur.

1.3.2 Dewatering Work Plan

Submit procedures for accomplishing dewatering work.

1.4 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Dewatering Work Plan

Shoring And Sheeting Plan

SD-03 Product Data

Utilization of Excavated Materials

SD-06 Test Reports

Testing

Within 24 hours of conclusion of physical tests, submit 2 copies of test results, including calibration curves and results of calibration tests.

SD-07 Certificates

Testing

PART 2 PRODUCTS

2.1 REQUIREMENTS FOR OFFSITE SOILS

Test offsite soils brought in for use as backfill for Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and full Toxicity Characteristic Leaching Procedure (TCLP) including ignitability, corrosivity and reactivity. Backfill shall contain a maximum of 100 parts per million (ppm) of total petroleum hydrocarbons (TPH) and a maximum of 10 ppm of the sum of Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and shall pass the TCPL test. Determine TPH concentrations by using EPA 600/4-79/020 Method 418.1. Determine BTEX concentrations by using EPA SW-846.3-3 Method 5030/8020. Perform TCLP in accordance with EPA SW-846.3-3 Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Do not bring material onsite until tests have been approved by the Contracting Officer.

2.2 BURIED WARNING AND IDENTIFICATION TAPE

Provide polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant, polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inches minimum width, color coded as specified below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Provide permanent color and printing, unaffected by moisture or soil.

Warning Tape Color Codes		
Red	Electric	
Yellow	Gas, Oil; Dangerous Materials	
Orange	Telephone and Other Communications	

Warning Tape Color Codes	
Blue	Water Systems
Green	Sewer Systems
White	Steam Systems
Gray	Compressed Air

2.2.1 Warning Tape for Metallic Piping

Provide acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above, with a minimum thickness of 0.003 inch and a minimum strength of 1500 psi lengthwise, and 1250 psi crosswise, with a maximum 350 percent elongation.

2.2.2 Detectable Warning Tape for Non-Metallic Piping

Provide polyethylene plastic tape conforming to the width, color, and printing requirements specified above, with a minimum thickness of 0.004 inch, and a minimum strength of 1500 psi lengthwise and 1250 psi crosswise. Manufacture tape with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 3 feet deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.

2.3 DETECTION WIRE FOR NON-METALLIC PIPING

Insulate a single strand, solid copper detection wire with a minimum of 12 AWG.

PART 3 EXECUTION

3.1 STRIPPING OF TOPSOIL

Where indicated or directed, strip topsoil to a depth of 4 inches. Spread topsoil on areas already graded and prepared for topsoil, or transported and deposited in stockpiles convenient to areas that are to receive application of the topsoil later, or at locations indicated or specified. Keep topsoil separate from other excavated materials, brush, litter, objectionable weeds, roots, stones larger than 2 inches in diameter, and other materials that would interfere with planting and maintenance operations. Remove from the site any surplus of topsoil from excavations and gradings.

3.2 GENERAL EXCAVATION

Perform excavation of every type of material encountered within the limits of the project to the lines, grades, and elevations indicated and as specified. Perform the grading in accordance with the typical sections shown and the tolerances specified in paragraph FINISHING. Transport satisfactory excavated materials and place in fill or embankment within the limits of the work. Excavate unsatisfactory materials encountered within the limits of the work below grade and replace with satisfactory materials as directed. Include such excavated material and the satisfactory material ordered as replacement in excavation. Dispose surplus satisfactory excavated material not required for fill or embankment in areas approved

for surplus material storage or designated waste areas. Dispose unsatisfactory excavated material in designated waste or spoil areas. During construction, perform excavation and fill in a manner and sequence that will provide proper drainage at all times. Excavate material required for fill or embankment in excess of that produced by excavation within the grading limits from the borrow areas indicated or from other approved areas selected by the Contractor as specified.

3.2.1 Ditches, Gutters, and Channel Changes

Finish excavation of ditches, gutters, and channel changes by cutting accurately to the cross sections, grades, and elevations shown on Drawings. Do not excavate ditches and gutters below grades shown. Backfill the excessive open ditch or gutter excavation with satisfactory, thoroughly compacted, material or with suitable stone or cobble to grades shown. Dispose excavated material as shown or as directed, except in no case allow material be deposited a maximum 4 feet from edge of a ditch. Maintain excavations free from detrimental quantities of leaves, brush, sticks, trash, and other debris until final acceptance of the work.

