NWIHCS CONSTRUCT AIR HANDLING TOWER VA PROJECT NUMBER: 636-18-303

4101 WOOLWORTH AVE OMAHA, NE 68105

U.S. Department of Veterans Affairs Veterans Health Administration

TECHNICAL SPECIFICATIONS VOL II Divisions 21-34 and Attachments

ANDERSON ENGINEERING OF MN, LLC Project Number: 15744

Issue for 100% CONSTRUCTION DOCUMENTS May 28, 2021

\land N D E R S O N

Anderson Engineering of Minnesota, LLC 13605 1st Avenue North Plymouth, MN 55441 Phone: 763-412-4000 Fax: 763-412-4090

Prepared in association with the following: IMEG CORP.

SECTION 21 08 00

COMMISSIONING OF FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.
- B. The Fire Suppression systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements.

21 08 00 - 1

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING

REQUIREMENTS and Division 21 Sections for additional Contractor training requirements.

----- END -----

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation, for all portions of addition and renovated spaces.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 09 91 00, PAINTING.
- D. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
 - b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.

- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Base water supply on a flow test of:
 - a. Location: At existing fire pump (fire pump test results provided by Omaha VA on 12/10/2020).
 - b. Suction Pressure: 61 psi
 - c. Discharge Pressure: 145 psi
 - d. Flow: 503 gpm
 - e. Date: 10/26/2020
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.
- 6. Provide seismic protection in accordance with NFPA 13. Contractor shall submit load calculations for sizing of sway bracing for systems that are required to be protected against damage from earthquakes.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

- 1. Qualifications:
 - a. Provide a copy of the installing contractors state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
 - c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
 - b. Submit calculations of loads for sizing of sway bracing in accordance with NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not

exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.

- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - One complete set in AutoCAD format or a format as directed by the COR.
 - b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
 - c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
 - d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.

e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of Nebraska contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

- Based Fire Protection Systems
- 101-18.....Life Safety Code
- 170-18.....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.

- Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
- Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
- 4. Plastic piping shall not be permitted except for drain piping.
- 5. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.3 SPRINKLERS

- A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in elevator hoistways, and elevator machine rooms.
- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.4 SPRINKLER CABINET

- A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13. Locate adjacent to the riser.
- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.5 SPRINKLER SYSTEM SIGNAGE

A. Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.6 SWITCHES:

A. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.

2.7 GAUGES

A. Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.8 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

A. Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.9 WALL, FLOOR AND CEILING PLATES

A. Provide chrome plated steel escutcheon plates.

2.10 VALVE TAGS

A. Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation

of the type of system being installed, to supervise the installation and testing of the system.

- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, and seismic bracing shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.

- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- L. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- M. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- N. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- O. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR.
 Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone

(if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)

- 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
- 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- P. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- Q. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials

required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

A. Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control
 - 25. DI: Digital Input
 - 26. DISS: Diameter Index Safety System
 - 27. DO: Digital Output
 - 28. DVD: Digital Video Disc

- 29. DN: Diameter Nominal
- 30. DWV: Drainage, Waste and Vent
- 31. ECC: Engineering Control Center
- 32. EPDM: Ethylene Propylene Diene Monomer
- 33. EPT: Ethylene Propylene Terpolymer
- 34. ETO: Ethylene Oxide
- 35. F: Fahrenheit
- 36. FAR: Federal Acquisition Regulations
- 37. FD: Floor Drain
- 38. FED: Federal
- 39. FG: Fiberglass
- 40. FNPT: Female National Pipe Thread
- 41. FPM: Fluoroelastomer Polymer
- 42. GPM: Gallons Per Minute
- 43. HDPE: High Density Polyethylene
- 44. Hg: Mercury
- 45. HOA: Hands-Off-Automatic
- 46. HP: Horsepower
- 47. HVE: High Volume Evacuation
- 48. ID: Inside Diameter
- 49. IPS: Iron Pipe Size
- 50. Kg: Kilogram
- 51. kPa: Kilopascal
- 52. lb: Pound
- 53. L/s: Liters Per Second
- 54. L/min: Liters Per Minute
- 55. MAWP: Maximum Allowable Working Pressure
- 56. MAX: Maximum
- 57. MED: Medical
- 58. m: Meter
- 59. MFG: Manufacturer
- 60. mg: Milligram
- 61. mg/L: Milligrams per Liter
- 62. ml: Milliliter
- 63. mm: Millimeter
- 64. MIN: Minimum
- 65. NF: Oil Free Dry (Nitrogen)

- 66. NPTF: National Pipe Thread Female
- 67. NPS: Nominal Pipe Size
- 68. NPT: Nominal Pipe Thread
- 69. OD: Outside Diameter
- 70. OSD: Open Sight Drain
- 71. OS&Y: Outside Stem and Yoke
- 72. OXY: Oxygen
- 73. PBPU: Prefabricated Bedside Patient Units
- 74. PH: Power of Hydrogen
- 75. PLC: Programmable Logic Controllers
- 76. PP: Polypropylene
- 77. PPM: Parts per Million
- 78. PSIG: Pounds per Square Inch
- 79. PTFE: Polytetrafluoroethylene
- 80. PVC: Polyvinyl Chloride
- 81. PVDF: Polyvinylidene Fluoride
- 82. RAD: Radians
- 83. RO: Reverse Osmosis
- 84. RPM: Revolutions Per Minute
- 85. RTRP: Reinforced Thermosetting Resin Pipe
- 86. SCFM: Standard Cubic Feet Per Minute
- 87. SDI: Silt Density Index
- 88. SPEC: Specification
- 89. SPS: Sterile Processing Services
- 90. STD: Standard
- 91. SUS: Saybolt Universal Second
- 92. SWP: Steam Working Pressure
- 93. TEFC: Totally Enclosed Fan-Cooled
- 94. TFE: Tetrafluoroethylene
- 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 97. T/P: Temperature and Pressure
- 98. USDA: U.S. Department of Agriculture
- 99. V: Volt
- 100. VAC: Vacuum
- 101. VA: Veterans Administration
- 102. VAMC: Veterans Administration Medical Center

103. VAC: Voltage in Alternating Current
104. WAGD: Waste Anesthesia Gas Disposal
105. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- F. Section 05 31 00, STEEL DECKING: Building Components for Attachment of Hangers.
- G. Section 05 36 00, COMPOSITE METAL DECKING: Building Components for Attachment of Hangers.
- H. Section 05 50 00, METAL FABRICATIONS.
- I. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- J. Section 07 84 00, FIRESTOPPING.
- K. Section 07 92 00, JOINT SEALANTS.
- L. Section 09 91 00, PAINTING.
- M. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- N. Section 22 07 11, PLUMBING INSULATION.
- O. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- P. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- Q. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- R. Section 26 29 11, MOTOR CONTROLLERS.
- S. Section 31 20 00, EARTH MOVING: Excavation and Backfill.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code -BPVC Section IX-2013....Welding, Brazing, and Fusing Qualifications B31.1-2012.....Power Piping

C. American Society for Testing and Materials (ASTM): A36/A36M-2012.....Standard Specification for Carbon Structural Steel A575-96(R2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-2013a.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-2012a.....Standard Test Methods for Fire Tests of Building Construction and Materials F1760-01(R2011).....Standard Specification for Coextruded Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic Pipe Having Reprocessed-Recycled Content D. International Code Council, (ICC): IBC-2012..... International Building Code IPC-2012.....International Plumbing Code E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation SP-69-2003.....Pipe Hangers and Supports - Selection and Application F. Military Specifications (MIL): P-21035B..... Galvanizing Repair (Metric) G. National Electrical Manufacturers Association (NEMA): MG 1-2011.....Motors and Generators H. National Fire Protection Association (NFPA): 51B-2014..... During Welding, Cutting and Other Hot Work 54-2012.....National Fuel Gas Code 70-2014.....National Electrical Code (NEC) I. NSF International (NSF): 5-2012.....Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment 14-2012.....Plastic Piping System Components and Related Materials

61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content

J. Department of Veterans Affairs (VA):
 PG-18-10.....Plumbing Design Manual
 PG-18-13-2011....Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.

- 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- J. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.
 - Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt

manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
 - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).

- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed

until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.

- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
 - 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
 - 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
 - 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.

- G. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic,

and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-Cad provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Non-pressure PVC pipe shall contain a minimum of 25 percent recycled content. Steel pipe shall contain a minimum of 25 percent recycled content.
- B. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.
- C. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.
- D. In-line devices such as building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.

E. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings. B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

- A. All material and equipment furnished and installation methods used shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.
- B. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71° C (160°F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers and water heaters.
 - b. Other wiring at boilers and water heaters, and to control panels, shall be NFPA 70 designation THWN.
 - c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
 - 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven

equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.

- Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act (EPACT), revised 2005. Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.
- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC).
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00,

PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.

- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.8 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.9 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.10 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) and Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC) and Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING and/or Section 05 36 00, COMPOSITE METAL DECKING.
- F. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.

- G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- I. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural

steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.

- 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.
- J. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.11 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.

- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.12 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.13 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
 - 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and

drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.

- Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.

- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- N. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
- O. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.
- P. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves,

anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REOUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA

51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.

- 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.

- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 05 12 GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the general motor requirements for plumbing equipment and applies to all sections of Division 22.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- E. Section 26 24 19, MOTOR-CONTROL CENTERS: Motor Control Centers.
- F. Section 26 29 11, MOTOR CONTROLLERS: Starters, control and protection of motors.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Bearing Manufacturers Association (ABMA): ABMA 9-1990 (R2008)....Load Ratings and Fatigue Life for Ball Bearings
- - Cage Induction Motors--Up to and Including 370 kW (500 HP)
 - 100 (500 III)
- D. International Code Council (ICC):

IPC-2012..... International Plumbing Code

- E. National Electrical Manufacturers Association (NEMA):
 - MG 1-2011.....Motors and Generators
 - MG 2-2001 (R2007).....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators
 - 250-2008..... Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA): 70-2011.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT", with applicable paragraph identification.
- C. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Motor nameplate information shall be submitted including electrical ratings, dimensions, mounting details, materials, horsepower, power factor, current as a function of speed, current efficiency, speed as a function of load, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
 - 3. Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.
- D. Operating and Maintenance Manuals: Companion copies of complete maintenance and operating manuals, including technical data sheets and application data shall be submitted simultaneously with the shop drawings. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Certification: Two weeks prior to final inspection, unless otherwise noted, the following certification shall be submitted to the Contracting Officer's Representative (COR).
 - 1. Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty totally enclosed motors, IEEE 841 shall apply.
- C. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240-volt or 480volt systems: 230/460 volts, dual connection.
- D. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- E. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- F. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting,

acceleration and running torque without exceeding nameplate ratings or considering service factor.

- G. Motor Enclosures:
 - 1. Shall be the NEMA types shown on the drawings for the motors.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
 - All motors in hazardous locations shall be approved for the application and meet the Class and Group as required by the area classification.
- H. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of Class B, 130 degrees
 C (266 degrees F).
 - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (144 degrees F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable Voltage or Adjustable Frequency Controls, or both, or NEMA MG 1, Part 31, Definite Purpose Inverter Fed Polyphase Motors.
- I. Mechanical Design Requirements:
 - Bearings shall be rated for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hour rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.

- 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- J. Additional requirements for specific motors, as indicated in other sections, shall also apply.
- K. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746 W (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 W (1 HP) or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Efficiencies				Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM	Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%

22 05 12 - 5

Minimum Efficiencies				Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM	Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%

L. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be installed unless the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 FIELD TESTS

A. Megger all motors after installation, before start-up. All shall test free from grounds.

- - - E N D - - -

SECTION 22 05 19 METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gages primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B40.100-2013.....Pressure Gauges and Gauge Attachments B40.200-2008.....Thermometers, Direct Reading and Remote Reading
- C. Institute of Electrical and Electronics Engineers (IEEE): C2-2012.....National Electrical Safety Code (NESC)
- D. International Code Council (ICC):
 IPC-2012.....International Plumbing Code
- E. National Fire Protection Association (NFPA): 70-2011.....National Electrical Code (NEC)
- F. NSF International (NSF):
 61-2012.....Drinking Water System Components Health
 Effects

372-2011.....Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAGES FOR PLUMBING PIPING", with applicable paragraph identification.

- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pressure Gages.
 - 2. Thermometers.
 - 3. Product certificates for each type of meter and gage.
- D. Operations and Maintenance manual shall include:
 - 1. System Description.
 - 2. Major assembly block diagrams.
 - 3. Troubleshooting and preventive maintenance guidelines.
 - 4. Spare parts information.
- E. Shop Drawings shall include the following: One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit copies of complete operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder per the requirements of Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 PRESSURE GAGES FOR WATER AND SEWAGE USAGE

A. ASME B40.100 all metal case 115 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1380 kPa (0 to 200 psig) gage.

- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.
- H. The pressure gage for water domestic use shall conform to NSF 61 and NSF 372.

2.2 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 175 mm (7 inches) high, 4 degrees C to 100 degrees C (40 degrees F to 212 degrees F). Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gages shall be installed in piping tees with pressure gage located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gage.
- C. Pressure gages shall be installed where indicated on the drawings and at the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure reducing valve.
 - 3. Suction and discharge of each domestic water pump or re-circulating hot water return pump.
- D. Thermometers shall be installed on the water heater inlet and outlet piping, thermostatic mixing valve outlet piping, and the hot water circulation pump inlet piping.
- E. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A112.14.1-2003.....Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2008..... Performance Requirements for Atmospheric Type Vacuum Breakers

- 1003-2009.....Performance Requirements for Water Pressure Reducing Valves for Domestic Water Distribution Systems
- 1011-2004..... Performance Requirements for Hose Connection Vacuum Breakers
- 1013-2011.....Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers
- 1017-2009.....Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems
- 1020-2004.....Performance Requirements for Pressure Vacuum Breaker Assembly
- 1070-2004.....Performance Requirements for Water Temperature Limiting Devices

D. American Society for Testing and Materials (ASTM): A126-2004(R2009).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes A536-1984(R2009).....Standard Specification for Ductile Iron Castings B62-2009.....Standard Specification for Composition Bronze or Ounce Metal Castings B584-2013.....Standard Specification for Copper Alloy Sand Castings for General Applications E. International Code Council (ICC): IPC-2012.....International Plumbing Code F. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2008.....Standard Marking Systems for Valves, Fittings, Flanges and Unions SP-67-2011.....Butterfly Valves SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2011.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe & Angle Valves, Flanged and Threaded Ends SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends G. National Environmental Balancing Bureau (NEBB): 7th Edition 2005 Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems H. NSF International (NSF): 61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR): 9th Edition...........Manual of Cross-Connection Control

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Gate Valves.
 - 3. Butterfly Valves.
 - 4. Balancing Valves.
 - 5. Check Valves.
 - 6. Globe Valves.
 - 7. Water Pressure Reducing Valves and Connections.
 - 8. Backflow Preventers.
 - 9. Chainwheels.
 - 10. Thermostatic Mixing Valves.
- D. Test and Balance reports for balancing valves.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 4. Piping diagrams of thermostatic mixing valves to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.

- 5. Set butterfly valves closed or slightly open.
- 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP

rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.

- 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.
- 3. 100 mm DN100 (4 inches) and larger:
 - a. Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS SP-70 type I standard. The gate valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall meet ASTM A126, grey iron with bolted bonnet, flanged ends, bronze trim, and positive-seal resilient solid wedge disc. The gate valve shall be gear operated for sizes under 200 mm or DN200 (8 inches) and crank operated for sizes 200 mm or DN200 (8 inches) and above.
 - b. Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem.
 - c. Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall be epoxy coated ductile iron conforming to ASTM A536 with two piece stainless steel stem, Buna-N or EPDM encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated.

2.3 BALANCING VALVES

A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.

B. Larger than 75 mm or DN75 (3 inches): Manual balancing valves shall be of heavy duty cast iron flanged construction with 861 kPa (125 psig) flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. The design pressure shall be 1200 kPa (175 psig) at 121 degrees C (250 degrees F).

2.4 CHECK VALVES

- A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.
- B. 100 mm or DN100 (4 inches) and larger:
 - Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.
 - 2. All check valves on the discharge side of submersible sump pumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.5 GLOBE VALVES

A. 75 mm or DN75 (3 inches) or smaller: Class 150, bronze globe valve with non-metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B62 with solder ends, copper-silicon bronze stem, PTFE or TFE disc, and malleable iron hand wheel. B. Larger than 75 mm or DN75 (3 inches): Similar to above, except with cast iron body and bronze trim, Class 125, iron globe valve. The globe valve shall meet MSS SP-85, Type 1 standard. The globe valve shall have a CWP rating of 1380 kPa (200 psig). The valve material shall be gray iron with bolted bonnet conforming to ASTM A126 with flanged ends, bronze trim, and malleable iron handwheel.

2.6 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

- A. 75 mm or DN75 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The pressure reducing valve shall meet ASSE 1003. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.
- B. The regulator shall have a tap for pressure gauge.
- C. The regulator shall have a temperature rating of 100 degrees C (212 degrees F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9 kPa (+/- 1 psig).
- D. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- E. Connections Valves and Strainers: Shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gage shall be installed on the inlet and outlet of the valve.

2.7 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate

valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.

- 1. Water make up to heating systems and similar equipment consuming water.
- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.

1. Hose bibs with threaded outlets.

- D. The hose connection vacuum breaker shall be ASSE listed 1011. The main body shall be cast brass with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to hose thread outlets. Hose connection vacuum breakers shall be installed in the following locations requiring non-continuous pressure:
 - 1. Hose bibbs and wall hydrants.

2.8 CHAINWHEELS

- A. Valve chain wheel assembly with sprocket rim brackets and chain shall be constructed according to the following:
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to ball or butterfly valve stem.
 - 3. Sprocket rim with chain guides: Ductile or cast iron, aluminum, or bronze of type and size required for valve with zinc coating.

4. Chain: Hot dipped galvanized steel of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Install chain wheels on operators for ball, butterfly, gate, and globe valves NPS 100 mm or DN100 (4 inches) and larger and more than 3.6 m (12 feet) above floor. Chains shall be extended to 1524 mm (60 inches) above finished floor.
- F. Check values shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level and on top of valve.

- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- H. Install pressure gages on outlet of backflow preventers.
- I. Do not install bypass piping around backflow preventers.
- J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Calibrated balancing valves.
 - 2. Thermostatic mixing valves.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final

settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.6 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
 - Re-insulation of plumbing piping and equipment after asbestos abatement and or replacement of any part of existing insulation system (insulation, vapor retarder jacket, protective coverings/jacket) damaged during construction.

B. Definitions:

- 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
- Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
- 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
- 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 7. FSK: Foil-scrim-Kraft facing.
- Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
- Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- D. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT: Insulation containing asbestos material.
- E. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- F. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.
- G. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011.....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013).....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014).....Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450.....Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C533-2013..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534/C534M-2014.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2015..... Standard Specification for Mineral Fiber Pipe Insulation C552-2014.....Standard Specification for Cellular Glass Thermal Insulation C553-2013..... Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C591-2013.....Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS C680-2014.....Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs C612-2014.....Standard Specification for Mineral Fiber Block and Board Thermal Insulation C1126-2014.....Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation C1136-2012.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation C1710-2011..... Standard Guide for Installation of Flexible Closed Cell Preformed Insulation in Tube and Sheet Form D1668/D1668M-1997a (2014)e1 Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-2015a.....Standard Test Method for Surface Burning Characteristics of Building Materials E2231-2015.....Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics C. Federal Specifications (Fed. Spec.): L-P-535E-1979.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- F. National Fire Protection Association (NFPA): 90A-2015.....Standard for the Installation of Air-Conditioning and Ventilating Systems
- G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013).....Standard for Test for Surface Burning Characteristics of Building Materials 1887-2004 (R2013).....Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics
- H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; <u>https://insulationinstitute.org/tools-</u> resources/

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.

f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing

agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m³ (nominal 2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for

pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity locations and piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations and piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.

2.5 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass insulation of the same thickness as adjacent insulation.

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
Up through 125 (5)	150 (6) long			
150 (6)	150 (6) long			
200 (8), 250 (10), 300 (12)	225 (9) long			

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
350 (14), 400 (16)	300 (12) long			
450 through 600 (18 through 24)	350 (14) long			

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be cellular glass. Insulation at supports shall have same thickness as adjacent insulation.

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC

jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.9 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.10 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate

each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.

- C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- E. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- F. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- G. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- H. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- I. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight

system. Access doors and other items requiring maintenance or access shall be removable and sealable.

- J. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- N. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity locations.
- O. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain unfaced board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowelled to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
 - 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with vapor retarder ASJ or FSK. Seal all facings, laps, and termination points and do not use staples or other attachments that may puncture ASJ or FSK.
 - 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with unsealed ASJ or FSK.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous

application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- C. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.

- c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
- d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
- f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- g. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.

3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

D. Flexible Elastomeric Cellular Thermal Insulation:

- Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

3.3 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)							
		Nominal Pipe Size Millimeters (Inches)					
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Greater		
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)		
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)		
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)		
4-15 degrees C (40- 60 degrees F) (Domestic Cold Water and Horizontal Storm Piping)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)		

- - - E N D - - -

SECTION 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. . All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

----- END -----

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300 B16.9-2012.....Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings B16.15-2013Cast Copper Alloy Threaded Fittings: Classes 125 and 250 B16.18-2012.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.51-2013.....Copper and Copper Alloy Press-Connect Fittings ASME Boiler and Pressure Vessel Code -BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications C. American Society of Sanitary Engineers (ASSE): 1010-2004..... Performance Requirements for Water Hammer Arresters D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-2008 (R2014).....Standard Specification for Solder Metal B43-2014..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009.....Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS C919-2012.....Standard Practice for Use of Sealants in Acoustical Applications D2000-2012.....Standard Classification System for Rubber Products in Automotive Applications D4101-2014.....Standard Specification for Polypropylene Injection and Extrusion Materials E1120-2008......Standard Specification for Liquid Chlorine E1229-2008.....Standard Specification for Calcium Hypochlorite E. American Water Works Association (AWWA): C110-2012..... Ductile-Iron and Gray-Iron Fittings C151-2009.....Ductile Iron Pipe, Centrifugally Cast C153-2011.....Ductile-Iron Compact Fittings C203-2008.....Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot Applied C213-2007.....Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines C651-2014.....Disinfecting Water Mains F. American Welding Society (AWS): A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and Braze Welding G. International Code Council (ICC): IPC-2012..... International Plumbing Code H. Manufacturers Specification Society (MSS): SP-58-2009.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application, and Installation SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends I. NSF International (NSF): 14-2015......Plastics Piping System Components and Related Materials 61-2014a.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- J. Plumbing and Drainage Institute (PDI): PDI-WH 201-2010.....Water Hammer Arrestors
- K. Department of Veterans Affairs: H-18-8-2013.....Seismic Design Handbook

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all

performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.

2.2 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
 - 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical pressconnect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.
 - 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
 - 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.

- C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- E. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.3 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B687, Chromium-plated.
 - Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.4 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.5 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.6 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.
 - Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.

- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.

D. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- D. Section 07 92 00, JOINT SEALANTS: Sealant products.
- E. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- G. Section 22 07 11, PLUMBING INSULATION.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- I. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007.....Scheme for the Identification of Piping Systems A112.36.2M-1991(R 2012).Cleanouts A112.6.3-2001 (R2007)...Standard for Floor and Trench Drains B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings B16.4-2011....Standard for Grey Iron Threaded Fittings Classes 125 and 250 B16.15-2013....Cast Copper Alloy Threaded Fittings, Classes 125 and 250 B16.18-2012....Cast Copper Alloy Solder Joint Pressure Fittings CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS B16.21-2011.....Nonmetallic Flat Gaskets for Pipe Flanges B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2011.....Cast Copper Alloy Solder Joint Drainage Fittings: DWV B16.24-2001 (R2006).....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.29-2012.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings: DWV B16.39-2009.....Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 B18.2.1-2012......Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange, Lobed Head, and Lag Screws (Inch Series) C. American Society of Sanitary Engineers (ASSE): 1001-2008..... Performance Requirements for Atmospheric Type Vacuum Breakers 1018-2001..... Performance Requirements for Trap Seal Primer Valves - Potable Water Supplied 1044-2001..... Performance Requirements for Trap Seal Primer Devices - Drainage Types and Electronic Design Types 1079-2012.....Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A53/A53M-2012.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-2013a.....Standard Specification for Cast Iron Soil Pipe and Fittings A888-2013a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008.....Standard Specification for Solder Metal B43-2009..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B75-2011.....Standard Specification for Seamless Copper Tube

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS B88-2009.....Standard Specification for Seamless Copper Water Tube B306-2013..... Standard Specification for Copper Drainage Tube (DWV) B584-2013.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R 2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples B813-2010..... Standard Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube B828-2002 (R 2010).....Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings C564-2012.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings F1545-1997 (R 2009).....Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges E. Cast Iron Soil Pipe Institute (CISPI): 2006..... Cast Iron Soil Pipe and Fittings Handbook 301-2012.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012..... Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. Copper Development Association, Inc. (CDA): A4015..... Tube Handbook G. International Code Council (ICC): IPC-2012..... International Plumbing Code H. Manufacturers Standardization Society (MSS): SP-123-2013.....Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube I. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- J. Plumbing and Drainage Institute (PDI): WH-201 (R 2010).....Water Hammer Arrestors Standard
- K. Underwriters' Laboratories, Inc. (UL): 508-99 (R2013).....Standard For Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Cleanouts.
 - 4. Trap Seal Protection.
 - 5. Penetration Sleeves.
 - 6. Pipe Fittings.
 - 7. Traps.
 - 8. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Copper Tube, (DWV):
 - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.

4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt

sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.

D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME All2.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without

disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.

D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a 1.1 to 1.8 Kg (2.5 to 4 lbs.) flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.
- B. Refer to plumbing drawings for floor drain descriptions.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- M. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.

- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- I. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- J. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or

pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- H. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A112.6.4-2003 (R2012) ..Roof, Deck, and Balcony Drains A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B1.20.1-2013......Pipe Threads, General Purpose, Inch B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300 B16.9-2012.....Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings B16.15-2013......Cast Copper Alloy Threaded Fittings: Classes 125 and 250

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS B16.18-2012.....Cast Copper Alloy Solder-Joint Pressure Fittings B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2011.....Cast Copper Alloy Solder Joint Drainage Fittings - DWV B16.29-2012.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings - DWV C. American Society of Sanitary Engineering (ASSE) 1079-2012..... Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated Welded and Seamless A74-2013a.....Standard Specification for Cast Iron Soil Pipe and Fittings A183-2014.....Standard Specification for Carbon Steel Track Bolts and Nuts A536-1984(R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples A888-2013a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008 (R2014).....Standard Specification for Solder Metal B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS B306-2013..... Standard Specification for Copper Drainage Tube (DWV) B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples B828-2002 (R2010).....Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings B813-2010..... Standard Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube C564-2014.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings C1173-2010 (R2014).....Standard Specification for Flexible Transition Couplings for Underground Piping Systems D2000-2012.....Standard Classification System for Rubber Products in Automotive Applications F1545-2015.....Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges E. American Welding Society (AWS): A5.8M/A5.8 AMD1-2011....Specification for Filler Metals for Brazing and Braze Welding F. Copper Development Association (CDA): A4015-2011.....Copper Tube Handbook G. Cast Iron Soil Pipe Institute (CISPI): 301-2012......Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012......Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications H. International Code Council (ICC): IPC-2012.....International Plumbing Code I. Manufacturers Standardization Society of the Valve and Fittings

Industry, Inc. (MSS):

SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 00, FACILITY STORM DRAINAGE", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and Fittings.
 - 2. Specialty Pipe Fittings.
 - 3. Cleanouts.
 - 4. Roof Drains.
 - 5. Expansion Joints.
 - 6. Downspout Nozzles.
 - 7. Sleeve Flashing Devices.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system

operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.
 - d. All mechanical equipment rooms or other areas containing mechanical air handling equipment.

- The cast iron storm pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
- 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Copper Tube, (DWV): May be used for piping above ground.
 - 1. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 2. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 3. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.
- C. Roof drain piping and body of drain in locations where the outdoor conditions are subject to freezing shall be insulated.

2.2 PUMPED DRAIN PIPING

- A. Pumped drain piping 75 mm (3 inches) and less shall be copper tube conforming to ASTM B88, type K or L. For pumped drain piping 100 mm (4 inches) and greater, galvanized steel conforming to ASTM A53/A53M, seamless, schedule 40 may be used.
- B. Pumped drain pipe fittings shall comply with the following:
 - 1. Wrought copper or bronze castings for use with copper tube conforming to ASME B16.18 and B16.22.
 - Unions, for use with copper tube up to 50 mm (2 inches) shall be cast with bronze, conforming to ASME B16.18 and ASTM B584 with solder or braze joints.
 - 3. Grooved fittings, for use with copper tube 65 mm to 100 mm (2-1/2 to 4 inch) shall be wrought copper conforming to ASTM B75/B75M, alloy C12200, 125 to 150 mm (5 to 6 inch) bronze castings conforming to ASTM B584.
 - 4. Mechanical grooved couplings shall have a ductile iron housing conforming to ASTM A536 (Grade 65-45-12) elastomer gasket suitable for potable water service and process temperature and steel track

head bolts conforming to ASTM A183, housing shall be coated with colored alkyd enamel paint.

- C. Adapters shall be provided for joining pipe with different end connections.
- D. The solder shall be lead free using a water flushable, non-corrosive flux conforming to ASTM B32.
- E. Dielectric fittings and specialties shall be provided when joining pipe of dissimilar metals.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be unshielded, elastomeric, sleeve type reducing or transition pattern conforming with ASTM C1173 and include shear ring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. Dielectric fittings shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flanges shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig). The flange shall be a factory fabricated, bolted, companion flange assembly. The end connection shall be threaded or solder-joint copper alloy and threaded ferrous.
- D. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- E. Dielectric nipples shall be electroplated steel and shall conform with ASTM F1545 with a pressure ratings of 2070 kPa (300 psig) at 107

degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene. Bio-based materials shall be utilized when possible.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside caulk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.5 ROOF DRAINS AND CONNECTIONS

- A. Roof Drains: Roof Drains (RD) shall be cast iron with clamping device for making watertight connection and shall conform with ASME A112.6.4. Free openings through strainer shall be twice area of drain outlet. For roof drains not installed in connection with a waterproof membrane, a soft copper membrane shall be provided 300 mm (12 inches) in diameter greater than outside diameter of drain collar. An integral gravel stop shall be provided for drains installed on roofs having built up roofing covered with gravel or slag. Integral no-hub, soil pipe gasket or threaded outlet connection shall be provided.
 - Flat Roofs: The roof drain shall have a beehive or dome shaped strainer with integral flange not less than 300 mm (12 inches) in diameter. For an insulated roof, a roof drain with an adjustable drainage collar shall be provided, which can be raised or lowered to meet required insulation heights, sump receiver and deck clamp. The bottom section shall serve as roof drain during construction before insulation is installed.
 - Roof Drains, Overflow or Secondary (Emergency): Roof Drains identified as overflow or secondary (emergency) drains shall have a 50 mm (2 inch) water dam integral to the drain body.
 - 3. Roof drains in areas subject to freezing shall have heat tape and shall be insulated.
- B. Expansion Joints: Expansions joints shall be heavy cast iron with cast brass or PVC expansion sleeve having smooth bearing surface working freely against a packing ring held in place and under pressure of a bolted gland ring, forming a water and air tight flexible joint. Asbestos packing is prohibited.
- C. Interior Downspouts: An expansion joint shall be provided, specified above, at top of run on straight, vertical runs of downspout piping 12 m (40 feet) long or greater.
- D. Downspout Nozzle: The downspout nozzle fitting shall be of brass, unfinished, with internal pipe thread for connection to downspout.

2.6 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the IPC and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
- D. All pipe runs shall be laid out to avoid interference with other work/trades.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 2.44 m (8 feet) (1 percent slope) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two drains are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried storm drainage piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

manufacturer's written instruction for use of lubricants, cements, and other installation requirements. Bio-based materials shall be utilized when possible.

- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA A4015.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - Pipe sections with damaged threads shall be replaced with new undamaged sections of pipe at no additional time or cost to Government.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the IPC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 23 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, wall and ceiling plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.

- 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield shall be 100 mm (4 inches) in length and be 1.6 mm (16 gage) steel. The shield shall be sized for the insulation.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

3.5 INSULATION

A. Insulate horizontal sections and 600 mm (2 feet) past changes of direction to vertical sections for interior section of roof drains. Install insulation in accordance with the requirements of Section 22 07 11, PLUMBING INSULATION.

3.6 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.

- 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
- For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- 3. Final Tests: While either one of the following tests may be used, Contractor shall check with VA as to which test will be performed.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 0.25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.
- C. COR shall witness all tests. Contractor shall coordinate schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to flushing, disinfection/sterilization, startup, and testing.

3.7 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 14 29 SUMP PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Sump pumps. See schedule on Drawings for pump capacity and head.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- F. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING
- G. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI)/Hydraulic Institute (HI): 1.1-1.2-2014.....Rotodynamic Centrifugal Pumps for Nomenclature and Definitions
 - 1.3-2013.....Rotodynamic Centrifugal Pumps for Design and Application
 - 1.4-2014.....Rotodynamic Centrifugal Pumps for Manuals Describing Installation, Operation, and Maintenance
- C. ASTM International (ASTM):

A48/A48M-2003 (R2012)...Standard Specification for Gray Iron Castings A532/A532M-2010 (R2014).Standard Specification for Abrasion-Resistant Cast Irons

B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications

D. National Electrical Manufacturers Association (NEMA): ICS 6-1993 (R2001, R2006) Industrial Control and Syst

ICS 6-1993 (R2001, R2006) Industrial Control and Systems: Enclosures 250-2014......Enclosures for Electrical Equipment (1000 Volts Maximum)

E. Underwriters' Laboratories, Inc. (UL):

508-1999 (R2013)..... Standards for Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 29, SUMP PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed (rpm).
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Electric Motor:
 - a. Manufacturer, frame and type.
 - b. Speed.
 - c. Current Characteristics and W (HP).
 - d. Efficiency.
 - 3. Control panel.
 - 4. Sensors.
- D. Certified copies of all the factory and construction site test data sheets and reports.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list which indicates all components of the system.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance, and troubleshooting.

$22 \ 14 \ 29 \ - \ 2$

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CADD provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures

followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SUMP PUMP

- A. Centrifugal, vertical, submersible pump and motor, designed for 60 degrees C (140 degrees F) maximum water service. Driver shall be electric motor. Support shall be rigid type. Provide perforated, suction strainer. Systems may include one, two, or more pumps with alternator as required by Contract Documents. Pumps shall be capable of continuous duty cycle.
 - Pump housings may be cast iron, bronze, aluminum or stainless steel. Cast iron and aluminum housings for submersible pumps shall be epoxy coated. Bio-based materials shall be utilized when possible.
- B. Impeller: Statically and dynamically balanced, keyed and secured to shaft, bronze ASTM B584 or cast iron ASTM A532/A532M.
- C. Shaft: Stainless steel or other approved corrosion-resisting metal.
- D. Bearings: As required to hold shaft alignment, anti-friction type for thrust permanently lubricated. Bio-based materials shall be utilized when possible.
- E. Seal: Mechanical.
- F. Motor: Maximum 40 degrees C (104 degrees F) ambient temperature rise above the maximum fluid temperature being pumped, drip-proof hermitically sealed, lifting eye, capacitor start type, voltage and phase as shown in schedule on Electrical drawings conforming to NEMA Type 6P. Size the motor capacity to operate pump without overloading the motor at any point on the pump curve. Refer to Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- G. Starting Switch: Manually-operated, tumbler type, as specified in Section 26 29 11, MOTOR CONTROLLERS.
- H. Automatic Control and Level Alarm: Furnish a control panel in a NEMA 1 enclosure for indoors. The controls shall be suitable for operation with the electrical characteristics listed on the Electrical drawings. The control panel shall have a level control system with switches to start and stop pumps automatically, and to activate a high water alarm. The level control system shall include sensors in the sump that detect the level of the liquid. The pump is also connected to a control which has the ability to prevent oil from being pumped. The same unit shall

activate an alarm when oil is detected. The sensors may be float type switches, ultrasonic level sensors, or transducers. The high water alarm shall have a red beacon light at the control panel and a buzzer, horn, or bell. The alarm shall have a silencing switch. Provide auxiliary contacts for remote communication with, and alarm monitoring to, the BAS using a BACnet compatible open-protocol type interface to DDC Controls System.

- 1. The circuitry of the control panel shall include:
 - a. Power switch to turn on/off the automatic control mechanism
 - b. HOA switches to manually override automatic control mechanism
 - c. Run lights to indicate when pumps are powered up
 - d. Level status lights to indicate when water in sump has reached the predetermined on/off and alarm levels
 - e. Magnetic motor contactors
 - f. Disconnect/breaker for each pump
 - g. Automatic motor overload protection
 - h. Wiring terminal block
 - i. Dead front
 - j. Auxiliary contacts
 - k. Control circuit protection
 - 1. Fused control step down transformer
- 2. Sensors that detect the level of water in the sump shall be so arranged as to allow the accumulation of enough volume of liquid below the normal on-level that the pump will run for a minimum cycle time as recommended by the pump manufacturer. Sensors shall be located to activate the alarm adequately before the water level rises to the inlet pipe.
- 3. Provide two separate power supplies to the control panel, one for the control/alarm circuitry and one for power to the pump motors. Each power supply is to be fed from its own breaker so that if a pump overload trips a breaker, the alarm system shall still function. Each power supply is to be wired in its own conduit.
- 4. Wiring from the sump to the control panel shall have separate conduits for the pump power and for the sensor switches. All conduits are to be sealed at the basin and at the control panel to prevent the intrusion of moisture and of flammable and/or corrosive gases.

- I. Sump: Furnish Fiberglass or polyethylene basin with gas tight covers. Cover shall have 275 mm by 381 mm (11 inch by 15 inch) manhole with bolted cover, vent connection, openings for pumps and controls. Sump shall be sized to allow an adequate volume of water to accumulate for a minimum one minute cycle of pump operation.
- J. Provide a check and ball valve in the discharge of each pump. Refer to Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- K. Removal/Disconnect System: In a system utilizing a submersible pump, where sump depth, pump size, or other conditions make removal of the pump unusually difficult or unsafe, a manufacturer's removal/disconnect system shall be provided. The system shall consist of a discharge fitting mounted on vertical guide rails attached to the sump or quick connect pipe fitting connection to piping. The pump shall be fitted with an adapter fitting that easily connects to/disconnects from the discharge fitting as the pump is raised from or lowered into the sump. The discharge piping shall connect to the discharge fitting so that it is disconnected without workers entering the pit. Where the sump depth is greater than five feet or other conditions exist to make the removal of the pump difficult or hazardous, the system shall include a rail guided quick disconnect apparatus to allow the pump to be pulled up out of the sump.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Pump installation to comply with ANSI/HI 1.4 for sump pumps.
- B. Leak Test: Charge piping system and test for leaks. Test until there are no leaks. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- C. The tests shall include system capacity and all control and alarm functions.
- D. When any defects are detected, correct defects and repeat test.