3.2.2 Drainage Structures

Make excavations to the lines, grades, and elevations shown, or as directed. Provide trenches and foundation pits of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations as shown. Clean rock or other hard foundation material of loose debris and cut to a firm, level, stepped, or serrated surface. Remove loose disintegrated rock and thin strata. Do not disturb the bottom of the excavation when concrete or masonry is to be placed in an excavated area. Do not excavate to the final grade level until just before the concrete or masonry is to be placed. Where pile foundations are to be used, stop the excavation of each pit at an elevation 1 foot above the base of the footing, as specified, before piles are driven. After the pile driving has been completed, remove loose and displaced material and complete excavation, leaving a smooth, solid, undisturbed surface to receive the concrete or masonry.

3.2.3 Drainage

Provide for the collection and disposal of surface and subsurface water encountered during construction. Completely drain construction site during periods of construction to keep soil materials sufficiently dry. Construct storm drainage features (ponds/basins) at the earliest stages of site development, and throughout construction grade the construction area to provide positive surface water runoff away from the construction activity and provide temporary ditches, swales, and other drainage features and equipment as required to maintain dry soils. When unsuitable working platforms for equipment operation and unsuitable soil support for subsequent construction features develop, remove unsuitable material and provide new soil material as specified herein. It is the responsibility of the Contractor to assess the soil and ground water conditions presented by the plans and specifications and to employ necessary measures to permit construction to proceed.

3.2.4 Dewatering

Control groundwater flowing toward or into excavations to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. Do

not permit French drains, sumps, ditches or trenches within 3 feet of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Take control measures by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, maintain the water level continuously, at least 1 foot below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly. Measure and record performance of dewatering system at same time each day by use of observation wells or piezometers installed in conjunction with the dewatering system.

3.2.5 Trench Excavation Requirements

Excavate the trench as recommended by the manufacturer of the pipe and as shown on the plan to be installed. Slope trench walls below the top of the pipe, or make vertical, and of such width as recommended in the manufacturer's printed installation manual. Provide vertical trench walls where no manufacturer's printed installation manual is available. Shore trench walls more than 4 feet high, cut back to a stable slope, or provide with equivalent means of protection for employees who may be exposed to moving ground or cave in. Excavate trench walls which are cut back to at least the angle of repose of the soil. Give special attention to slopes which may be adversely affected by weather or moisture content. Do not exceed the trench width below the pipe top of 24 inches plus pipe outside diameter (O.D.) for pipes of less than 24 inches inside diameter, and do not exceed 36 inches plus pipe outside diameter for sizes larger than 24 inches inside diameter. Where recommended trench widths are exceeded, provide redesign, stronger pipe, or special installation procedures by the Contractor. The Contractor is responsible for the cost of redesign, stronger pipe, or special installation procedures without any additional cost to the Government.

3.2.5.1 Bottom Preparation

Grade the bottoms of trenches accurately to provide uniform bearing and support for the bottom quadrant of each section of the pipe. Excavate bell holes to the necessary size at each joint or coupling to eliminate point bearing. Remove stones of 2 inches or greater in any dimension, or as recommended by the pipe manufacturer, whichever is smaller, to avoid point bearing.

3.2.5.2 Removal of Unyielding Material

Where overdepth is not indicated and unyielding material is encountered in the bottom of the trench, remove such material 4 inches below the required grade and replaced with suitable materials as provided in paragraph BACKFILLING AND COMPACTION.

3.2.5.3 Removal of Unstable Material

Where unstable material is encountered in the bottom of the trench, remove such material to the depth directed and replace it to the proper grade with select granular material as provided in paragraph BACKFILLING AND COMPACTION. When removal of unstable material is required due to the Contractor's fault or neglect in performing the work, the Contractor is responsible for excavating the resulting material and replacing it without additional cost to the Government.

3.2.5.4 Excavation for Appurtenances

Provide excavation for manholes, catch-basins, inlets, or similar structures sufficient to leave at least 12 inches clear between the outer structure surfaces and the face of the excavation or support members. Clean rock or loose debris and cut to a firm surface either level, stepped, or serrated, as shown or as directed. Remove loose disintegrated rock and thin strata. Specify removal of unstable material. When concrete or masonry is to be placed in an excavated area, take special care not to disturb the bottom of the excavation. Do not excavate to the final grade level until just before the concrete or masonry is to be placed.

3.2.6 Underground Utilities

The Contractor is responsible for movement of construction machinery and equipment over pipes and utilities during construction. Perform work adjacent to non-Government utilities as indicated in accordance with procedures outlined by utility company. Excavation made with power-driven equipment is not permitted within 2 feet of known Government-owned utility or subsurface construction. For work immediately adjacent to or for excavations exposing a utility or other buried obstruction, excavate by hand. Start hand excavation on each side of the indicated obstruction and continue until the obstruction is uncovered or until clearance for the new grade is assured. Support uncovered lines or other existing work affected by the contract excavation until approval for backfill is granted by the Contracting Officer. Report damage to utility lines or subsurface construction immediately to the Contracting Officer.

3.3 SELECTION OF BORROW MATERIAL

Select borrow material to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Obtain borrow material from the borrow areas selected by the Contractor. Unless otherwise provided in the contract, the Contractor is responsible for obtaining the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling from the owners. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, do not obtain borrow within the limits of the project site without prior written approval.

3.4 OPENING AND DRAINAGE OF EXCAVATION AND BORROW PITS

Except as otherwise permitted, excavate borrow pits and other excavation areas providing adequate drainage. Transport overburden and other spoil material to designated spoil areas or otherwise dispose of as directed. Provide neatly trimmed and drained borrow pits after the excavation is completed. Ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.5 SHORING

3.5.1 General Requirements

Submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered professional engineer, describing the methods for shoring and sheeting of

excavations. Finish shoring, including sheet piling, and install as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Remove shoring, bracing, and sheeting as excavations are backfilled, in a manner to prevent caving.

3.6 GRADING AREAS

Where indicated, divide work into grading areas within which satisfactory excavated material will be placed in embankments, fills, and required backfills. Do not haul satisfactory material excavated in one grading area to another grading area except when so directed in writing. Place and grade stockpiles of satisfactory and wasted materials as specified. Keep stockpiles in a neat and well drained condition, giving due consideration to drainage at all times. Clear, grub, and seal by rubber-tired equipment, the ground surface at stockpile locations; separately stockpile excavated satisfactory and unsatisfactory materials. Protect stockpiles of satisfactory materials from contamination which may destroy the quality and fitness of the stockpiled material. If the Contractor fails to protect the stockpiles, and any material becomes unsatisfactory, remove and replace such material with satisfactory material from approved sources.

3.7 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE

Do not excavate to final grade until just before concrete is to be placed. Only use excavation methods that will leave the foundation rock in a solid and unshattered condition. Roughen the level surfaces, and cut the sloped surfaces, as indicated, into rough steps or benches to provide a satisfactory bond. Protect shales from slaking and all surfaces from erosion resulting from ponding or water flow.

3.8 GROUND SURFACE PREPARATION

3.8.1 General Requirements

Remove and replace unsatisfactory material with satisfactory materials, as directed by the Contracting Officer, in surfaces to receive fill or in excavated areas. Scarify the surface to a depth of 6 inches before the fill is started. Plow, step, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so that the fill material will bond with the existing material. When subgrades are less than the specified density, break up the ground surface to a minimum depth of 6 inches, pulverizing, and compacting to the specified density. When the subgrade is part fill and part excavation or natural ground, scarify the excavated or natural ground portion to a depth of 12 inches and compact it as specified for the adjacent fill.

3.8.2 Frozen Material

Do not place material on surfaces that are muddy, frozen, or contain frost. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment well suited to the soil being compacted. Moisten material as necessary to plus or minus 2 percent of optimum moisture to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.

3.9 UTILIZATION OF EXCAVATED MATERIALS

All excess and unsatisfactory materials removed from excavations shall be disposed of off Government property. Use satisfactory material removed

from excavations, insofar as practicable, in the construction of fills, embankments, subgrades, shoulders, bedding (as backfill), and for similar purposes. Submit procedure and location for disposal of unused satisfactory material. Submit proposed source of borrow material. Do not waste any satisfactory excavated material without specific written authorization. Dispose of satisfactory material, authorized to be wasted, in designated areas approved for surplus material storage or designated waste areas as directed. Clear and grub newly designated waste areas on Government-controlled land before disposal of waste material off Government property. Stockpile and use coarse rock from excavations for constructing slopes or embankments adjacent to streams, or sides and bottoms of channels and for protecting against erosion. Do not dispose excavated material to obstruct the flow of any stream, endanger a partly finished structure, impair the efficiency or appearance of any structure, or be detrimental to the completed work in any way.