3.2 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units.

22 14 29 - 6

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- D. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):
 - A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes

B584-2008.....Standard Specification for Copper Alloy Sand Castings for General Applications

- C. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-2006.....Metal Finishes Manual
- D. NSF International (NSF):

61-2013.....Drinking Water System Components - Health Effects

372-2011.....Drinking Water System Components - Lead Content

- E. American with Disabilities Act (A.D.A)
- F. International Code Council (ICC):
 IPC-2015.....International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.4 HYDRANT, HOSE BIBB AND MISCELLANEOUS DEVICES

A. (P-804) Hose Bibb (Single Faucet, Wall Mounted to Concealed or Exposed Supply Pipe): Cast or wrought copper alloy, single faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, mounted on wall 914 mm (36 inches) above floor to concealed supply pipe. Provide faucet with 19 mm (3/4 inch) hose coupling thread on spout and vacuum breaker. Four-arm handle on faucet shall be cast, formed or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a bright finish.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS.Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Through Bolts: For free standing marble and metal stud partitions refer to Section 10 21 13, TOILET COMPARTMENTS.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.3 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.

C. Abbreviations/Acronyms:

- 1. ac: Alternating Current
- 2. AC: Air Conditioning
- 3. ACU: Air Conditioning Unit
- 4. ACR: Air Conditioning and Refrigeration
- 5. AI: Analog Input
- 6. AISI: American Iron and Steel Institute
- 7. AO: Analog Output
- 8. ASJ: All Service Jacket
- 9. AWG: American Wire Gauge
- 10. BACnet: Building Automation and Control Networking Protocol
- 11. BAg: Silver-Copper-Zinc Brazing Alloy
- 12. BAS: Building Automation System
- 13. BCuP: Silver-Copper-Phosphorus Brazing Alloy
- 14. bhp: Brake Horsepower
- 15. Btu: British Thermal Unit
- 16. Btu/h: British Thermal Unit Per Hour
- 17. CDA: Copper Development Association
- 18. C: Celsius
- 19. CD: Compact Disk
- 20. CFM: Cubic Foot Per Minute
- 21. CH: Chilled Water Supply
- 22. CHR: Chilled Water Return
- 23. CLR: Color
- 24. CO: Carbon Monoxide
- 25. COR: Contracting Officer's Representative
- 26. CPD: Condensate Pump Discharge

- 27. CPM: Cycles Per Minute
- 28. CPVC: Chlorinated Polyvinyl Chloride
- 29. CRS: Corrosion Resistant Steel
- 30. CTPD: Condensate Transfer Pump Discharge
- 31. CTPS: Condensate Transfer Pump Suction
- 32. CW: Cold Water
- 33. CWP: Cold Working Pressure
- 34. CxA: Commissioning Agent
- 35. dB: Decibels
- 36. dB(A): Decibels (A weighted)
- 37. DDC: Direct Digital Control
- 38. DI: Digital Input
- 39. DO: Digital Output
- 40. DVD: Digital Video Disc
- 41. DN: Diameter Nominal
- 42. DWV: Drainage, Waste and Vent
- 43. EPDM: Ethylene Propylene Diene Monomer
- 44. EPT: Ethylene Propylene Terpolymer
- 45. ETO: Ethylene Oxide
- 46. F: Fahrenheit
- 47. FAR: Federal Acquisition Regulations
- 48. FD: Floor Drain
- 49. FED: Federal
- 50. FG: Fiberglass
- 51. FGR: Flue Gas Recirculation
- 52. FOS: Fuel Oil Supply
- 53. FOR: Fuel Oil Return
- 54. FSK: Foil-Scrim-Kraft facing
- 55. FWPD: Feedwater Pump Discharge
- 56. FWPS: Feedwater Pump Suction
- 57. GC: Chilled Glycol Water Supply
- 58. GCR: Chilled Glycol Water Return
- 59. GH: Hot Glycol Water Heating Supply
- 60. GHR: Hot Glycol Water Heating Return
- 61. gpm: Gallons Per Minute
- 62. HDPE: High Density Polyethylene
- 63. Hg: Mercury

- 64. HOA: Hands-Off-Automatic
- 65. hp: Horsepower
- 66. HPS: High Pressure Steam (414 kPa (60 psig) and above)
- 67. HPR: High Pressure Steam Condensate Return
- 68. HW: Hot Water
- 69. HWH: Hot Water Heating Supply
- 70. HWHR: Hot Water Heating Return
- 71. Hz: Hertz
- 72. ID: Inside Diameter
- 73. IPS: Iron Pipe Size
- 74. kg: Kilogram
- 75. klb: 1000 lb
- 76. kPa: Kilopascal
- 77. lb: Pound
- 78. lb/hr: Pounds Per Hour
- 79. L/s: Liters Per Second
- 80. L/min: Liters Per Minute
- 81. LPS: Low Pressure Steam (103 kPa (15 psig) and below)
- 82. LPR: Low Pressure Steam Condensate Gravity Return
- 83. MAWP: Maximum Allowable Working Pressure
- 84. MAX: Maximum
- 85. MBtu/h: 1000 Btu/h
- 86. MBtu: 1000 Btu
- 87. MED: Medical
- 88. m: Meter
- 89. MFG: Manufacturer
- 90. mg: Milligram
- 91. mg/L: Milligrams Per Liter
- 92. MIN: Minimum
- 93. MJ: Megajoules
- 94. ml: Milliliter
- 95. mm: Millimeter
- 96. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig))
- 97. MPR: Medium Pressure Steam Condensate Return
- 98. MW: Megawatt
- 99. NC: Normally Closed

100. NF: Oil Free Dry (Nitrogen) 101. Nm: Newton Meter 102. NO: Normally Open 103. NOx: Nitrous Oxide 104. NPT: National Pipe Thread 105. NPS: Nominal Pipe Size 106. OD: Outside Diameter 107. OSD: Open Sight Drain 108. OS&Y: Outside Stem and Yoke 109. PC: Pumped Condensate 110. PID: Proportional-Integral-Differential 111. PLC: Programmable Logic Controllers 112. PP: Polypropylene 113. PPE: Personal Protection Equipment 114. ppb: Parts Per Billion 115. ppm: Parts Per Million 116. PRV: Pressure Reducing Valve 117. PSIA: Pounds Per Square Inch Absolute 118. psig: Pounds Per Square Inch Gauge 119. PTFE: Polytetrafluoroethylene 120. PVC: Polyvinyl Chloride 121. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 122. PVDF: Polyvinylidene Fluoride 123. rad: Radians 124. RH: Relative Humidity 125. RO: Reverse Osmosis 126. rms: Root Mean Square 127. RPM: Revolutions Per Minute 128. RS: Refrigerant Suction 129. RTD: Resistance Temperature Detectors 130. RTRF: Reinforced Thermosetting Resin Fittings 131. RTRP: Reinforced Thermosetting Resin Pipe 132. SCFM: Standard Cubic Feet Per Minute 133. SPEC: Specification 134. SPS: Sterile Processing Services 135. STD: Standard 136. SDR: Standard Dimension Ratio

137. SUS: Saybolt Universal Second 138.SW: Soft water 139. SWP: Steam Working Pressure 140. TAB: Testing, Adjusting, and Balancing 141. TDH: Total Dynamic Head 142. TEFC: Totally Enclosed Fan-Cooled 143. TFE: Tetrafluoroethylene 144. THERM: 100,000 Btu 145. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire 146. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire 147. T/P: Temperature and Pressure 148. USDA: U.S. Department of Agriculture 149.V: Volt 150. VAC: Vacuum 151. VA: Veterans Administration 152. VAC: Voltage in Alternating Current 153. VA CFM: VA Construction & Facilities Management 154. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service 155. VAMC: Veterans Administration Medical Center 156. VHA OCAMES: Veterans Health Administration - Office of Capital Asset Management Engineering and Support 157. VR: Vacuum condensate return 158. WCB: Wrought Carbon Steel, Grade B 159. WG: Water Gauge or Water Column

160.WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- F. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- G. Section 05 31 00, STEEL DECKING.
- H. Section 05 36 00, COMPOSITE METAL DECKING.
- I. Section 05 50 00, METAL FABRICATIONS.
- J. Section 07 84 00, FIRESTOPPING.

- K. Section 07 92 00, JOINT SEALANTS.
- L. Section 09 91 00, PAINTING.
- M. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- N. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- O. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- P. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- Q. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- R. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- S. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- T. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- U. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- V. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- W. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and

Installers of Industrial and Commercial Fans

C. American Society of Mechanical Engineers (ASME): B31.1-2018.....Power Piping B31.9-2014....Building Services Piping ASME Boiler and Pressure Vessel Code:

BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications

D. American Society for Testing and Materials (ASTM):

A36/A36M-2014.....Standard Specification for Carbon Structural Steel

A575-1996(R2018).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E. Association for Rubber Products Manufacturers (ARPM): IP-20-2015.....Specifications for Drives Using Classical

V-Belts and Sheaves

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS IP-21-2016.....Specifications for Drives Using Double-V (Hexagonal) Belts IP-24-2016..... Specifications for Drives Using Synchronous Belts IP-27-2015......Specifications for Drives Using Curvilinear Toothed Synchronous Belts F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.: SP-58-2018.....Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation SP-127-2014a.....Bracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application G. Military Specifications (MIL): MIL-P-21035B-2013.....Paint High Zinc Dust Content, Galvanizing Repair (Metric) H. National Fire Protection Association (NFPA): 70-2017......National Electrical Code (NEC) 101-2018....Life Safety Code I. Department of Veterans Affairs (VA): PG-18-10-2016..... Physical Security and Resiliency Design Manual 1.4 SUBMITTALS A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to

ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop

drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.

- Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- In addition, for HVAC systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- I. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- K. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:

- a. Include complete list indicating all components of the systems.
- b. Include complete diagrams of the internal wiring for each item of equipment.
- c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- L. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- M. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- N. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
 - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
 - 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
 - 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

- 8. Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution.

Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
- 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

 Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.

- 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
- 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be

included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the

Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

G. Temporary Facilities: Refer to Article, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.

- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - Provide adjustable-pitch or fixed-pitch drive as follows:
 a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustablepitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.

- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet

steel and expanded or perforated metal to permit observation of belts. 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.

- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be

guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.

F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.

- 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.
- F. Ceiling Grid Labels:
 - 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
 - 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 100 mm (2 by 4 inches) treated wood nailer,
 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.

- Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- F. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING or Section 05 36 00, COMPOSITE METAL DECKING.
- G. Attachment to existing structure: Support from existing floor/roof frame.
- H. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields.

Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.

- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
 - c. Piping with Vertical Expansion and Contraction:
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.

- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
- K. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- L. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.

- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, builtin cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter. B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.

- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000
 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, values and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00

00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).
- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The

requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.

C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are

prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.

- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves,

anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REOUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.

- D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Nameplates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.

- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.

- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- G. Section 26 24 19, MOTOR CONTROL CENTERS.
- H. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):

9-2015.....Load Ratings and Fatigue Life for Ball Bearings

- 11-2014.....Load Ratings and Fatigue Life for Roller Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2013.....Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings

D. Institute of Electrical and Electronics Engineers (IEEE):

112-2017.....Standard Test Procedure for Polyphase Induction Motors and Generators

841-2009.....IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel

Cage Induction Motors--Up to and Including 370 kW (500 hp)

E. National Electrical Manufacturers Association (NEMA):

MG 1-2019.....Motors and Generators

MG 2-2014.....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators

- 250-2014.....Enclosures for Electrical Equipment (1000 Volts Maximum)
- F. National Fire Protection Association (NFPA):

70-2014.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.

- Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- As-built drawings are to be provided, with a copy of them on AutoCAD provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.

- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 hp), connected to 240-volt or 480volt systems: 208-230/460 volts, dual connection.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown in the Contract Documents.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being

installed. Enclosure requirements for certain conditions are as follows:

- a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of Class B, 130 degrees
 C (266 degrees F).
 - The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.
- L. Mechanical Design Requirements:
 - Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.

- 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- M. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees
 C (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment.

Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.

- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

	Premium 1 pen Drip-	Efficienc Proof	ies	Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC)							
Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM				
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%				
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%				
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%				
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%				
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%				
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%				
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%				
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%				
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%				
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%				
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%				
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%				
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%				
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%				

	Premium) pen Drip-	Efficienc Proof	ies	Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC)							
Rating kW (hp)	5				1200 RPM	1800 RPM	3600 RPM				
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%				
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%				

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyph Average f	nase Oper		Capacitor-start capacitor-run and capacitor-start induction run open motors							
Average 1	uii ioau	erricie	ncy	Average full load efficiency						
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles			
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6			
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5			
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4			
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2			

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for one hour to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures, seismic restraint for equipment and vibration control techniques to boiler plant rotating equipment and parts including pumps, fans, and motors.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, seismic restraints for equipment, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Seismic Restraint Requirements:
 - 1. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of // 50 // 20 // percent of the weight of the equipment furnished.
 - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of // 100 // 50 // percent of the weight of the equipment furnished.
 - Piping: Refer to specification Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
 - Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm

per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - 2. Bases.
 - 3. Seismic restraint provisions and bolting.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Handbook 2017.....Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM): A123/A123M-2017.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
 - A307-2016.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness D. Manufacturers Standardization (MSS): SP-58-2018......Pipe Hangers and Supports-Materials, Design and Manufacture E. Occupational Safety and Health Administration (OSHA): 29 CFR 1960.95.....Occupational Noise Exposure F. American Society of Civil Engineers (ASCE): ASCE 7-2017......Minimum Design Loads for Buildings and Other Structures. G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition. H. International Code Council (ICC): IBC 2018.....International Building Code.

I. Department of Veterans Affairs (VA):
H-18-8 2016.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastomeric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straightline deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition, provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.

E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENT

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

A. Floor Mountings:

- 1. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 2. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic rating of one G.
- 3. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers

and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).

- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
 - 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more

than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.

2.4 BASES

- A. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch).
- B. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type SS/SP) requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - 1. No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and

belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.

- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT		c	N GRAD	Е	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT	FLOOR	R SPAN		
		BASE TYPE	ISOL TYPE	MIN DEFL														
PUMPS																		
CLOSE COUPLED	UP TO 1-1/2 HP					DS			DS			DS			DS			
	2 HP & OVER				I	SS/S P	0.8	I	SS/S P	1.5	I	SS/S P	1.5	I	SS/S P	2.0		
LARGE INLINE	Up to 25 HP					SS/S P	0.75		SS/S P	1.50		SS/S P	1.50			NA		
	26 HP THRU 30 HP					SS/S P	1.0		SS/S P	1.50		SS/S P	2.50			NA		
	UP TO 10 HP					DS			DS			DS			DS			
BASE MOUNTED	15 HP THRU 40 HP	I	SS/S P	1.0	I	SS/S P	1.0	I	SS/S P	2.0	I	SS/S P	2.0	I	SS/S P	2.0		
	50 HP & OVER	I	SS/S P	1.0	I	SS/S P	1.0	I	SS/S P	2.0	I	SS/S P	2.5	I	SS/S P	2.5		

EQUIPMENT	ON GRADE			20FT	FLOOR	OR SPAN 30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN			
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
ROOF FANS															
ABOVE OCCUPIED AREAS:															
5 HP & OVER				СВ	SS/S P	1.0	СВ	SS/S P	1.0	СВ	SS/S P	1.0	СВ	SS/S P	1.0

NOTES:

1. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.

2. For projects in seismic areas, use only SS & DS type isolators and snubbers.

3. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Recording and reporting results.
 - 8. Document critical paths of flow on reports.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. TABB: Testing Adjusting and Balancing Bureau
 - 6. SMACNA: Sheet Metal Contractors National Association
 - Hydronic Systems: Includes chilled water and heating hot water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- D. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All

work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. TAB Criteria:
 - 1. One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC

Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.

- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - c. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - d. Chilled water pumps: Minus 0 percent to plus 5 percent.
 - e. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and critical path results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of which shall be a critical path) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC, NEBB or TABB publications that will be the basis of TAB work.

- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 90 days after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
 - Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): Handbook 2019.....HVAC Applications ASHRAE Handbook, Chapter 39, Testing, Adjusting, and Balancing and Chapter 49, Sound and Vibration Control
- C. Associated Air Balance Council (AABC): 7th Edition 2016AABC National Standards for Total System

Balance

- D. National Environmental Balancing Bureau (NEBB): 9th Edition 2019Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems
 - 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration
 - 2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing

TABB- TAB Procedural Guide Current Edition

PART 2 - PRODUCTS

2.1 PLUGS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

A. The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

A. TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
 - 1. At least one trunk damper shall be 100% open.
 - 2. At least one branch damper shall be 100%open per trunk.
 - 3. At least one terminal device duct be 100% open per branch.

- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for preconstruction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 5 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, and room diffusers/outlets/inlets.
 - Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode.
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.

- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps and coils:
 - 1. Adjust flow rates for equipment. Set coils to values on equipment submittals, if different from values on contract drawings.
 - Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 3. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 MARKING OF SETTINGS

A. Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.9 IDENTIFICATION OF TEST PORTS

A. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation.All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.10 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.11 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.12 CRITICAL FLOW PATH

A. Provide a documented critical path for all fluid flows. There shall be at least one terminal device that can be traced back to the fan or pump where there is no damper or valves that are less than 100% open.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Re-insulation of HVAC piping, ductwork and equipment, and boiler plant piping, and equipment after asbestos abatement.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.

40. RS: Refrigerant suction.

41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- C. Section 02 82 13. GLOVEBAG ASBESTOS ABATEMENT.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 23 21 13, HYDRONIC PIPING.
- H. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- I. Section 23 22 23, STEAM CONDENSATE PUMPS

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following: (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 1999.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
 C. Military Specifications (Mil. Spec.):
 - MIL-A-3316C -1987 Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-2016 Adhesive, Flexible Unicellular-Plastic

Thermal Insulation

MIL-C-19565C (1)-2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread,

Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM): A167-99 2014.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

- C411-2019.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation
- C449-2019..... Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement

CONSTRUCT AIR HANDLING TOWER636-18-30NWI HEALTHCARE SYSTEM05-28-2OMAHA, NE100% CONSTRUCTION DOCUMENT	21
C533-2017Standard Specification for Calcium Silicate	
Block and Pipe Thermal Insulation	
C534-2017Standard Specification for Preformed Flexible	
Elastomeric Cellular Thermal Insulation in	
Sheet and Tubular Form	
C547-2017 Standard Specification for Mineral Fiber pipe Insulation	
C552-07Gtandard Specification for Cellular Glass	
Thermal Insulation	
C553-2015Standard Specification for Mineral Fiber	
Blanket Thermal Insulation for Commercial and	
Industrial Applications	
C585-2016 Diameters	3
of Rigid Thermal Insulation for Nominal Sizes	
of Pipe and Tubing (NPS System) R (1998)	
C612-2014Standard Specification for Mineral Fiber Block	
and Board Thermal Insulation	
C1126- 2019Standard Specification for Faced or Unfaced	
Rigid Cellular Phenolic Thermal Insulation	
C1136- 2017Standard Specification for Flexible, Low	
Permeance Vapor Retarders for Thermal	
Insulation	
D1668-97a 2017Standard Specification for Glass Fabrics (Wover	1
and Treated) for Roofing and Waterproofing	
E84-2014Standard Test Method for Surface Burning	
Characteristics of Building	
Materials	
E119-2007Standard Test Method for Fire Tests of Building	J
Construction and Materials	
E136-2019of Materials	3
in a Vertical Tube Furnace at 750 degrees C	
(1380 F)	
E. National Fire Protection Association (NFPA):	
90A-2018of Air	
Conditioning and Ventilating Systems	
101-2018Life Safety Code	

251-2014.....Standard methods of Tests of Fire Endurance of Building Construction Materials 255-2006.....Standard Method of tests of Surface Burning

Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL): 723-2018.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with

Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2018.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to

121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.6 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics						
ITEMS	TYPE I	TYPE II				
Temperature, maximum degrees C	649 (1200)	927 (1700)				
(degrees F)						
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)				
Thermal conductivity:						
Min W/ m K (Btu in/h ft² degrees F)@	0.059	0.078				
mean temperature of 93 degrees C	(0.41)	(0.540)				
(200 degrees F)						
Surface burning characteristics:						
Flame spread Index, Maximum	0	0				
Smoke Density index, Maximum	0	0				

2.7 INSULATION FACINGS AND JACKETS

A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.

- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity areas conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints.

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.8 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of
 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass of the same thickness as adjacent insulation.

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation.

2.10 ADHESIVE, MASTIC, CEMENT

A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.

- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as chilled water pumps and heads of heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced

without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.

- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Insulate PRVs, flow meters, and steam traps.
- J. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 3. Equipment: Expansion tanks, flash tanks, hot water pumps, steam condensate pumps.
 - 4. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- a. Pipe risers through floors
- b. Pipe or duct chase walls and floors
- c. Smoke partitions
- d. Fire partitions
- N. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature.
- O. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.

- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, interstitial spaces and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct and after filter housing.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.a. Chilled water pumps.
- 5. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Convertors, air separators, steam condensate pump receivers.
 - b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally, secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling

outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation, insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.

- 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - a. In attics (where not subject to damage) and where exposed to outdoor weather: 50mmm (2 inch)thick insulation faced with FSK,
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - c. In interstitial spaces (where not subject to damage): 40 mm (1-1/2 inch thick insulation faced with FSK.
 - d. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures

below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.

- c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.
 - 3. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
- E. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the

slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.

- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:a. Chilled water pumps
- Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- F. Calcium Silicate:
 - Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.

3.3 APPLICATION -BOILER PLANT, PIPE, VALVES, STRAINERS AND FITTINGS:

- A. Temperature range 120 to 230 degrees C (251 to 450 degrees F);
 - Application; Steam service 110 kpa (16 psig nominal) and higher, high pressure condensate to trap assembly, boiler bottom blowoff from boiler to blowoff valve closest to boiler.
 - 2. Insulation and Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (6 feet) above boiler room floor, feedwater heater mezzanine floor or access platform and any floors or platforms on which tanks or pumps are located.
 - b. Mineral fiber for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on atomizing steam and condensate lines at boilers and burners.

3. Thickness:

Nominal Thickness	Of Calcium Silicate Insulation
	(Boiler Plant)
Pipe Diameter mm	Insulation Thickness mm
(in)	(in)
25 (1 and below)	125 (5)
25 to 38 (1-1/4 to 1-	125 (5)
1/2)	
38 (1-1/2) and above	150 (6)

B. Temperature range 100 to 121 degrees C (211 to 250 degrees F):

- Application: Steam service 103 kpa (15 psig) and below, trap assembly discharge piping, boiler feedwater from feedwater heater to boiler feed pump recirculation, feedwater heater overflow, heated oil from oil heater to burners.
- 2. Insulation and Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (0 to 6 feet) above boiler room floor, feedwater heater mezzanine floor and access platform, and any floors or access platforms on which tanks or pumps are located.
 - b. Mineral Fiber or rigid closed cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on condensate lines at boilers and burners.
- 3. Thickness-calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation					
Pipe Diameter mm (in)	Insulation Thickness mm (in)				
25 (1 and below)	50 (2)				
25 to 38 (1-1/4 to 1-	50 (2)				
1/2)					
38 (1-1/2) and above	75 (3)				

4. Thickness-rigid closed-cell phenolic foam insulation:

Nominal Thickness Of Insulation					
Pipe Diameter mm (in)	Insulation Thickness mm (in)				
25 (1 and below)	38 (1.5)				
25 to 38 (1-1/4 to 1-	38 (1.5)				
1/2)					
38 (1-1/2) and above	75(3)				

- C. Temperature range 32 to 99 degrees C (90 to 211 degrees F):
 - Application: Pumped condensate, gravity and pumped heating returns, condensate transfer, condensate transfer pump recirculation, condensate return from convertors and heated water storage tanks.
 - 2. Insulation Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (six feet above boiler room floor, feedwater heater mezzanine floor and access platform and any floor or access platform on which tanks or pumps are located.
 - b. Mineral fiber or rigid closed-cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - 3. Thickness-calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation				
Pipe Diameter mm (in) Insulation Thickness mm (in)				
25 (1 and below) 38 (1.5)				
25 to 38 (1-1/4 to 1-1/2) 50(2)				
38 (1-1/2) and above	75 (3)			

4. Thickness-rigid closed-cell phenolic foam insulation:

Nominal Thickness Of Insulation				
Pipe Diameter mm (in) Insulation Thickness mm (in)				
25 (1 and below) 19 (0.75)				
25 to 38 (1-1/4 to 1-1/2) 19 (0.75)				
38 (1-1/2) and above	25 (1)			

- D. Protective insulation to prevent personnel injury:
 - 1. Application: Piping from zero to 1800 mm (6 feet) above all floors and access platforms flash tank vents and valve by-passes.
 - 2. Insulation thickness: 25 mm (1 inch).
 - Insulation and jacket: Calcium silicate with ASJ except provide aluminum jacket on piping at boilers within 1800 mm (6 feet) of floor. Use PVC premolded fitting coverings when all service jacket is utilized.
- E. Installation:
 - At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.
 - Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 300 mm (12 inch) centers.
 - 3. At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.
 - 4. Terminate insulation and jacket hard and tight at anchor points.
 - Terminate insulation at piping facilities not insulated with a 45 degree chamfered section of insulating and finishing cement covered with jacket.
 - 6. On calcium silicate, mineral fiber and rigid closed-cell phenolic foam systems, insulated flanged fittings, strainers and valves with sections of pipe insulation cut, fitted and arranged neatly and firmly wired in place. Fill all cracks, voids and coat outer surface with insulating cement. Install jacket. Provide similar construction on welded and threaded fittings on calcium silicate systems or use premolded fitting insulation.
 - 7. On mineral fiber systems, insulate welded and threaded fittings more than 50 mm (2 inches) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.
 - Insulate fittings 50 mm (2 inches) and smaller with mastic finishing material and cover with jacket.
 - 9. Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.
 - Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless

steel bands 300 mm (12 inches) on center or aluminum screws on 200 mm (4 inch) centers.

11. Do not insulate basket removal flanges on strainers.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Wall Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
	Insulation	Wall Thio	ckness Mill	imeters (In	ches)
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-94 degrees C (100-200 degrees F)	Flexible Elastomeric Cellular Thermal (Above	38 (1.5)	38 (1.5)		

Insulation Wall Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
	Insulation	Wall Thio	ckness Mill	imeters (In	ches)
(LPR, PC, HWH, HWHR, GH and GHR)	ground piping only)				
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. The requirements of this Section apply to all sections of Division 23.

B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 00 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems of the related subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility HVAC systems commissioning will include the systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.7 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. Department of Veterans Affairs (VA): PG 18-10 2007.....Mission Critical Facilities - DRAFT PG 18-10 2007....Life-Safety Protected Facilities - DRAFT
- C. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

HANDBOOK 2019.....HVAC Applications ASHRAE Handbook, Chapter 39, Testing, Adjusting, and Balancing, Chapter 44, HVAC Commissioning and Chapter 49, Sound and Vibration Control

HANDBOOK 2017.....HVAC Fundamentals ASHRAE Handbook, Chapter 8, Sound and Vibration

- D. Associated Air Balance Council (AABC):
 7th Edition 2016.....AABC National Standards for Total System
 Balance
- E. National Environmental Balancing Bureau (NEBB): 9th Edition 2019.....Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration

2nd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

006-2006..... HVAC Duct Construction Standard - Metal and Flexible Duct

3rd Edition 2005 ... HVAC Systems Testing, Adjusting and Balancing PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. Refer to Sections 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT, Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC and Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC requirements. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant

number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional requirements.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

Warranty, specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
- Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 3. The following systems have limited control (as individually noted below) from the ECC:
 - a. Stormwater removal pumps: status alarm.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
VFDs	23 09 23	26	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Fan Coil Unit controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26

- F. This facility's existing direct-digital control system is manufactured by Schneider Electric. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
- G. Unitary standalone systems including Unit Heaters, Cabinet Unit Heaters, Fan Coil Units, and similar units for control of room environment conditions may be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary.

1.2 RELATED WORK

- A. Section 22 14 29, Sump Pumps.
- B. Section 23 21 13, Hydronic Piping.
- C. Section 23 22 13, Steam and Condensate Heating Piping.
- D. Section 23 31 00, HVAC Ducts and Casings.
- E. Section 26 05 11, Requirements for Electrical Installations.
- F. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- G. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- H. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- I. Section 26 27 26, Wiring Devices.
- J. Section 26 29 11, Motor Starters.
- K. Section 27 15 00, Communications Horizontal Cabling
- L. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).

- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.

- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- NN. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- 00. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- PP. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.

- QQ. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- SS. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- TT. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- UU. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- VV. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- WW. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- XX. Repeater: A network component that connects two or more physical segments at the physical layer.
- YY. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- ZZ. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AAA. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system.

The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.

- Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

 Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
 - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Water temperature	±0.5°C [±1°F]
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 6. Color prints of proposed graphics with a list of points for display.
 - 7. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
 - Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer

manufacturers' model numbers and functions. Show all interface wiring to the control system.

- 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 11. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 13. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - General description and specifications for all components, including logging on/off, alarm handling, producing trend

reports, overriding computer control, and changing set points and other variables.

- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.

- The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 3. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications
- G. National Fire Protection Association (NFPA):

CONSTRUCT AIR HANDLING TOWER 636 - 18 - 303NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS 70-11.....National Electric Code 90A-09.....of Air-Conditioning and Ventilation Systems H. Underwriter Laboratories Inc (UL): 94-10..... Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10..... Access Control System Units 486A/486B-10.....Wire Connectors 555S-11.....Standard for Smoke Dampers 916-10..... Energy Management Equipment 1076-10..... Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.

- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.

- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.5 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN"
 where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.6 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.7 CONTROLLERS

- A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. Assume a predetermined failure mode, and
 - b. Generate an alarm notification.
 - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
 - 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
 - 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and

editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.

- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.

- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.

- d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
- e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly, the programmable unit.
 - a. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
 - b. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the

messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.

- c. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- d. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.8 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.

- c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
- d. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- e. Wire: Twisted, shielded-pair cable.
- f. Output Signal: 4-20 ma.
- C. Water Flow Sensors:
 - 1. Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
 - 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
 - Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Steam Flow Sensor/Transmitter:
 - Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.

- a. Ambient conditions, -40°C to 80°C $(-40^\circ\text{F}$ to $175^\circ\text{F}).$
- b. Process conditions, 900 kPa (125 psig) saturated steam.
- c. Turn down ratio, 20 to 1.
- d. Output signal, 4-20 ma DC.
- e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent noncondensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - 3) Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
- f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.
- F. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.9 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.

- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.10 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Wall mounted thermostats shall have manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.

- a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
- b. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.

2.11 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
 - 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque

to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

- a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
- 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
- 3. See drawings for required control operation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control

wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

- Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. All pipe mounted temperature sensors shall be installed in wells.
 - g. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - h. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
 - 2. Pressure Sensors:
 - a. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - b. Install snubbers and isolation valves on steam pressure sensing devices.
 - 3. Actuators:

- a. Mount and link damper and valve actuators according to manufacturer's written instructions.
- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling

unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to ensure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

- System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.

- e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
- f. Demonstrate EMS performance via trend logs and command trace.
- g. Demonstrate scan, update, and alarm responsiveness.
- h. Demonstrate spreadsheet/curve plot software, and its integration with database.
- i. Demonstrate on-line user guide, and help function and mail facility.
- j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping for HVAC systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for piping.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- G. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- J. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- K. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- L. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- M. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: Fan coil units, Unit Heaters.
- N. Section 31 20 00, EARTHWORK: Excavation and backfill.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

в.	American Society of Mechanical Engineers (ASME):		
	B1.20.1-2013	.Pipe Threads, General Purpose (Inch)	
	B16.3-2016	.Malleable Iron Threaded Fittings: Classes 150	
		and 300	
	B16.4-2016	.Gray Iron Threaded Fittings: (Classes 125 and	
		250)	
	B16.5-2017	.Pipe Flanges and Flanged Fittings: NPS 1/2	
		through NPS 24 Metric/Inch Standard	
	B16.9-2018	.Factory Made Wrought Buttwelding Fittings	
	B16.11-2016	.Forged Fittings, Socket-Welding and Threaded	
	B16.18-2018	.Cast Copper Alloy Solder Joint Pressure	
		Fittings	
	B16.22-2018	.Wrought Copper and Copper Alloy Solder-Joint	
		Pressure Fittings	
	B16.24-2016	.Cast Copper Alloy Pipe Flanges and Flanged	
		Fittings: Classes 150, 300, 600, 900, 1500, and	
		2500	
	B16.39-2014	.Malleable Iron Threaded Pipe Unions: Classes	
		150, 250, and 300	
	B16.42-2016	.Ductile Iron Pipe Flanges and Flanged Fittings	
	В31.9-2014	.Building Services Piping	
	B40.100-2013	.Pressure Gauges and Gauge Attachments	
	ASME Boiler and Pressure Vessel Code:		
	BPVC Section VIII-2015Rules for Construction of Pressure Vessels		
C.	2. American Society for Testing and Materials (ASTM):		
	A47/A47M-2018Standard Specification for Ferritic Malleable		
		Iron Castings	
	A53/A53M-2018	.Standard Specification for Pipe, Steel, Black	
		and Hot-Dipped, Zinc-Coated, Welded and	
		Seamless	
	A106/A106M-2019	.Standard Specification for Seamless Carbon	
		Steel Pipe for High-Temperature Service	
	A126-2004(R2019)	.Standard Specification for Gray Iron Castings	
		for Valves, Flanges, and Pipe Fittings	
	A183-2014	.Standard Specification for Carbon Steel Track	
		Bolts and Nuts	

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS A216/A216M-2018.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A307-2016.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A536-1984(R2019).....Standard Specification for Ductile Iron Castings B62-2017.....Standard Specification for Composition Bronze or Ounce Metal Castings B88-2016.....Standard Specification for Seamless Copper Water Tube F439-2019.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-2015.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 D. American Welding Society (AWS): B2.1/B2.1M-2014.....Standard for Welding Procedure and Performance Specification E. Expansion Joint Manufacturer's Association, Inc. (EJMA): EJMA 2017..... Expansion Joint Manufacturer's Association Standards, Tenth Edition F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-2017.....Butterfly Valves SP-70-2014.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2014.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2014.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2014.....Gray Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-2014.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

SP-125-2018.....Gray Iron and Ductile Iron In-line, Spring-Loaded, Center-Guided Check Valves

G. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards//2015//..9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gauges.
 - 15. Thermometers and test wells.
 - 16. Seismic bracing details for piping.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Air separators.
 - 2. Expansion tanks.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.
- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- I. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than oneyear old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

23 21 13 - 5

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them in AutoCAD provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall

contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

- 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES
 - A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Condenser Water, Heating Hot Water, and Vent Piping:
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.
- D. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.

23 21 13 - 7

- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.

- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chromeplated ball with full port and Teflon seat at 4137 kPa (600 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 65 mm (2-1/2 inch) and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS SP-67, flange lug type rated 1200 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Butterfly valves are prohibited for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47/A47M electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft

or stem is acceptable, if the stem is completely isolated from the product.

- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) Gate Valves:
 - a) 50 mm (2 inches) and smaller: MSS SP-80, Bronze, 1035 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke. MSS SP-70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.
- F. Check Valves:
 - 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled

water and hot water piping. Check valves incorporating a balancing feature may be used.

- a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
- b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Globe style valve.
 - 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.
- D. Portable Water Flow Indicating Meters:
 - Minimum 150 mm (6 inch) diameter dial, forged brass body, berylliumcopper bellows, designed for 1200 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 3 m (10 feet) lengths of hose with quick disconnect connections.

- Factory-fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
- 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- E. Permanently Mounted Water Flow Indicating Meters: Minimum 150 mm (6 inch) diameter, or 457 mm (18 inch) long scale, for 120 percent of design flow rate, direct reading in gpm, with three valve manifold and two shut-off valves.

2.9 STRAINERS

- А. Ү Туре.
 - Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.11 EXPANSION JOINTS

A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.

- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association (EJMA) Standards.
- C. Refer to drawings for expansion joint requirements.
- D. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- E. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- F. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.12 HYDRONIC SYSTEM COMPONENTS

- A. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of converters, pumps, and other components, pre-piped and prewired supported on a welded steel frame or skid. Refer to Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING, for additional requirements.
- B. Air Purger: Cast iron or fabricated steel, 861 kPa (125 psig) water working pressure, for in-line installation.
- C. Tangential Air Separator: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless-steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless-steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the crosssectional area of connecting piping.
- D. Diaphragm Type Pre-Pressurized Expansion Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, welded steel shell, rustproof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 115 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection,

drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).

- E. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless-steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).
- F. Pressure Relief Valve: Bronze or iron body and bronze or stainlesssteel trim, with testing lever. Comply with ASME BPVC Section VIII and bear ASME stamp.
- G. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.13 WATER FILTERS AND POT CHEMICAL FEEDERS

A. See Section 23 25 00, HVAC WATER TREATMENT, paragraph, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.14 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.15 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.

23 21 13 - 14

- B. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.16 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water: 0 to 38 degrees C (32 to 100 degrees F).
 - 2. Hot Water: 38 to 93 degrees C (100 to 200 degrees F).

2.17 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.

- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 SEISMIC BRACING ABOVEGROUND PIPING

A. Provide in accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.
- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent

organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.

D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.7 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.8 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.10 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A.Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped. Hydronic pumps for Heating, Ventilating and Air Conditioning.
- B.Definitions:
 - Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
 - 3. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.
- C.A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- H. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 21 13, HYDRONIC PIPING.
- K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

- B. American Society of Mechanical Engineers (ASME): B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings: Classes 25, 125, and 250
- C. American Society for Testing and Materials (ASTM): A48/48M-2003(R2016)....Standard Specification for Gray Iron Castings B62-2017.....Standard Specification for Composition Bronze or Ounce Metal Castings

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 23, HYDRONIC PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
 - 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
 - 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
 - After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- B. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall

contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the COR.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1-1/2 times the designed pressure.
 - Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. Motors shall be open drip proof and operate at 1750 RPM unless noted otherwise.
 - d. Heating pumps shall be suitable for handling water to 107 degreesC (225 degrees F).
 - e. Provide coupling guards that meet OSHA requirements.
 - f. Pump Connections: Flanged.