3.10 BURIED TAPE AND DETECTION WIRE

3.10.1 Buried Warning and Identification Tape

Provide buried utility lines with utility identification tape. Bury tape 12 inches below finished grade; under pavements and slabs, bury tape 6 inches below top of subgrade.

3.10.2 Buried Detection Wire

Bury detection wire directly above non-metallic piping at a distance not to exceed 12 inches above the top of pipe. Extend the wire continuously and unbroken, from structure to structure. Terminate the ends of the wire inside the manholes at each end of the pipe, with a minimum of 3 feet of wire, coiled, remaining accessible in each manhole. Furnish insulated wire over its entire length. Install wires at manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, terminate the wire in the valve pit at the pump station end of the pipe.

3.11 BACKFILLING AND COMPACTION

Place backfill adjacent to any and all types of structures, and compact to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials, to prevent wedging action or eccentric loading upon or against the structure. Prepare ground surface on which backfill is to be placed and provide compaction requirements for backfill materials in conformance with the applicable portions of paragraphs GROUND SURFACE PREPARATION. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.11.1 Trench Backfill

Backfill trenches to the grade shown. Backfill the trench to a minimum of 2 feet above the top of pipe prior to performing the required pressure tests. Leave the joints and couplings uncovered during the pressure test. Do not backfill the trench until all specified tests are performed.

3.11.1.1 Replacement of Unyielding Material

Replace unyielding material removed from the bottom of the trench with select granular material or initial backfill material.

3.11.1.2 Replacement of Unstable Material

Replace unstable material removed from the bottom of the trench or excavation with select granular material placed in layers not exceeding 6 inches loose thickness.

3.11.1.3 Bedding and Initial Backfill

Provide bedding of the type and thickness shown. Place initial backfill material and compact it with approved tampers to a height of at least one foot above the utility pipe or conduit. Bring up the backfill evenly on both sides of the pipe for the full length of the pipe. Take care to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Compact backfill to top of pipe to 95 percent of ASTM D698 maximum density. Provide plastic piping with bedding to spring line of pipe. Provide materials as follows:

- a. Class I: Angular, 0.25 to 1.5 inch, graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- b. Class II: Coarse sands and gravels with maximum particle size of 1.5 inch, including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.

3.11.1.4 Final Backfill

Fill the remainder of the trench, except for special materials for roadways, railroads and airfields, with satisfactory material. Place backfill material and compact as follows:

- a. Roadways, Railroads, and Airfields: Deposit backfill in layers of a maximum of 12 inches loose thickness, and compact it to 90 percent maximum density for cohesive soils and 95 percent maximum density for cohesionless soils. Place backfill up to the required elevation as specified. Do not permit water flooding or jetting methods of compaction.
- b. Sidewalks, Turfed or Seeded Areas and Miscellaneous Areas: Deposit backfill in layers of a maximum of 8 inches loose thickness, and compact it to 85 percent maximum density for cohesive soils and 90 percent maximum density for cohesionless soils. Do not allow water jetting to penetrate the initial backfill. Do not permit compaction by water flooding or jetting. Apply this requirement to all other areas not specifically designated above.

3.11.2 Backfill for Appurtenances

After the manhole, catchbasin, inlet, or similar structure has been constructed, place backfill in such a manner that the structure is not damaged by the shock of falling earth. Deposit the backfill material, compact it as specified for final backfill, and bring up the backfill evenly on all sides of the structure to prevent eccentric loading and excessive stress.

3.12 SPECIAL REQUIREMENTS

Special requirements for both excavation and backfill relating to the specific utilities are as follows:

3.12.1 Water Lines

Excavate trenches to a depth that provides a minimum cover of 8.5 feet from the existing ground surface, or from the indicated finished grade, whichever is lower, to the top of the pipe.

3.13 EMBANKMENTS

3.13.1 Earth Embankments

Construct earth embankments from satisfactory materials free of organic or frozen material and rocks with any dimension greater than 3 inches. Place the material in successive horizontal layers of loose material not more than 8 inches in depth. Spread each layer uniformly on a soil surface that has been moistened or aerated as necessary, and scarified or otherwise broken up so that the fill will bond with the surface on which it is placed. After spreading, plow, disk, or otherwise break up each layer; moisten or aerate as necessary; thoroughly mix; and compact to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Compaction requirements for the upper portion of earth embankments forming subgrade for pavements are identical with those requirements specified in paragraph SUBGRADE PREPARATION. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.14 SUBGRADE PREPARATION

3.14.1 Proof Rolling

Finish proof rolling on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. Proof roll the existing subgrade of the roadways with six passes of a dump truck loaded with 4 cubic yards of soil. Operate the truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 2-1/2 to 3-1/2 mph. When proof rolling, provide one-half of the passes made with the roller in a direction perpendicular to the other passes. Notify the Contracting Officer a minimum of 3 days prior to proof rolling. Perform proof rolling in the presence of the Contracting Officer or Geotechnical Engineer. Undercut rutting or pumping of material as directed by the Contracting Officer and replace with select material.

3.14.2 Construction

Shape subgrade to line, grade, and cross section, and compact as specified. Include plowing, disking, and any moistening or aerating required to obtain specified compaction for this operation. Remove soft or otherwise unsatisfactory material and replace with satisfactory excavated material or other approved material as directed. Excavate rock encountered in the cut section to a depth of 6 inches below finished grade for the subgrade. Bring up low areas resulting from removal of unsatisfactory material or excavation of rock to required grade with satisfactory

materials, and shape the entire subgrade to line, grade, and cross section and compact as specified. After rolling, the surface of the subgrade for roadways shall not show deviations greater than 1/2 inch when tested with a 12-foot straightedge applied both parallel and at right angles to the centerline of the area. Do not vary the elevation of the finish subgrade more than 0.05 foot from the established grade and cross section.

3.14.3 Compaction

Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Except for paved areas and railroads, compact each layer of the embankment to at least 90 percent of laboratory maximum density.

3.14.3.1 Subgrade for Pavements

Compact subgrade for pavements to at least 95 percent laboratory maximum density for the depth below the surface of the pavement shown. When more than one soil classification is present in the subgrade, thoroughly blend, reshape, and compact the top 12 inches of subgrade.

3.14.3.2 Subgrade for Shoulders

Compact subgrade for shoulders to at least 95 percent laboratory maximum density for the full depth of the shoulder.

3.15 FINISHING

Finish the surface of excavations, embankments, and subgrades to a smooth and compact surface in accordance with the lines, grades, and cross sections or elevations shown. Provide the degree of finish for graded areas within 0.1 foot of the grades and elevations indicated. Finish gutters and ditches in a manner that will result in effective drainage. Finish the surface of areas to be turfed from settlement or washing to a smoothness suitable for the application of turfing materials. Repair graded, topsoiled, or backfilled areas prior to acceptance of the work, and re-established grades to the required elevations and slopes.

3.15.1 Subgrade and Embankments

During construction, keep embankments and excavations shaped and drained. Maintain ditches and drains along subgrade to drain effectively at all times. Do not disturb the finished subgrade by traffic or other operation. Protect and maintain the finished subgrade in a satisfactory condition until ballast, subbase, base, or pavement is placed. Do not permit the storage or stockpiling of materials on the finished subgrade. Do not lay subbase, base course, ballast, or pavement until the subgrade has been checked and approved, and in no case place subbase, base, surfacing, pavement, or ballast on a muddy, spongy, or frozen subgrade.

3.15.2 Capillary Water Barrier

Place a capillary water barrier under concrete floor and area-way slabs, and grade directly on the subgrade and compact with a minimum of two passes of a hand-operated plate-type vibratory compactor.

3.15.3 Grading Around Structures

Construct areas within 5 feet outside of each structure line true-to-grade,

shape to drain, and maintain free of trash and debris until final inspection has been completed and the work has been accepted.

3.16 PLACING TOPSOIL

On areas to receive topsoil, prepare the compacted subgrade soil to a 2 inches depth for bonding of topsoil with subsoil. Spread topsoil evenly to a thickness of 4 inches and grade to the elevations and slopes shown. Do not spread topsoil when frozen or excessively wet or dry. Obtain material required for topsoil in excess of that produced by excavation within the grading limits from offsite areas.

3.17 TESTING

Perform testing by a Corps validated commercial testing laboratory. Submit qualifications of the Corps validated commercial testing laboratory testing facilities. If the Contractor elects to establish testing facilities, do not permit work requiring testing until the Contractor's facilities have been inspected, Corps validated and approved by the Contracting Officer.