- g. Pump shall be factory tested.
- h. Performance: As scheduled on the Contract Drawings.
- 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip proof motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, MOTOR CONTROLLERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC Article, VARIABLE SPEED MOTOR CONTROLLERS. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.
- B.In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48/A48M.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 861 kPa (125 psig), ASME B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - Casing Drain and Gauge Taps: 15 mm (1/2 inch) plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, Type 1045 or stainless steel.
 - 8. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
 - 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.
 - e. Provide lip seal and slinger outboard of each bearing.
 - f. Base: Cast iron or fabricated steel for common mounting to a concrete base.

- 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:
 - a. Body: Cast iron with steel inlet vanes and combination diffuserstrainer-orifice cylinder with 5 mm (3/16 inch) diameter openings for pump protection. Provide taps for strainer blowdown and gauge connections.
 - b. Provide adjustable foot support for suction piping.
 - c. Strainer free area: Not less than five times the suction piping.
 - d. Provide disposable startup strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- D. Coordinate location of thermometer and pressure gauges as per Section23 21 13, HYDRONIC PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Verify that the piping system has been flushed, cleaned and filled.
- E. Lubricate pumps before startup.

- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H. Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- I. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- J. After several days of operation, replace the disposable startup strainer with a regular strainer in the suction diffuser.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 09 91 00, PAINTING.
- E. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Section 23 22 23, STEAM CONDENSATE PUMPS.
- L. Section 23 25 00, HVAC WATER TREATMENT.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.5-2013....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2012....Factory Made Wrought Buttwelding Fittings B16.11-2011....Forged Fittings, Socket-Welding and Threaded B16.42-2016....Ductile Iron Pipe Flanges and Flanged Fittings: Classes 150 and 300 B31.1-2018....Power Piping B31.9-2014....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS ASME Boiler and Pressure Vessel Code (BPVC) -BPVC Section II-/2019 Materials BPVC Section VIII-2019 Rules for Construction of Pressure Vessels, Division 1 BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications C. American Society for Testing and Materials (ASTM): A53/A53M-2017.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2019.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A216/A216M-2019.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A285/A285M-2017.....Standard Specification for Pressure Vessel Plates, Carbon Steel, Low-and Intermediate-Tensile Strength A307-2019.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A516/A516M-2017.....Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service A536-1984(R2017).....Standard Specification for Ductile Iron Castings B62-2017..... Standard Specification for Composition Bronze or Ounce Metal Castings D. American Welding Society (AWS): B2.1/B2.1M-2014.....Specification for Welding Procedure and Performance Qualifications Z49.1-2012..... Safety in Welding and Cutting and Allied Processes E. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves

- F. Military Specifications (Mil. Spec.): MIL-S-901D-2017.....Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems
- G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- H. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2015....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gauges.
 - 13. Thermometers and test wells.
 - 14. Seismic bracing details for piping.

- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).
 - 2. Flash tanks.
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.

- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
 - 2. Comply with provisions in ASME B31.9 and ASME B31.1.
 - Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- D. ASME Compliance: Comply with ASME B31.9 and ASME B31.1 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or

breach of the 'third party testing company' requirement. Provide record drawings as follows:

- As-built drawings are to be provided, with a copy of them in AutoCAD provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.
- PART 2 PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

- A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 2.2 PIPE AND TUBING
 - A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
 - B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
 - C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 3. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with nonasbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750 degrees F) and 10,342 kPa (1500 psig).
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.

- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves //or dielectric nipples// may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.
 - b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 - High pressure steam 110 kPa (16 psig) and above system): Cast steel body, ASTM A216/A216M grade WCB, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.

- b. 65 mm (2-1/2 inches) and larger:
 - Globe valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronzefaced disc (Teflon or composition facing permitted) and seat, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger:
 - Angle valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- F. Swing Check Valves:
 - 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45degree swing disc.
 - 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 110 kPa (16 psig) and above system: Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1035 kPa (150 psig) saturated steam.
 - 50 mm (2 inches) and smaller: Cast steel, rated for saturated steam at 1034 kPa (150 psig) threaded ends.

- 2. 65 mm (2-1/2 inches) and larger: Cast steel rated for 1034 kPa (150 psig) saturated steam with 1034 kPa (150 psig) ASME flanged ends or forged steel with 1724 kPa (250 psig) ASME flanged ends.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-29 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-123 psig): Rated 1035 kPa (150
 psig) at 186 degrees C (366 degrees F).
 - c. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (309 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - Movement: As shown on drawings plus recommended safety factor of manufacturer.

- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Refer to drawings for expansion joint requirements.
- E. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.9 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft²hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components, pre-piped and pre-wired and supported on a welded steel frame or skid.
- C. Steam Pressure Reducing Valves in PRV Stations:
 - Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
 - Service: Provide controlled reduced pressure to steam piping systems.
 - Pressure control shall be smooth and continuous with maximum drop of 10 percent deviation from set pressure. Maximum flow capacity of each valve shall not exceed capacity of downstream safety valve(s).

- 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, Monel, or similar durable material.
 - a. Pressure rating for high pressure steam: Not less than 1035 kPa (150 psig) saturated steam.
 - b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.
- 5. Select pressure reducing valves to develop less than 85 db(A) at 1.5 m (5 feet) elevation above adjacent floor, and 1.5 m (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing valves shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.
- D. Safety Valves and Accessories: Comply with ASME BPVC Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown. Valve shall have stainless steel seats and trim.
- E. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516/A516M or ASTM A285/A285M, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53/A53M Grade B, seamless or ERW, or ASTM A106/A106M Grade B seamless, Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
- F. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.

- b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
- 2. Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of raised face flange is required on pipe sizes 1½ inch and above. The use of unions is acceptable for pipe sizes below 1½ inches. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- G. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- H. Steam Hose and Accessories: Hose shall be sufficiently flexible to be placed in a 1.2 m (4 feet) diameter coil.
 - Furnish and install in the mechanical room housing each PRV station a 7.6 m (25 feet) length of 15 mm (1/2 inch) ID steam hose, rated 861 kPa (125 psig) and a hose rack. In one end of the hose install a quick-couple device, suitable for steam service, to match corresponding devices in the PRV blowdown connections.
 - Hose storage rack: Wall-mounted, steel, iron or aluminum, semicircular shape, with capacity to store 7.6 m (25 feet) of 15 mm (1/2 inch) ID steam hose.

2.10 GAUGES, PRESSURE AND COMPOUND

A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.

- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.
- C. Pressure gauge ranges shall be selected such that the normal operating pressure for each gauge is displayed near the midpoint of each gauge's range. Gauges with ranges selected such that the normal pressure is displayed at less than 30 percent or more than 70 percent of the gauge's range are prohibited. The units of pressure shall be psig.

2.11 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug. Pressure/temperature plug is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 762 mm (30 inches) Hg to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.12 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40

feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - 2. Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.

- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.
 - 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
 - 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 EXPANSION JOINTS

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.5 STEAM TRAP PIPING

- A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.
 - On pipe size 1 ½ inch and above a raised face flange is required to allow for removal of the steam trap without disturbing surrounding piping.
 - On pipe size below 1 ½ inch raised face flanges or unions may be used to allow for removal of the traps.

3.6 SEISMIC BRACING

A. Provide is accordance with Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.7 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

3.8 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.9 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.11 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 23 STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.
- B. Definitions:
 - Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 23, STEAM CONDENSATE PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.

- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump //and if specified, for dual parallel pump operation//.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.4 QUALITY ASSURANCE

- A. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Select pumps so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.
 - Provide all electric-powered pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
 - 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.

- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- 9. Furnish one spare seal and casing gasket for each pump to the COR.
- B. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them in AutoCAD provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI): AISI 1045 2013.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416 2016.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI): ANSI B15.1-2000....Safety Standard for Mechanical Power Transmission

Apparatus

ANSI B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800

- D. American Society for Testing and Materials (ASTM): A48-2016.....Standard Specification for Gray Iron Castings B62-2016....Standard Specification for Composition Bronze or Ounce Metal Castings
- E. Maintenance and Operating Manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

PART 2 - PRODUCTS

2.1 CONDENSATE PUMP, PAD-MOUNTED

A. General: Factory assembled unit consisting of vented receiver tank, motor-driven pumps, interconnecting piping and wiring, motor controls (including starters, if necessary) and accessories, designed to receive, store, and pump steam condensate.

- B. Receiver Tank: Cast iron with threaded openings for connection of piping and accessories and facilities for mounting float switches. Receivers for simplex pumps shall include all facilities for future mounting of additional pump and controls.
- C. Furnish seals for condensate pump with a minimum temperature rating of 121 degrees C (250 degrees F).
- D. Centrifugal Pumps: Bronze fitted with mechanical shaft seals.
 - 1. Designed to allow removal of rotating elements without disturbing connecting piping or pump casing mounting.
 - Shafts: Stainless steel, Type 416 or alloy steel with bronze shaft sleeves.
 - 3. Bearings: Regreaseable ball or roller type.
 - 4. Casing wearing rings: Bronze.
- E. Motors: Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- F. Pump Operation:
 - Float Switches: NEMA 4, mounted on receiver tank, to start and stop pumps in response to changes in the water level in the receiver and adjustable to permit the controlled water levels to be changed. Floats and connecting rods shall be copper, bronze or stainless steel.
 - 2. Alternator: Provide for duplex units to automatically start the second pump when the first pump fails in keeping the receiver water level from rising and to alternate the order of starting the pumps to equalize wear. For units 0.25 kW (1/3 hp) and smaller, the alternator may be the mechanical type for use in lieu of float switches.
- G. Control Cabinet for 3 Phase (0.37 kW (1/2 hp) and larger) Units: NEMA 4, UL approved, factory wired, enclosing all controls, with indicating lights, manual switches and resets mounted on the outside of the panel. Attach cabinet to the pump set with rigid steel framework, unless remote mounting is noted on the pump schedule.
 - Motor starters: Magnetic contact types with circuit breakers or combination fusible disconnect switches. Provide low voltage control circuits (120-volt maximum) and HOA switches for each pump.
 - 2. Indicating lights for each pump: Green to show that power is on, red to show that the pump is running.

- H. Electric Wiring: Suitable for 94 degrees C (200 degrees F) service; enclosed in liquid-tight flexible metal conduit where located outside of control cabinet.
- I. Receiver Accessories:
 - Thermometer: 38 to 216 degrees C (100 to 420 degrees F), mounted below minimum water level.
 - 2. Water level gauge glass: Brass with gauge cocks which automatically stop the flow of water when the glass is broken. Provide drain on the lower gauge cock and protection rods for the glass.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C. Sequence of installation for base-mounted pumps:
 - 1. Level and shim the unit base and grout to the concrete pad.
 - Shim the driver and realign the pump and driver. Correct axial, angular or parallel misalignment of the shafts.
 - 3. Connect properly aligned and independently supported piping.
 - 4. Recheck alignment.
- D. Pad-mounted Condensate Pump: Level, shim, bolt, and grout the unit base onto the concrete pad.
- E. Coordinate location of thermometer and pressure gauges as per Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing

schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

- D. Verify that the piping system has been flushed, cleaned and filled.
- E. Lubricate pumps before startup.
- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H. Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.

E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2017.....National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02-2018 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
 - 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration;

ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
 - 4. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and

outlet values and opening the bypass values. This is done to prevent dirt and solids from lodging the coils.

- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 08 90 00, LOUVERS and VENTS: Outdoor and Exhaust Louvers.
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Reinforcing.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise Level Requirements.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- H. Section 23 07 11, HVAC, and BOILER PLANT INSULATION: Duct Insulation.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- J. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.
- K. Section 23 82 00, CONVECTION HEATING and COOLING UNITS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - Flexible ducts and clamps, with manufacturer's installation instructions.
 - 7. Flexible connections.

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

- 8. Instrument test fittings.
- 9. Details and design analysis of alternate or optional duct systems.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-2017.....Minimum Design Loads for Buildings and Other Structures
- C. American Society for Testing and Materials (ASTM):

A167-2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

- A653-2019.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process
- Al011-2018.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High
 - Strength
- B209-2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
- C1071-2019......Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)
- E84-2014.....Standard Test Method for Surface Burning Characteristics of Building Materials

D. National Fire Protection Association (NFPA):

90A-2018..... Standard for the Installation of Air Conditioning and Ventilating Systems

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition-2006.....HVAC Duct Construction Standards, Metal and Flexible

2nd Edition-2012.....HVAC Air Duct Leakage Test Manual

F. Underwriters Laboratories, Inc. (UL): 181-2013......Factory-Made Air Ducts and Air Connectors 555-2006Standard for Fire Dampers 555S-2014.....Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal

- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
 - 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.

- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- H. Ductwork in excess of 620 cm² (96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches) if it passes through the areas listed below. Refer to the Mission Critical Physical Design Manual for VA Facilities. This applies to the following:
 - 1. Agent cashier spaces
 - 2. Perimeter partitions of caches
 - 3. Perimeter partitions of computer rooms
 - 4. Perimeter of a COOP sites
 - 5. Perimeter partitions of Entrances
 - 6. Security control centers (SCC)

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil.
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FLEXIBLE AIR DUCT

A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.

- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.5 FLEXIBLE DUCT CONNECTIONS

A. Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.6 PREFABRICATED ROOF CURBS

A. Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.7 FIRESTOPPING MATERIAL

A. Refer to Section 07 84 00, FIRESTOPPING.

2.8 SEISMIC RESTRAINT FOR DUCTWORK

A. Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.9 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and

accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.

- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the Resident Engineer on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork

constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-2016.....Standards Handbook

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS
210-2016Laboratory Methods of Testing Fans for	
Aerodynamic Performance Rating	
261-2017	.Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually
300-2014	.Reverberant Room Method for Sound Testing of
	Fans
C. American Society for Te	sting and Materials (ASTM):
B117-2018	.Standard Practice for Operating Salt Spray
	(Fog) Apparatus
D1735-2008	.Standard Practice for Testing Water Resistance
	of Coatings Using Water Fog Apparatus
D3359-2017	.Standard Test Methods for Measuring Adhesion by
	Tape Test
G152-2013	.Standard Practice for Operating Open Flame
	Carbon Arc Light Apparatus for Exposure of Non-
	Metallic Materials
G153-2013	.Standard Practice for Operating Enclosed Carbon
	Arc Light Apparatus for Exposure of Non-
	Metallic Materials
D. Underwriters Laboratories, Inc. (UL):	
181-2013	.Factory Made Air Ducts and Air Connectors
1.6 EXTRA MATERIALS	
A. Provide one additional set of belts for all belt-driven fans.	
PART 2 - PRODUCTS	
2.1 CENTRIFUGAL FANS	
A. Standards and Performance Criteria: Refer to Paragraph, QUALITY	
ASSURANCE. Record factory vibration test results on the fan or furnish	
to the Contractor.	
B. Fan arrangement, unless noted or approved otherwise:	
1. DWD1 fans: Arrangement 3.	
2. SWSl fans: Arrangement 1, 3, 9 or 10.	
C. Construction: Wheel diameters and outlet areas shall be in accordance	
with AMCA standards.	
l. Housing: Low carbon steel, arc welded throughout, braced and	
supported by structural channel or angle iron to prevent vibration	
or pulsation, flanged outlet, inlet fully streamlined. Provide	
lifting clips, and casing drain. Provide manufacturer's standard	

access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.

- 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
- 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
- 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
- 5. Belts: Oil resistant, non-sparking and non-static.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 26 29 11, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.

D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 08 90 00, LOUVERS and VENTS.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-2015.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE): ASCE7-2017......Minimum Design Loads for Buildings and Other

Structures

D. American Society for Testing and Materials (ASTM): A167-99 2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate,

Sheet and Strip

B209-2014..... Standard Specification for Aluminum and

Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air

Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL): 181-2013.....UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Steel or aluminum. Provide manufacturer's standard gasket.
 - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.

- c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.
- 2. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 3. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.

2.3 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.

B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies fan-coil units, unit heaters, and cabinet unit heaters.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- J. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- K. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide guarantee in accordance with FAR clause 52.246-21

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Manufacturer's Literature and Data:
 - 1. Fan-Coil units.
 - 2. Unit heaters.
 - 3. Cabinet unit heaters.
- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI): 440-2019.....Performance Rating of Room Fan Coils 445-2013....Standard for Air-Induction Units// National Fire Protection Association (NFPA): 90A-2018....Standard for the Installation of Air Conditioning and Ventilating Systems

70-2017..... National Electrical Code

- C. Underwriters Laboratories, Inc. (UL):
 - 181-2013..... Standard for Factory-Made Air Ducts and Air Connectors

1995-2015..... Heating and Cooling Equipment

PART 2 - PRODUCTS

2.1 FAN-COIL UNITS

- A. Capacity Certification: AHRI 440.
- B. Safety Compliance: NEC compliant and UL listed.
- C. Noise Levels: Operating at full cooling capacity, sound power level shall not exceed by more than 5 dB the numerical value of sound pressure levels associated with noise criteria specified in Section

Select units at intermediate speed, for compliance with the noise criteria.

- D. Chassis: Galvanized steel, acoustically and thermally insulated to attenuate noise and prevent condensation.
- E. Cabinet: Minimum 1.3 mm (18 gage) steel reinforced and braced. Arrange components and provide adequate space for installation of piping package and control valves. Finish shall be factory-baked enamel in manufacturer's standard color on all exposed surfaces.
 - Horizontal Unit: Provide Exposed type as shown. Provide supports and vibration isolators for horizontal units as recommended by the manufacturer.
 - a. Exposed Units: Fully enclosed cabinet with hinged bottom access panel with cam-lock fasteners. Provide stamped integral inlet and discharged grilles in front of cabinet.
- F. Fans: Centrifugal, forward curved, double width type wheels, galvanized steel or polyester resin construction, statically and dynamically balanced, direct driven.
 - Motors: Premium efficiency, 3-speed permanent split capacitor type with integral thermal overload protection, for operation at not more than 1200 RPM.
 - 2. Provide a fan speed selector switch, with off, low, medium, and high positions. Switch shall have a set of auxiliary contacts which are open when the switch is in the "off" position and closed when the switch in any of the other positions.
- G. Cooling and Heating Coils:
 - 1. Hydronic (two separate coils for cooling and heating): Copper tubes, 10 mm (three-eighths inch) minimum inside diameter, not less than 4.3 mm (0.017 inch) thick with copper or aluminum fins. Coils shall be pressure tested for bursting and strength in accordance with Underwriters Laboratories, Inc., requirements for pressure tested coils, and shall be designed to provide adequate heat transfer capacity. Provide manual air vent at high point of each coil and drain at each low point.
- H. Piping Package: Factory furnished with unit by the manufacturer or field-installed by the contractor to fit control valves provided by the controls' supplier. Submit manufacturer's detailed drawings of the piping in the end compartments for approval prior to fabrication of the

piping packages. Provide ball stop valves on the supply and return pipes and balancing fittings on the return pipes.

- I. Drain pans: Furnish galvanized steel with solderless drain connections and molded polystyrene foam insulating liner:
 - 1. Auxiliary drain pan: Located under control valve and piping within the unit enclosure to prevent dripping.
- J. Air Filter: Manufacturer's standard throwaway type, not less than 25 mm (1 inch) thick, MERV 7, supported to be concealed from sight and be tight fitting to prevent air by-pass. Filters shall have slide out frames and be easily replaced without removing enclosure or any part thereof.
- K. Control valves and remote wall mounted space thermostats or unit mounted return air thermostats, where shown or specified are to be field installed. Provide two-way modulating control valves unless shown or specified otherwise.

2.2 UNIT HEATERS

- A. General: Horizontal or vertical discharge type for hot water heating medium, as indicated.
- B. Casing: Steel sheet, phosphatized to resist rust and finished in baked enamel. Provide hanger supports.
- C. Fan: Propeller type, direct driven by manufacturer's standard electric motor. Provide resilient mounting. Provide fan guard for horizontal discharge units.
- D. Discharge Air Control:
 - 1. Horizontal discharge: Horizontal, adjustable louvers.
 - 2. Vertical discharge: Radial louver diffuser.
- E. Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psig) steam working pressure.
- F. Controls: Provide field installed remote wall mounted line voltage electric space thermostats or unit mounted return air thermostats, where shown or specified to control the unit fan.

2.3 CABINET UNIT HEATERS

- A. General: Vertical or horizontal type for hot water heating medium, as indicated.
- B. Cabinet: Not less than 1.3 mm (18 gage) steel with front panel for vertical units and hinged front panel for horizontal units. Finish on

exposed cabinet shall be factory-baked enamel in manufacturer's standard color as selected by the Architect. Provide 76 mm (3-inch) high sub-base for vertical floor mounted units.

- C. Fan: Centrifugal blower, direct driven by a single phase, two-speed, electric motor with inherent overload protection. Provide resilient motor/fan mount.
- D. Filter: Manufacturer's standard, one-inch thick, throwaway type MERV 7 filters.
- E. Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psi) steam working pressure.
- F. Factory Mounted Controls: Manual fan starter and three-position (low, high and off) fan speed switch. Provide field installed remote wall mounted line voltage electric space thermostats or unit mounted return air thermostats, where shown or specified to control the unit fan.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they always remain stationary. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 26 05 11

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts,

certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 - Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.

- 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:

- The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the Resident Engineera minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
- 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the Resident Engineerfourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the Resident Engineer
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the Resident Engineer , and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized

electrical work request from the Resident Engineer, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.

- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the Resident Engineer , and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the Resident Engineer in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.

- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - //2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations, and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.//3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.

- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.

- 2. Each type of conduit coupling, bushing, and termination fitting.
- 3. Conduit hangers, clamps, and supports.
- 4. Duct sealing compound.
- 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 POLYCHLORINATED BIPHENYL (PCB) EQUIPMENT

- A. This project requires the removal, transport, and disposal of electrical equipment containing Polychlorinated Biphenyls (PCB) in accordance with the Federal Toxic Substances Control Act (TSCA).
- B. The equipment to be removed is shown on the drawings.
- C. The selective demolition shall be in accordance with Section 02 41 00, DEMOLITION.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 13 16, , MEDIUM-VOLTAGE INTERRUPTER SWITCHES.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - A representative sample of Medium-voltage cables from each lot shall be factory tested per NEMA WC 74 to ensure that there are no electrical defects in that specific lot of cable.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

- b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
- 2. Samples:
 - a. After approval of submittal and prior to installation, Contractor shall furnish sample in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 3. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.
 - b. Field Test Reports: Submit field test reports for approval.
 - c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
 - d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install cables, splices, and terminations shall have a minimum of five years of experience splicing and terminating cables, including experience with the materials in the approved splices and terminations. Qualified workers who perform cable testing shall have a minimum of five year of experience performing electrical testing of medium-voltage cables, including the ability to understand, interpret test results and develop test report.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B3-13.....Standard Specification for Soft or Annealed Copper Wire
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 48-09......Test Procedures and Requirements for
 - Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded Insulation Rated 2.5 kV through 500 kV
 - 386-06.....Separable Insulated Connector Systems for Power Distribution Systems above 600 V
 - 400-12.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems
 - 400.2-13.....Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) 404-12.....Extruded and Laminated Dielectric Shielded
 - Cable Joints Rated 2500 V to 500,000 V
- D. National Electrical Manufacturers Association (NEMA):
 - WC 71-14.....Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy
 - WC 74-12.....5-46 KV Shielded Power Cable for Use in the
 - Transmission and Distribution of Electric
 - Energy
- E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- F. Underwriters Laboratories (UL):

1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

A. Cable shall be shipped on reels such that it is protected against physical, mechanical and environmental damage. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel. B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with ASTM, IEEE, NEC, NEMA and UL, and as shown on the drawings.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 1.15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.

D. Insulation:

- 1. Insulation level shall be 133%.
- 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP, XLPE, or TR-XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.

- C. Splices:
 - 1. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - 2. Dead-break terminations for indoor and outdoor use: 600 A deadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
 - Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arc proof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- I. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.

- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be executed by qualified person trained to perform medium-voltage equipment installations. Tools shall be as recommended or provided by the manufacturer. Installation shall comply with manufacturer's instructions.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes and supported with cable arms at approximately the same elevation as the enclosing duct.
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.

C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. General:
 - Perform tests in accordance with the latest IEEE 400 and 400.2, manufacturer's recommendations, and as specified in this specification.
 - Contractor shall make arrangements to have tests witnessed by the Resident Engineer. Contractor shall proceed with tests only after obtaining approval from the Resident Engineer.
- B. Visual Inspection: Perform visual inspection prior to electrical tests.
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
 - 4. Verify installation of fireproofing tape and identification tags.
 - 5. At the time of final acceptance, Contractor shall provide the Resident Engineer visual field inspection notes, findings, and photographs detailing accessible inspection locations.
- C. Electrical Tests New Cables: Perform preparation and tests in order shown below:
 - Preparation Prior to Testing: Splices and terminations applied to new cables shall be completed prior to testing. For renovation installation, ends of new cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.

- Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.
 - a. Apply test voltage for a period sufficient to stabilize output voltage and insulation resistance measurement.
 - b. Test data shall include megohm, applied test voltage, and leakage current readings.
 - c. Further testing shall not continue unless the insulation resistance test results meet or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be: Voltage Class Test Voltage Min. Insulation Resistance 5kV 2,500 VDC 1,000 megohms 15kV 2,500 VDC 5,000 megohms 25kV 5,000 VDC 20,000 megohms 35kV 15,000 VDC 100,000 megohms
- 3. Perform Tan Delta test. Review test readings with the Resident Engineer prior to proceeding with the Very Low Frequency (VLF) Withstand test
- 4. Perform Very Low Frequency (VLF) Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- D. Electrical Tests Service-Aged Cables: Tests shall be performed for serviced-age cables before inter-connecting to new cables. Perform tests in order shown below:
 - Preparation Prior to Testing: Splices and terminations applied to cables shall be completed prior to testing. Ends of cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.
 - Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.
 - a. Apply test voltage for a period sufficient to stabilize output voltage and insulation resistance measurement.
 - b. Test data shall include megohm, applied test voltage, and leakage current readings.

- c. Further testing shall not continue unless the insulation resistance test results meet or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be: <u>Voltage Class Test Voltage Min. Insulation Resistance</u> 15kV 2,500 VDC 5,000 megohms
- 3. Perform Tan Delta test. Review test readings with the Resident Engineer prior to proceeding with the VLF Withstand test.
- 4. Perform VLF Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- E. Electrical Tests Inter-connected New Cables and Service-Aged Cables: After successful Tan Delta and VLF Withstand testing of new cables and service-aged cables, perform final splicing inter-connecting between new and service-aged cables. Once new and service-aged cables are completely inter-connected, conduct Tan Delta and VLF Withstand tests for the entire inter-connected cable. Utilize maintenance test voltage for VLF Withstand testing.
- F. Field Test Report: Submit a field test report to the Resident Engineer that includes the following information:
 - 1. Project Name, Location, Test Date.
 - 2. Name of Technician and Company performing the test.
 - 3. Ambient temperature and humidity at time of test.
 - 4. Name, Model Number and Description of Test Equipment used.
 - 5. Circuit identification, cable length, cable type and size, insulation type, cable manufacturer, service age (if any), voltage rating, description of splices or terminations.
 - 6. Visual field inspection notes, findings, and photographs.
 - 7. Insulation Resistance Test results:
 - a. Test voltage.
 - b. Measurement in Megohms.
 - c. Leakage current.
 - 8. Tan Delta results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Mean Tan Delta at $V_{\rm 0}.$
 - d. Stability measured by Standard Deviation at $V_{\rm 0}.$
 - e. Differential Tan Delta.
 - f. IEEE Condition Assessment Rating.

- 9. VLF Withstand results:
 - 1) Test voltage.
 - 2) Waveform (sinusoidal or cosine-rectangular).
 - 3) Pass/Fail Rating.
- Conclusions. If any deficiency is discovered based on test results, provide recommendations for corrective action.
- G. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the Resident Engineer.

---END---

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

100% CONSTRUCTION DOCUMENTS

2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):
 - D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
 - D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials
 - D3005-10..... Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
- C. National Electrical Manufacturers Association (NEMA): WC 70-09......Power Cables Rated 2000 Volts or Less for the

Distribution of Electrical Energy

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

- E. Underwriters Laboratories, Inc. (UL):
 - 44-14..... Thermoset-Insulated Wires and Cables
 - 83-14..... Thermoplastic-Insulated Wires and Cables
 - 467-13.....Grounding and Bonding Equipment
 - 486A-486B-13.....Wire Connectors
 - 486C-13.....Splicing Wire Connectors
 - 486D-15.....Sealed Wire Connector Systems
 - 486E-15.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
 - 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables
 - 514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V	
Black	А	Brown	
Red	В	Orange	
Blue	C	Yellow	
White	Neutral	Gray *	
* or white with colored (other than green) tracer.			

- 5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident Engineer.
- Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - All bolts, nuts, and washers used with splices shall be //zincplated//cadmium-plated// steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.

C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zinc-plated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.

- 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
- 4. All conductors in a single conduit shall be pulled simultaneously.
- Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- E. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low-voltage switchgear.
- F. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- G. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- H. Section 26 24 19, MOTOR CONTROL CENTERS: Motor control centers.
- I. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- J. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.
- K. Section 26 41 00, FACILITY LIGHTNING PROTECTION: Lightning protection.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Resident Engineer.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 - B1-13.....Copper Wire B3-13....Standard Specification for Soft or Annealed Copper Wire B8-11....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard,
 - or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-12..... IEEE Guide for Measuring Earth Resistivity,
 - Ground Impedance, and Earth Surface Potentials
 - of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-15....National Electrical Safety Code
 - 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
 - 44-14 Thermoset-Insulated Wires and Cables

 - 467-13Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:
 - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary.
 Provide a grounding electrode at the transformer.
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.4 RACEWAY

A. Conduit Systems:

- 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
- Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).

- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.5 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.6 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.7 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.8 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.9 EXTERIOR LIGHT POLES

A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional un-spliced length in and above foundation as required to reach pole ground stud.

3.10 GROUND RESISTANCE

A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.

B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.11 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.12 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

SECTION 26 05 33

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- H. Section 31 20 00, EARTHWORK: Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Size and location of main feeders.
- b. Size and location of panels and pull-boxes.
- c. Layout of required conduit penetrations through structural elements.
- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of

Cold-Formed Steel Structural Members

C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13.....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic

Tubing)

CONSTRUCT AIR HANDLING TOWER 636 - 18 - 303NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS FB2.20-14.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-16..... Surface Metal Raceway and Fittings 6-07.....Electrical Rigid Metal Conduit - Steel 50-15..... Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13..... Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings 514C-14.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-14.....Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 13 mm (0.5inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.

100% CONSTRUCTION DOCUMENTS

4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.

- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 8. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 3. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.

- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - Sheet Metal Boxes: Galvanized steel, except where shown on drawings.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the //Resident Engineer// //COR// where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.

- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the Resident Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - Do not install conduit through concrete beams:
 a.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - 2. Conduit for Conductors 600 V and Below: IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.8 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.9 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.

- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41

UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 31 20 00, EARTH WORK.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on ducts, and hardware.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the Resident Engineer for approval prior to construction.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS		
2. Certifications: Two weeks prior	to the final inspection, submit the		
following.			
a. Certification by the manufac	turer that the materials conform to		
the requirements of the draw	ings and specifications.		
b. Certification by the Contrac	tor that the materials have been		
properly installed, connecte	d, and tested.		
1.5 APPLICABLE PUBLICATIONS			
A. Publications listed below (includi	ng amendments, addenda, revisions,		
supplements, and errata) form a pa	rt of this specification to the		
extent referenced. Publications ar	e referenced in the text by		
designation only.			
B. American Concrete Institute (ACI):			
Building Code Requirements for Str	uctural Concrete		
318-14/318M-14Building C	ode Requirements for Structural		
Concrete &	Commentary		
SP-66-04ACI Detail	ing Manual		
C. American National Standards Instit	ute (ANSI):		
77-14Undergroun	d Enclosure Integrity		
D. American Society for Testing and Materials (ASTM):			
C478 REV A-15Standard S	pecification for Precast Reinforced		
Concrete M	anhole Sections		
C858-10Undergroun	d Precast Concrete Utility Structures		
C990-09Joints for	Concrete Pipe, Manholes and Precast		
Box Sectio	ns Using Preformed Flexible Joint		
Sealants.			
E. National Electrical Manufacturers	Association (NEMA):		
TC 2-13Electrical	Polyvinyl Chloride (PVC) Conduit		
TC 3-15Polyvinyl	Chloride (PVC) Fittings for Use With		
Rigid PVC	Conduit And Tubing		
TC 6 & 8-13Polyvinyl	Chloride (PVC) Plastic Utilities Duct		
For Underg	round Installations		
TC 9-04Fittings F	or Polyvinyl Chloride (PVC) Plastic		
Utilities	Duct For Underground Installation		
F. National Fire Protection Associati	on (NFPA):		
70-17 E	lectrical Code (NEC)		
70E-15Rational E	lectrical Safety Code		

G. Underwriters Laboratories, Inc. (UL): 6-07.....Electrical Rigid Metal Conduit-Steel 467-13....Grounding and Bonding Equipment 651-11...Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

PART 2 - PRODUCTS

2.1 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - UL 651 and 651A Schedule 40 PVC conduit.
 - a. Duct shall be suitable for use with 90 $^\circ$ C (194 $^\circ$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.

2.2 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.3 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.4 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 TRENCHING

- A. Refer to Section 31 20 00, EARTH WORK for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.

- E. For Concrete-Encased Ducts:
 - 1. After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 feet) intervals to establish the grade and route of the duct bank.
 - 2. Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the Resident Engineer.

3.2 DUCT INSTALLATION

- A. General Requirements:
 - 1. Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - 2. Join and terminate ducts with fittings recommended by the manufacturer.
 - 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inches) in 30 M (100 feet).
 - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
 - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
 - 6. Install insulated grounding bushings on the conduit terminations.

- 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
- 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).
 - b. For power and signal services, not less than 150 mm (6 inches).
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.

- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
 - Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
 - 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
 - Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
 - 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
 - Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
 - 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
 - Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Resident Engineer.

- E. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- F. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- G. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.3 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the Resident Engineer.

---END---

SECTION 26 05 73

OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the //individual device// //____// up to the utility source// and the on-site generator sources//.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Medium-voltage circuit breaker switchgear.
- C. Section 26 13 16, MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES: Medium-voltage fusible interrupter switches.
- D. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: Low-voltage switchgear.
- E. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- F. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- G. Section 26 24 19, MOTOR CONTROL CENTERS: Motor control centers.
- H. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- I. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - 2. Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE):

241-90.....Recommended Practice Electrical Systems in Commercial Buildings

- 242-03.....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
- 399-97.....Recommended Practice for Industrial and Commercial Power Systems Analysis
- 1584-02.....Performing Arc-Flash Hazards Calculations
- 1584A-04.....Performing Arc-Flash Hazards Calculations -Amendment 1
- 1584B-11.....Performing Arc-Flash Hazards Calculations -Amendment 2
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
 - 70E-18.....Standard for Electrical Safety in the Workplace 99-18.....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective

100% CONSTRUCTION DOCUMENTS

coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.

- 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
 - 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and

resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements. ----- END -----

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- G. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA):
 - C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements
 - ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment

ICS-6-16.....Standard for Industrial Controls and Systems Enclosures

C. National Fire Protection Association (NFPA):

D. Underwriters Laboratories, Inc. (UL):

20-10.....Standard for General-Use Snap Switches

- 98-16..... Enclosed and Dead-Front Switches
- 773-16.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS 773A-16.....Nonindustrial Photoelectric Switches for Lighting Control 916-15....Standard for Energy Management Equipment Systems 917-06.....Clock Operated Switches 924-16...Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of

not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).

C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.2 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.3 OUTDOOR MOTION SENSOR (PIR)

- A. Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 degrees F (minus 40 to plus 54 degrees C).
 - Operation: Turn lights on when sensing infrared energy changes between background and moving body in area of coverage; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outdoor junction box.
 - b. Relay: Internally mounted in a standard weatherproof electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 3. Bypass Switch: Override the on function in case of sensor failure.
 - Automatic Light-Level Sensor: Adjustable from 11 to 215 lx (1 to 20 fc); keep lighting off during daylight hours.

- B. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.
- D. Individually Mounted Sensor: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 1. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 2. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.

//2.4 LIGHTING CONTROL SYSTEM - RELAY PANEL TYPE (NETWORK)

- A. System Description:
 - The lighting control system shall be a network of lighting relay panels connected to a digital network and controlled through a system server / central station. Lighting control devices connect to the relay panels and communicate via the panel controller with the system server. System includes all associated network interfaces and wiring, relay panels, control modules, input modules, panel processors, relays, photocells, switches, dimmers, time clock, and occupancy sensors.
 - System shall include server / central station with operating software, data network, and BACnet IP communication with other systems as described. System communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - 3. System server / central station shall provide programmable operation of lights connected via system relays and controlled with system devices. System software shall provide control of relays and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.
- B. Server / Central Control Station: Lighting control system manufacturer shall be responsible to assure coordination between system devices, network and control system server/ central station such that system performs as described. Server / central control station shall have a

minimum 80 GB hard drive, //2// //4// //8// GB RAM, 3 GHz speed minimum, three Ethernet ports, 1024 x 768 resolution graphic card, and 3 USB 2.0 ports. Server shall be provided with monitor, keyboard and mouse, and plugged into a receptacle connected to an equipment emergency circuit as a minimum.

- C. Cabinet: Steel with hinged, locking door. Barriers separate low-voltage and line-voltage components.
- D. Directory: Identifies each relay as to load controlled.
- E. System Power Supply: Transformer and full-wave rectifier with filtered dc output for panel, controllers and control devices. Feed from an equipment emergency circuit at a minimum.
- F. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125 volt AC for tungsten filaments and 20 A, 277 volt AC for electronic ballasts, 50,000 cycles at rated capacity.
- G. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and designed to operate on system network. Supplemental power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission.

//2.5 LIGHTING CONTROL SYSTEM - RELAY PANEL TYPE (STAND ALONE)

- A. System Description:
 - The lighting control system shall be with lighting relay panels. Lighting control devices connect to the relay panels and communicate via the panel controller. System includes all interfaces and wiring, relay panels, control modules, input modules, panel processors, relays, photocells, switches, dimmers, time clock, and occupancy sensors.
 - System shall include the capability of BACnet IP communication with other systems as described. System communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - 3. Panel Controller shall provide programmable operation of lights connected via system relays and controlled with system devices. System software shall provide control of relays and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.

- B. Panel Controller: Comply with UL 508; programmable, solid-state, astronomic 365-day control unit with non-volatile memory, mounted in preassembled relay panel with low-voltage-controlled, latching-type, single-pole lighting circuit relays. Controller shall be capable of receiving inputs from control devices and other sources. Where indicated, a limited number of digital or analog, low-voltage controlcircuit outputs shall be supported by control unit and circuit boards associated with relays.
- C. Cabinet: Steel with hinged, locking door. Barriers separate low-voltage and line-voltage components.
- D. Directory: Identifies each relay as to load controlled.
- E. System Power Supply: Transformer and full-wave rectifier with filtered dc output for panel, controllers and control devices. Feed from an equipment emergency circuit at a minimum.
- F. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125 volt AC for tungsten filaments and 20 A, 277 volt AC for electronic ballasts, 50,000 cycles at rated capacity.
- G. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and designed to operate on system network. Supplemental power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission.

//2.6 LIGHTING CONTROL SYSTEM - DISTIBUTIVE RELAY TYPE

- A. System Description:
 - 1. The lighting control system shall be a network of remote relay modules connected to a digital network via network hubs and controlled through a system server / central station. Lighting control devices connect to the relay modules and communicate via the digital network with the system server. System includes all associated network interfaces and wiring, hubs, relay modules, relays, photocells, switches, dimmers, time clock, and occupancy sensors. System shall utilize distributed relays modules, allowing these relay modules to be located above accessible ceilings in or adjacent to rooms they are controlling.
 - 2. System shall include server / central station with operating software, data network, and BACnet IP communication with other systems as described. System communication protocol shall be

compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- 3. System server / central station shall provide programmable operation of lights connected via system relays and controlled with system devices. System software shall provide control of relays and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.
- B. Server / Central Control Station: Lighting control system manufacturer shall be responsible to assure coordination between relay modules, network hubs and control system server/ central station such that system performs as described. Server / central control station shall have a minimum 80 GB hard drive, //2// //4// //8// GB RAM, 3 GHz speed minimum, three Ethernet ports, 1024 x 768 resolution graphic card, and 3 USB 2.0 ports. Server shall be provided with monitor, keyboard and mouse, and plugged into a receptacle connected to an equipment emergency circuit as a minimum.
- C. Network Hub: Network Hub shall contain processor and astronomic time clock for control and monitoring of lighting. Network Hub shall be fed from an equipment emergency circuit at a minimum.
- D. Relay Modules: Mounted in NEMA enclosure with physically separate 120/277 volt wiring compartment from low voltage control wiring. Provide low voltage digital communication to control devices as shown on drawings and schedules. Supplemental power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission. Dimmable relay modules shall be provided where indicated. Relay modules shall contain up to 4 relays. Relay modules shall be labeled with room number that relays control lighting within.
- E. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125 volt AC for tungsten filaments and 20 A, 277 volt AC for electronic ballasts, 50,000 cycles at rated capacity.
- F. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and designed to operate on system network. Supplemental

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission.

//2.7 LIGHTING CONTROL SYSTEML - CIRCUIT BREAKER PANEL TYPE

- A. Controller: Panelboard mounted in compliance with UL 916, programmable, solid-state, astronomic 365-day timing and control unit with non-volatile memory. Controller shall be integral to panelboard as specified in Section 26 24 16, PANELBOARDS. Controller shall be capable of receiving inputs from sensors and other sources, and capable of timed overrides and/or blink-warning on a per-circuit basis. Controller communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Panelboard shall use low-voltage-controlled, electrically operated molded-case branch circuit breakers or moldedcase branch circuit breakers with switching accessories. Circuit breakers and a limited number of digital or analog, low-voltage control-circuit outputs shall be individually controlled by control module. Panelboard shall also comply with Section 24 26 16, PANELBOARDS.
- B. Electrically Operated, Molded-Case Circuit-Breaker Panelboard: Per Section 26 24 16, PANELBOARDS.
- C. Electrically Operated, Molded-Case Circuit Breakers: Per Section 26 24 16, PANELBOARDS.
- D. Switching Endurance Ratings: Rated at least 20,000 open and close operations under rated load at 0.8 power factor.
- //2.8 LIGHTING CONTROL SYSTEM DIGITAL ADDRESSABLE LIGHTING INTERFACE (DALI)
 - A. System Description:
 - 1. The lighting control system shall consist of digital lighting control network connecting DALI compliant digital addressable ballasts, control modules and lighting control devices directly with a system server / central control station. Individually addressable electronic ballasts, control modules, and control devices are operated from signals received through DALI-compliant bus from variety of DALI compliant digital controllers and interfaces and programmed through the system server / central control station. System includes all associated network bus and wiring, DALI controllers and interfaces, panels, photocells, switches, dimmers, time clock, and occupancy sensors. System shall utilize DALI compliant ballast and dimming modules provided with light fixtures.

- 2. System shall include server / central station with DALI operating software, data network, and BACnet IP communication with other systems as described. System communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- 3. System server / central station shall provide programmable operation of lights connected via system bus and controlled with system devices. System software shall provide control of DALI ballast, control modules and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.
- B. Server / Central Control Station: Lighting control system manufacturer shall be responsible to assure coordination between relay modules, network hubs and control system server/ central station such that system performs as described. Server / central control station shall have a minimum 80 GB hard drive, //2// //4// //8// GB RAM, 3 GHz speed minimum, three Ethernet ports, 1024 x 768 resolution graphic card, and 3 USB 2.0 ports. Server shall be provided with monitor, keyboard and mouse, and plugged into a receptacle connected to an equipment emergency circuit as a minimum.
- C. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and be DALI compliant. Devices shall be designed to operate on system network. Supplemental DALI compliant signal repeaters and controllers shall be provided as required. This equipment shall be identified in shop drawing submission.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 foot candle turnon.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.

100% CONSTRUCTION DOCUMENTS

E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.

- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of Resident Engineer.

3.4 INSTRUCTION

A. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

SECTION 26 13 16

MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of medium-voltage fusible interrupter switches, indicated as switches in this section.

1.2 RELATED WORK

- //A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete
 equipment pads.//
 - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - C. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables and terminations.
 - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
 - E. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Switches shall be tested to assure that there are no electrical or mechanical defects. Tests shall be conducted as per UL and ANSI Standards. Factory tests shall be certified. The following tests shall be performed:
 - a. Verify that fuse sizes and types are in accordance with drawings and

Overcurrent Protective Device Coordination Study.

- b. Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
- c. Verify operation of mechanical interlocks.
- d. Verify correct operation of all indicating and control devices.
- e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
- f. Exercise all active components.
- g. Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Provide information such as complete electrical ratings, dimensions and approximate design weights, enclosure types, mounting details, materials, required clearances, cable terminations, fuse sizes and class, interrupting ratings, wiring diagrams, front, side and rear elevations, sectional views, safety features, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS 3. Certification: Two weeks prior to the final inspection, submit the following. a. Certification by the manufacturer that switches conform to the requirements of the drawings and specifications. b. Certification by the Contractor that switches have been properly installed, adjusted, and tested. **1.6 APPLICABLE PUBLICATIONS** A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American National Standards Institute (ANSI): C37.57-10.....Metal-Enclosed Interrupter Switchgear Assemblies - Conformance Testing C37.58-10.....Indoor AC Medium-Voltage Switches for Use in Metal-Enclosed Switchgear - Conformance Test Procedures C. International Code Council (ICC): IBC-15..... International Building Code D. Institute of Electrical and Electronics Engineers (IEEE): C37.20.3-13.....Metal-Enclosed Interrupter Switchgear (1kV -38kV) C37.22-97.....Preferred Ratings and Related Required Capabilities for Indoor AC Medium Voltage Switches Used in Metal-Enclosed Switchgear C37.47-11.....High Voltage (>1000V) Current-Limiting Type Distribution Class Fuses and Fuse Disconnecting Switches C37.48-10.....Guide for Application, Operation and Maintenance of High Voltage Fuses, Distribution Enclosed Single Pole Air Switches, Fuse Disconnecting Switches, and Accessories E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) PART 2 - PRODUCTS 2.1 MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES A. Shall be in accordance with ANSI, IEEE, NFPA, as shown on the drawings, and have the following features:

26 13 16 - 3

- 1. Deadfront air break, three-pole gang-operated, interrupter type.
- 2. Copper blades.
- 3. 600A deadbreak terminals.
- 4. Interphase barriers for the full length of each pole.
- 5. Protective shield to cover the cable connections on the line terminals.
- 6. Quick-make, quick-break, manual stored-energy type operation mechanism. The mechanism shall enable the switch to close against a fault equal to the momentary rating of the switch without affecting its continuous current carrying or load interrupting ability.
- 7. External manual operating handle with lock-open padlocking provisions.
- 8. When the switches are open, the fuses shall be de-energized.
- 9. Enclosures Rating: IP68
 - a. Doors:
 - Concealed or semi-concealed hinges shall be used to attach doors. Weld hinges to the enclosure and door.
 - 2) A separate door for the fuse section. A mechanical interlock shall prevent opening the door unless the switch blades are open, and prevent closing the switch if the door is open.
 - Three point door locking mechanism with suitable handles and padlocking provisions.
 - 4) Safety-glass window for viewing the switch blades.
 - 5) Door stops for the open position.
 - b. Finish:
 - All metal surfaces shall be thoroughly cleaned, phosphatized, primed and painted at the factory.
 - Final finish shall be enamel, lacquer or powder coating.
 Enamel and powder coatings shall be oven baked. Color shall be light gray.
- B. The minimum momentary current rating shall be 16kA.
- C. The minimum short-time 3-second current rating shall be 16kA.
- D. Provide full length ground bar.

2.3 NAMEPLATES AND MIMIC BUS

A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each switch. Nameplates shall indicate equipment served, spaces, or spares in accordance with one line diagram shown on

drawings. Nameplates shall be mounted with plated screws on front of switches.

B. Mimic Bus: Provide an approved mimic bus on front of each switch assembly. Color shall be black for the Normal Power system, either factory-painted plastic or metal strips. Plastic tape shall not be used. Use symbols similar to one line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Anchor switches with rustproof bolts, nuts, and washers not less than 13 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Exterior Location: Mount switches on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 15 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare switches nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.

- c. Confirm correct application of manufacturer's recommended lubricants.
- d. Vacuum-clean switch enclosure interior. Clean switch enclosure exterior.
- e. Verify appropriate anchorage and required area clearances.
- f. Verify appropriate equipment grounding.
- g. Verify correct blade alignment, blade penetration, travel stops, and mechanical operation.
- h. Verify that fuse sizes and types correspond to approved shop drawings.
- i. Inspect all field-installed bolted electrical connections, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization under load.
- j. Exercise all active components.
- k. Confirm correct operation of mechanical interlocks.
- 1. Inspect all indicating devices for correct operation.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that switches are in good operating condition, and properly performing the intended function.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one (1) set of spare fuses for each switch installed on this project.

3.5 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION

- A. At final inspection, an as-built one line diagram shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
- B. Furnish a written sequence of operation for the switchgear and connected line side/load side electrical distribution equipment. The sequence of operation shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
- C. Deliver an additional four copies of the as-built one line diagram and sequence of operation.

3.6 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4 hour periods for instructing personnel in the operation and maintenance of the switches and related equipment on the dates requested by the Resident Engineer.

---END---

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 25 10 10, ADVANCED UTILITY METERING: Requirements for electrical metering.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- H. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.
- I. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit

breakers, wiring and connection diagrams, accessories, and nameplate data.

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-14....Enclosures for Electrical Equipment (1,000V

Maximum)

D. National Fire Protection Association (NFPA):

```
70-17.....Code (NEC)
```

70E-18..... Standard for Electrical Safety in the Workplace

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS E. Underwriters Laboratories, Inc. (UL): 50-15.....Enclosures for Electrical Equipment 67-09.....Panelboards 489-16.....Panelboards Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

- 1. Hinged "door-in-door" type.
- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY

- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
 - 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Resident Engineer. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.

F. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 24 19 MOTOR CONTROL CENTERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the motor control centers.

1.2 RELATED WORK

- //A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete
 equipment pads.//
- //B. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirement for seismic restraint for nonstructural components.//
- //C. Section 25 10 10, ADVANCED UTILITY METERING: Electricity meters
 installed in motor control centers.//
 - D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
 - F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
 - G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY. Short circuit and coordination study, and requirements for a coordinated electrical system.
 - H. Section 26 29 11, MOTOR CONTROLLERS: Control and protection of motors.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Prior to fabrication of motor control centers, submit the following data for approval:

100% CONSTRUCTION DOCUMENTS

- Single line diagram showing each bus, instrument and control power transformer, relay, motor starter, circuit breaker, fuse, motor circuit protector, overload, and other components.
- 2) Control wiring diagram for each motor starter.
- 3) Complete electrical ratings for all components.
- 4) Interrupting ratings.
- 5) Safety features.
- 6) Accessories and nameplate data.
- 7) Dimensioned exterior views of the motor control centers.
- 8) Dimensioned section views of the motor control centers.
- 9) Floor plan of the motor control centers.
- 10) Approximate design weights.
- //c. Certification from the manufacturer that a representative motor control center has been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.//
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Schematic control diagrams, with all terminals identified, matching terminal identification in the motor control centers.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended periodic maintenance procedures and their frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools, and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Test Reports:
 - a. Two weeks prior to the final inspection, submit certified field test reports and data sheets to the //Resident Engineer// //COTR//.
- Certifications: Two weeks prior to final inspection, submit the following.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE a. Certification by the manufact

100% CONSTRUCTION DOCUMENTS

- a. Certification by the manufacturer that the motor control centers conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the motor control centers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-15..... International Building Code

C. National Electrical Manufacturers Association (NEMA):

ICS 1-00(R2015).....Industrial Control and Systems: General Requirements

ICS 2-00(R2005).....Industrial Control and Systems: Controllers,

- Contactors and Overhead Relays Rated 600 volts
- ICS 6-93(R2016).....Industrial Control and Systems: Enclosures
- FU 1-12.....Low-Voltage Cartridge Fuses

250-14.....Enclosures for Electrical Equipment (1000 Volts Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL): 845-05......Motor Control Centers

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Motor control centers shall comply with NFPA, NEMA, UL, and as shown on drawings.
- B. Motor control centers shall be complete, free-standing, floor-mounted, dead-front, and metal-enclosed.
- C. Ratings shall be not less than shown on drawings. Interrupting ratings shall be not less than the maximum short circuit currents available at the motor control center location, as shown on drawings // or as calculated as specified in Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY//.
- D. Enclosure shall be NEMA-type rated 1, 3R, or 12 as indicated on drawings or as required per the installed environment.

- E. Motor control centers shall conform to the arrangements and details of drawings and to the spaces designated for installation.
- F. Wiring: The motor control centers shall be NEMA Standard, Class 1, Type B.
- G. Finish:
 - 1. All metal surfaces shall be thoroughly cleaned, phosphatized and factory primed prior to applying baked enamel or lacquer finish.
- //2. Provide a light gray finish for indoor motor control centers.//
- //3. Outdoor motor control centers:
 - a. Finish shall be light gray.
 - b. The underside of the motor control centers shall be treated with corrosion resistant compounds, epoxy resin, or rubberized sealing compound.//
- H. All steel parts shall be factory-phosphatized, painted with primer, and baked enamel or lacquer finishes, except for ground connections. I. Vertical Sections:
 - 1. Approximately 2-1/4 M (90 inches) high.
 - Shall be designed to permit connection of future additional vertical sections, and installation of future motor controller units in available space in each vertical section.
 - Spaces within the vertical sections shall be suitable and adequately sized for motor controller units and accessories as indicated on drawings.
 - 4. End panels shall be removable to facilitate future additions.
 - 5. All vertical section parts shall be accessible from the front for maintenance rearrangement.
 - 6. Screws in the removable panels shall remain in the panels when the panels are removed. Self-aligning, self-retaining nuts, which are parts of the screw assembly, shall remain intact.
 - 7. Each vertical section shall have a minimum 300 mm (12 inches) high horizontal wireway at the top, section and a minimum 150 mm (6 inches) high horizontal wireway at the bottom.
 - Each vertical section shall have minimum 100 mm (4 inches) wide vertical full height wireways. Vertical wireways shall connect with both the top and bottom horizontal wireways.
 - 9. Each vertical section for motor controller units shall be equipped with all necessary hardware and busing for the units to be added or

2.2 BUS BARS AND INTERCONNECTIONS

- A. Horizontal and vertical bus ratings shall be as shown on drawings. Horizontal bus bars shall be fully rated for the entire length of the motor control centers.
- B. Bus bars shall be tin-plated copper.
- C. All bolts, nuts, and washers shall be //zinc-plated//cadmium-plated// steel, torqued to the values recommended by the manufacturer.
- D. A ground bus shall extend across the entire length of the motor control centers.
- E. Bus bars and interconnections shall include provisions to extend the motor control center horizontal bus into additional future vertical sections.
- F. Provide shutter mechanism to isolate vertical bus when the motor controller unit is withdrawn.

2.3 MOTOR CONTROLLERS

- A. Product of the same manufacturer as the motor control centers.
- B. Shall conform to the applicable requirements in Section 26 29 11, MOTOR CONTROLLERS.
- C. Plug-in, draw-out type up through NEMA size 4. NEMA size 5 and above require bolted connections.
- D. Doors for each space shall be interlocked to prevent their opening unless disconnect is open. A "defeater" mechanism shall be incorporated for inspection by qualified personnel.

2.4 FEEDER UNITS

- A. Circuit breaker: shall conform to the applicable portions of Section 26 24 16, PANELBOARDS.
- B. Fusible Switches: shall conform to the applicable portions of Section26 29 21, ENCLOSED SWITCHES AND CIRCUIT BREAKERS.

//2.5 METERS

A. Meters shall be provided as shown on the plans. Meters shall be in accordance with Section 25 10 10, ADVANCED UTILITY METERING.//

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install motor control centers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.

100% CONSTRUCTION DOCUMENTS

- B. Anchor motor control centers with rustproof bolts, nuts, and washers not less than 13 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- //C. In seismic areas, motor control centers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.//
 - D. Exterior Location. Mount motor control centers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 15 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete.
 - E. Interior Location. Mount motor control centers on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 15 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.

- c. Verify appropriate anchorage and required area clearances.
- d. Verify that circuit breaker, fuse, motor circuit protector, and motor controller sizes and types correspond to approved shop drawings.
- e. Use calibrated torque-wrench method to verify the tightness of accessible bolted electrical connections, or perform a thermographic survey after energization.
- f. Vacuum-clean motor control center enclosure interior. Clean motor control center enclosure exterior.
- g. Inspect insulators for evidence of physical damage or contaminated surfaces.
- h. Exercise all active components.
- i. Verify the correct operation of all indicating devices.
- j. If applicable, inspect control power transformers.
- 2. Electrical Tests:
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform insulation-resistance test on control wiring. Do not perform this test on wiring connected to electronic components.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the motor control centers are in good operating condition and properly performing the intended function.

3.4 TRAINING

A. Furnish the services of a competent, factory-trained engineer or technician for a 2-hour period to instruct VA personnel in operation and maintenance of the equipment, including review of the operation and maintenance manual, on a date requested by the //Resident Engineer// //COTR//.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015).....General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
 - 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16.....Surface Metal Raceways and Fittings
 - 20-10.....General-Use Snap Switches
 - 231-16.....Power Outlets
 - 467-13.....Grounding and Bonding Equipment
 - 498-17.....Attachment Plugs and Receptacles
 - 943-16.....Ground-Fault Circuit-Interrupters
 - 1449-14.....Surge Protective Devices

1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

100% CONSTRUCTION DOCUMENTS

- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be //ivory// // // in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be //gray// // // in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.

100% CONSTRUCTION DOCUMENTS

- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.
 - 1. Bodies shall be //brown// // // nylon.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.
- F. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - TVSS Components: Multiple metal-oxide variators; with a nominal clamp-level rating of 400 Volts, and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.
- G. Cable Reel Receptacles:
 - Reel shall have a heavy-duty spring motor, with self-contained rewind power and non-sparking ratchet assembly, a 4-way roller and adjustable cable stop, and a safety chain. Reel shall lock when desired cable has been payed out and unlock and retract when cable is pulled to release lock.
 - 2. Reel shall be provided with minimum 40 foot [12m] cable rated for //20// //30// //50// // // amperes with required phase conductors, neutral, and equipment grounding conductor. Provide device with //NEMA configuration as shown// //two NEMA 5-20R GFCI receptacles//.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be //ivory// // // in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with //fluorescent electronic dimming ballasts and approved by the ballast manufacturer// //LED dimming driver and be approved by the driver manufacturer//, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be //ivory// // // in color unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type // 302 stainless steel // or // smooth nylon //. Oversize plates are not acceptable.
- //B. Color shall be ivory unless otherwise specified.//
 - C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
 - D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
 - E. Duplex Receptacles on Emergency Circuit: // Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.// // Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.//

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - 2. Receptacles shall be duplex, //hospital grade// // //. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.

100% CONSTRUCTION DOCUMENTS

- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload

relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-14.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-12....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus

```
CONSTRUCT AIR HANDLING TOWER
                                                               636 - 18 - 303
NWI HEALTHCARE SYSTEM
                                                                 05 - 28 - 21
OMAHA, NE
                                               100% CONSTRUCTION DOCUMENTS
  C. International Code Council (ICC):
     IBC-15..... International Building Code
  D. National Electrical Manufacturers Association (NEMA):
     ICS 1-00(R2015).....Industrial Control and Systems: General
                           Requirements
     ICS 1.1-84(R2015).....Safety Guidelines for the Application,
                           Installation and Maintenance of Solid State
                           Control
     ICS 2-00(R2005).....Industrial Control and Systems Controllers,
                           Contactors, and Overload Relays Rated 600 Volts
     ICS 4-15.....Industrial Control and Systems: Terminal Blocks
     ICS 6-93(R2016).....Industrial Control and Systems: Enclosures
     ICS 7-14.....Industrial Control and Systems: Adjustable-
                           Speed Drives
     ICS 7.1-14.....Safety Standards for Construction and Guide for
                           Selection, Installation, and Operation of
                           Adjustable-Speed Drive Systems
  E. National Fire Protection Association (NFPA):
     70-17.....National Electrical Code (NEC)
  F. Underwriters Laboratories Inc. (UL):
     508A-13..... Industrial Control Panels
     508C-16.....Power Conversion Equipment
     1449-14..... Surge Protective Devices
```

- PART 2 PRODUCTS
- 2.1 MOTOR CONTROLLERS
 - A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
 - B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
 - C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with fused switch disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
 - 1. Fused Switches:
 - a. Quick-make, quick-break type.

- b. Minimum duty rating shall be NEMA classification General Duty
 (GD) for 240 Volts and NEMA classification Heavy Duty (HD) for 480 Volts.
- c. Horsepower rated, and shall have the following features:
 - 1) Copper blades, visible in the OFF position.
 - 2) An arc chute for each pole.
 - Fuse holders for the sizes and types of fuses specified or as shown on the drawings.
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermal type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.

- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - Units shall include thermal overload relays, on-off operator, red pilot light, normally open auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)(VFD)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design

incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.

- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 1000 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +90°FMinimum -10°F
 - 3. Relative Humidity: 95%
 - 4. VSMC Location: heated
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.

- b. Single phasing.
- c. Overvoltage in excess of 10 percent.
- d. Undervoltage in excess of 15 percent.
- e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
- f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
- g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- 9. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - Typical monitoring functions shall include but not be limited to:
 a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:

- a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
- b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - 1. Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify Resident Engineer before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained

technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the Resident Engineer.

---END---

SECTION 26 29 21

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

- 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-12.....Low Voltage Cartridge Fuses

KS 1-13..... Heavy Duty Enclosed and Dead-Front Switches

(600 Volts Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

98-16..... Enclosed and Dead-Front Switches

248 1-11....Low Voltage Fuses

489-13......Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Feeders: //Class L, fast acting// //Class L, time delay// //Class RK1, fast acting// //Class RK1, time delay// //Class RK5, fast acting// //Class RK5, time delay// //Class J, fast acting// //Class J, time delay//.
- C. Motor Branch Circuits: //Class RK1// //Class RK5//, time delay.
- D. Other Branch Circuits: //Class RK1, time delay// //Class RK5, time delay// //Class J, fast acting// //Class J, time delay//.
- E. Control Circuits: Class CC, //fast acting// //time delay//.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer.

---END---

SECTION 26 41 00 FACILITY LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing and installation of a complete UL master labeled lightning protection system.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Penetrations through the roof.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground faults.
- D. Section 26 42 00 CATHODIC PROTECTION: Requirements for protection of buried ferrous equipment from galvanic corrosion.
- E. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective device installed at the electrical service entrance.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Show locations of air terminals, connections to required metal surfaces, down conductors, and grounding means.
 - c. Show the mounting hardware and materials used to attach air terminals and conductors to the structure.

- 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the lightning protection system conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the lightning protection system has been properly installed and inspected.
 - c. Certification that the lightning protection system has been inspected by a UL representative and has been approved by UL without variation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA):

70-17.....Code (NEC)

780-17.....Standard for the Installation of Lightning Protection Systems

C. Underwriters Laboratories, Inc. (UL): 96-16.........Lightning Protection Components 96A-16......Installation Requirements for Lightning Protection Systems

467-13..... Standard for Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Lightning protection components shall conform to NFPA 780 and UL 96, for use on //Class I// //Class II//structures. Aluminum materials are not allowed.
 - 1. //Class I// //Class II//conductors: Copper.
 - 2. Class I air terminals: Solid copper, //460 mm (18 inches) // long, not less than 9.5 mm (3/8 inch) diameter, with sharp //bare copper// //nickel-plated// points.
- //3. Class II air terminals: Solid copper, //460 mm (18 inches)// long, not less than 12.7 mm (1/2 inch) diameter, with sharp //bare copper// //nickel-plated// points.//
 - 4. Ground rods: //Copper-clad steel// //Steel// //Stainless steel//, 0.75 in (19 mm) diameter by 3 m (10 feet) long.

100% CONSTRUCTION DOCUMENTS

- 5. Ground plates: Solid copper, not less than 20 gauge.
- 6. Bonding plates: Bronze, 50 square cm (8 square inches).
- 7. Through roof connectors: Solid copper riser bar, length and type as required to accommodate roof structure and flashing requirements.
- 8. Down conductor guards: Stiff copper or brass.
- 9. Anchors and fasteners: Bronze bolt and clamp type shall be used for all applications except for membrane roof. Adhesive type are allowed only for attachment to membrane roof materials, using adhesive that is compatible with the membrane material.
- 10. Connectors: Bronze clamp-type connectors shall be used for roof conductor splices, and the connection of the roof conductor to air terminals and bonding plates. Crimp-type connectors are not allowed.
- 11. Exothermic welds: Exothermic welds shall be used for splicing the roof conductor to the down conductors, splices of the down conductors, and for connection of the down conductors to ground rods, ground plates, and the ground ring.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Coordinate installation with the roofing manufacturer and roofing installer.
- C. Install the conductors as inconspicuously as practical.
- D. Install the down conductors within the concealed cavity of exterior walls where practical. Run the down conductors to the exterior at elevations below the finished grade.
- E. Where down conductors are subject to damage or are accessible near grade, protect with down conductor guards to 2.4 m (8 feet) above grade. Bond down conductors guards to down conductor at both ends.
- F. Make connections of dissimilar metal with bimetallic type fittings to prevent electrolytic action.
- G. Install ground rods and ground plates not less than 600 mm (2 feet) deep and a distance not less than 900 mm (3 feet) nor more than 2.5 m (8 feet) from the nearest point of the structure. Exothermically weld the down conductors to ground rods and ground plates in the presence of the //Resident Engineer// //COR//.
- H. Bond down conductors to metal main water piping where applicable.

- I. Bond down conductors to building structural steel.
- J. Connect roof conductors to all metallic projections and equipment above the roof as indicated on the drawings.
- K. Connect exterior metal surfaces, located within 900 mm (3 feet) of the conductors, to the conductors to prevent flashovers.
- L. Maintain horizontal or downward coursing of main conductor and insure that all bends have at least an 200 mm (8 inches) radius and do not exceed 90 degrees.
- M. Conductors shall be rigidly fastened every 900 mm (3 feet) along the roof and down to the building to ground.
- N. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure.
- O. Install air terminal bases, cable holders and other roof-system supporting means without piercing membrane or metal roofs.
- P. Use through-roof connectors for penetration of the roof system. Flashing shall be provided by roofing contractor in accordance with Section 07 60 00, FLASHING AND SHEET METAL.
- Q. Down conductors coursed on or in reinforced concrete columns or on structural steel columns shall be connected to the reinforcing steel or the structural steel member at its upper and lower extremities. In the case of long vertical members an additional connection shall be made at intervals not exceeding 30 M (100 feet).
- R. A counterpoise or ground ring, where shown, shall be of No. 1/0 copper cable having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 600 mm (2 feet) deep at a distance not less than 900 mm (3 feet) nor more than 2.5 M (8 feet) from the nearest point of the structure.
- S. On construction utilizing post tensioning systems to secure precast concrete sections, the post tension rods shall not be used as a path for lightning to ground.
- T. Where shown, use the structural steel framework or reinforcing steel as the down conductor.
 - Weld or bond the non-electrically-continuous sections together and make them electrically continuous.
 - Verify the electrical continuity by measuring the ground resistances to earth at the ground level, at the top of the building or stack,

and at intermediate points with a sensitive ohmmeter. Compare the resistance readings.

- Connect the air terminals together with an exterior conductor connected to the structural steel framework at not more than 18 M (60 feet) intervals.
- Install ground connections to earth at not more than 18 M (60 feet) intervals around the perimeter of the building.
- 5. Weld or braze bonding plates to cleaned sections of the steel and connect the conductors to the plates.
- 6. Do not pierce the structural steel in any manner. Connections to the structural steel shall conform to UL 96A.
- //U. For obstruction lights, the following additional requirements shall
 apply:
 - 1. Extend air terminals 300 mm (1 foot) above the top of the light fixtures and securely clamp to the light fixture supports.
 - 2. Install 600 volt class lightning arresters. Connect the arresters to the lightning circuit conductors at suitable locations, and ground and bond them to the lightning protection system.//
- //V. Where the drawings show the new lightning protection system connected to an existing lightning protection system with or without a UL master label, the new portion of the lightning protection system requires UL inspection and a Letter of Findings.//

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Test the ground resistance to earth by standard methods, and conform to the ground resistance requirements specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. A UL representative shall inspect the lightning protection system. Obtain and install a UL numbered master label for each of the lightning protection systems at the location directed by the UL representative and the //Resident Engineer// //COR//.

---END---

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: For factory-installed or external SPD.
- C. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: For factory-installed or external SPD.
- D. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.
- E. Section 26 26 00, POWER DISTRIBUTION UNITS FOR STATIC UNINTERRUPTIBLE POWER SYSTEMS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

100% CONSTRUCTION DOCUMENTS

- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the SPD has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits

IEEE C62.45-08.....Surge Testing for Equipment Connected to Low-

Voltage (1000 V and Less) AC Power Circuits

C. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (UL):
 - UL 1283-15..... Electromagnetic Interference Filters
 - UL 1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 SWITCHGEAR/SWITCHBOARD SPD

- A. General Requirements:
 - 1. Comply with IEEE and UL.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.

10. Four-digit transient-event counter.

B. Surge Current per Phase: Minimum 240kA per phase.

2.2 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

2.3 ENCLOSURES

A. Enclosures: NEMA //1// //3R//.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Switchgear, switchboard, or panelboard manufacturer shall install SPD at the factory.
- C. Field-installed SPD: Contractor shall install SPD with conductors or buses between SPD and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - Provide a circuit breaker as a dedicated disconnecting means for TVSS as shown on drawings.
- D. Do not perform insulation resistance tests on switchgear, switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the //Resident Engineer// //COR//.

`---END---

SECTION 26 51 00

INTERIOR LIGHTING PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Danel Gailings

```
in Panel Ceilings
```

- C. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21100% CONSTRUCTION DOCUMENTS OMAHA, NE E. Illuminating Engineering Society of North America (IESNA): LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-15..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995).....Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15..... International Building Code H. National Electrical Manufacturer's Association (NEMA): C78.376-14.....Chromaticity of Fluorescent Lamps C82.1-04(R2015).....Lamp Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02(R2016).....Method of Measurement of Fluorescent Lamp Ballasts C82.4-17.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-17..... Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL 9-11.....Dimming of T8 Fluorescent Lighting Systems SSL 1-16..... Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18.....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17....Lamp holders 542-05..... Fluorescent Lamp Starters 844-12..... (Classified) Locations 924-16..... Emergency Lighting and Power Equipment 935-01.....Bluorescent-Lamp Ballasts 1029-94......High-Intensity-Discharge Lamp Ballasts

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS 1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts 1598-08.....Luminaires

1574-04.....Track Lighting Systems
2108-15....Low-Voltage Lighting Systems
8750-15...Light Emitting Diode (LED) Light Sources for

Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- D. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.

- Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- E. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- F. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.

2.2 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch.
 - 1. Enclosure: Shall be impact-resistant thermoplastic. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - Lamps: Shall be LED, rated not less than //12// // // watts at the specified DC voltage.
 - Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be minimum of 10 years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.
 - Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.3 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of
 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high

letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.

- 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.4 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20 $^{\circ}$ C. (-4 $^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:

- 1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
- 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when

designed for the purpose, be supported directly from the outlet box when all the following conditions are met.

- 1) Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
- 2) The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
- The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 5. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 6. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- F. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- H. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or

fingerprints during construction.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for exterior light poles and luminaires.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
 (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.
- H. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details include information on housing and optics system.

- c. Physical dimensions and description.
- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- j. Submit site plan showing all exterior lighting fixtures with fixture tags consistent with Lighting Fixture Schedule as shown on drawings. Site plan shall show computer generated point-bypoint illumination calculations. Include lamp lumen and light loss factors used in calculations.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO):

LRFDLTS-17.....Structural Supports for Highway Signs, Luminaires and Traffic Signals

C. American Concrete Institute (ACI):

CONSTRUCT AIR HANDLING TOWER 636 - 18 - 303NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS 318-14Building Code Requirements for Structural Concrete D. American National Standards Institute (ANSI): H35.1/H35 1M-17.....American National Standard Alloy and Temper Designation Systems for Aluminum E. American Society for Testing and Materials (ASTM): A123/A123M-17Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A153/A153M-16.....Zinc Coating (Hot-Dip) on Iron and Steel Hardware B108/B108M-15Aluminum-Alloy Permanent Mold Castings C1089-13Spun Cast Prestressed Concrete Poles F. Federal Aviation Administration (FAA): AC 70/7460-IL-15.....Obstruction Lighting and Marking AC 150/5345-43H-16.....Obstruction Lighting Equipment G. Illuminating Engineering Society of North America (IESNA): HB-9-00.....Lighting Handbook RP-8-14.....Roadway Lighting LM-52-03.....Photometric Measurements of Roadway Sign Installations LM-72-97(R2010).....Directional Positioning of Photometric Data LM-79-08..... Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products LM-80-15..... Approved Method for Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules TM-15-11..... for Outdoor Luminaires H. National Electrical Manufacturers Association (NEMA): C78.41-16.....Electric Lamps - Guidelines for Low-Pressure Sodium Lamps C78.42-09(R2016)Electric Lamps - Guidelines for High-Pressure Sodium Lamps C78.43-13Electric Lamps - Single-Ended Metal-Halide Lamps C78.1381-98......Electric Lamps - 70-Watt M85 Double-Ended Metal-Halide Lamps

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE C81.61-17Electrical Lamp Bases - Specifications for Bases (Caps) for Electric Lamps C82.4-17Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps (Multiple-Supply Type) C136.3-14For Roadway and Area Lighting Equipment -Luminaire Attachments C136.17-05(R2010)(S2017) Roadway and Area Lighting Equipment -Enclosed Side-Mounted Luminaires for Horizontal-Burning High-Intensity-Discharge Lamps - Mechanical Interchangeability of Refractors ICS 2-00(R2005)Controllers, Contactors and Overload Relays Rated 600 Volts ICS 6-93(R2016)Enclosures I. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) 101-18.....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 773-16.....Plug-In, Locking Type Photocontrols for Use with Area Lighting 773A-16 Nonindustrial Photoelectric Switches for Lighting Control 1598-08Luminaires 8750-15..... Eight Emitting Diode (LED) Equipment for Use in Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 305 mm (12 inches) above ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 POLES

A. General:

100% CONSTRUCTION DOCUMENTS

- 1. Poles shall be as shown on the drawings, and as specified. Finish shall be as specified on the drawings.
- 2. The pole and arm assembly shall be designed for wind loading of //161 km/hr (100 mph)// // // minimum, as required by wind loading conditions at project site, with an additional 30% gust factor and supporting luminaire(s) and accessories such as shields, banner arms, and banners that have the effective projected areas indicated. The effective projected area of the pole shall be applied at the height of the pole base, as shown on the drawings.
- 3. Poles shall be //embedded// //anchor-bolt// type designed for use with underground supply conductors. Poles shall have handhole having a minimum clear opening of 65 x 125 mm (2.5 x 5 inches). Handhole covers shall be secured by stainless steel captive screws.
- 4. Provide a steel-grounding stud opposite handhole openings, designed to prevent electrolysis when used with copper wire.
- 5. Provide a base cover that matches the pole in material and color to conceal the mounting hardware pole-base welds and anchor bolts.
- 6. Hardware and Accessories: All necessary hardware and specified accessories shall be the product of the pole manufacturer.
- Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Types:
 - //1. Aluminum: Provide //round// //square// aluminum poles manufactured of corrosion-resistant AA AAH35.1 aluminum alloys conforming to AASHTO LTS-4. Poles shall be seamless extruded or spun seamless type. //
 - //2. Steel: Provide //round// //square// steel poles having minimum 11gauge steel with minimum yield/strength of 48,000 psi and// hotdipped galvanized// //iron-oxide primed// factory finish.
 //Galvanized steel poles shall comply with ASTM A123 and A153.// //
 - //3. Concrete: Provide //round// //square// //multi-sided// concrete
 poles conforming to ASTM C1089 with integral cast bases. Poles
 shall have hollow core suitable as a raceway.//

2.3 FOUNDATIONS FOR POLES

A. Foundations shall be cast-in-place concrete, having 3000 psi minimum 28-day compressive strength.

- B. Foundations shall support the effective projected area of the specified pole, arm(s), luminaire(s), and accessories, such as shields, banner arms, and banners, under wind conditions previously specified in this section.
- C. Place concrete in spirally-wrapped treated paper forms for round foundations, and construct forms for square foundations.
- D. Rub-finish and round all above-grade concrete edges to approximately 6 mm (0.25-inch) radius.
- E. Anchor bolt assemblies and reinforcing of concrete foundations shall be as shown on the drawings. Anchor bolts shall be in a welded cage or properly positioned by the tiewire to stirrups.
- F. Prior to concrete pour, install electrode per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and ballast heat, and safe cleaning and relamping.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Pre-wire internal components to terminal strips at the factory.
- F. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.
- G. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.
- H. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- I. Luminaires shall carry factory labels, showing complete, specific lamp and ballast information.

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

2.5 LAMPS

- A. LED sources shall meet the following requirements:
 - Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): 4000K.
 - 3. Color Rendering Index (CRI): \geq 85.
 - 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES) LM79 for photometric performance and LM80 for lumen maintenance and L70 life.
 - B. Mercury vapor lamps shall not be used.