- a. Determine field in-place density in accordance with ASTM D1556. When ASTM D6938 is used, check the calibration curves and adjust using only the sand cone method as described in ASTM D1556. ASTM D6938 results in a wet unit weight of soil in determining the moisture content of the soil when using this method.
- b. Check the calibration curves furnished with the moisture gauges along with density calibration checks as described in ASTM D6938; check the calibration of both the density and moisture gauges at the beginning of a job on each different type of material encountered and at intervals as directed by the Contracting Officer. When test results indicate, as determined by the Contracting Officer, that compaction is not as specified, remove the material, replace and recompact to meet specification requirements.
- c. Perform tests on recompacted areas to determine conformance with specification requirements. Appoint a registered professional civil engineer to certify inspections and test results. These certifications shall state that the tests and observations were performed by or under the direct supervision of the engineer and that the results are representative of the materials or conditions being certified by the tests. The following number of tests, if performed at the appropriate time, will be the minimum acceptable for each type operation.

3.17.1 Fill and Backfill Material Gradation

One test per 200 cubic yards stockpiled or in-place source material. Determine gradation of fill and backfill material in accordance with ASTM C136, ASTM D422 or ASTM D1140.

3.17.2 In-Place Densities

- a. One test per 1000 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by other than hand-operated machines.
- b. One test per 500 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by hand-operated machines.
- c. One test per 50 linear feet, or fraction thereof, of each lift of

embankment or backfill for roads.

3.17.3 Check Tests on In-Place Densities

If ASTM D6938 is used, check in-place densities by ASTM D1556 as follows:

- a. One check test per lift for each 20,000 square feet, or fraction thereof, of each lift of fill or backfill compacted by other than hand-operated machines.
- b. One check test per lift for each 20,000 square feet, of fill or backfill areas compacted by hand-operated machines.
- c. One check test per lift for each 1,000 linear feet, or fraction thereof, of embankment or backfill for roads.

3.17.4 Moisture Contents

In the stockpile, excavation, or borrow areas, perform a minimum of two tests per day per type of material or source of material being placed during stable weather conditions. During unstable weather, perform tests as dictated by local conditions and approved by the Contracting Officer.

3.17.5 Optimum Moisture and Laboratory Maximum Density

Perform tests for each type of material or source of material including borrow material to determine the optimum moisture and laboratory maximum density values. Perform one representative test per 400 cubic yards of fill and backfill, or when any change in material occurs that may affect the optimum moisture content or laboratory maximum density.

3.17.6 Tolerance Tests for Subgrades

Perform continuous checks on the degree of finish specified in paragraph SUBGRADE PREPARATION during construction of the subgrades.

3.17.7 Displacement of Sewers

After other required tests have been performed and the trench backfill compacted to 2 feet above the top of the pipe, inspect the pipe to determine whether significant displacement has occurred. Conduct this inspection in the presence of the Contracting Officer. Inspect pipe sizes larger than 36 inches, while inspecting smaller diameter pipe by shining a light or laser between manholes or manhole locations, or by the use of television cameras passed through the pipe. If, in the judgment of the Contracting Officer, the interior of the pipe shows poor alignment or any other defects that would cause improper functioning of the system, replace or repair the defects as directed at no additional cost to the Government.

3.18 DISPOSITION OF SURPLUS MATERIAL

Surplus material or other soil material not required or suitable for filling or backfilling, and brush, refuse, stumps, roots, and timber shall become property of the Contractor and removed from Government property.

-- End of Section --

SECTION TABLE OF CONTENTS

DIVISION 31 - EARTHWORK

SECTION 31 11 00

CLEARING AND GRUBBING

08/08

PART 1 GENERAL

- 1.1 SUBMITTALS
- 1.2 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

- 2.1 TREE WOUND PAINT
- 2.2 HERBICIDE

PART 3 EXECUTION

- 3.1 PROTECTION
 - 3.1.1 Roads and Walks
 - 3.1.2 Trees, Shrubs, and Existing Facilities
 - 3.1.3 Utility Lines
- 3.2 CLEARING
- 3.3 TREE REMOVAL
- 3.4 PRUNING
- 3.5 GRUBBING
- 3.6 DISPOSAL OF MATERIALS
 - 3.6.1 Nonsaleable Materials
- -- End of Section Table of Contents --

SECTION 31 11 00

CLEARING AND GRUBBING 08/08

PART 1 GENERAL

1.1 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Nonsaleable Materials;

SD-04 Samples

Tree wound paint Herbicide

1.2 DELIVERY, STORAGE, AND HANDLING

Deliver materials to store at the site, and handle in a manner which will maintain the materials in their original manufactured or fabricated condition until ready for use.