2.6 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (±10%) volt.
 - 4. Power Supplies: Class I or II output.
 - 5. Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: 6kV/1.2 x 50 μs, 10kA/8 x 20 μs) waveforms at 1minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
 - 6. Power Factor (PF): \geq 0.90.
 - 7. Total Harmonic Distortion (THD): \leq 20%.
 - 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
 - 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

2.7 EXISTING LIGHTING SYSTEMS

- A. For modifications or additions to existing lighting systems, the new components shall be compatible with the existing systems.
- B. New poles and luminaires shall have approximately the same configurations, dimensions, lamping and reflector type as the existing poles and luminaires, except where otherwise shown on the drawings.

//2.8 OBSTRUCTION LIGHTING

- A. Refer to Section 26 09 23, LIGHTING CONTROLS for control devices.
- B. For Buildings:
 - Incandescent type luminaires shall comply with FAA, AC 70/7460-1K, and AC 150/5345-53, and be Type L-810 duplex units with red Fresnel

lenses and steady burning 100 W, type A-21, clear, traffic-signal lamps in each unit.

- LED type luminaires shall comply with FAA, AC 70/7460-1K, and AC 150/5345-53, and be Type L-810 duplex units with red steady burning light from and LED light source with minimum 50,000 hour lamp life and employing Night Vision Goggles (NVG) friendly technology.
- 3. Mount the luminaires on galvanized rigid steel pipe masts attached to the roof of the buildings so the luminaires extend 305 mm (12 inches) above the level of the highest item on the building, including items attached to the roof.
- 4. Locate luminaires in accordance with the applicable FAA Standards.
- C. For Smoke Stacks: Luminaires shall be in accordance with the referenced details shown on the drawings. All lamps shall be the type shown on the drawings.
- D. For Water Tanks and Cooling Towers: Luminaires shall be FAA, AC 70/7460-1K, and AC 150/5345-53, Type L-810 duplex units with incandescent or LED light source.//

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- B. Pole Foundations:
 - Excavate only as necessary to provide sufficient working clearance for installation of forms and proper use of tamper to the full depth of the excavation. Prevent surface water from flowing into the excavation. Thoroughly compact backfill with compacting arranged to prevent pressure between conductor, jacket, or sheath, and the end of conduit.
 - 2. Set anchor bolts according to anchor-bolt templates furnished by the pole manufacturer.
 - 3. Install poles as necessary to provide a permanent vertical position with the bracket arm in proper position for luminaire location.
 - 4. After the poles have been installed, shimmed, and plumbed, grout the spaces between the pole bases and the concrete base with non-shrink concrete grout material. Provide a plastic or copper tube, of not less than 9 mm (0.375-inch) inside diameter through the grout, tight to the top of the concrete base to prevent moisture weeping from the interior of the pole.

- C. Install lamps in each luminaire.
- D. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

A. Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

A. Verify operation after installing luminaires and energizing circuits.

//3.4 WATER TANKS AND COOLING TOWERS

A. Mount the luminaires at the extreme top of tank and tower as shown on drawings.//

- - - E N D - - -

SECTION 27 05 11

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

А	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD

100% CONSTRUCTION DOCUMENTS

CBOPC	Community Based Out Patient Clinic	
CBC	Coupled Bonding Conductor	
CBOC	Community Based Out Patient Clinic (refer to CBOPC,	
CLOC	OPC, VAMC)	
CCS	TIP's Cross Connection System (refer to VCCS and	
	HCCS)	
CFE	Contractor Furnished Equipment	
CFM	US Department of Veterans Affairs Office of	
	Construction and Facilities Management	
CFR	Consolidated Federal Regulations	
CIO Communication Information Officer (Facility, V		
	Region)	
CM	Centimeters	
CO	Central Office	
COR	Contracting Officer Representative	
CPU	Central Processing Unit	
CSU	Customer Service Unit	
CUP	Conditional Use Permit(s) - Federal/GSA for VA	
dB	Decibel	
dBm	Decibel Measured	
dBmV	Decibel per milli-Volt	
DC	Direct Current	
DEA	United States Drug Enforcement Administration	
DSU	Data Service Unit	
EBC	Equipment Bonding Conductor	
ECC	Engineering Control Center (refer to DCR, EMCR)	
EDGE	Enhanced Data (Rates) for GSM Evolution	
EDM	Electrical Design Manual	
EMCR	Emergency Management Control Room (refer to DCR, ECC)	
EMI	Electromagnetic Interference (refer to RFI)	
EMS	Emergency Medical Service	
EMT	Electrical Metallic Tubing or thin wall conduit	

NE	100% CONSTRUCTION DOCUMEN	
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,	
	LEC)	
EPBX	Electronic Digital Private Branch Exchange	
ESR	Vendor's Engineering Service Report	
FA	Fire Alarm	
FAR	Federal Acquisition Regulations in Chapter 1 of Title	
	48 of Code of Federal Regulations	
FMS	VA's Headquarters or Medical Center Facility's	
	Management Service	
FR	Frequency (refer to RF)	
FTS	Federal Telephone Service	
GFE	Government Furnished Equipment	
GPS	Global Positioning System	
GRC	Galvanized Rigid Metal Conduit	
GSM	Global System (Station) for Mobile	
HCCS	TIP's Horizontal Cross Connection System (refer to	
	CCS & VCCS)	
HDPE	High Density Polyethylene Conduit	
HDTV	Advanced Television Standards Committee High-	
	Definition Digital Television	
HEC	Head End Cabinets(refer to HEIC, PA)	
HEIC	Head End Interface Cabinets(refer to HEC, PA)	
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)	
HSPA	High Speed Packet Access	
HZ	Hertz	
IBT	Intersystem Bonding Termination (NEC 250.94)	
IC	Intercom	
ICRA	Infectious Control Risk Assessment	
IDEN	Integrated Digital Enhanced Network	
IDC	Insulation Displacement Contact	
IDF	Intermediate Distribution Frame	
ILSM	Interim Life Safety Measures	

Rigid Intermediate Steel Conduit	
Department of Veterans Affairs Office of Information	
Resources Management	
Integrated Services Digital Network	
Industrial, Scientific, Medical	
Intra-Building Wireless System	
Local Area Network	
Location Based Services, Leased Based Systems	
Local Exchange Carrier (refer to DEMARC, PBX & POTS)	
Light Emitting Diode	
Land Mobile Radio	
Long Term Evolution, or 4G Standard for Wireless Data	
Communications Technology	
Meter	
Medical Administration Service	
Master Antenna Television	
Main Computer Room	
Main Computer Operators Room	
Main Distribution Frame	
Manholes or Maintenance Holes	
Megaherts (10 ⁶ Hz)	
Millimeter	
Memorandum of Understanding	
Microwave (RF Band, Equipment or Services)	
Network Interface Device (refer to DEMARC)	
National Electric Code	
Network Operations Room	
OSHA Nationally Recognized Testing Laboratory	
Nurse Stations	
U.S. Department of Commerce National	
Telecommunications and Information Administration	
Original Equipment Manufacturer	

NE	100% CONSTRUCTION DOCUMEN	
OI&T	Office of Information and Technology	
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)	
OSH	Department of Veterans Affairs Office of Occupational	
	Safety and Health	
OSHA	United States Department of Labor Occupational Safet	
	and Health Administration	
OTDR	Optical Time-Domain Reflectometer	
PA	Public Address System (refer to HE, HEIC, RPEC)	
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)	
PCR	Police Control Room (refer to SPCC, could be	
	designated SCC)	
PCS	Personal Communications Service (refer to UPCS)	
PE	Professional Engineer	
PM	Project Manager	
PoE	Power over Ethernet	
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,	
	PBX)	
PSTN	Public Switched Telephone Network	
PSRAS	Public Safety Radio Amplification Systems	
PTS	Pay Telephone Station	
PVC	Poly-Vinyl Chloride	
PWR	Power (in Watts)	
RAN	Radio Access Network	
RBB	Rack Bonding Busbar	
RE	Resident Engineer or Senior Resident Engineer	
RF	Radio Frequency (refer to FR)	
RFI	Radio Frequency Interference (refer to EMI)	
RFID	RF Identification (Equipment, System or Personnel)	
RMC	Rigid Metal Conduit	
RMU	Rack Mounting Unit	
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,	
	PA)	
L		

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

NE	100% CONSTRUCTION DOCUMEN
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security
	(COMSEC)
SFO	Solicitation for Offers
SME	Subject Matter Experts (refer to AHJ)
SMR	Specialized Mobile Radio
SMS	Security Management System
SNMP	Simple Network Management Protocol
SPCC	Security Police Control Center (refer to PCR, SMS)
STP	Shielded Balanced Twisted Pair (refer to UTP)
STR	Stacked Telecommunications Room
TAC	VA's Technology Acquisition Center, Austin, Texas
ТСО	Telecommunications Outlet
TER	Telephone Equipment Room
TGB	Telecommunications Grounding Busbar (also Secondary
	Bonding Busbar (SBB))
TIP	Telecommunications Infrastructure Plant
TMGB	Telecommunications Main Grounding Busbar (also
	Primary Bonding Busbar (PBB))
TMS	Traffic Management System
TOR	Telephone Operators Room
TP	Balanced Twisted Pair (refer to STP and UTP)
TR	Telecommunications Room (refer to STR)
TWP	Twisted Pair
UHF	Ultra High Frequency (Radio)
UMTS	Universal Mobile Telecommunications System
UPCS	Unlicensed Personal Communications Service (refer to
	PCS)
UPS	Uninterruptible Power Supply

	100% CONSTRUCTION DOCUMEN
UTP	Unshielded Balanced Twisted Pair (refer to TP and
	STP)
UV	Ultraviolet
V	Volts
VAAR	Veterans Affairs Acquisition Regulation
VACO	Veterans Affairs Central Office
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)
VCCS	TIP's Vertical Cross Connection System (refer to CCS
	and HCCS)
VHF	Very High Frequency (Radio)
VISN	Veterans Integrated Services Network (refers to
	geographical region)
VSWR	Voltage Standing Wave Radio
W	Watts
WEB	World Electronic Broadcast
WiMAX	Worldwide Interoperability (for MW Access)
WI-FI	Wireless Fidelity
WMTS	Wireless Medical Telemetry Service
WSP	Wireless Service Providers
L	I

- B. Definitions:
 - Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
 - BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
 - 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
 - 4. Bundled Microducts: All forms of jacketed microducts.
 - 5. Conduit: Includes all raceway types specified.
 - 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles

conduit and raceways.

7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.

- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions. Additional units are typically provided in facility's emergency room, designated nurses stations, director's office, Disaster Control Center, SCC, ECC.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.

- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system

or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.

26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47:
 - Part 15 Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions and Equipment Locations
 - Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book'- Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF
 - Restriction of Use and Compliance in "Safety of Life" Functions & Locations
 - 2. US Department of Commerce/National Institute of Standards Technology, (NIST):

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM	636-18-303 05-28-21		
OMAHA, NE FIPS 175	100% CONSTRUCTION DOCUMENTS Federal Building Standard for		
	Telecommunications Pathway and Spaces		
FIPS 191	Guideline for the Analysis of Local Area		
	Network Security		
FIPS 197	Advanced Encryption Standard (AES)		
FIPS 199	Standards for Security Categorization of		
	Federal Information and Information Systems		
3. US Department of Hea	lth and Human Services:		
The Health Insurance	Portability and Accountability Act of 1996		
(HIPAA) Privacy, Sec	urity and Breach Notification Rules		
4. US Department of Jus	tice:		
2010 Americans with	Disabilities Act Standards for Accessible Design		
(ADAAD).			
5. US Department of Lab	or, (DoL) - Public Law 426-62 - CFR, Title 29,		
Part 1910, Chapter X	Part 1910, Chapter XVII - Occupational Safety and Health		
Administration (OSHA), Occupational Safety and Health Standards):		
Subpart 7	Approved NRTLs; obtain a copy at		
	https://www.osha.gov/dts/otpca/nrtl/nrtllist.ht		
	ml		
Subpart 35	Compliance with NFPA 101, Life Safety Code		
Subpart 36	Design and Construction Requirements for Exit		
	Routes		
Subpart 268	Telecommunications		
Subpart 305	Wiring Methods, Components, and Equipment for		
	General Use		
Subpart 508	Americans with Disabilities Act Accessibility		
	Guidelines; technical requirement for		
	accessibility to buildings and facilities by		
	individuals with disabilities		
6. US Department of Vet	erans Affairs (VA): Office of Telecommunications		
(OI&T), MP-6, PART V	III, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO		
AND TELEVISION (and	COMSEC) COMMUNICATIONS SYSTEMS: Spectrum		

Management and COMSEC Service (SMCS), AHJ for:

a. CoG, "Continuance of Government" communications guidelines and compliance.

- c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/lawsregs/regulations/standardnumber/1926
 - 1. Underwriters Laboratory (UL):

```
1-2005 Flexible Metal Conduit
```

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM	636-18-303 05-28-21
OMAHA, NE 5-2011	100% CONSTRUCTION DOCUMENTS Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM	636-18-303 05-28-21
OMAHA, NE 1242-2006	100% CONSTRUCTION DOCUMENTS Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety
D. Industry Standards:	
1. American Institute o	f Architects (AIA): 2006 Guidelines for Design &
Construction of Heal	th Care Facilities.
2. American Society for	Testing and Materials (ASTM):
B1 (2001)	Standard Specification for Hard-Drawn Copper
	Wire
B8 (2004)	Standard Specification for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
D1557 (2012)	Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Modified Effort
	56,000 ft-lbf/ft3 (2,700 kN-m/m3)
D2301 (2004)	Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical
	Insulating Tape
B258-02 (2008)	Standard Specification for Standard Nominal
	Diameters and Cross-Sectional Areas of AWG
	Sizes of Solid Round Wires Used as Electrical
	Conductors

```
CONSTRUCT AIR HANDLING TOWER
                                                                     636-18-303
NWI HEALTHCARE SYSTEM
                                                                      05-28-21
                                                   100% CONSTRUCTION DOCUMENTS
OMAHA, NE
                              Standard Specification for Laminated
        D709-01(2007)
                              Thermosetting Materials
        D4566 (2008)
                              Standard Test Methods for Electrical
                              Performance Properties of Insulations and
                              Jackets for Telecommunications Wire and Cable
      3. Building Industry Consulting Service International (BICSI):
        ANSI/BICSI 004-2012 Information Technology Systems Design and
                              Implementation Best Practices for Healthcare
                              Institutions and Facilities
        ANSI/NECA/BICSI
         568-2006
                              Standard for Installing Commercial Building
                              Telecommunications Cabling
        NECA/BICSI 607-2011 Standard for Telecommunications Bonding and
                              Grounding Planning and Installation Methods for
                              Commercial Buildings
        ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System
                              Design and Implementation Best Practices
      4. Electronic Components Assemblies and Materials Association, (ECA).
         ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices -
                              Recommended Procedures for User Certification
         EIA/ECA 310-E (2005) Cabinets, and Associated Equipment
      5. Facility Guidelines Institute: 2010 Guidelines for Design and
         Construction of Health Care Facilities.
      6. Insulated Cable Engineers Association (ICEA):
        ANSI/ICEA
         S-80-576-2002
                              Category 1 & 2 Individually Unshielded Twisted-
                              Pair Indoor Cables for Use in Communications
                              Wiring Systems
        ANSI/ICEA
         S-84-608-2010
                              Telecommunications Cable, Filled Polyolefin
                              Insulated Copper Conductor, S-87-640(2011)
                              Optical Fiber Outside Plant Communications
                              Cable
        ANSI/ICEA
```

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS	
S-90-661-2012	Category 3, 5, & 5e Individually Unshielded	
	Twisted-Pair Indoor Cable for Use in General	
	Purpose and LAN Communication Wiring Systems	
S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,	
	Polyolefin Insulated, Copper Conductors	
S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin	
	Insulated, Copper Conductors	
ICEA S-102-700		
(2004)	Category 6 Individually Unshielded Twisted Pair	
	Indoor Cables (With or Without an Overall	
	Shield) for use in Communications Wiring	
	Systems Technical Requirements	
7. Institute of Electri	cal and Electronics Engineers (IEEE):	
ISSN 0739-5175	March-April 2008 Engineering in Medicine and	
	Biology Magazine, IEEE (Volume: 27, Issue:2)	
	Medical Grade-Mission Critical-Wireless	
	Networks	
IEEE C2-2012	National Electrical Safety Code (NESC)	
C62.41.2-2002/		
Cor 1-2012 IEEE	Recommended Practice on Characterization of	
	Surges in Low-Voltage (1000 V and Less) AC	
	Power Circuits 4)	
C62.45-2002	IEEE Recommended Practice on Surge Testing for	
	Equipment Connected to Low-Voltage (1000 V and	
	Less) AC Power Circuits	
81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground	
	Impedance, and Earth Surface Potentials of a	
	Grounding System	
100-1992	IEEE the New IEEE Standards Dictionary of	
	Electrical and Electronics Terms	
602-2007	IEEE Recommended Practice for Electric Systems	
	in Health Care Facilities	
1100-2005	IEEE Recommended Practice for Powering and	
	Grounding Electronic Equipment	
8. International Organi	zation for Standardization (ISO):	

8. International Organization for Standardization (ISO):

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS	
	Use of Mobile Wireless Communication and	
	Computing Technology in Healthcare Facilities -	
	Recommendations for Electromagnetic	
	Compatibility (Management of Unintentional	
	Electromagnetic Interference) with Medical	
	Devices	
9. National Electrical	Manufacturers Association (NEMA):	
NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V	
	Maximum)	
ANSI/NEMA FB 1 (2012)Fittings, Cast Metal Boxes and Conduit Bodies		
	for Conduit, Electrical Metallic Tubing EMT)	
	and Cable	
ANSI/NEMA OS 1 (2009)Sheet-Steel Outlet Boxes, Device Boxes, Covers,	
	and Box Supports	
NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems	
TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with	
	Rigid PVC Conduit and Tubing	
NEMA VE 2 (2006)	Cable Tray Installation Guidelines	
10. National Fire Protec	ction Association (NFPA):	
70E-2015	Standard for Electrical Safety in the Workplace	
70-2014	National Electrical Code (NEC)	
72-2013	National Fire Alarm Code	
75-2013	Standard for the Fire Protection of Information	
	Technological Equipment	
76-2012	Recommended Practice for the Fire Protection of	
	Telecommunications Facilities	
77-2014	Recommended Practice on Static Electricity	
90A-2015	Standard for the Installation of Air	
	Conditioning and Ventilating Systems	
99-2015	Health Care Facilities Code	
101-2015	Life Safety Code	
241	Safeguarding construction, alternation and	
	Demolition Operations	
255-2006	Standard Method of Test of Surface Burning	
	Characteristics of Building Materials	

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS	
262 - 2011	Standard Method of Test for Flame Travel and	
	Smoke of Wires and Cables for Use in Air-	
	Handling Spaces	
780-2014	Standard for the Installation of Lightning	
	Protection Systems	
1221-2013	Standard for the Installation, Maintenance, and	
	Use of Emergency Services Communications	
	Systems	
5000-2015	Building Construction and Safety Code	
11. Society of Cable Tel	ecommunications Engineers (SCTE):	
ANSI/SCTE 15 2006	Specification for Trunk, Feeder and	
	Distribution Coaxial Cable	
12. Telecommunications Industry Association (TIA):		
TIA-120 Series	Telecommunications Land Mobile communications	
	(APCO/Project 25) (January 2014)	
TIA TSB-140	Additional Guidelines for Field-Testing Length,	
	Loss and Polarity of Optical Fiber Cabling	
	Systems (2004)	
TIA-155	Guidelines for the Assessment and Mitigation of	
	Installed Category 6 Cabling to Support	
	10GBASE-T (2010)	
TIA TSB-162-A	Telecommunications Cabling Guidelines for	
	Wireless Access Points (2013)	
TIA-222-G	Structural Standard for Antenna Supporting	
	Structures and Antennas (2014)	
TIA/EIA-423-B	Electrical Characteristics of Unbalanced	
	Voltage Digital Interface Circuits (2012)	
TIA-568	Revision/Edition: C Commercial Building	
	Telecommunications Cabling Standard Set: (TIA-	
	568-C.0-2 Generic Telecommunications Cabling	
	for Customer Premises (2012), TIA-568-C.1-1	
	Commercial Building Telecommunications Cabling	
	Standard Part 1: General Requirements (2012),	
	TIA-568-C.2 Commercial Building	
	Telecommunications Cabling Standard-Part 2:	
	Balanced Twisted Pair Cabling Components	

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS (2009), TIA-568-C.3-1 Optical Fiber Cabling	
	Components Standard, (2011) AND TIA-568-C.4	
	Broadband Coaxial Cabling and Components	
	Standard (2011) with addendums and erratas	
TIA-569		
11A-569	Revision/Edition C Telecommunications Pathways	
	and Spaces (March 2013)	
TIA-574	Position Non-Synchronous Interface between Data	
	Terminal equipment and Data Circuit Terminating	
	Equipment Employing Serial Binary Interchange	
	(May 2003)	
ANSI/TIA-606-B	Administration Standard for Telecommunications	
	Infrastructure (2012)	
TIA-607-B	Generic Telecommunications Bonding and	
	Grounding (Earthing) For Customer Premises	
	(January 2013)	
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000	
	Mb/s (1000BASE-TX) Operating over Category 6	
	Balanced Twisted-Pair Cabling (2001)	
ANSI/TIA-862-A	Building Automation Systems Cabling Standard	
	(April 2011)	
TIA-1152	Requirements for Field Testing Instruments and	
	Measurements for Balanced Twisted Pair Cabling	
	(September 2009)	
TIA-1179	- Healthcare Facility Telecommunications	
	Infrastructure Standard (July 2010)	
	Inflassiassars scandara (sari 1910)	

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

- 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
- 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- 6. General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
- 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
- Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
- General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
- 15. Lightning protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- 16. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

- 17. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 19. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 20. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 21. Detection and screening systems: Section 28 13 53, SECURITY ACCESS DETECTION.
- 22. Intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions: Section 28 16 11, INTRUSION DETECTION EQUIPMENT AND SYSTEMS.
- 23. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 25. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.
- 26. Emergency Call telephones, intercom systems, with blue strobe light and equipment: Section 28 52 31, SECURITY EMERGENCY CALL/DURESS ALARM/COMMUNICATIONS SYSTEM AND EQUIPMENT.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - Movement of materials: Unload materials and equipment delivered to site.

- 3. Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
- 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
- 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
- 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include

individual's legal name, contact information and OEM credentials in certification.

- 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
- 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August 2013.
- H. Test Equipment List:
 - 1. Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.

- 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
 - Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
 - Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- 1. Prepare a manual for each system and equipment specified.
- 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
- 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
- 4. Furnish remaining manuals prior to final completion.
- 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
- Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
- Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

C. Record Wiring Diagrams:

 Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing

100% CONSTRUCTION DOCUMENTS installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.

- 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .rvt formats as determined by COR.
- Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within eight hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

A. After approval and prior to installation, furnish COR with the following:

- 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
- One coupling, bushing and termination fitting for each type of conduit.
- 3. Samples of each hanger, clamp and supports for conduit and pathways.
- 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.

- b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
- c. Provide compatible components for assembly and intended service.
- d. Constituent parts which are similar must be product of a single manufacturer.
- 4. Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.

C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.

- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches) or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - 3. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - 5. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 - Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.

- 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:

- a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
- b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.

- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and

acceptance testing and demonstrations after verification of system operation and completeness by Contractor.

- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.
 - Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.

100% CONSTRUCTION DOCUMENTS

- Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 10. Provide results of interim inspections to COR.
- 11. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 12. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:

- a. TR interconnections.
- b. System interfaces in locations listed herein.
- c. HE interconnections.
- d. System and lightning ground interconnections.
- e. Communications circulating ground system.
- f. UPS areas.
- g. Emergency generator interconnections.
- h. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.

- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
 - Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of equipment for detailed proof of

performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.

- 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.

100% CONSTRUCTION DOCUMENTS

- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 33

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 00, EARTH MOVING.
- B. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- C. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- D. Fabrications for deflection of water away from building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- F. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

A. Minimum Conduit Size: 19 mm (3/4 inch).

B. Conduit:

- 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
- 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
- 3. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
- 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.

f. Erickson (union-type) and Set Screw Type Couplings:

- 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
- Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of
 "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.

- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- 7. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 8. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 9. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 10. Rigid Aluminum Fittings:
 - a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
 - d. Indent type connectors or couplings are prohibited.

CONSTRUCT AIR HANDLING TOWER636-18-303NWI HEALTHCARE SYSTEM05-28-21OMAHA, NE100% CONSTRUCTION DOCUMENTSe. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made

f. Provide OEM approved fittings.

of "pot metal" are not permitted.

11. Wireway Fittings: As recommended by wireway OEM.

- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.

- 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
- 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
- 5. Size: Metric Designator 53 (trade size 2) or smaller.
- 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
- 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
- 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
- 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- I. Outlet Boxes:
 - Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- J. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

- K. Cable Tray:
 - Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
 - 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
 - 3. Provide continuous welded top side wire to protect cable insulation and installers.
 - High strength steel wires formed into a 50 x 100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
 - 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: 105 mm (4 inch).
 - c. Width: 300 mm (12 inches).
 - 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
 - 7. Provide accessories to protect, support and install wire basket tray system.
- L. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- M. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Nurse Call	27 52 23	Complete Conduit

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

System	Specification Section	Installed Method
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Miscellaneous Medical Systems	27 52 41	Complete Conduit
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Video Surveillance	28 23 00	Complete Conduit
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.

- d. Waterproofing at Floor, Exterior Wall, and Roof Conduit Penetrations:
 - Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
 - Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
 - Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.
 - 8. Minimum radius of communication conduit bends:

27 05 33 - 9

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit

installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.

- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
 - e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance

ground continuity through conduits. Tightening set screws with pliers is not permitted.

- E. Furred or Suspended Ceilings and in Walls:
 - Rigid steel or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
 - Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
 - 3. Install expansion and deflection couplings where shown.

- H. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
 - 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
 - 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
 - Bolts supported only by plaster or gypsum wallboard are not acceptable.
 - Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
 - 10. Do not support conduit from chain, wire, or perforated strap.
 - 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.

- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- I. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
 - 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 10 00

CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

- A. Excavation and backfill for cables that are installed in conduit: Section 31 20 00, EARTH MOVING.
- B. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.

- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:
 - Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
 - 2. Provide certified OEM sweep test tags from each cable reel to COR.
 - Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
 - 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).

100% CONSTRUCTION DOCUMENTS 3. Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.

636-18-303

05-28-21

- 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:
 - 1) 18 AWG, minimum, Outside.
 - 2) 20 AWG, minimum, Inside.
 - d. Color Coding: Required, EIA industry standard.
 - e. Bend Radius: 10 times cable outside diameter.
 - f. Impedance: As required.
 - g. Shield Coverage: As required by OEM specification.
 - h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

- E. Distribution System Signal Wires and Cables:
 - 1. Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
 - 3. Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
 - 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - Provide connectors for transmission lines, and signal extensions to maintain uninterrupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
 - Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.

$27 \ 10 \ 00 \ - \ 4$

- 3) Equipment Racks.
- 4) Equipment Cabinets.
- 5) Conduits.
- 6) Ducts.
- 7) Cable Trays.
- 8) Power Panels.
- 9) Connector Panels.
- 10) Grounding Blocks.
- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
 - a. Voice (or Telephone):
 - Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 6.

- IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 6 and the size and type of cable used.
- 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
- 4) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 100.
 - b) Number of Terminals per Row: Minimum 4.
 - c) Terminal Protector: Required for each used or unused terminal.
 - d) Insulation Splicing: Required between each row of terminals.
- b. Digital or High-Speed Data:
 - Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
 - 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
 - d. Pull multiple cables into a single conduit together.
- B. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
 - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
 - 5. Concealed splices are not allowed.
 - Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
 - 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control,

microphone and line level audio and data wires or cables, on the right.

- Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
 - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
 - e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
 - f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.
- C. AC Power:
 - Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
 - 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of

internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.

- 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
- 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.
 - In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.
- B. Labeling:
 - 1. Industry Standard: ANSI/TIA-606-B.
 - Print lettering for voice and data circuits using thermal ink transfer process; handwritten labels are not acceptable.
 - 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
 - Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
 - 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray

painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.

 Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- ${\tt E}\,.$ Test cables after installation and replace any defective cables.

- - - E N D - - -

SECTION 27 11 00 TELECOMMUNICATIONS ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies equipment cabinets, interface enclosures, relay racks, and associated hardware in service provider DEMARC, computer and telecommunications rooms.
- B. Telephone system is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Adhere to Seismic reference standards for systems connecting to or extending telephone system and cabling.

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- E. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- F. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION.
- B. Separate submittal into sections for each subsystem containing the following:
 - Pictorial layouts of each Telecommunications Room and Cross Connection Space (VCCS, and HCCS termination cabinets), each distribution cabinet layout, and TCO as each is expected to be installed and configured.
 - Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.

- C. Environmental Requirements: Identify environmental specifications for
 - housing system as initial and expanded system configurations.
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling height.
 - 3. Minimum door size for equipment passage.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. Provide components of cabinet system (cabinet, thermal, cable and power management accessories) from a single manufacturer.
- B. Equipment Standards and Testing:
 - Equipment must be listed by a NRTL where a UL standard is in existence; active and passive equipment must conform with each UL standard in effect for equipment, on the submittal date.
 - Each item of electronic equipment must be labeled by a NRTL that warrants equipment has been tested in accordance with, and conforms to specified standards.
- C. Equipment Cabinets (Enclosures):
 - Fully enclose and physically secure internally mounted and connected, active and passive equipment.
 - Types of Equipment Enclosures accepted for specific VA Spectrum Management, FMS and OI&T applications in CFM and Facility Projects:

CABINET	FUNCTION
Communications	FMS Special Communications Equipment
Server / Router	OI&T Data/LAN/WAN Equipment
Seismic	Either FMS or OI&T use, specify need
Environmental	Either FMS or OI&T use, specify need

- 3. Each cabinet to be:
 - a. Provided in head end, MCR, TER, PCR, EMGR, each TR at a minimum.
 - b. Fabricated with minimum 1.59 mm (16 gauge) steel.
 - c. Provided with manufacturer's standard painted finish in a color accepted by COR with concurrence from FMS Service Chief.
 - d. Mounted on floor.
 - e. Lockable; tubular locks keyed alike. Provide six keys to COR for each cabinet.
 - f. Compliant with facility's SMS card access system.

- Provide equipment mounting shelves; attach to front and rear mounting rails and allowing equipment to be secured to respective mounting rails.
- 5. Each enclosure to include:
 - a. Floor mounting.
 - b. Knock out holes for conduit connections or cable entrance.
 - c. Front and rear locking doors; wall mounted cabinets require only front locking door.
 - d. Power outlet strips.
- Provide quiet ventilation fan with non-disposable locally cleanable air filter.
- 7. Size each cabinet in order to contain and maintain internal mounted equipment items.
- 8. Provide OEM's fully assembled unit.
- 9. Provide OEM assembled side-by-side enclosures in a single unit, at locations requiring more than two enclosures.
- 10. Provide minimum one cabinet with blank rack space, for additional system expansion equipment.
- 11. Bond to communications circulating grounding system.
- 12. Technical Characteristics:
 - a. External:
 - 1) Overall Height:
 - a) Communications/Server: Maximum 2,184 mm (86 inches).
 - b) Seismic: Maximum 1,905 mm (75 inches).
 - 2) Overall Depth:
 - a) Communications/Server: Maximum 914 mm (36 inches).
 - b) Seismic: Maximum 762 mm (30 inches).
 - 3) Overall Width All: Maximum 864 mm (34 inches).
 - b. Front Panel Openings:
 - 1) Width:
 - a) Communications: 482.6 mm (19 inches), per EIA.
 - b) Server: 483 mm (19 inches), per EIA/ECA 310.
 - c) Seismic: 483 mm (19 inches), per EIA/ECA 310.
 - 2) Height:
 - a) Communications/Server: Maximum 2,000 mm (78-3/4 inches or 45 Rack Units [RU]), per EIA/ECA 310.

- b) Seismic: Maximum 1,689 mm (66-1/2 inches or 38 RUs, per EIA/ECA 310).
- c. Heavy Duty Cycle: Maximum 544 kilograms (1,200 pounds) capacity.
- d. Certification:
 - 1) NRTL (i.e. UL): For communications and server cabinets.
 - Telcordia Technologies: #63-GR-CORE, (2012) for seismic cabinets.
 - Seismic: Provide cabinet OEM constructed to seismic design category.
- 13. Cabinet Internal Components:
 - a. AC Power:
 - 1) Standard "Quad AC Box":
 - a) Power capacity: 20 Ampere, single Φ , 120 VAC continuous duty.
 - b) Wire gauge: #12 AWG, solid copper, connected to room's internal AC Power Panel, or as directed by COR.
 - c) Number of AC power outlets: Minimum 4 receptacles.
 - d) Enclosure: Fully self-contained, metal 102 mm (4 inch) x 102 mm (4 inches) x 64 mm (2-1/2 inches) with cover
 - e) Connection: Minimum 25.4 mm (1 inch) conduit connected to room's AC Power Panel, or as directed by COR
 - f) Number of boxes: One.
 - g) Compliance: NRTL (i.e. UL); NPFA 70 (NEC).
 - b. AC Outlet Strips:
 - 1) Power Capacity: 15 Ampere, single phase, 120 VAC continuous duty.
 - 2) Wire Gauge: Minimum #12 AWG, solid copper.
 - 3) Number of AC Power Outlets: Minimum 10 "U" grounded.
 - 4) Enclosure: Fully self-contained; typically metal.
 - 5) Connecting Wire: Minimum 2 m (6 feet) long, with three prong self-grounding AC plug connected to cabinet's internal AC "Quad" box.
 - 6) Number of Strips: 2.
 - 7) Certification: NRTL (i.e. UL).

```
CONSTRUCT AIR HANDLING TOWER 636-18-303
NWI HEALTHCARE SYSTEM 05-28-21
OMAHA, NE 100% CONSTRUCTION DOCUMENTS
c. AC Power Line Surge Protector and Filter Construction:
```

- Input Voltage Range: 120 VAC + 15 percent at 50/60 Hz, single phase.
- 2) Power Service Capacity: 20 AMP, 120 VAC.
- Voltage Output Regulation: +5.0 percent, instantaneous of input.
- 4) Circuit Breaker: 15 AMP; may be self-contained.
- 5) AC Outlets: Minimum four duplex grounded NEMA 5-20R.
- 6) Response Time: 5.0 nanosecond.
- 7) Suppression: Isolate and filter any noise, surge spikes
 - a) Surge: Minimum 20,000 AMP.
 - b) Noise:
 - 1) Common: -40 dB.
 - 2) Differential: -45 dB.
- 8) Clamping Voltage: Minimum 300 V.
- 9) Enclosure: One; self-contained.
- Mounting: Internal to cabinet floor or on internal mounting rail shelf, allowing two plugs from two plug strips.
- 11) AC Power Cord: Required; minimum 1,628 mm (6 feet), three wire (green ground); minimum #14 AWG stranded.
- 12) Compliance: NRTL (i.e. UL60950-1).
- d. Uninterruptible Power Supply (UPS): Provide each cabinet with an internal UPS which may be combined with surge protector and filter if system's 50 percent expansion requirement is met. Provide at least one hour continuous full load uninterruptible system primary AC Power, with a 50 percent reserve capacity, in the event of facility primary or emergency AC power failure.
 - 1) UPS to include:
 - a) On-Off Switch: This function is required to be a part of system's electronic supervision requirements.
 - b) First/Fast Charge Unit: Must provide clean predicable charge voltage/current. Function is required to be a part of system's electronic supervision requirements.
 - c) Over Voltage/Current Protect: Cannot short circuit AC power line at any time. This function is required to be a part of system's electronic supervision requirements.

- d) Trickle Charge Unit: Must be capable of maintaining a suitable internal battery charge without damaging batteries.
- e) Mounting: Provide per OEM's direction.
- f) Proper Ventilation: Do not override cabinets' ventilation system.
- g) Power Change from AC Input: Accomplish change without interruption to communications link or subsystem being protected. Generate visual and aural alarms in electrical supervision system, local and remote, to annunciating panels via direct connection for trouble indication.
- Specific requirements for current and surge protection to include:
 - a) Voltage Protection: Threshold, line to neutral, starts at maximum 200 Volts peak. Transient voltage cannot exceed 330 Volts peak. Furnish documentation on peak clamping Voltage as a function of transient waveform.
 - b) Peak Power Dissipation: Minimum 35 Joules per phase, as measured for 1.0 millisecond at subbranch panels, 100 Joules per phase at branch panels and 300 Joules per phase at service entrance panels. Typically, power dissipation is 12,000 Watts (W) for 1.0 mS (or 12 Joules). Provide explanation of how ratings were measured or empirically derived.
 - c) Surge Protector (may be combined with On-Off switch of UPS): Must not short circuit AC power line at any time.
 - 1) Components must be minimum silicon semi-conductors.
 - Secondary stages, if used, may include other types of rugged devices.
 - Indicators: Provide visual device indicating surge suppression component is functioning.
 - Electrical Supervision: Required; must be audile and visual, local and remote to annunciating panels via direct connection for trouble indication.
 - d) Provide current and surge protection on ancillary equipment.

e) Equip each cabinet with the following:

- Equipment Mounting Rails (Front & Rear): Fully adjustable internal equipment mounting rails allowing front or rear equipment mounting with pre-drilled EIA/ECA 310-E Standard tapped holes. Support entire equipment by supplementary support in addition to face mounting screws on rails.
- Cabinet Ground: Stainless steel adjustable, lug connected to cabinet's main structure providing an internal cabinet ground for all installed equipment properly bolted to rail and with ground wire connected.
- 3) Grounding Terminals: A separate mounting hole on equipment mounting rail, with stainless steel connecting bolt bonded by minimum #10 AWG copper wire to cabinet's internal grounding lug.
- 14. Ground Interconnection: Bond cabinet's common grounding lug to room's communications circulating ground busbar with a minimum #4 AWG stranded copper wire.
- 15. Blank Panels: Provide at every unused rack space.
 - a. Match cabinet color.
 - b. Provide panels of 3 mm (1/8 inch) thick aluminum with vertical dimensions in increments of one rack unit (RMU) or 45 mm (1-3/4 inch) with mounting holes spaced to correspond to EIA/ECA 310-E Standard 483 mm (19 inch) rack dimensions.
 - c. Fill large unused openings with single standard large panel instead of numerous types.
 - d. Leave one blank rack space (RMU), covered with a blank panel, between each item of equipment, for minimum internal air flow.
 - e. Leave 356 mm (14 inches) (8.0 RMU) open space, covered with blank cover panel, for additional expansion equipment.
 - f. Wire Management: System that connects each item of installed equipment to room wire management system.
 - g. Knock-out Holes: Provide for cable entrance/exits via conduits, cable duct/trays.

D. Environmental Cabinet:

 Enclosure must fully contain installed equipment, including electronics, in same manner as standard cabinet. Provide climate

27 11 00 - 7

100% CONSTRUCTION DOCUMENTS

control for installed equipment as if they were in a standalone air handling area, regardless of local area air handling capabilities.

- 2. Provide an OEM's fully assembled unit enclosure.
- 3. If more than two enclosures are required in any system location, provide OEM-assembled enclosures, in a single unit, side-by-side.
- 4. Technical Characteristics:
 - a. Environmental Control: Automatic, heating and cooling as required.
 - b. Temperature Conditions (rated at 1,300 W of install equipment heat generation):
 - Internal Range: Maintains 26.67 degree to 37.78 degree C (80 degree to 100 degree f) of internal heat conditions.
 - 2) External Range: Maximum 37.78 degrees + -3.89 degrees C (100 degrees + 25 degrees F).
 - c. Forced Air Unit: Required with non-disposable air filter; unobstructed and uninterruptible.
 - d. Air Conditioning: As required; fully internal mounted.
 - e. Heater: As required; fully internal mounted.
 - f. UPS: Required; fully internal mounted.
 - g. Front Door: Full length, see through, EMI resistant and lockable, keyed alike with 7-pin tubular lock.
 - h. Rear door: Full length, see through, EMI resistant, and lockable keyed alike with 7-pin tubular lock.
 - i. Conduit Wiring Entrance: Top or bottom; fully sealed.
 - j. Input Power: Minimum 2 each; maximum 120 VAC at 20A, independent circuit, conduit for fixed or armored cable for moveable installations.
 - k. Dimensions:
 - 1) Height: Maximum 1980 mm (78 inches).
 - 2) Width: Maximum 635 mm (25 inches).
 - 3) Depth: Maximum 965 mm (38 inches).
 - Front Panel Opening: 480 mm (19 inches), w/ EIA/ECA 310 mounting hole spacing.
- E. Wall Mounted Distribution or System Interface Cabinet:
 - Construct of minimum 1.59 mm (16 gauge) cold rolled steel, with top, side and bottom panels.

- 2. Provide double-hinged front door and main cabinet body allowing access to all internal equipment and wiring; mount to solid walls or internal studs.
- 3. Provide baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using FMS Chief or COR.
- 4. Provide integral and adjustable EIA/ECA 310 standard predrilled rack mounting rails to allow front panel equipment mounting and access.
- 5. After equipment, doors and panels are installed, snap-in-place chrome trim strip covers all front panel screw fasteners.
- 6. Provide full-length vertical piano hinge to allow entire front portion of cabinet to "swing out" from wall for access to installed equipment, wires and cable; maintain minimum OSHA Safety clearances and NFPA operational functions.
- 7. Provide an OEM's fully assembled unit enclosure.
- 8. Equip these cabinets same as equipment cabinets, except mount UPS on floor below cabinet with AC power connection in conduit to AC service panel.
- 9. Technical Characteristics:
 - a. Overall Height: Maximum 1,218 mm (48 inches).
 - b. Overall Depth: Maximum 558 mm (22 inches).
 - c. Overall Width: Maximum 610 mm (24 inches).
 - d. Front Panel Horizontal: Maximum width 483 mm (19 inches).
 - e. Capacity: Maximum 180 kilograms (400 pounds).
 - f. Lockable:
 - 1) Tubular lock with 7-pin security.
 - 2) Key cabinets alike.
- F. Stand Alone Open Equipment Rack:
 - 1. Construct of minimum 1.59 mm (16 gauge) cold rolled steel with manufacturer's standard paint finish, in a color to be selected by COR with concurrence from facility's FMS Service Chief.
 - 2. Floor-mount as directed by COR with concurrence from facility's FMS Service Chief.
 - 3. Equip rack same as equipment cabinet, except mount UPS with additional support for weight and AC power connection in conduit to AC service panel.
 - 4. Provide an OEM fully assembled unit.

- 5. Technical Characteristics:
 - a. Overall Height: Maximum 2,180 mm (85-7/8 inches).
 - b. Overall Depth: Maximum 650 mm (25-1/2 inches).
 - c. Overall Width: Maximum 535 mm (21-1/16 inches).
 - d. Front Panel Opening: 483 mm (19 inches), EIA/ECA 310 horizontal width.
 - e. Hole Spacing: Per EIA/ECA 310.
 - f. Load Capacity: Maximum 680.4 kg (1,500 lbs).
 - g. Certifications:
 - 1) EIA/ECA: 310-E.
 - 2) NRTL (i.e. UL): OEM specific.
- G. Wire Management Equipment:
 - Provide an orderly horizontal and vertical interface between outside and inside wires and cables, distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide an uniform connection media for system fire-retardant wires and cables and other subsystems.
 - Interface to each cable tray, duct, wireway, or conduit used in the system.
 - 3. Interconnection or distribution wires and cables must enter system at top (or from a wireway in the floor) via overhead protection system and be uniformly routed down either side at same time, of the frames side protection system, then laterally for termination on rear of each respective terminating assembly.
- H. Vertical Cable Managers:
 - Use same make, style and size of vertical cable manager on rack/frame or in between racks/frames when more than one cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color and cover style of racks/frames and cable managers.
- I. Horizontal Cable Managers:
 - Use same make and style of cable manager on rack/frame or racks/frames, when more than one horizontal cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color of racks/frames and cable managers.
- J. Provide installation hardware when enclosures or racks are attached to structural floor.

K. Provide noise filters and surge protectors for each equipment interface cabinet, switch equipment cabinet, control console, and local and remote active equipment locations to ensure protection from input primary AC power surges so as a consequence noise glitches are not induced into low voltage data circuits.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate cabinet installation such that doors fully close and lock, with active and passive equipment installed and connected.
- B. Verify equipment dimensions and brackets allow mounting with cabinet doors closed. Front door or rear door of any cabinet that does not close and lock may result in immediate cancellation of inspections or tests.

3.2 INSTALLATION

- A. Equipment Cabinets:
 - Install cabinets in a manner that complies with OEM instructions, requirements of this specification, and in a manner which does not constitute a safety hazard.
 - Provide weatherproof equipment installed outdoors or install in NEMA 3S rated enclosures with hinged doors and locks with two keys.
 - 3. Install equipment indoors in NEMA 4 rated metal cabinets with hinged doors and locks with two keys.
- B. Grounding:
 - Bond equipment, including identified Government furnished equipment, to ground so total ground resistance measures maximum 0.1 Ohm.
 - a. Install lightning arrestors and grounding in accordance with NFPA.
 - b. Install gas protection devices at nearest point of entrance in buildings where protection is required and on same circuits as MDF in telephone switch room.
 - c. Do not use AC neutral, including in power panel or receptacle outlet, for system control, subcarrier or audio reference ground.
 - d. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted.
 - Connect each equipment grounding terminal to a separate mounting hole on equipment mounting rail, to right as one looks at it from

rear, with a minimum #12 AWG stranded copper wire with protective green jacket.

- 3. Extend common ground bus of minimum #10 AWG solid copper wire throughout each equipment cabinet and bond to TGB. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground buses together.
- 4. Bond equipment to cabinet bus with copper braid equivalent to #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.
- 5. Bond cable shields to cabinet ground bus with minimum #12 AWG stranded copper wire at only one end of cable run. Insulate cable shields from each other, faceplates, equipment racks, consoles, enclosures or cabinets, except at system common ground point. Bond coaxial and audio cables only at source; in all cases, keep cable shield ground connections to a minimum.
- C. Equipment Assembly:
 - 1. Cabinets:
 - a. Install and adjust cabinet/frame accessories to position, including thermal management accessories, vertical cable managers, vertical power managers and equipment-mounting rails, using manufacturer's installation instructions prior to baying or placing cabinet for attachment to building and before installing any rack-mount equipment into cabinet. Shelves, horizontal cable managers and filler panels (rack-mount accessories), if used, may be installed after cabinet is placed.
 - b. When used in a multi-cabinet bay, attach cabinets side-by-side using baying kits according to manufacturer's instructions.
 - c. Attach overhead ladder rack or cable tray to ceiling or top of cabinet. Maintain minimum 75 mm (3 inches) clearance between top of cabinet and bottom of ladder rack/cable tray. Position ladder rack/cable tray so that it does not interfere with hot air exhaust through cabinet's top panel. Use radius drops where cable enters or exits ladder rack/cable tray.
 - d. Install ladder rack with side stringers facing rack or cabinet so that ladder forms an inverted U-shape and so that welds between

stringers (sides) and cross members (middle) face away from cables.

- e. Secure ladder rack to tops of equipment racks or cabinets using manufacturer's recommended supports and appropriate hardware.
- f. Attach bonding conductor sized per TIA-607-B between telecommunications grounding busbar and cabinet. Attach bonding conductor to cabinet using a ground terminal block according to manufacturer's installation instructions.
- g. Provide bonding conductor and other hardware required to make connections between cabinet and telecommunications grounding busbar.
- h. Install rack mounted equipment normally requiring adjustment or observation so operational adjustments can be conveniently made.
- i. Mount heavy equipment with rack slides or rails to allow servicing from front of enclosure. Provide support in addition to front panel mounting screws for heavy equipment.
- j. Provide with cable slack to permit servicing by removal of installed equipment from front of enclosure.
- k. Install color-matched blank panel spacer 44 mm (1.75 inches) high between each piece of active and passive equipment to ensure adequate air circulation for efficient equipment cooling and air ventilation.
- Provide quiet fans and non-disposable air filters at each console or cabinet.
- m. Install enclosures and racks plumb and square, permanently attached to building structure and held in place.
- n. Provide 381 mm (15 inches) of front vertical space opening for additional equipment.
- Install equipment located indoors in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
- p. Cables must enter equipment racks or enclosures in such a manner to allow doors or access panels to open and close without disturbing or damaging cables.
- q. Mount distribution hardware in a manner that allows access to connections for testing and provides room for doors or access panels to open and close without disturbing the cables.

- 2. Racks:
 - a. Assemble racks according to manufacturer's instructions.
 - b. Verify that equipment mounting rails are sized properly for rackmount equipment before attaching rack to floor.
 - c. Attach assembled racks to floor in four places using appropriate floor mounting anchors. When placed over a raised floor, threaded rods should pass through raised floor tile and be secured in structural floor below.
 - d. Bond racks to telecommunications grounding busbar using appropriate hardware provided by contractor.
 - e. Ladder rack may be attached to top of rack to deliver cables to rack. Do not drill rack to attach; use appropriate hardware from rack manufacturer.
 - f. Provide radius drops to guide cable where cable exits or enters side of overhead ladder rack to access a rack, frame, cabinet or wall-mounted rack, cabinet or termination field.
 - g. Evenly distribute equipment load on rack. Place large and heavy equipment towards bottom of rack. Secure equipment to rack with equipment mounting screws.
- 3. Vertical Cable Managers:
 - a. Provide vertical managers so number of cables in each manager does not exceed OEM fill capacity.
 - b. Attach vertical cable managers to side of rack/frame using manufacturer's installation instructions and hardware.
 - c. Attach vertical cable manager to both racks/frames when a single vertical cable manager is used between two racks/frames.
 - d. Dress cables through openings in between T-shaped guides on manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
 - e. Attach doors to cable manager in closed position after cabling is complete.
- 4. Horizontal Cable Managers:
 - Attach horizontal cable managers to rack/frame with minimum four screws according to manufacturer's installation instructions.
 Center each cable manager within allocated rack-mount space (RMU).

- b. Provide horizontal managers located so number of cables each manager supports is less than cable manager's cable fill capacity.
- c. Dress cables through openings in between T-shaped guides on cable manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
- d. Attach covers to cable manager in closed position after cabling is complete.
- D. Labeling: Permanently label each enclosure in accordance with TIA-606-B using thermal ink transfer process; handwritten labels are not acceptable.
 - 1. Equipment: Label system equipment with contrasting plastic laminate or bakelite material on face of unit corresponding to its source.
 - Conduit, Cable Duct, and/or Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 m (10 feet), identifying system.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA OutPatient Clinic, here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- E. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- F. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each telecommunications room, showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.

- Pre-acceptance Certification: Submit in accordance with test procedures.
- Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.

- 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6 or on a case by case basis Category 6A for specialized powered systems' requirements.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)
 - 3. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and videotele communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.

I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
 - c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
 - 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP, fiber optic, coaxial and analog backbone cables, terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels.
 - b. Provide 24 port fiber optic modular patch panels with "LC" couplers dedicated for voice, data and FMS applications.
 - c. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
 - d. In TR's, which are only served by a UTP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.
 - 3. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.

- 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
- 3) Label and test complete riser cabling system.
- 4. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6 requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 250 MHz.
 - c. Provide four pair 0.205 mm2 (24 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- 5. Patient Bedside Prefabricated Units (PBPU):
 - a. Where PBPU's exist in facility, identify single gang "box" location on PBPU designated for installation of TCO; obtain written approval and specific instructions from PBPU OEM regarding disassembly and reassembly of each PBPU to extent necessary to install cable to PBPU box reserved for TCO.
 - b. Provide stainless steel face plate approved for use by PBPU OEM and COR.
- 6. Fiber Optics Backbone Cable:
 - a. Provide 50/125 micron OM4 multi-mode cable, containing at minimum18 strands of fiber, unless otherwise specified.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Provide tight buffered fiber cable or indoor/outdoor cables for indoor runs.

- d. Terminate multimode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 ft.) cable loop at each end.
- e. Provide single mode fiber optic cable 8.3 mm containing at minimum 12 strands of fiber, unless otherwise specified. Terminate single mode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 feet) cable loop at each end to allow for future movement.
- f. Install fiber optic cables in TR's, Voice (Telephone) Switch Room, and Main Computer Room, in rack mounted fiber optic patch panels. Provide female LC couplers in appropriate panel for termination of each strand.
- g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53). Provide written results to COR for review and approval.
- B. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
 - 3. Fiber Optic Cables:
 - a. Provide fiber CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - b. Install fiber optic cable slack in protective enclosures.
- C. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic, coaxial and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.

100% CONSTRUCTION DOCUMENTS

- Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- D. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - Provide current arrester for each copper or coaxial cable that enters from outside of a building regardless if cable is installed underground or aerial.
 - 2. Provide a gas surge protector/module and bond to earth ground.
- E. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper and fiber optic backbone system cables, and connections to the voice (telephone) and data cable systems.
- F. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - Provide the following for each Category 5E (or on a case by case basis Category 6 for specialized powered systems technically accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services and COR) Cabling System termination; cross-connection wires.
 - a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
 - b. Provide removable designation strips or labels to allow for inspection of terminations.
 - c. Provide cable management system as a part of IDC.
 - Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
 - Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
 - 5. Provide inputs from FTS, Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A blocks with RJ45 connections are acceptable alternates to IDC) of MCCS.

100% CONSTRUCTION DOCUMENTS

- Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS.
- 7. Do not split pairs within cables between different jacks or connections.
- 8. Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- G. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- H. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber - these counts do not include 50 percent spare requirement. Provide cable management system for each panel.
 - Provide panels for minimum 24 female LC connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.
 - 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures.

- 3. Provide patch panels with highest OEM approved density of fiber LC termination's (maximum of 72 each), while maintaining a high level of manageability. Provide proper LC couplers installed for each pair of fiber optic cable LC connectors.
 - a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of connectors of same patch panel.
 - c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
- 4. Provide field installable connectors that are pre-polished.
 - a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic LC female connector terminated with a fiber optic cable.
 - b. Install a terminating cap for each unused LC connector.
- I. Copper Outside Plant Cable: Minimum of UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flex gel - waterproof Rural Electric Association (REA) listed PE 39 code) between outer armor or jacket and inner conductors protective lining.
 - 1. Provide copper cable system as a Star Topology.
- J. Horizontal Cabling (HC):
 - 1. Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - 2. Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.

- 2. Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.
- 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.
- B. Backbone Distribution Cables:
 - Meet TIA transmission performance requirements of Voice Grade Category 5E.
 - 2. Provide cable listed for environments where it is installed.
 - 3. Technical Characteristics:
 - a. Length: As required, in minimum 1-kilometer (3,000 ft.) reels.
 - b. Size:
 - 1) Minimum 0.326 mm2 (22 AWG) outside plant installation.
 - 2) Minimum 0.205 mm2 (24 AWG) interior installations.
 - c. Color Coding: American Telephone and Telegraph Company Standard; Bell System Practices Outside Plant Construction and Maintenance Section G50.607.3, Issue 2 February, 1959.
 - d. Minimum Bend Radius: 10X cable outside diameter.
 - e. Impedance: 120 Ohms + 15 percent.
 - f. DC Resistance: Maximum 8.00 ohms/100 m
 - g. Shield Coverage: As required by drawing notes.
 - h. Maximum attenuation for 100m at 20° C:

Frequency (MHz)	Category 5e (dB)	
.772	_	
1	2.0	
4	4.1	
8	5.8	
10	6.5	
16	8.2	

Frequency (MHz)	Category 5e (dB)
20	9.3
25	10.4
31.25	11.7
62.5	17.0
100	22.0
200	
250	
300	
400	
500	

- 4. Data Multi-Conductor:
 - a. Unshielded cable with solid conductors.
 - b. Able to handle the power and voltage used over the distance required.
 - c. Meets TIA transmission performance requirements of Category 6.
 - d. Technical Characteristics:
 - 1) 0.205 mm2 (24 AWG) 0.326 mm2 (22 AWG) cable
 - 2) Bend Radius: 10 times cable outside diameter.
 - 3) Impedance: 100 Ohms + 15%, BAL.
 - 4) Bandwidth: 250 MHz.
 - 5) DC Resistance: Maximum 9.38 Ohms/100m (328 ft.) at 20 degrees C.
 - 6) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.).
 - 7) Shield Coverage:
 - a) Overall Outside (if OEM specified): 100 percent.
 - b) Individual Pairs (if OEM specified): 100 percent.
 - 8) Maximum attenuation for 100m (328 ft.) at 20° C:

Frequency (MHz)	Category 6 (dB)	
1	2.0	

	Cata and C
Frequency	Category 6
(MHz)	(dB)
4	3.8
4	5.0
8	5.3
10	6.0
10	0.0
16	7.6
2.0	
20	8.5
25	9.5
31.25	10.7
62.5	15.4
0210	
100	19.8
200	29.0
200	23.0
250	32.8
300	
500	
400	
500	
500	

5. Fiber Optic:

- a. Multimode Fiber:
 - Provide OM4 Type general purpose multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 50 microns.
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:

- 850 nanometer: Minimum 160 MHz.
 1,300 nanometer: Minimum 500 MHz.
- f) Connectors: Stainless steel.
- b. Single mode Fiber:
 - Provide OS1 Type general purpose single mode fiber optic cable installed in conduit for all system locations with loadbearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 100 mm (4 inches).
 - b) Outer Jacket: PVC.
 - c) Fiber Diameter: 8.7 microns.
 - d) Cladding: 125 microns.
 - e) Attenuation at 850 nanometer: 1.0 dBm per kilometer.
 - f) Connectors: Ceramic.

C. Outlet Connection Cables:

- 1. Voice (Telephone):
 - a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Voice Grade.
 - 3) Connector: RJ-11/45 compatible male on each end.
 - 4) Size: Minimum 24 AWG.
 - 5) Color Coding: Required, telephone industry standard.
- 2. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).

- Cable: Data grade Category 5E or on a case-by-case basis
 Category 6 for specialized powered systems accepted by SMCS
 0050P2H3 (202) 461-5310, IT and FMS Services and COR.
- 3) Connector: RJ-45 male on each end.
- 4) Color Coding: Required, data industry standard.
- 5) Size: Minimum 24 AWG.
- D. System Connectors:
 - Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 μA_{\star}
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- E. Fiber Optic Terminators:
 - Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.
 - b. Power Blocking: As required.
 - c. Return Loss: 25 dB.
 - d. Connectors: LC.
 - e. Construction: Ceramic.

- F. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 - e. Maximum 40 percent conduit fill for cable installation.
 - 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards;

but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.

- D. Patient Bedside Prefabricated Units (PBPU) Installation:
 - Under no circumstances, proceed with installing PBPU without written approval of PBPU OEM and specific instructions regarding attachment to or modifying of PBPU.
 - 2. Maintain UL integrity of each PBPU. If installation violates UL integrity, obtain on site UL re-certification of violated PBPU at the direction of COR.
- E. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - 2. Print lettering of labels with thermal ink transfer process; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
- Check each item of installed equipment to ensure appropriate NRTL label.
- Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
- Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
- 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

- 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- 7. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
 - Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.
 - Test utilizing approved test equipment to certify proof of performance.
 - 4. Verify that total system meets the requirements of this section.
 - 5. Include expected duration of test time, with notification of the acceptance test.
- D. Verification Tests:
 - Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.

- 2. Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
- 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461– 5310, IT and FMS Services and COR) tests in accordance with TIA-568– B.1 and TIA-568–B.2. Include the following tests – wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- F. Total System Acceptance Test: Perform verification tests for UTP cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.

- 3. Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 28 05 00

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, video assessment and surveillance, video recording and storage, fire alarm interface, equipment cabinetry, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the

installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 11 73 SLIDING METAL FIRE DOORS. Requirements for door installation.
- D. Section 08 35 13.13 ACCORDIAN FOLDING DOORS. Requirements for door installation.
- E. Section 08 34 59 VAULT DOORS AND DAY GATES. Requirements for door and gate installation.
- F. Section 08 51 13 ALUMINUM WINDOWS. Requirements for window installation.
- G. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.

- H. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- I. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- J. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- K. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- L. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- M. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- N. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- O. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- P. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for Commissioning.
- Q. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.
- R. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.

- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.

- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion

636-18-303 05-28-21

- HA, NE 100% CONSTRUCTION DOCUMENTS detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] <insert number> miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog

information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.

- 2. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.
- Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.

100% CONSTRUCTION DOCUMENTS

- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.

- d) Installation and maintenance instructions.
- e) Safety precautions.
- f) Diagrams and illustrations.
- g) Testing methods.
- h) Performance data.
- i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name.

100% CONSTRUCTION DOCUMENTS

Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.

- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of

submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.

- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:

- 1) Security devices by symbol,
- The associated device point number (derived from the loading sheets),
- 3) Wire & cable types and counts
- 4) Conduit sizing and routing
- 5) Conduit riser systems
- 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
 - Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system,

28 05 00 - 15

100% CONSTRUCTION DOCUMENTS

intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.

- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.

NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE k. Door Schedule - A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information: 1) Item Number 2) Door Number (Derived from A/E Drawings) 3) Floor Plan Sheet Number 4) Standard Detail Number 5) Door Description (Derived from Loading Sheets) 6) Data Gathering Panel Input Number 7) Door Position or Monitoring Device Type & Model Number 8) Lock Type, Model Number & Power Input/Draw (standby/active) 9) Card Reader Type & Model Number 10) Shunting Device Type & Model Number 11) Sounder Type & Model Number 12) Manufacturer 13) Misc. devices as required a) Delayed Egress Type & Model Number b) Intercom c) Camera d) Electric Transfer Hinge e) Electric Pass-through device 14) Remarks column indicating special notes or door configurations 2. Camera Schedule - A camera schedule shall be developed for each camera. Contractors shall coordinate with the Resident Engineer to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:

636-18-303

a. Item Number

CONSTRUCT AIR HANDLING TOWER

- b. Camera Number
- c. Naming Conventions
- d. Description of Camera Coverage
- e. Camera Location
- f. Floor Plan Sheet Number

28 05 00 - 17

- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number

- 5) DGP, input or output Location
- 6) DGP Chain Number
- 7) DGP Cabinet Tamper Input Number
- 8) DGP Power Fail Input Number
- 9) Number of Monitor Points Reserved For Expansion Boards
- 10) Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)

- 6) DGP or input module Input Location
- 7) Date Test
- 8) Date Passed
- 9) Cable Type
- 10) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section III Construction Mock-up: In areas with exposed EMT/Conduit Raceways, contractor shall conceal raceway as much as practical and unobtrusively. In addition, historic significance must be considered to determine installation means and methods for approval by the owner.
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.

- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
 - b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
 - c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
 - System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 a. Baseline configuration

- b. Access levels
- c. Schedules (intrusion detection, physical access control, holidays, etc.)
- d. Badge database
- e. System monitoring and reporting (unit level and central control)
- f. Naming conventions and descriptors
- H. Group III Technical Data Package
 - Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.

- b. New Unit Control Room:
 - Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer and approved by the Resident Engineer. Instruction is not to begin until the system is operational as designed.
 - 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
 - 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
 - 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
 - 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.

- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.
 - b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
 - c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any

additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
 - Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.

- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Resident Engineer a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
 - j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Resident Engineer or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

Record Construction Documents, the contractor will submit the Master Redline document to the Resident Engineer for review and approval of all changes or modifications to the documents. Each sheet shall have Resident Engineer initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for Resident Engineer review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping

requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:

- a. Certificates received instead of labels on bulk products.
- b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the Resident Engineer prior to development of Record construction documents. The Resident Engineer shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the Resident Engineer, the Resident Engineer will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the Resident Engineer a complete set of "as-built" drawings and original master redlined marked "asbuilt" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and

the ownership of the drawings shall be fully relinquished to the owner.

- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact infield conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).
- K. FIPS 201 Compliance Certificates
 - 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Card Readers
 - b. PIV Middelware
 - c. Template Matcher
 - d. Electromagnetically Opaque Sleeve
 - e. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.

- 2. Each type of conduit and pathway coupling, bushing and termination fitting.
- 3. Conduit hangers, clamps and supports.
- 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC): N117 1 Standard on Accossible and Maphle Building

A117.1....Standard on Accessible and Usable Buildings and Facilities

C. American National Standards Institute (ANSI) / Security Industry Association (SIA):

AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards

CP-01-00.....Control Panel Standard-Features for False Alarm Reduction

PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity

- TVAC-01.....CCTV to Access Control Standard Message Set for System Integration
- D. American National Standards Institute (ANSI)/Electronic Industries
 Alliance (EIA):

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE 330-09.....Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems F. American Society for Testing and Materials (ASTM) B1-07.....for Hard-Drawn Copper Wire B3-07.....for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape G. Architectural Barriers Act (ABA), 1968 H. Department of Justice: American Disability Act (ADA) 28 CFR Part 36-2010 ADA Standards for Accessible Design I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006 VA BIM Guide, V1.0 10 J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems K. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation)

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD): Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810..... Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE 14443.....Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693.....Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794..... Information technology - Biometric data interchange formats Q. National Electrical Contractors Association 303-2005..... Tinstalling Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): 250-08..... Enclosures for Electrical Equipment (1000 Volts Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable S. National Fire Protection Association (NFPA): 70-11..... National Electrical Code (NEC) 731-08......Standards for the Installation of Electric Premises Security Systems 99-2005.....Health Care Facilities T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 44-05......Thermoset-Insulated Wires and Cables 50-07..... Enclosures for Electrical Equipment 83-08..... Thermoplastic-Insulated Wires and Cables 294-99..... The Standard of Safety for Access Control System Units 305-08..... Standard for Panic Hardware 360-09.....Liquid-Tight Flexible Steel Conduit

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE 444-08.....Safety Communications Cables 464-09.....Audible Signal Appliances 467-07.....Electrical Grounding and Bonding Equipment 486A-03..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Systems for Underground Use or in Damp or Wet Locations 486E-00.......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit 51-05......Schedule 40 and 80 Rigid PVC Conduit 609-96.....Local Burglar Alarm Units and Systems 634-07..... Standards for Connectors with Burglar-Alarm Systems 636-01..... Standard for Holdup Alarm Units and Systems 639-97.....Detection Units 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 752-05.....Standard for Bullet-Resisting Equipment 797-07.....Electrical Metallic Tubing 1037-09.....Standard for Anti-theft Alarms and Devices 1635-10.....Digital Alarm Communicator System Units 1076-95..... Brandards for Proprietary Burglar Alarm Units and Systems 1242-06.....Intermediate Metal Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1981-03..... Central Station Automation System 2058-05..... High Security Electronic Locks 60950..... Technology Equipment 60950-1..... Information Technology Equipment - Safety -Part 1: General Requirements

100% CONSTRUCTION DOCUMENTS

Z. Uniform Federal Accessibility Standards (UFAS) 1984

AA. United States Department of Commerce: Special Pub 500-101Care and Handling of Computer Magnetic Storage

Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

- C. Personnel
 - 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - 1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections
 - 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- F. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with

an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.

- a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- G. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

- J. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the Resident Engineer. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the Resident Engineer. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- K. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected

100% CONSTRUCTION DOCUMENTS

against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

- Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - Store in temperature and humidity-controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to

100% CONSTRUCTION DOCUMENTS

122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.

- 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
- 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
- Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.

- Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for [8] <insert hours> hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator
 - a. Report Printers: Unit Control Room

- b. Video Monitors: Unit Control Room
- c. Intercom Stations
- d. Radio System
- e. Lights: Unit Control Room, Equipment Rooms, & Security Offices
- f. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
- g. Security Device Power Supplies (DGP, VASS, Card Access, Lock Power, etc.) powered from the security closets or remotely: various locations
- h. Telephone/Radio Recording Equipment: Unit Control Room.
- i. VASS Camera Power Supplies: Security Closets
- j. VASS Pan/Tilt Units: Various Locations
- k. VASS Outdoor Housing Heaters and Blowers: Various Sites
- 1. Intercom Master Control System
- m. Fiber Optic Receivers/Transmitters
- n. Security office Weapons Storage
- o. Outlets that charge handheld radios
- 2. Uninterruptible Power Supply (UPS) on Emergency Power
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room
 - Communications equipment: Control Equipment Room and various sites.
 - 4) VASS Matrix Switcher: Control Equipment Room
 - 5) VASS: Control Equipment Room
 - 6) Digital Video Recorders, encoders & decoders: Control Room
 - 7) All equipment Room racked equipment.
 - 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and

100% CONSTRUCTION DOCUMENTS

surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.

- 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
- 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.
 - Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
 - 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
 - Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
 - 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
 - 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
 - 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open but shall be in accessible when the door is closed.
 - 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.

- b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
- c. d. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
- 2. Console racks:
 - a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
 - b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.
- C. Tamper Provisions and Tamper Switches:
 - Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
 - 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.
 - 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the

door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.

- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The Resident Engineer shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the Resident Engineer stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - 1. Identity of the material or devices specified for which there is a proposed substitution.
 - 2. Description of the segment of the specification where the material or devices are referenced.
 - Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the Resident Engineer shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The Resident Engineer shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does

not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COTR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.21 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.
 - 3. Controlling devices shall be utilized to interface the SMS with all field devices.
 - The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
 - 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Security Access Detection Monitoring Equipment
 - g. EPPS Monitoring and Controlling Equipment
 - h. Main Panels for all Security Systems
 - i. Power Supply Units (PSU) for all field devices
 - j. Life safety and power monitoring equipment

- k. All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.
 - 1. Police two-way radio control consoles/units.
- B. Security Console Bays shall be EIA 310D compliant and:
 - Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 - Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 - 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-theshelf) security console equipment shall be used in place of customized designed consoles.
 - 4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with dayto-day operations, are labeled for quick identification, and so that high voltage power cables do not cause signal interference with low voltage and data carrying cables.
 - 5. Shall be mounted on lockable casters.
 - 6. Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
 - 7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
 - 8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
 - 9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
 - 10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.

- 11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.
- 12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearing be identified as such.
- 13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
- 14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than 84 in. (210 cm)	No greater than 72 in. (150 cm)	No greater than 96 in. (240 cm)
Bench board Slope	21 in. (52.5 cm)	25 in. (62.5 cm)	N/A
Bench board Angle	15 degrees	15 degrees	N/A
Depth of Console	24 in. (60 cm)	24 in. (60 cm)	N/A
Leg and Feet Clearance	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front
Distance Between Console Rows	96 in. (240 cm)	96 in. (240 cm)	96 in. (240 cm)
Distance Between Console and Wall	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack

C. Security Console Configuration:

 The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.

- 2. Shall meet the following minimum spacing requirements to ensure that a Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:
 - a. 500 square feet for a large Access Control System and Database Management.
 - b. 300 square feet for a small Access Control System and Database Management.
 - c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
- 3. Shall be located in an area within, at a minimum, the first level/line of security defense defined by the VA. If the Access Control System and Database Management is to be located outside the first level of security, then the area shall be constructed or retrofit to meet or exceed those requirements outlined in associated VA Master Specifications.
- 4. Shall not be located within or near an area with little to no blast mitigation standoff space protection, adjacent to an outside wall exposed to vehicle parking and traffic, within a basement or potential flood zone area, in close approximately to major utility areas, or near an exposed air intake(s).
- 5. Access shall meet UFAS and ADA accessibility requirements.
- 6. Construction shall be slab to slab and free of windows, with the exception of a service window. All penetrations into the room shall be sealed with fire stopping materials. This material shall apply in accordance with Section 07 84 00, FIRESTOPPING.
- 7. A service window shall be installed in the wall next to the main entrance of the Access Control System and Database Management or where it best can be monitored and accessed by the security console operator. The window shall meet all requirements set forth in UL 752, to include at a minimum, Class III ballistic level protection. The windows shall be set in a minimum or four (4) inches (100 mm) solid concrete units to ceiling height with either masonry or gypsum

wall board to the underside of the slab above. It shall also contain a service tray constructed in a manner that only objects no larger than 3 inches (7.5 cm) in width may pass through it.

- 8. The walls making up or surrounding the Access Control System and Database Management shall be made of materials that at a minimum offer Class III ballistic level protection for the security console operator(s).
- 9. There will be a main power cut-off button/switch located inside the Access Control System and Database Management in the event of an electrical fire or related event occurs.
- 10. Shall have a fire alarm detection unit that is tied into the main building fire alarm system and have at least two fire extinguishers located within it.
- 11. Shall utilize a fire suppression system similar to that used by the VA's computer and telecommunications room operating areas.
- 12. The floor shall be raised a minimum of 4 inches (10 cm) from the concrete floor base. Wire ways shall be utilized under the raised floor for separation of signal and power wires and cables.
- 13. Access shall be monitored and controlled by the PACS via card reader and fixed camera that utilizes a wide angle lens. A 1 in. (2.5 cm) deadbolt shall be utilized as a mechanical override for the door in the event of electrical failure of the PACS, card reader, or locking mechanism.
- 14. There shall only be one point of ingress and egress to and from the Security Control Room. The door shall be made of solid core wood or better. If a window is required for the door, then the window shall be ballistic resistant with a Millar covering.
- 15. A two-way intercom shall be placed at the point of entry into the Security Control Room for access-communication control purposes.
- 16. A remote push-button door unlocking device shall not be installed for the electronic PACS locking mechanism providing access control into the Security Control Room.
- 17. All controlling equipment and power supplies that must be wall mounted shall be mounted in a manner that maximizes usability of the Security Control Room wall space. All equipment shall be mounted to three quarter inch fire retardant plywood. The plywood shall be

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS fastened to the wall from slab to slab and fixed to the existing walls supports.

- D. Security Control Room Ventilation
 - Shall meet or exceed all requirements laid out in VA Master Specification listed in Division 23, HEATING, VENTILATION, AND AIR CONDITIONING.
 - 2. Controls shall be via a separate air handling system that provides an isolated supply and return system. The Security Control Room shall have a dedicated thermostat control unit and cut-off switch to be able to shut off ventilation to the control room in the event of a chemical, biological, or radiological (CBR) event or other related emergency.
 - 3. There shall be a louver installed in the control room door to assist with ventilation of the room. The louver shall be exactly 12 x 12 inches (30 x 30 cm) and closeable.
- E. Security Control Room and Security Console Lighting:
 - The following factors shall be taken into consideration for lighting of the Security Control Room and console area:
 - a. Shadows: To reduce eye strain and fatigue, shadows shall be avoided.
 - b. Glare: The readability of all display panels, labels, and equipment shall not be interfered with or create visibility problems.
 - The following table shall provide guidance on the amount of footcandles required per work area and type of task performed:

Work Area	Footcandles		
Main Oper	ating Panels	50	
Secondary	Display Panels	50	
Seated Wo	100		
Reading	Handwriting	100	
	Typed Documents	50	
	Visual Display	10	
Logbook R	100		
Maintenan	50		
Emergency	10		

F. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:

- The secondary stations shall the requirements outlined in Sections
 2.2.A-G.
- Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
- Secondary stations shall not have priority over a primary Security Control Console.
- 4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.