PART 2 PRODUCTS

2.1 TREE WOUND PAINT

Submit samples in cans with manufacturer's label of bituminous based paint of standard manufacture specially formulated for tree wounds.

2.2 HERBICIDE

Comply with Federal Insecticide, Fungicide, and Rodenticide Act (Title 7 U.S.C. Section 136) for requirements on Contractor's licensing, certification and record keeping. Contact the command Pest Control Coordinator prior to starting work. Submit samples in cans with manufacturer's label.

PART 3 EXECUTION

3.1 PROTECTION

3.1.1 Roads and Walks

Keep roads and walks free of dirt and debris at all times.

3.1.2 Trees, Shrubs, and Existing Facilities

Trees and vegetation to be left standing shall be protected from damage incident to clearing, grubbing, and construction operations by the erection of barriers or by such other means as the circumstances require.

3.1.3 Utility Lines

Protect existing utility lines that are indicated to remain free from damage. Notify the Contracting Officer immediately of damage to or an encounter with an unknown existing utility line. The Contractor is responsible for the repairs of damage to existing utility lines that are indicated or made known to the Contractor prior to start of clearing and grubbing operations. When utility lines which are to be removed are encountered within the area of operations, notify the Contracting Officer in ample time to minimize interruption of the service. Refer to Section 01 57 20, ENVIRONMENTAL PROTECTION for additional utility protection.

3.2 CLEARING

Clearing shall consist of the felling, trimming, and cutting of trees into sections and the satisfactory disposal of the trees and other vegetation designated for removal, including downed timber, snags, brush, and rubbish occurring within the areas to be cleared. Clearing shall also include the removal and disposal of structures that obtrude, encroach upon, or otherwise obstruct the work. Trees, stumps, roots, brush, and other vegetation in areas to be cleared shall be cut off flush with or below the original ground surface, except such trees and vegetation as may be indicated or directed to be left standing. Trees designated to be left standing within the cleared areas shall be trimmed of dead branches 1-1/2 inches or more in diameter and shall be trimmed of all branches at the heights indicated or directed. Limbs and branches to be trimmed shall be neatly cut close to the bole of the tree or main branches. Cuts more than 1-1/2 inches in diameter shall be painted with an approved tree-wound paint. Apply herbicide in accordance with the manufacturer's label to the top surface of stumps designated not to be removed.

3.3 TREE REMOVAL

Where indicated or directed, trees and stumps that are designated as trees shall be removed from areas outside those areas designated for clearing and grubbing. This work shall include the felling of such trees and the removal of their stumps and roots as specified in paragraph GRUBBING. Trees shall be disposed of as specified in paragraph DISPOSAL OF MATERIALS.

3.4 PRUNING

Prune trees designated to be left standing within the cleared areas of dead branches 1-1/2 inches or more in diameter and trim branches to heights and in a manner as indicated. Neatly cut limbs and branches to be trimmed close to the bole of the tree or main branches. Paint cuts more than 1-1/4 inches in diameter with an approved tree wound paint.

3.5 GRUBBING

Grubbing shall consist of the removal and disposal of stumps, roots larger

than 3 inches in diameter, and matted roots from the designated grubbing areas. Material to be grubbed, together with logs and other organic or metallic debris not suitable for foundation purposes, shall be removed to a depth of not less than 18 inches below the original surface level of the ground in areas indicated to be grubbed and in areas indicated as construction areas under this contract, such as areas for buildings, and areas to be paved. Depressions made by grubbing shall be filled with suitable material and compacted to make the surface conform with the original adjacent surface of the ground.

3.6 DISPOSAL OF MATERIALS

3.6.1 Nonsaleable Materials

Written permission to dispose of such products on private property shall be filed with the Contracting Officer. Logs, stumps, roots, brush, rotten wood, and other refuse from the clearing and grubbing operations shall become property of the Contractor and be removed from Government property.

-- End of Section --