G. Wires and Cables:

- Shall meet or exceed the manufactures recommendation for power and signals.
- Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
- 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
- 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
- 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
- 9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 FIBER OPTIC EQUIPMENT

- A. 8 Channel Fiber Optic Transcievers (Video&PTZ Control)
 - The field-located and central-located fiber optic transceivers shall utilize wave division multiplexing to transmit and receive video and data pan-tilt-zoom control signals over two standard 62.5/125 multimode fibers.
 - 2. The units shall be capable of operating over a range of 2 km.
 - 3. The units shall be NTSC color compatible.
 - 4. The units shall support data rates up to 64 Kbps.
 - 5. The units shall be surface or rack mountable.
 - 6. The units shall be UL listed.
 - 7. The units shall meet or exceed the following specifications:

a. Video

- 1) Input/Output: 1 volt pk-pk (75 ohms)
- 2) Input/Output Channels: 8
- 3) Bandwidth: 10 Hz 6.5 MHZ per channel
- 4) Differential Gain: <2%
- 5) Differential Phase: <0.7°
- 6) Tilt: <1%
- 7) Signal to Noise Ratio: 60 dB
- b. Data (Control)
 - 1) Data Channels: 2
 - 2) Data Format: RS-232, RS-422, 2 wire or 4 wire RS-485 with Tri-State Manchester Bi-Phase and Sensornet
 - 3) Data Rate: DC 100 kbps (NRZ)

```
4) Bit Error Rate: < 1 in 10-9 @ Maximum Optical Loss Budget
```

- 5) Operating Mode: Simplex or Full-Duplex
- 6) Wavelength: 1310/1550 nm, Multimode or Singlemode
- 7) Optical Emitter: Laser Diode
- 8) Number of Fibers: 1

```
CONSTRUCT AIR HANDLING TOWER
                                                                  636-18-303
NWI HEALTHCARE SYSTEM
                                                                    05-28-21
OMAHA, NE
                                                 100% CONSTRUCTION DOCUMENTS
        c. Connectors
                           ST
           1) Optical:
           2) Power and Data: Terminal Block with Screw Clamps
           3) Video: BNC (Gold Plated Center-Pin)
        d. Electrical and Mechanical
           1) Power: 12 VDC @ 500 mA (stand-alone)
           2) Current Protection: Automatic Resettable Solid-State Current
              Limiters
        e. Environmental
           1) MTBF: > 100,000 hours
           2) Operating Temp: -40 to 74 deg C (-40 to 165 deg F)
           3) Storage Temp: -40 to 85 deg C (-40 to 185 deg F)
           4) Relative Humidity: 0% to 95% (non-condensing)
   B. Fiber Optic Transmitters: The central-located fiber optic transmitters
      shall utilize wave division multiplexing to transmit video and signals
     over standard 62.5/125 multimode fibers.
     1. The units shall be capable of operating over a range of 4.8 km.
      2. The units shall be NTSC color compatible.
      3. The units shall support data rates up to 64 Kbps.
      4. The units shall be surface or rack mountable.
      5. The units shall be UL listed.
      6. The units shall meet or exceed the following specifications:
        a. Video
           1) Input: 1 volt pk-pk (75 ohms)
           2) Bandwidth: 5H2 - 10 MHZ
           3) Differential Gain: <5%
           4) Tilt: <1%
           5) Signal-Noise: 60db
           6) Wavelength: 850nm
           7) Number of Fibers:
                                  1
           8) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
           9) Connectors:
              a) Power: Female plug with screw clamps
              b) Video: BNC
              c) Optical: ST
```

10) Power: 12 VDC

```
CONSTRUCT AIR HANDLING TOWER
                                                                    636-18-303
NWI HEALTHCARE SYSTEM
                                                                     05-28-21
                                                  100% CONSTRUCTION DOCUMENTS
OMAHA, NE
   C. Fiber Optic Receivers: The field-located fiber optic receivers shall
      utilize wave division multiplexing to receive video signals over
      standard 62.5/125 multimode fiber.
      1. The units shall be capable of operating over a range of 4.8 km.
      2. The units shall be NTSC color compatible.
      3. The units shall support data rates up to 64 Kbps.
      4. The units shall be surface or rack mountable.
      5. The units shall be UL listed.
      6. The units shall meet or exceed the following specifications:
         a. Video
            1) Output: 1 volt pk-pk (75 ohms)
            2) Bandwidth:
                            5H2 - 10 MHZ
            3) Differential Gain: <5%
            4) Tilt: <1%
            5) Signal-Noise: 60dB
            6) Wavelength: 850nm
                                  1
           7) Number of Fibers:
           8) Surface Mount: 106.7 x 88.9 x 25.4 mm (4.2 x 3.5 x 1 in)
           9) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
           10) Connectors:
           11) Power: Female plug block with screw clamps
           12) Video: BNC
           13) Optical: ST
           14) Power: 12 VAC8 Channel Fiber Optic Transceivers (Video&PTZ
              Control)
  D. Fiber Optic Sub Rack with Power Supply
      1. The Card Cage Rack shall provide high-density racking for fiber-
         optic modules. The unit shall be designed to mount in standard 483
        mm (19 in) instrument racks and to accommodate the equivalent of 15
         1-inch modules.
```

- a. Specifications
 - 1) Card Orientation: Vertical
 - 2) Construction: Aluminum
 - 3) Current Consumption: 0.99 A
 - 4) Humidity: 95.0 % RH
 - 5) Input Power: 100-240 VAC, 60/50 Hz

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE 6) Mounting: Mounts in standard 483 mm (19 in) rack using four (4) screws (optional wall brackets purchased separately) 7) Number of Outputs: 1.0 8) Number of Slots 15.0 9) Operating Temperature: -40 to +75 deg C (-40.0 to 167.0 deg F) 10) Output Voltage: 13.5 V 11) Output Current 6.0 A 12) Power Dissipation: 28.0 W 13) Power Factor: 48.0 14) Power Supply: (built-in) 15) Rack Units: 3RU 16) Redundant Capability: Yes 17) Weight: 2.43 kg (5.35 lb) 18) Width: 483 mm (19.0 in) 2.4 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION A. Transient Voltage Surge Suppression

- 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:
 - A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.

- c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
- d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, noncondensing.
- B. Physical Access Control Systems
 - Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec)
 - e. Maximum Continuous Current: 15 Amps
 - f. MCOV: 125 VAC
 - g. Service Voltage: 110-120 VAC
 - Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. UL 497B
 - b. Minimum Surge Current Capacity: 2,000 Amps per pair
 - c. Maximum Continuous Current: 5 Amps
 - d. MCOV: 33 Volts
 - e. Service Voltage: 24Volts
 - Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: 18VDC / 38VDC
 - c. Clamp level for Data/LED: 6.8VDC
 - d. Service Voltage for Power: 12VDC/24VDC
 - e. Service Voltage for Data/LED: <5VDC
 - f. Clamp level PoE Access Power: 72V
 - g. Clamp level PoE Access Data: 7.9V
 - h. Service Voltage PoE Access: 48VAC 54VAC
 - i. Service Voltage PoE Data: <5VDC

- C. Intercom Systems
 - 1. Suppressors shall be installed on the AC power at the point of service and shall meet the following criteria:
 - a. UL 1449 Listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Diagnostic Indicator Light(s)
 - d. Integrated ground terminating post (where case/chassis ground exists)
 - e. Minimum Surge Current Capacity of 13,000 Amps (8 x 20 µSec)
 - Suppressors shall be installed on incoming central office lines and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Auto-reset current protection not to exceed 2 Amps per pair
 - d. Minimum Surge Current of 500 Amps per pair (8 x 20 µSec)
 - 3. Suppressors shall be installed on all telephone/intercom circuits that enter or leave separate buildings and shall meet the following criteria:
 - a. UL 497A Listed (where applicable)
 - b. UL 497B Listed (horns, strobes, speakers or communication circuits over 300 feet)
 - c. Multi Stage protection design
 - d. Auto-reset over-current protection not to exceed 5 Amps per pair
 - e. Minimum Surge Current of 1000 Amps per pair (8 x 20 µSec)
- D. Intrusion Detection Systems
 - Suppressors shall be installed on AC at the point of service and shall meet the following criteria:
 - a. UL 1449, 2nd Edition 2007, listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Lights
 - d. Center screw for terminating Class II transformers
 - e. Minimum Surge Current Capacity of 32,000 Amps (8 x 20 µSec)
 - 2. Suppressors shall be installed on all Telephone Communication Interface circuits and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Surge Current Capacity: 9,000 Amps (8x20 µSec)

- d. Clamp Voltage: 130Vrms
- e. Auto reset current protection not to exceed 150 milliAmps
- 3. Suppressors shall be installed on all burglar alarm initiating and signaling loops and addressable circuits which enter or leave separate buildings. The following criteria shall be met:
 - a. UL 497B for data communications or annunciation (powered loops)
 - b. Fail-short/fail-safe mode.
 - c. Surge Current Capacity: 9,000 Amps (8x20 µSec)
 - d. Clamp Voltage: 15 Vrms
 - e. Joule Rating: 76 Joules per pair (10x1000 µSec)
 - f. Auto-reset current protection not to exceed 150 milliAmps for UL 497A devices.
- E. Video Surveillance System
 - Protectors shall be installed on coaxial cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection for 12 and/or 24 volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). SPDs shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally a minimum 450VA battery back up shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:
 - a. Head-End Power
 - 1) UL 1778, CUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20usec)
 - 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
 - 4) All modes protected (L-N, L-G, N-G)
 - 5) EMI/RFI Filtering
 - 6) Maximum Continuous Current: 12 Amps
 - b. Camera Power
 - Minimum Surge Current Capacity: 1,000 Amps (8X20µsec); 240 Amps for IP Video/PoE cameras
 - 2) Screw Terminal Connection
 - 3) All protection modes L-G (all Lines)

- 4) MCOV <40VAC
- c. Video And Data
 - 1) Surge Current Capacity 1,000 Amps per conductor
 - 2) "BNC" Connection (Coax)
 - 3) Protection modes: L-G (Data), Center Pin-G, Shield-G (Coax)
 - 4) Band Pass 0-2GHz
 - 5) Insertion Loss <0.3dB
- F. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- G. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)
 - 6. Weight: 2.88 g (0.18 lbs)
 - 7. Housing: ABS

2.5 INSTALLATION KIT

- A. General:
 - 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
 - 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
 - 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

100% CONSTRUCTION DOCUMENTS

wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.

- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.

- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISIONIN OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 -COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for <insert hours> hours to instruct VA personnel in operation and maintenance of units.

E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the Resident Engineer on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the Resident

or data loss.

100% CONSTRUCTION DOCUMENTS

Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the Resident Engineer has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows: a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with Resident Engineer for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with Resident Engineer to ensure data uploading is performed without incident of loss of function

- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- The Contractor shall identify and request from the Resident Engineer, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and Resident Engineer coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks							
Descr iptio n of Syste ms	Develop System Loading Sheets	Coordina tion	Initial Set-up Configur ation	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)	
SMS Setup & Confi gurat ion	e.g., program monitori ng stations , programm ing networks , intercon nections between CCTV, intercom s, time synchron ization	e.g., retrieve IP addresse s, naming conventi ons, standard event descript ions, programm ing template s, coordina te special system needs	e.g., Load system Operatin g System and Applicat ion software , general system configur ations	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. prog ram moni tori ng stat ions prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat	e.g., check all system diagno stics (e.g., client s, panels)	Load and set- up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration	

							e.g., creating
					e.g.		a door, door
							configuration,
					,		adding request
	-	e.g.,	e.g.,		setu	e.g., perfor	to exit, door
		confirmi	enter		p of		monitors and
	e.g.,	ng	data		devi	ming	relays, door
	setup of	device	from		ce,	entry	timers, door
Tl a at	device,	configur	loading		door	testin	related events (e.g., access, access denied,
Elect ronic	door	ations,	sheets;		grou	g to	
Entry	groups &	naming	configur		ps & confi: sche m	confir	
Contr ol	schedule	conventi	е			m	
Syste	s, REX,	ons,	componen		dule	le correc	forced open, held open), linkages,
ms	Locks,	event	ts, link		s,	t set-	
	link	descript	events,		REX,	up and	
	graphics	ion and	cameras,		Lock config	controlled	
	narrativ es		graphics	s, uratio	areas,		
					link		advanced door
					grap		monitoring,
					hics		time zones,
				IIICS		sequence of	
							operations

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

					_		e.g., setting
							up monitoring
							and control
							points (e.g.,
							motion
							sensors,
					e.g.		glassbreaks,
					,		vibration
		0 <i>a</i>	o		ente		sensor,
		e.g., confirmi	e.g., enter		r		strobes,
					door		sounders)
	e.g.,	ng	data		grou	e.g.,	creating
	enter	device	from		ps & sche	walk test,	intrusion
	door	configur	loading				zones,
Intru sion	groups &	ations,	sheets;		dule	device	creating
Detec	schedule	naming	configur		s,	positi	arm/disarm
tion Syste	s, link	conventi	e		link	on,	panel, timed
ms	devices	ons,	componen		devi	and	sequences,
	- REX,	event	ts, link		ces	maskin	time zones,
	lock, &	descript	events,		_	g	icon
		ion and narrativ es	cameras, and graphics		REX,		placements on
					lock		graphic maps,
					, &		clearance
					, grap		levels, events
					hics		(e.g., armed,
					nics		disarmed, zone
							violation,
							device alarm
							activations),
							LCD reader
							messages,

CCTV Syste ms	e.g., programm ing call-ups recordin g	e.g., confirmi ng device configur ations, naming conventi ons	<pre>e.g., enter data from loading sheets; camera naming conventi on, sequence s, configur e componen ts)</pre>	e.g. , prog ramm ing call -ups reco rdin g	e.g., confir m area of covera ge, call- up per event genera ted and record ing rates	e.g., setting up cameras points, recording ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups
Inter coms Syste ms	e.g., programm ing events & call-ups	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics	e.g. , prog ramm ing even ts & call -ups	e.g., confir m operat ion, SMS event genera tion and camera call- up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps
	N/A Note: Prog ntractor's		per monitor sks are supp c of the Teo			N/A

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the Resident Engineer at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COTR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the Resident Engineer before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the Resident Engineer at the conclusion of each phase of testing and prior to Resident Engineer approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the Resident Engineer within seven (7) calendar days after completion of each test.
- B. Pre-Delivery Testing
 - 1. The purpose of the pre-delivery test is to establish that a system is suitable for installation. As such, pre-delivery test shall be a mock-up of the system as planned in the contract documents. The Contractor shall assemble the Security Test System at the Contractors local project within 50-miles of the project site, and perform tests to demonstrate the performance of the system complies with the contract requirements in accordance with the approved predelivery test procedures. The tests shall take place during regular daytime working hours on weekdays. Model numbers of equipment tested shall be identical to those to be delivered to the site.

100% CONSTRUCTION DOCUMENTS

Original copies of all data produced during pre-delivery testing, including results of each test procedure, shall be documented and delivered to the Resident Engineer at the conclusion of pre-delivery testing and prior to Resident Engineer's approval of the test. The test report shall be arranged so all commands, stimuli, and responses are correlated to allow logical interpretation. For Existing System modifications, the contractor shall provide their own server with loaded applicable software to support PDT.

- Test Setup: The pre-delivery test setup shall include the following:
 - a. All console equipment.
 - 1) At least one of each type of data transmission media (DTM) and associated equipment to provide a fully integrated PACS.
 - The number of local processors shall equal the amount required by the site design.
 - 3) Enough sensor simulators to provide alarm signal inputs to the system equal to the number of sensors required by the design. The alarm signals shall be manually or software generated.
 - Contractor to prove to owner all systems are appropriately sized and configured as sized.
 - 5) Integration of VASS, intercom systems, other subsystems.
- 3. During the bidding process the contractor shall submit a request for information to the Owner to determine if a pre-delivery test will be required. If a pre-delivery test is not required, the contractor shall provide a written notification that the Pre-delivery Test is not required in their shop drawings submission.
- D. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the Resident Engineer (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.
- E. Contractor's Field Testing (CFT)
 - The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to Resident Engineer approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the Resident Engineer's acceptance testing procedures. The Contractor shall provide the Resident Engineer with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the Resident Engineer stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

F. Performance Verification Test (PVT)

- 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the Resident Engineer, then the Contractor shall schedule an acceptance test to date and give the Resident Engineer written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the Resident Engineer. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for outof-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.
- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the Resident Engineer or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the Resident Engineer prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for Resident Engineers approval.

- 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.
- 6. Partial PVT At the discretion of Resident engineer, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.
- G. Endurance Test
 - 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the Resident Engineer notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The Resident Engineer may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Resident Engineer prior to acceptance of the system.
 - 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the Resident Engineer. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the Resident Engineer.

3. Phase II (Assessment):

- a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the Resident Engineer. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
- b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the Resident Engineer. The meeting shall not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase I be repeated.
- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COTR.
- 5. Phase IV (Assessment):
 - After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COTR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COTR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COTR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance

verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the Resident Engineer may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

H. Exclusions

- 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 28.33

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 31 20 00 EARTH MOVING. For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.

28 05 28.33 - 2

100% CONSTRUCTION DOCUMENTS

- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- H. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

5-04.....Surface Metal Raceway and Fittings

6-07.....Rigid Metal Conduit

50-07..... Enclosures for Electrical Equipment

360-09.....Liquid-Tight Flexible Steel Conduit

467-07.....Grounding and Bonding Equipment

514A-04.....Metallic Outlet Boxes

514B-04.....Fittings for Cable and Conduit

514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

651-05..... Schedule 40 and 80 Rigid PVC Conduit

651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit

797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2 CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3 WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4 CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.

- 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- F. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.

2. As recommended by the conduit manufacturer.

- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- C. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.11 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: [EPDM] [NBR] <Insert sealing element> interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - Pressure Plates: [Plastic] [Carbon steel] [Stainless steel]. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: [Carbon steel with corrosion-resistant coating] [Stainless steel] of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.12 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).

100% CONSTRUCTION DOCUMENTS

7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.

- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.
- D. Fire Alarm:
 - 1. Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.

- 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.

- B. Conduit for Conductors 600 volts and below:
 - Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.

05-28-21

100% CONSTRUCTION DOCUMENTS

- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.

- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.

I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3⁄4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 28 08 00

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

NE 100% CONSTRUCTION DOCUMENTS type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 CONSTRUCT AIR HANDLING TOWER636-18-303NWI HEALTHCARE SYSTEM05-28-21OMAHA, NE100% CONSTRUCTION DOCUMENTS91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for

additional Contractor training requirements.

----- END -----

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of a system server, operating system and application software, and fieldinstalled Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors.
 - b. Anti-passback
 - c. Visitor assignment
 - d. Surge and tamper protection
 - e. Secondary alarm annunciator
 - f. Credential cards and readers
 - g. Biometric identity verification equipment
 - h. Push-button switches
 - i. RS-232 ASCII interface
 - j. Credential creation and credential holder database and management
 - k. Monitoring of field-installed devices
 - 1. Reporting
 - 2. Security:
 - a. Real-time guard tour.
 - b. Time and attendance.
 - c. Key tracking.
 - d. Video and camera control.
 - e. Time and attendance
- C. System Architecture:
 - Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.

- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,
 - 2. One or more networked PC-based workstations,
 - 3. Physical Access Control System and Database Management Software,
 - 4. Credential validation software/hardware,
 - 5. Field installed controllers,
 - 6. PIV Middelware,
 - 7. Card readers,
 - 8. Biometric identification devices,
 - 9. PIV <PIV-I>, <Legacy CAC>, <CAC NG>, <CAC EP>, <TWIC>, <FRAC> cards,
 - 10. Supportive information system,
 - 11. Door locks and sensors,
 - 12. Power supplies,
 - 13. Interfaces with:
 - a. Video Surveillance and Assessment System,
 - b. Gate, turnstile, and traffic arm controls,
 - c. Automatic door operators,
 - d. Intrusion Detection System,
 - e. Intercommunication System
 - f. Fire Protection System,
 - g. HVAC,
 - h. Building Management System,
 - i. Elevator Controls,
 - j. <list interfaced systems>.
 - 14. <list system components>.
- F. Head-End equipment server, workstations and controllers shall be connected by a high-speed electronic data transmission network.
- G. Information system supporting PACS , Head-End equipment server, workstations, network switches, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).

- H. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,
 - Incident response policy implementation capability; system shall have capability to automatically change access privileges for certain user groups to high security areas in case of incident/emergency.
 - 4. Visitor management,
- I. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include.
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- K. System Software: Based on <Insert name of operating system> centralstation, workstation operating system, server operating system, and application software.
- L. Software and controllers shall be capable of matching full 56 bit FASC-N plus minimum of 32 bits of public key certificate data.
- M. Software shall have the following capabilities:
 - Multiuser multitasking to allow for independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Support authentication and enrollment
 - a. PIV verification,
 - b. Expiration date check,
 - c. Biometric check,
 - d. Digital photo display/check,
 - e. Validate digital signatures of data objects (Objects are signed by the Trusted Authority
 - f. Private key challenge (CAK & PAK to verify private key public key
 pairs exist and card is not a clone)
 - 3. Support CRL validation via OCSP or SCVP on a scheduled basis and automatically deny access to any revoked credential in the system.

- Graphical user interface to show pull-down menus and a menu tree format that complies with interface guidelines of Microsoft Windows operating system.
- 5. System license shall be for the entire system and shall include capability for future additions that are within the indicated system size limits specified in this Section.
- 6. System shall have open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with <insert operating system> operating system.
- 7. Operator login and access shall be utilized via integrated smart card reader and password protection.
- N. Systems Networks:
 - A standalone system network shall interconnect all components of the system. This network shall include communications between a central station and any peer or subordinate workstations, enrollment stations, local annunciation stations, portal control stations or redundant central stations.
- O. Security Management System Server Redundancy:
 - The SMS shall support multiple levels of fault tolerance and SMS redundancy listed and described below:
 - a. Hot Standby Servers
 - b. Clustering
 - c. Disk Mirroring
 - d. RAID Level 10
 - e. Distributed Intelligence
- P. Number of points:
 - 1. PACS shall support multiple autonomous regional servers that can connect to a master command and controller server.
 - Unlimited number of access control readers, unlimited number of inputs or outputs, unlimited number of client workstations, unlimited number of cardholders.
 - 3. Total system solution to enable enterprise-wide, networked, multiuser access to all system resources via a wide range of options for connectivity with the customer's existing LAN and WAN.
- Q. Console Network:
 - Console network, if required, shall provide communication between a central station and any subordinate or separate stations of the

28 13 00 - 4

system. Where redundant central or parallel stations are required, the console network shall allow the configuration of stations as master and slave. The console network may be a part of the field device network or may be separate depending upon the manufacturer's system configuration.

- R. Network(s) connecting PCs and Controllers shall comply with NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems) and consist of one or more of the following:
 - Local area, IEEE 802.3 Fast Ethernet [10 BASE-T] [100 BASE-TX], star topology network based on TCP/IP.
 - 2. Direct-connected, RS-232 cable from the COM port of the Central Station to the first Controller, then RS-485 to interconnect the remainder of the Controllers at that Location.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- E. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- F. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- G. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- H. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- I. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- J. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- K. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- L. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

- M. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- N. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- O. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.
- B. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- D. Product Qualifications:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- E. Contractor Qualifications:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as

05-28-21 100% CONSTRUCTION DOCUMENTS

the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- a. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- b. Cable installer must have on staff a Registered Communication
 Distribution Designer (RCDD) certified by Building Industry
 Consulting Service International. The staff member shall provide
 consistent oversight of the project cabling throughout design,
 layout, installation, termination and testing.
- F. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, Section 02 41 00, DEMOLITION, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a complete and thorough pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a complete list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all individual security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a detailed device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Clearly define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.

- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A detailed riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A detailed system drawing for each applicable security system shall:
 - a. Clearly identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A detailed schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the PACS, provide the door ID, door type (e.g. wood or metal), locking mechanism (e.g. strike or electromagnetic lock) and control device (e.g. card reader or biometrics).

- Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall go through a full review process conducted by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per Section 01 00 00, GENERAL REQUIREMENTS, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- I. General: Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - DESIGN SUBMITTAL PROCEDURES, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.

- The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.
- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data, correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and or maintenance of the component or system.

- Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
- b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
- c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: In each manual include information specified in the individual Specification section, and the following information for each major component of building equipment and controls:
 - 1) General system or equipment description.
 - 2) Design factors and assumptions.
 - 3) Copies of applicable Shop Drawings and Product Data.
 - 4) System or equipment identification including: manufacturer, model and serial numbers of each component, operating instructions, emergency instructions, wiring diagrams, inspection and test procedures, maintenance procedures and schedules, precautions against improper use and maintenance,

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS wired maintenance materials

repair instructions, sources of required maintenance materials and related services, and a manual index.

- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are

28 13 00 - 13

pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.

- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.

- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- J. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA Special Conditions and CAD Standards Documents. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) security devices by symbol,
 - the associated device point number (derived from the loading sheets),
 - 3) wire & cable types and counts
 - 4) conduit sizing and routing
 - 5) conduit riser systems
 - 6) device and area detail call outs
 - e. Architectural details Architectural details shall be produced for each device mounting type (door details for doors with

physical access control, reader pedestals and mounts, security panel and power supply details).

- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the physical access control system throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., physical access control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
 - 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
 - 4) Details of connections to power supplies and grounding
 - 5) Details of surge protection device installation
 - Sensor detection patterns Each system sensor shall have associated detection patterns.

- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- 8) Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.
- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number

28 13 00 - 17

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

- 8) Lock Type, Model Number & Power Input/Draw (standby/active)
- 9) Card Reader Type & Model Number
- 10) Shunting Device Type & Model Number
- 11) Sounder Type & Model Number
- 12) Manufacturer
- 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device
- 14) Remarks column indicating special notes or door configurations2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the Resident Engineer to determine camera starting numbers and naming conventions. All
 - drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference
 - j. Power Input & Draw
 - k. Power Panel Location
 - 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package.

The documentation packages shall be provided in both printed and magnetic form at both review stages.

- b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
- c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
- d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
- e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number
 - 4) First Relay Number
 - 5) DGP, input or output Location
 - 6) DGP Chain Number
 - 7) DGP Cabinet Tamper Input Number
 - 8) DGP Power Fail Input Number
 - 9) Number of Monitor Points Reserved For Expansion Boards
 - 10) Number of Control Points (Relays) Reserved For Expansion Boards

CONSTRUCT AIR NWI HEALTHCARE OMAHA, NE	HANDLING TOWER SYSTEM 100% CONSTRUCTION	636-18-303 05-28-21 DOCUMENTS
f. Th	e DGP, input module and output module spreadsheets sha	.ll
au	tomatically calculate the following information based	upon the
as	sociated entries in the above fields:	
1)	System Numbers for Card Readers	
2)	System Numbers for Monitor Point Inputs	
3)	System Numbers for Control Points (Relays)	
4)	Next DGP or input module First Monitor Point Number	
5)	Next DGP or output module First Control Point Number	
g. Th	e DGP spreadsheet shall provide the following informat	ion for
ea	ch card reader:	
1)	DGP Reader Number	
2)	System Reader Number	
3)	Cable ID Number	
4)	Description Field (Room Number)	
5)	Description Field (Device Type i.e.: In Reader, Out R	leader,
	etc.)	
6)	Description Field	
7)	DGP Input Location	
8)	Date Test	
9)	Date Passed	
10)	Cable Type	
11)	Camera Numbers (of cameras viewing the reader location	n)
h. Th	e DGP and input module spreadsheet shall provide the f	ollowing
in	formation for each monitor point (alarm input).	
1)	DGP Monitor Point Input Number	
2)	System Monitor Point Number	
3)	Cable ID Number	
4)	Description Field (Room Number)	
5)	Description Field (Device Type i.e.: Door Contact, Mo	otion
	Detector, etc.)	
6)	DGP or input module Input Location	
7)	Date Test	
8)	Date Passed	
9)	Cable Type	
10)	Camera Numbers (of associated alarm event preset call	-ups)

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

- i. The DGP and output module spreadsheet shall provide the following
 - information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 5. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response

time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.

- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 6. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- K. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
 - System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- L. Group III Technical Data Package
 - Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and

be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.

- M. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
 - b. New Unit Control Room:
 - Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the Resident Engineer.

designed.

- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.
- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the

100% CONSTRUCTION DOCUMENTS

information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components: 1) Physical Access control system components,

- 2) All intrusion detection system components,
- 3) Video surveillance, control and recording systems,
- 4) Intercom systems components,
- 5) All other security subsystems shown in the contract documents.
- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.
- N. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Six (6) hard-copies and one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.

- Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data

formats, command characters, and a sample of each type of data transfer.

- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Resident Engineer a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.

- g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
- h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Resident Engineer or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the Resident Engineer for review and approval of all changes or modifications to the documents. Each sheet shall have Resident Engineer initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".

636-18-303

05-28-21 100% CONSTRUCTION DOCUMENTS

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for Resident Engineer review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include, a minimum of the following:

a. Certificates received instead of labels on bulk products.

- b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
- c. Documented qualification of installation firms.
- d. Load and performance testing.
- e. Inspections and certifications.
- f. Final inspection and correction procedures.
- g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the Resident Engineer prior to development of Record construction documents. The Resident Engineer shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the Resident Engineer, the Resident Engineer will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the Resident Engineer a complete set of "as-built" drawings and original master redlined marked "asbuilt" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.
 - c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, subcontractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible

100% CONSTRUCTION DOCUMENTS

after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact infield conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).

- O. FIPS 201 Compliance Certificates
 - 1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station
 - b. Card Readers
 - c. Facial Image Capturing Camera
 - d. PIV Middelware
 - e. Template Matcher
 - f. Electromagnetically Opaque Sleeve
 - g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- P. Approvals will be based on complete submission of manuals together with shop drawings.
- Q. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS B. American National Standards Institute (ANSI) / Security Industry Association (SIA): AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards TVAC-01.....CCTV to Access Control Standard - Message Set for System Integration C. American National Standards Institute (ANSI) / International Code Council (ICC): A117.1.....Standard on Accessible and Usable Buildings and Facilities D. Department of Justice American Disability Act (ADA) 28 CFR Part 36.....ADA Standards for Accessible Design 2010 E. Department of Veterans Affairs (VA): PACS-R: Physical Access Control System (PACS) Requirements VA Handbook 0730 Security and Law Enforcement F. Government Accountability Office (GAO): GAO-03-8-02 Security Responsibilities for Federally Owned and Leased Facilities G. National Electrical Contractors Association 303-2005..... Tinstalling Closed Circuit Television (CCTV) Systems H. National Electrical Manufactures Association (NEMA): Maximum) I. National Fire Protection Association (NFPA): 70-11..... National Electrical Code J. Underwriters Laboratories, Inc. (UL): 294-99......The Standard of Safety for Access Control System Units 305-08..... Hardware 639-97.....Detection Units 752-05.....Standard for Bullet-Resisting Equipment 827-08.....Central Station Alarm Services 1076-95..... Brandards for Proprietary Burglar Alarm Units and Systems 1981-03.....Central Station Automation System

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE 2058-05.....High Security Electronic Locks K. Homeland Security Presidential Directive (HSPD): Federal Employees and Contractors L. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems M. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors N. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-96.....PIV Card Reader Interoperability Guidelines

	RUCT AIR HANDLING TOWER CALTHCARE SYSTEM NE	100% CONSTRUCTION	636-18-303 05-28-21 N DOCUMENTS
-		.PIV Card Reader Interoperability Guid	
	Special Pub 800-104A	.Scheme for PIV Visual Card Topography	
	Special Pub 800-116	.Recommendation for the Use of PIV Cree	dentials
		in Physical Access Control Systems (PA	ACS)
Ο.	Institute of Electrical	and Electronics Engineers (IEEE):	
	C62.41	.IEEE Recommended Practice on Surge Vo	ltages in
		Low-Voltage AC Power Circuits	
P.	International Organizat	ion for Standardization (ISO):	
	7810	.Identification cards - Physical chara	cteristics
	7811	.Physical Characteristics for Magnetic	Stripe
		Cards	
	7816-1	.Identification cards - Integrated cir	cuit(s)
		cards with contacts - Part 1: Physical	1
		characteristics	
	7816-2	.Identification cards - Integrated cire	cuit cards
		- Part 2: Cards with contacts -Dimens.	ions and
		location of the contacts	
	7816-3	.Identification cards - Integrated cir	cuit cards
		- Part 3: Cards with contacts - Elect	rical
		interface and transmission protocols	
	7816-4	.Identification cards - Integrated cir	cuit cards
		- Part 11: Personal verification through	ugh
		biometric methods	
	7816-10	.Identification cards - Integrated cir	cuit cards
		- Part 4: Organization, security and	commands
		for interchange	
	14443	.Identification cards - Contactless in	tegrated
		circuit cards; Contactless Proximity	Cards
		Operating at 13.56 MHz in up to 5 incl	hes
		distance	
	15693	.Identification cards Contactless is	-
		circuit cards - Vicinity cards; Conta	ctless
		Vicinity Cards Operating at 13.56 MHz	in up to
		50 inches distance	
	19794	.Information technology - Biometric da	ta
		interchange formats	
Q.	Uniform Federal Accessi	bility Standards (UFAS) 1984	

R. ADA Standards for Accessible Design 2010

S. Section 508 of the Rehabilitation Act of 1973

1.6 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16character set.
- B. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and only if the person's identifier is present in the access control list (explicitly or implicitly), and the permissions in the (identifier, permissions) pair include the permission to perform the requested operation.
- C. Access Control: A function or a system that restricts access to authorized persons only.
- D. API Application Programming Interface
- E. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels: [M-04-04]
 - 1. Level 1: LITTLE OR NO confidence
 - 2. Level 2: SOME confidence
 - 3. Level 3: HIGH confidence
 - 4. Level 4: VERY HIGH confidence
- F. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- G. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- H. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).
- I. BIO or BIO-A: A FIPS 201 authentication mechanism that is implemented by using a Fingerprint data object sent from the PIV Card to the PACS. Note that the short-hand "BIO (-A)" is used throughout the document to represent both BIO and BIO-A authentication mechanisms.

- J. Biometric: An authenticator produced from measurable qualities of a living person.
- K. CAC EP CAC End Point with end point PIV applet
- L. CAC NG CAC Next Generation with transitional PIV applet
- M. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. [SP800-73] NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.
- N. CCTV: Closed-circuit television.
- O. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.
- P. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- Q. CPU: Central processing unit.
- R. Credential: Data assigned to an entity and used to identify that entity.
- S. File Server: A PC in a network that stores the programs and data files shared by users.
- T. FIPS Federal Information Processing Standards
- U. FRAC First Responder Authentication Credential
- V. HSPD Homeland Security Presidential Directive
- W. I/O: Input/Output.
- X. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- Y. IEC International Electrotechnical Commission
- Z. ISO International Organization for Standardization
- AA. KB Kilobyte
- BB. kbit/s Kilobits / second

- CC. LAN: Local area network.
- DD. LED: Light-emitting diode.
- EE. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- FF. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- GG. NIST: National Institute of Standards and Technology
- HH. PACS: Physical Access Control System
- II. PC/SC: Personal Computer / Smart Card
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. PIV: Personal Identification Verification
- NN. PIV-I PIV Interoperable credential
- OO. PPS: Protocol and Parameters Selection
- PP. RF: Radio frequency.
- QQ. ROM: Read-only memory. ROM data are maintained through losses of power.
- RR. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- SS. RS-485: An TIA/EIA standard for multipoint communications.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. TPDU: Transport Protocol Data Unit
- VV. TWIC Transportation Worker Identification Credential
- WW. UPS: Uninterruptible power supply.
- XX. Vcc: Voltage at the Common Collector
- YY. WAN: Wide area network.
- ZZ. WAV: The digital audio format used in Microsoft Windows.

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS AAA. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.

- BBB. Windows: Operating system by Microsoft Corporation.
- CCC. Workstation: A PC with software that is configured for specific limited security system functions.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items

computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

- C. Personnel
 - 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a) The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two
 (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- E. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with

an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.

- a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- F. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- G. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- H. Work Request
 - The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

- I. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COTR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COTR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- J. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door.
- C. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:

- 1. One authentication factor for access to Controlled security areas
- 2. Two authentication factors for access to Limited security areas
- 3. Three authentication factors for access to Exclusion security areas
- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.
- G. Distributed Processing: System shall be a fully distributed processing system so that information, including time, date, valid codes, access levels, and similar data, is downloaded to Controllers so that each Controller makes access-control decisions for that Location. Do not use intermediate Controllers for physical access control. If communications to Central Station are lost, all Controllers shall automatically buffer event transactions until communications are restored, at which time buffered events shall be uploaded to the Central Station.
- H. Data Capacity:
 - 1. [130] <Insert number> different card-reader formats.
 - 2. [999] <Insert number> comments.
 - 3. [16] <Insert number> graphic file types for importing maps.
- I. Location Capacity:
 - 1. [128] <Insert number> reader-controlled doors.
 - 2. [50,000] <Insert number> total access credentials.
 - 3. [2048] <Insert number> supervised alarm inputs.
 - 4. [2048] <Insert number> programmable outputs.
 - 5. [32,000] <Insert number> custom action messages per Location to instruct operator on action required when alarm is received.
- J. System Network Requirements:

- Interconnect system components and provide automatic communication of status changes, commands, field-initiated interrupts, and other communications required for proper system operation.
- Communication shall not require operator initiation or response, and shall return to normal after partial or total network interruption such as power loss or transient upset.
- 3. System shall automatically annunciate communication failures to the operator and identify the communication link that has experienced a partial or total failure.
- K. Central Station shall provide operator interface, interaction, display, control, and dynamic and real-time monitoring. Central Station shall control system networks to interconnect all system components, including workstations and field-installed Controllers.
- L. Field equipment shall include Controllers, sensors, and controls. Controllers shall serve as an interface between the Central Station and sensors and controls. Data exchange between the Central Station and the Controllers shall include down-line transmission of commands, software, and databases to Controllers. The up-line data exchange from the Controller to the Central Station shall include status data such as intrusion alarms, status reports, and entry-control records. Controllers are classified as alarm-annunciation or entry-control type.
- M. System Response to Alarms: Alarms shall be annunciated at the Central Station within 1 second of the alarm occurring at a Controller or device controlled by a local Controller, and within 100 ms if the alarm occurs at the Central Station. Alarm and status changes shall be displayed within 100 ms after receipt of data by the Central Station. All graphics shall be displayed, including graphics-generated map displays, on the console monitor within 5 seconds of alarm receipt at the security console.[This response time shall be maintained during system heavy load.]
- N. False Alarm Reduction: The design of Central Station and Controllers shall contain features to reduce false alarms. Equipment and software shall comply with SIA CP-01.
- O. Error Detection: A cyclic code error detection method shall be used between Controllers and the Central Station, which shall detect singleand double-bit errors, burst errors of eight bits or less, and at least 99 percent of all other multibit and burst error conditions.

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

Interactive or product error detection codes alone will not be acceptable. A message shall be in error if one bit is received incorrectly. System shall retransmit messages with detected errors. A two-digit decimal number shall be operator assignable to each communication link representing the number of retransmission attempts. When the number of consecutive retransmission attempts equals the assigned quantity, the Central Station shall print a communication failure alarm message. System shall monitor the frequency of data transmission failure for display and logging.

- P. Data Line Supervision: System shall initiate an alarm in response to opening, closing, shorting, or grounding of data transmission lines.
- Q. Door Hardware Interface: Coordinate with Division 08 Sections that specify door hardware required to be monitored or controlled by the PACS. The Controllers in this Section shall have electrical characteristics that match the signal and power requirements of door hardware. Integrate door hardware specified in Division 08 Sections to function with the controls and PC-based software and hardware in this Section.
- R. References to industry and trade association standards and codes are minimum installation requirement standards.
- S. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.10 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.

- Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 100% CONSTRUCTION DOCUMENTS OMAHA, NE B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation. C. PACS equipment shall meet or exceed all requirements listed below. D. A PACS shall be comprised of, but not limited to, the following components: 1. Physical Access Control System 2. Application Software 3. System Database 4. Surge and Tamper Protection 5. Standard Workstation Hardware 6. Communications Workstation 7. Controllers (Data Gathering Panel) 8. Secondary Alarm Annunciator 9. Keypads 10. Card Readers 11. Credential Cards 12. Biometric Identity Verification Equipment 13. Enrolment Center (To be provided in accordance with the VA PIV enrollment and issuance system.) 14. System Sensors and Related Equipment 15. Push Button Switches 16. Interfaces 17. Door and Gate Hardware interface 18. RS-232 ASCII Interface 19. Floor Select Elevator Control 20. After-Hours HVAC Control 21. Real Time Guard Tour 22. Video and Camera Control 23. Cables 24. Transformers 2.2 SECURITY MANAGEMENT SYSTEM (SMS) A. Shall allow the configuration of an enrollment and badging, alarm monitoring, administrative, asset management, digital video management, intrusion detection, visitor enrollment, remote access level

management, and integrated client workstations or any combination of all or some.

- B. Shall be expandable to support an unlimited number of individual module or integrated client workstations. All access control field hardware, including Data Gathering Panels(DGP), shall be connected to all physical access control system workstation on the network.
- C. Shall have the ability to compose, file, maintain, update, and print reports for either individuals or the system as follows.
 - Individual reports that consist of an employee's name, office location, phone number or direct extension, and normal hours of operation. The report shall provide a detail listing of the employee's daily events in relation to accessing points within a facility.
 - System reports shall be able to produce information on a daily/weekly/monthly basis for all events, alarms, and any other activity associated with a system user.
- D. All reports shall be in a date/time format and all information shall be clearly presented. Shall be designed to allow it to work with any industry standard network protocol and topology listed below:
 - 1. Transmission Control Protocol (TCP)/IP
 - 2. Novell Netware (IPX/SPX)
 - 3. Banyan VINES
 - 4. IBM LAN Server (NetBEUI)
 - 5. Microsoft LAN Manager (NetBEUI)
 - 6. Network File System (NFS) Networks
 - Remote Access Service (RAS) via ISDN, x.25, and standard phone lines.
- E. Shall provide full interface and control of the PACS to include the following subsystems within the PACS:
 - 1. Public Key Infrastructure
 - 2. Card Management
 - 3. Identity and Access Management
 - 4. Personal Identity Verification
- F. Shall have the following features or compatibilities:
 - The ability to be operated locally or remotely via a LAN, WAN, internet, or intranet.
 - 2. Event and Alarm Monitoring

- 3. Database Partitioning
- 4. Ability to fully integrate with all other security subsystems
- 5. Enhanced Monitoring Station with Split Screen Views
- 6. Alternate and Extended Shunt by Door
- 7. Escort Management
- 8. Enhanced IT-based Password Protection
- 9. N-man Rule and Occupancy Restrictions
- 10. Open Journal Data Format for Enhanced Reporting
- 11. Automated Personnel Import
- 12. ODBC Support
- 13. Windows 2000 Professional, Windows Server 2003, Windows XP Professionals for Servers, Windows 7
- 14. Field-Level Audit Trail
- 15. Cardholder Access Events

2.3 APPLICATION SOFTWARE

- A. System Software: Based on [32] <Insert number>-bit, [Microsoft Windows] <Insert name of operating system> central-station and workstation operating system and application software. Software shall have the following features:
 - Multiuser multitasking to allow independent activities and monitoring to occur simultaneously at different workstations.
 - 2. Graphical user interface to show pull-down menus and a menu tree format.
 - Capability for future additions within the indicated system size limits.
 - Open architecture that allows importing and exporting of data and interfacing with other systems that are compatible with operating system.
 - 5. Password-protected operator and smart card login and access.
- B. Peer Computer Control Software: Shall detect a failure of a central computer, and shall cause the other central computer to assume control of all system functions without interruption of operation. Drivers shall be provided in both central computers to support this mode of operation.
- C. Application Software: Interface between the alarm annunciation and entry-control Controllers, to monitor sensors[and DTS links], operate

OMAHA, NE

displays, report alarms, generate reports, and help train system

operators. Software shall have the following functions:

- 1. Resides at the Central Station, workstations, and Controllers as required to perform specified functions.
- 2. Operate and manage peripheral devices.
- 3. Manage files for disk I/O, including creating, deleting, and copying files; and automatically maintain a directory of all files, including size and location of each sequential and random-ordered record.
- 4. Import custom icons into graphics views to represent alarms and I/O devices.
- 5. Globally link I/O so that any I/O can link to any other I/O within the same Location, without requiring interaction with the host PC. This operation shall be at the Controller.
- 6. Globally code I/O links so that any access-granted event can link to any I/O with the same Location without requiring interaction with the host PC. This operation shall be at the Controller.
- 7. Messages from PC to Controllers and Controllers to Controllers shall be on a polled network that utilizes check summing and acknowledgment of each message. Communication shall be automatically verified, buffered, and retransmitted if message is not acknowledged.
- 8. Selectable poll frequency and message time-out settings shall handle bandwidth and latency issues for TCP/IP, RF, and other PC-to-Controller communications methods by changing the polling frequency and the amount of time the system waits for a response.
- 9. Automatic and encrypted backups for database and history backups shall be automatically stored at [the central control PC] [a selected workstation] and encrypted with a nine-character alphanumeric password, which must be used to restore or read data contained in backup.
- 10. Operator audit trail for recording and reporting all changes made to database and system software.
- D. Workstation Software:
 - 1. Password levels shall be individually customized at each workstation to allow or disallow operator access to program functions for each Location.

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

- 2. Workstation event filtering shall allow user to define events and alarms that will be displayed at each workstation. If an alarm is unacknowledged (not handled by another workstation) for a preset amount of time, the alarm will automatically appear on the filtered workstation.
- E. Controller Software:
 - 1. Controllers shall operate as an autonomous intelligent processing unit. Controllers shall make decisions about physical access control, alarm monitoring, linking functions, and door locking schedules for its operation, independent of other system components. Controllers shall be part of a fully distributed processing control network. The portion of the database associated with a Controller and consisting of parameters, constraints, and the latest value or status of points connected to that Controller, shall be maintained in the Controller.
 - 2. Functions: The following functions shall be fully implemented and operational within each Controller:
 - a. Monitoring inputs.
 - b. Controlling outputs.
 - c. Automatically reporting alarms to the Central Station.
 - d. Reporting of sensor and output status to Central Station on request.
 - e. Maintaining real time, automatically updated by the Central Station at least once a day.
 - f. Communicating with the Central Station.
 - g. Executing Controller resident programs.
 - h. Diagnosing.
 - i. Downloading and uploading data to and from the Central Station.
 - 3. Controller Operations at a Location:
 - a. Location: Up to [64] <Insert number> Controllers connected to RS-485 communications loop. Globally operating I/O linking and anti-passback functions between Controllers within the same Location without central-station or workstation intervention. Linking and anti-passback shall remain fully functional within the same Location even when the Central Station or workstations are off line.

- b. In the event of communications failure between the Central Station and a Location, there shall be no degradation in operations at the Controllers at that Location. The Controllers at each Location shall be connected to a memory buffer with a capacity to store up to 10,000 events; there shall be no loss of transactions in system history files until the buffer overflows.
- c. Buffered events shall be handled in a first-in-first-out mode of operation.
- 4. Individual Controller Operation:
 - a. Controllers shall transmit alarms, status changes, and other data to the Central Station when communications circuits are operable. If communications are not available, Controllers shall function in a stand-alone mode and operational data, including the status and alarm data normally transmitted to the Central Station, shall be stored for later transmission to the Central Station. Storage capacity for the latest 1024 events shall be provided at each Controller.
 - b. Card-reader ports of a Controller shall be custom configurable for at least [120] <Insert number> different card-reader or keypad formats. Multiple reader or keypad formats may be used simultaneously at different Controllers or within the same Controller.
 - c. Controllers shall provide a response to card-readers or keypad entries in less than 0.25 seconds, regardless of system size.
 - d. Controllers that are reset, or powered up from a nonpowered state, shall automatically request a parameter download and reboot to its proper working state. This shall happen without any operator intervention.
 - e. Initial Startup: When Controllers are brought on-line, database parameters shall be automatically downloaded to them. After initial download is completed, only database changes shall be downloaded to each Controller.
 - f. Failure Mode: On failure for any reason, Controllers shall perform an orderly shutdown and force Controller outputs to a predetermined failure mode state, consistent with the failure modes shown and the associated control device.

- g. Startup After Power Failure: After power is restored, startup software shall initiate self-test diagnostic routines, after which Controllers shall resume normal operation.
- h. Startup After Controller Failure: On failure, if the database and application software are no longer resident, Controllers shall not restart, but shall remain in the failure mode until repaired. If database and application programs are resident, Controllers shall immediately resume operation. If not, software shall be restored automatically from the Central Station.
- 5. Communications Monitoring:
 - a. System shall monitor and report status of RS-485 communications loop [TCP/IP communication status] of each Location.
 - b. Communication status window shall display which Controllers are currently communicating, a total count of missed polls since midnight, and which Controller last missed a poll.
 - c. Communication status window shall show the type of CPU, the type of I/O board, and the amount of RAM memory for each Controller.
- 6. Operating systems shall include a real-time clock function that maintains seconds, minutes, hours, day, date, and month. The realtime clock shall be automatically synchronized with the Central Station at least once a day to plus or minus 10 seconds. The time synchronization shall be automatic, without operator action and without requiring system shutdown.
- F. PC-to-Controller Communications:
 - Central-station or workstation communications shall use the following:
 - a. Direct connection using serial ports of the PC.
 - b. TCP/IP LAN network interface cards.
 - c. Dial-up modems for connections to Locations.
 - 2. Serial Port Configuration: Each serial port used for communications shall be individually configurable for "direct communications," "modem communications incoming and outgoing," or "modem communications incoming only"; or as an ASCII output port.
 - 3. Multiport Communications Board: Use if more than two serial ports are needed.
 - a. Expandable and modular design. Use a 4-, 8-, or 16-serial port configuration that is expandable to 32 or 64 serial ports.

b. Connect the first board to an internal PCI bus adapter card.

- 4. Direct serial, TCP/IP, and dial-up communications shall be alike in the monitoring or control of system, except for the connection that must first be made to a dial-up Location.
- 5. TCP/IP network interface card shall have an option to set the poll frequency and message response time-out settings.
- 6. PC-to-Controller and Controller-to-Controller communications (direct, dial-up, or TCP/IP) shall use a polled-communication protocol that checks sum and acknowledges each message. All communications shall be verified and buffered and retransmitted if not acknowledged.
- G. Direct Serial or TCP/IP PC-to-Controller Communications:
 - Communication software on the PC shall supervise the PC-to-Controller communications link.
 - Loss of communications to any Controller shall result in an alarm at all PCs running the communications software.
 - 3. When communications are restored, all buffered events shall automatically upload to the PC, and any database changes shall be automatically sent to the Controller.
- H. Dial-up Modem PC-to-Controller Communications:
 - Communication software on the PC shall supervise the PC-to-Controller communications link during dial-up modem connect times.
 - Communication software shall be programmable to routinely poll each of the remote dial-up modem Locations, collecting event logs and verifying phone lines at time intervals that are operator selectable for each Location.
 - 3. System shall be programmable for dialing and connecting to all dialup modem Locations and for retrieving the accrued history transactions on an automatic basis as often as once every [10] <Insert number> minutes and up to once every [9999] <Insert number> minutes.
 - 4. Failure to communicate to a dial-up Location three times in a row shall result in an alarm at the PC.
 - 5. Time offset capabilities shall be present so that Locations in a different geographical time zone than the host PC will be set to, and maintained at, the proper local time. This feature shall allow for geographical time zones that are ahead of or behind the host PC.

- 6. The Controller connected to a dial-up modem shall automatically buffer all normal transactions until its buffer reaches 80 percent of capacity. When the transaction buffer reaches 80 percent, the Controller shall automatically initiate a call to the Central Station and upload all transactions.
- 7. Alarms shall be reported immediately.
- 8. Dial-up modems shall be provided by manufacturer of the system. Modems used at the Controller shall be powered by the Controller. Power to the modem shall include battery backup if the Controller is so equipped.
- I. Controller-to-Controller Communications:
 - Controller-to-Controller Communications: RS-485, 4-wire, point-topoint, regenerative (repeater) communications network methodology.
 - 2. RS-485 communications signal shall be regenerated at each Controller.
- J. Database Downloads:
 - All data transmissions from PCs to a Location, and between Controllers at a Location, shall include a complete database checksum to check the integrity of the transmission. If the data checksum does not match, a full data download shall be automatically retransmitted.
 - 2. If a Controller is reset for any reason, it shall automatically request and receive a database download from the PC. The download shall restore data stored at the Controller to their normal working state and shall take place with no operator intervention.
- K. Operator Interface:
 - Inputs in system shall have two icon representations, one for the normal state and one for the abnormal state.
 - 2. When viewing and controlling inputs, displayed icons shall automatically change to the proper icon to display the current system state in real time. Icons shall also display the input's state, whether armed or bypassed, and if the input is in the armed or bypassed state due to a time zone or a manual command.
 - 3. Outputs in system shall have two icon representations, one for the secure (locked) state and one for the open (unlocked) state.

- Icons displaying status of the I/O points shall be constantly updated to show their current real-time condition without prompting by the operator.
- 5. The operator shall be able to scroll the list of I/Os and press the appropriate toolbar button, or right click, to command the system to perform the desired function.
- 6. Graphic maps or drawings containing inputs, outputs, and override groups shall include the following:
 - a. Database to import and store full-color maps or drawings and allow for input, output, and override group icons to be placed on maps.
 - b. Maps to provide real-time display animation and allow for control of points assigned to them.
 - c. System to allow inputs, outputs, and override groups to be placed on different maps.
 - d. Software to allow changing the order or priority in which maps will be displayed.
- 7. Override Groups Containing I/Os:
 - a. System shall incorporate override groups that provide the operator with the status and control over user-defined "sets" of I/Os with a single icon.
 - b. Icon shall change automatically to show the live summary status of points in that group.
 - c. Override group icon shall provide a method to manually control or set to time zone points in the group.
 - d. Override group icon shall allow the expanding of the group to show icons representing the live status for each point in the group, individual control over each point, and the ability to compress the individual icons back into one summary icon.
- 8. Schedule Overrides of I/Os and Override Groups:
 - a. To accommodate temporary schedule changes that do not fall within the holiday parameters, the operator shall have the ability to override schedules individually for each input, output, or override group.
 - b. Each schedule shall be composed of a minimum of two dates with separate times for each date.

- c. The first time and date shall be assigned the override state that the point shall advance to, when the time and date become current.
- d. The second time and date shall be assigned the state that the point shall return to, when the time and date become current.
- Copy command in database shall allow for like data to be copied and then edited for specific requirements, to reduce redundant data entry.
- L. Operator Access Control:
 - Control operator access to system controls through [three] <Insert number> password-protected operator levels. System operators and managers with appropriate password clearances shall be able to change operator levels for operators.
 - Three successive attempts by an operator to execute functions beyond their defined level during a 24-hour period shall initiate a software tamper alarm.
 - 3. A minimum of [32] <Insert number> passwords shall be available with the system software. System shall display the operator's name or initials in the console's first field. System shall print the operator's name or initials, action, date, and time on the system printer at login and logoff.
 - 4. The password shall not be displayed or printed.
 - 5. Each password shall be definable and assignable for the following:
 - a. Commands usable.
 - b. Access to system software.
 - c. Access to application software.
 - d. Individual zones that are to be accessed.
 - e. Access to database.
- M. Operator Commands:
 - Command Input: Plain-language words and acronyms shall allow operators to use the system without extensive training or dataprocessing backgrounds. System prompts shall be a word, a phrase, or an acronym.
 - Command inputs shall be acknowledged, and processing shall start in not less than [1] <Insert number> second(s).
 - 3. Tasks that are executed by operator's commands shall include the following:

- a. Acknowledge Alarms: Used to acknowledge that the operator has observed the alarm message.
- b. Place Zone in Access: Used to remotely disable intrusion alarm circuits emanating from a specific zone. System shall be structured so that console operator cannot disable tamper circuits.
- c. Place Zone in Secure: Used to remotely activate intrusion alarm circuits emanating from a specific zone.
- d. System Test: Allows the operator to initiate a system-wide operational test.
- e. Zone Test: Allows the operator to initiate an operational test for a specific zone.
- f. Print reports.
- g. Change Operator: Used for changing operators.
- h. Security Lighting Controls: Allows the operator to remotely turn on/off security lights.
- Display Graphics: Used to display any graphic displays implemented in the system. Graphic displays shall be completed within 20 seconds from time of operator command.
- j. Run system tests.
- k. Generate and format reports.
- 1. Request help with the system operation.
 - 1) Include in main menus.
 - Provide unique, descriptive, context-sensitive help for selections and functions with the press of one function key.
 - Provide navigation to specific topic from within the first help window.
 - 4) Help shall be accessible outside the applications program.
- m. Entry-Control Commands:
 - Lock (secure) or unlock (open) each controlled entry and exit up to four times a day through time-zone programming.
 - Arm or disarm each monitored input up to four times a day through time-zone programming.
 - Enable or disable readers or keypads up to twice a day through time-zone programming.
 - Enable or disable cards or codes up to four times per day per entry point through access-level programming.

- 4. Command Input Errors: Show operator input assistance when a command cannot be executed because of operator input errors. Assistance screen shall use plain-language words and phrases to explain why the command cannot be executed. Error responses that require an operator to look up a code in a manual or other document are not acceptable. Conditions causing operator assistance messages include the following:
 - a. Command entered is incorrect or incomplete.
 - b. Operator is restricted from using that command.
 - c. Command addresses a point that is disabled or out of service.
 - d. Command addresses a point that does not exist.
 - e. Command is outside the system's capacity.

N. Alarms:

- 1. System Setup:
 - Assign manual and automatic responses to incoming point status change or alarms.
 - b. Automatically respond to input with a link to other inputs, outputs, operator-response plans, unique sound with use of WAV files, and maps or images that graphically represent the point location.
 - c. 60-character message field for each alarm.
 - d. Operator-response-action messages shall allow message length of at least 65,000 characters, with database storage capacity of up to 32,000 messages. Setup shall assign messages to [access point] [zone] [sensor]<other alarm originating device>.
 - e. Secondary messages shall be assignable by the operator for printing to provide further information and shall be editable by the operator.
 - f. Allow 25 secondary messages with a field of 4 lines of 60 characters each.
 - g. Store the most recent 1000 alarms for recall by the operator using the report generator.
- 2. Software Tamper:
 - a. Annunciate a tamper alarm when unauthorized changes to system database files are attempted. Three consecutive unsuccessful attempts to log onto system shall generate a software tamper alarm.

- b. Annunciate a software tamper alarm when an operator or other individual makes three consecutive unsuccessful attempts to invoke functions beyond their authorization level.
- c. Maintain a transcript file of the last 5000 commands entered at each Central Station to serve as an audit trail. System shall not allow write access to system transcript files by any person, regardless of their authorization level.
- d. Allow only acknowledgment of software tamper alarms.
- Read access to system transcript files shall be reserved for operators with the highest password authorization level available in system.
- 4. Animated Response Graphics: Highlight alarms with flashing icons on graphic maps; display and constantly update the current status of alarm inputs and outputs in real time through animated icons.
- 5. Multimedia Alarm Annunciation: WAV files to be associated with alarm events for audio annunciation or instructions.
- 6. Alarm Handling: Each input may be configured so that an alarm cannot be cleared unless it has returned to normal, with options of requiring the operator to enter a comment about disposition of alarm. Allow operator to silence alarm sound when alarm is acknowledged.
- O. Alarm Monitoring: Monitor sensors, Controllers, and DTS circuits and notify operators of an alarm condition. Display higher-priority alarms first and, within alarm priorities, display the oldest unacknowledged alarm first. Operator acknowledgment of one alarm shall not be considered acknowledgment of other alarms nor shall it inhibit reporting of subsequent alarms.
 - Displayed alarm data shall include type of alarm, location of alarm, and secondary alarm messages.
 - Printed alarm data shall include type of alarm, location of alarm, date and time (to nearest second) of occurrence, and operator responses.
 - 3. Maps shall automatically display the alarm condition for each input assigned to that map, if that option is selected for that input location.
 - 4. Alarms initiate a status of "pending" and require the following two handling steps by operators:

- a. First Operator Step: "Acknowledged." This action shall silence sounds associated with the alarm. The alarm remains in the system "Acknowledged" but "Un-Resolved."
- b. Second Operator Step: Operators enter the resolution or operator comment, giving the disposition of the alarm event. The alarm shall then clear.
- 5. Each workstation shall display the total pending alarms and total unresolved alarms.
- 6. Each alarm point shall be programmable to disallow the resolution of alarms until the alarm point has returned to its normal state.
- 7. Alarms shall transmit to Central Station in real time, except for allowing connection time for dial-up locations.
- Alarms shall be displayed and managed from a minimum of four different windows.
 - a. Input Status Window: Overlay status icon with a large red blinking icon. Selecting the icon will acknowledge the alarm.
 - b. History Log Transaction Window: Display name, time, and date in red text. Selecting red text will acknowledge the alarm.
 - c. Alarm Log Transaction Window: Display name, time, and date in red. Selecting red text will acknowledge the alarm.
 - d. Graphic Map Display: Display a steady colored icon representing each alarm input location. Change icon to flashing red when the alarm occurs. Change icon from flashing red to steady red when the alarm is acknowledged.
- 9. Once an alarm is acknowledged, the operator shall be prompted to enter comments about the nature of the alarm and actions taken. Operator's comments may be manually entered or selected from a programmed predefined list, or a combination of both.
- 10. For locations where there are regular alarm occurrences, provide programmed comments. Selecting that comment shall clear the alarm.
- 11. The time and name of the operator who acknowledged and resolved the alarm shall be recorded in the database.
- 12. Identical alarms from same alarm point shall be acknowledged at same time the operator acknowledges the first alarm. Identical alarms shall be resolved when the first alarm is resolved.
- 13. Alarm functions shall have priority over downloading, retrieving, and updating database from workstations and Controllers.

- 14. When a reader-controlled output (relay) is opened, the corresponding alarm point shall be automatically bypassed.
- P. Monitor Display: Display text and graphic maps that include zone status integrated into the display. Colors are used for the various components and current data. Colors shall be uniform throughout the system.
 - 1. Color Code:
 - a. FLASHING RED: Alerts operator that a zone has gone into an alarm or that primary power has failed.
 - b. STEADY RED: Alerts operator that a zone is in alarm and alarm has been acknowledged.
 - c. YELLOW: Advises operator that a zone is in access.
 - d. GREEN: Indicates that a zone is secure and that power is on.
 - 2. Graphics:
 - a. Support 32,000 graphic display maps and allow import of maps from a minimum of 16 standard formats from another drawing or graphics program.
 - b. Allow I/O to be placed on graphic maps by the drag-and-drop method.
 - c. Operators shall be able to view the inputs, outputs, and the point's name by moving the mouse cursor over the point on graphic map.
 - d. Inputs or outputs may be placed on multiple graphic maps. The operator shall be able to toggle to view graphic map associated with inputs or outputs.
 - e. Each graphic map shall have a display-order sequence number associated with it to provide a predetermined order when toggled to different views.
 - f. Camera icons shall have the ability to be placed on graphic maps that, when selected by an operator, will open a video window, display the camera associated with that icon, and provide pantilt-zoom control.
 - g. Input, output, or camera placed on a map shall allow the ability to arm or bypass an input, open or secure an output, or control the pan-tilt-zoom function of the selected camera.
- Q. System test software enables operators to initiate a test of the entire system or of a particular portion of the system.

100% CONSTRUCTION DOCUMENTS

- Test Report: The results of each test shall be stored for future display or printout. The report shall document the operational status of system components.
- R. Report Generator Software: Include commands to generate reports for displaying, printing, and storing on disk and tape. Reports shall be stored by type, date, and time. Report printing shall be the lowest priority activity. Report generation mode shall be operator selectable but set up initially as periodic, automatic, or on request. Include time and date printed and the name of operator generating the report. Report formats may be configured by operators.
 - Automatic Printing: Setup shall specify, modify, or inhibit the report to be generated; the time the initial report is to be generated; the time interval between reports; the end of period; and the default printer.
 - Printing on Requests: An operator may request a printout of any report.
 - 3. Alarm Reports: Reporting shall be automatic as initially set up. Include alarms recorded by system over the selected time and information about the type of alarm [(such as door alarm, intrusion alarm, tamper alarm, etc.)] <Insert alarm types>, the type of sensor, the location, the time, and the action taken.
 - 4. Access and Secure Reports: Document zones placed in access, the time placed in access, and the time placed in secure mode.
 - 5. Custom Reports: Reports tailored to exact requirements of who, what, when, and where. As an option, custom report formats may be stored for future printing.
 - Automatic History Reports: Named, saved, and scheduled for automatic generation.
 - 7. Cardholder Reports: Include data, or selected parts of the data, as well as the ability to be sorted by name, card number, imprinted number, or by any of the user-defined fields.
 - 8. Cardholder by Reader Reports: Based on who has access to a specific reader or group of readers by selecting the readers from a list.
 - 9. Cardholder by Access-Level Reports: Display everyone that has been assigned to the specified access level.
 - 10. Who Is In (Muster) Report:

- a. Emergency Muster Report: One click operation on toolbar launches report.
- b. Cardholder Report. Contain a count of persons that are "In" at a selected Location and a count with detailed listing of name, date, and time of last use, sorted by the last reader used or by the group assignment.
- 11. Panel Labels Reports: Printout of control-panel field documentation including the actual location of equipment, programming parameters, and wiring identification. Maintain system installation data within system database so that they are available on-site at all times.
- 12. Activity and Alarm On-Line Printing: Activity printers for use at workstations; prints all events or alarms only.
- 13. History Reports: Custom reports that allows the operator to select any date, time, event type, device, output, input, operator, Location, name, or cardholder to be included or excluded from the report.
 - a. Initially store history on the hard disk of the host PC.
 - b. Permit viewing of the history on workstations or print history to any system printer.
 - c. The report shall be definable by a range of dates and times with the ability to have a daily start and stop time over a given date range.
 - d. Each report shall depict the date, time, event type, event description, device, or I/O name, cardholder group assignment, and cardholder name or code number.
 - e. Each line of a printed report shall be numbered to ensure that the integrity of the report has not been compromised.
 - f. Total number of lines of the report shall be given at the end of the report. If the report is run for a single event such as "Alarms," the total shall reflect how many alarms occurred during that period.
- 14. Reports shall have the following four options:
 - a. View on screen.
 - b. Print to system printer. Include automatic print spooling and "Print To" options if more than one printer is connected to system.
 - c. "Save to File" with full path statement.

- d. System shall have the ability to produce a report indicating status of system inputs and outputs or of inputs and outputs that are abnormal, out of time zone, manually overridden, not reporting, or in alarm.
- 15. Custom Code List Subroutine: Allow the access codes of system to be sorted and printed according to the following criteria:
 - a. Active, inactive, or future activate or deactivate.
 - b. Code number, name, or imprinted card number.
 - c. Group, Location, access levels.
 - d. Start and stop code range.
 - e. Codes that have not been used since a selectable number of days.
 - f. In, out, or either status.
 - g. Codes with trace designation.
- 16. The reports of system database shall allow options so that every data field may be printed.
- 17. The reports of system database shall be constructed so that the actual position of the printed data shall closely match the position of the data on the data-entry windows.
- S. Anti-Passback:
 - System shall have global and local anti-passback features, selectable by Location. System shall support hard and soft antipassback.
 - 2. Hard Anti-Passback: Once a credential holder is granted access through a reader with one type of designation (IN or OUT), the credential holder may not pass through that type of reader designation until the credential holder passes through a reader of opposite designation.
 - 3. Soft Anti-Passback: Should a violation of the proper IN or OUT sequence occur, access shall be granted, but a unique alarm shall be transmitted to the control station, reporting the credential holder and the door involved in the violation. A separate report may be run on this event.
 - 4. Timed Anti-Passback: A Controller capability that prevents an access code from being used twice at the same device (door) within a user-defined amount of time.
 - 5. Provide four separate zones per Location that can operate without requiring interaction with the host PC (done at Controller). Each

reader shall be assignable to one or all four anti-passback zones. In addition, each anti-passback reader can be further designated as "Hard," "Soft," or "Timed" in each of the four anti-passback zones. The four anti-passback zones shall operate independently.

- 6. The anti-passback schemes shall be definable for each individual door.
- 7. The Master Access Level shall override anti-passback.
- 8. System shall have the ability to forgive (or reset) an individual credential holder or the entire credential holder population antipassback status to a neutral status.
- T. Visitor Assignment:
 - Provide for and allow an operator to be restricted to only working with visitors. The visitor badging subsystem shall assign credentials and enroll visitors. Allow only access levels that have been designated as approved for visitors.
 - Provide an automated log of visitor name, time and doors accessed, and whom visitor contacted.
 - 3. Allow a visitor designation to be assigned to a credential holder.
 - 4. PACS shall be able to restrict the access levels that may be assigned to credentials that are issued to visitors.
 - 5. Allow operator to recall visitors' credential holder file, once a visitor is enrolled in the system.
 - The operator may designate any reader as one that deactivates the credential after use at that reader. The history log shall show the return of the credential.
 - System shall have the ability to use the visitor designation in searches and reports. Reports shall be able to print all or any visitor activity.
- U. Training Software: Enables operators to practice system operation including alarm acknowledgment, alarm assessment, response force deployment, and response force communications. System shall continue normal operation during training exercises and shall terminate exercises when an alarm signal is received at the console.
- V. Entry-Control Enrollment Software: Database management functions that allow operators to add, delete, and modify access data as needed.
 - The enrollment station shall not have alarm response or acknowledgment functions.

- 2. Provide multiple, password-protected access levels. Database management and modification functions shall require a higher operator access level than personnel enrollment functions.
- 3. The program shall provide means to disable the enrollment station when it is unattended to prevent unauthorized use.
- 4. The program shall provide a method to enter personnel identifying information into the entry-control database files through enrollment stations. In the case of personnel identity verification subsystems, this shall include biometric data. Allow entry of personnel identifying information into the system database using menu selections and data fields. The data field names shall be customized during setup to suit user and site needs. Personnel identity verification subsystems selected for use with the system shall fully support the enrollment function and shall be compatible with the entry-control database files.
- 5. Cardholder Data: Provide 99 user-defined fields. System shall have the ability to run searches and reports using any combination of these fields. Each user-defined field shall be configurable, using any combination of the following features:
 - a. MASK: Determines a specific format that data must comply with.
 - b. REQUIRED: Operator is required to enter data into field before saving.
 - c. UNIQUE: Data entered must be unique.
 - d. DEACTIVATE DATE: Data entered will be evaluated as an additional deactivate date for all cards assigned to this cardholder.
 - e. NAME ID: Data entered will be considered a unique ID for the cardholder.
- 6. Personnel Search Engine: A report generator with capabilities such as search by last name, first name, group, or any predetermined user-defined data field; by codes not used in definable number of days; by skills; or by seven other methods.
- Multiple Deactivate Dates for Cards: User-defined fields to be configured as additional stop dates to deactivate any cards assigned to the cardholder.
- 8. Batch card printing.
- 9. Default card data can be programmed to speed data entry for sites where most card data are similar.

28 13 00 - 66

10. Enhanced ACSII File Import Utility: Allows the importing of cardholder data and images.

2.4 SURGE AND TAMPER PROTECTION

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor-entry connection to components.
 - Minimum Protection for Power Connections 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits."
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Connections: Comply with requirements in Division 26 Section "Transient-Voltage Suppression for Low-Voltage Electrical Power Circuits" as recommended by manufacturer for type of line being protected.
- B. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station control-unit alarm display shall identify tamper alarms and indicate locations.

2.5 PACS SERVER HARDWARE

- A. SMS Server Computer: Standard unmodified PC of modular design. The CPU word size shall be [64] <Insert number> bytes or larger; the CPU operating speed shall be at least [3.4] <Insert number> [GHz].
 - 1. Processor family: [Intel® Xeon® E5640 (4 core, 2.66 GHz, 12MB L3, 80W)] <Insert text>.
 - 2. Number of processors: 2
 - 3. Memory: [12] <Insert number> GB RAM , expandable to a minimum of [192] <Insert number> GB without additional chassis or power supplies. Memory protection [Mirrored Memory, Online Spare, Advanced ECC, Memory Lock Step Mode] <Insert text>.
 - Input/Output: 2 expansions slots, Network Controller (2) 1GbE NC382i Multifunction 4 Ports.
 - 5. Power Supply: Dual minimum capacity of [460] < Insert number> W hot plug.

- 6. Real-Time Clock:
 - a. Accuracy: Plus or minus 1 minute per month.
 - b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - c. Clock shall function for 1 year without power.
 - d. Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
- 7. Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- 8. Parallel Port: An enhanced parallel port.
- 9. The server shall have a 1 GB NIC or greater network card, rated at 100/1000 MB/sec.
- 10. The server shall have dual [100] <Insert number> GB hard disk drives at [7200]] <Insert number> RPM.
- 11. The server shall have a CD / DVD combo drive.
- 12. The server operating system shall be either:
 - a. Windows 2003 Server, 32 bit native mode, with Service Pack 2 or later with default services enabled.
- 13. The Web Server shall be [IIS 7.0] < Insert text> or better.
- 14. The Database shall be [SQL Server 2005 (Express, Standard, Data Center, or Enterprise)] <Insert text>.
- 15. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
- 16. Color Monitor: [17"] or larger SVGA (1024 x 768) monitor with true color support. The server shall have a dedicated 256 MB SVGA accelerated video card with at least 64 MB onboard RAM.
- 17. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
- 18. Mouse: Standard, compatible with the installed software.
- 19. Special function keyboard attachments or special function keys to facilitate data input of the following operator tasks: a. Help.
 - b. Alarm Acknowledge.
 - c. Place Zone in Access.
 - d. Place Zone in Secure.

- e. System Test.
- f. Print Reports.
- g. Change Operator.
- h. <Insert operator tasks.>
- 20. CD-ROM Drive:
 - a. Nominal storage capacity of [650] < Insert number> MB.
 - b. Data Transfer Rate: [1.2] < Insert number> Mbps.
 - c. Average Access Time: [150] < Insert number> ms.
 - d. Cache Memory: [256] <Insert number> KB.
 - e. Data Throughput: [1] <Insert number> MB/second, minimum.
- B. PACS controllers clustering shall support the following features:
 - Assignment of Master and alternate master controllers for cluster communication to the SMS server
 - 2. Primary and backup communication paths to the SMS server
 - 3. Encrypted communications
 - 4. Up to [16] < insert number > controllers per cluster
 - 5. Logical event linking between controllers in a cluster independent of SMS server communication
 - Asynchronous communication via TCP/IP (Polled devices shall not be acceptable)
- C. UPS: Self-contained; complying with requirements in Division 26 Section
 "Static Uninterruptible Power Supply."
 - Size: Provide a minimum of [15] <Insert number> hours of operation of the central-station equipment, including 2 hours of alarm printer operation.
 - 2. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - 3. Accessories:
 - a. Transient voltage suppression.
 - b. Input-harmonics reduction.
 - c. Rectifier/charger.
 - d. Battery disconnect device.
 - e. Static bypass transfer switch.
 - f. Internal maintenance bypass/isolation switch.
 - g. External maintenance bypass/isolation switch.
 - h. Output isolation transformer.
 - i. Remote UPS monitoring.
 - j. Battery monitoring.

k. Remote battery monitoring.

2.6 STANDARD WORKSTATION HARDWARE

- A. Workstation shall consist of a standard unmodified PC, with accessories and peripherals that configure the workstation for a specific duty.
- B. Workstation Computer: Standard unmodified PC of modular design. The CPU word size shall be [32] <Insert number> bytes or larger; the CPU operating speed shall be at least [66] <Insert number> [MHz] [GHz].
 - Memory: [256] <Insert number> MB of usable installed memory, expandable to a minimum of [1024] <Insert number> MB without additional chassis or power supplies.
 - 2. Power Supply: Minimum capacity of [250] < Insert number> W.
 - 3. Real-Time Clock:
 - a. Accuracy: Plus or minus 1 minute per month.
 - b. Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; resettable by software.
 - c. Provide automatic time correction once every [24 hours] <Insert number of hours or minutes> by synchronizing clock with the Central Station.
 - Serial Ports: Provide two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
 - 5. Parallel Port: An enhanced parallel port.
 - LAN Adapter Card: [10/100] <Insert number> Mbps PCI bus, internal network interface card.
 - 7. Sound Card: For playback and recording of digital WAV sound files that are associated with audible warning and alarm functions.
 - 8. Color Monitor: Not less than [17 inches (430 mm)] <Insert inches (mm)>, with a minimum resolution of [1280 by 1024] <Insert numbers> pixels, noninterlaced, and a maximum dot pitch of [0.28] <Insert number> mm. The video card shall support at least [256] <Insert number> colors at a resolution of [1280 by 1024] <Insert numbers> at a minimum refresh rate of [70] <Insert number> Hz.
 - 9. Keyboard: With a minimum of 64 characters, standard ASCII character set based on ANSI X3.154.
 - 10. Mouse: Standard, compatible with the installed software.
 - 11. Disk storage shall include the following, each with appropriate controller:

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS a. Minimum [10] <Insert number> GB hard disk, maximum average access time of [10] <Insert number> ms. b. Floppy Disk Drive: High density, 3-1/2-inch (90-mm) size. c. <Insert disk drives.> 12. CD-ROM Drive: a. Nominal storage capacity of [650] < Insert number> MB. b. Data Transfer Rate: [1.2] < Insert number> Mbps. c. Average Access Time: [150] < Insert number> ms. d. Cache Memory: [256] <Insert number> KB. e. Data Throughput: [1] <Insert number> MB/second, minimum. 13. Printer: a. Connected to the Central Station and designated workstations. b. Laser printer with minimum resolution of [600] < Insert number> dpi. c. RAM: [2] <Insert number> MB, minimum. d. Printing Speed: Minimum [12] < Insert number> pages per minute. e. Paper Handling: Automatic sheet feeder with [250] < Insert number>-sheet paper cassette and with automatic feed. 14. Interface: Bidirectional parallel, and universal serial bus. 15. LAN Adapter Card: [10/100] < Insert number> Mbps internal network interface card. C. Redundant Workstation: One identical redundant workstation, connected in a hot standby, peer configuration. This workstation shall automatically maintain its own copies of system software, application software, and data files. System transactions and other activities that alter system data files shall be updated to system files of redundant workstation in near real time. If its associated workstation fails, redundant workstation shall assume control immediately and automatically. D. UPS: Self-contained, complying with requirements in Division 26 Section "Static Uninterruptible Power Supply." 1. Size: Provide a minimum of [6] <Insert number> hours of operation of the central-station equipment, including 2 hours of alarm printer operation. 2. Batteries: Sealed, valve regulated, recombinant, lead calcium. 3. Accessories:

a. Transient voltage suppression.

- b. Input-harmonics reduction.
- c. Rectifier/charger.
- d. Battery disconnect device.
- e. Static bypass transfer switch.

2.7 COMMUNICATIONS WORKSTATION

- A. Standard workstation, modified as follows:
 - 1. <Insert number> additional RS-232-F serial ports. The CPU word size shall be [32] <Insert number> bytes or larger; the CPU operating speed shall be at least [66] <Insert number> MHz. Multiplexed serial ports shall be expandable with [8] <Insert number> character transmit and receive buffers for each port. Total buffer size shall be a minimum of [1] <Insert number> MB.
 - 2. Redundant workstation is [not] required.
 - 3. Printer is [not] required.

2.8 CONTROLLERS

- A. Controllers: Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the Central Station or workstation for controlling its operation.
- B. Subject to compliance with requirements in this Article, manufacturers may use multipurpose Controllers.
- C. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.
- D. Alarm Annunciation Controller:
 - The Controller shall automatically restore communication within 10 seconds after an interruption with the field device network[with dc line supervision on each of its alarm inputs].
 - a. Inputs: Monitor dry contacts for changes of state that reflect alarm conditions. Provides at least eight alarm inputs, which are suitable for wiring as normally open or normally closed contacts for alarm conditions.
 - b. Alarm-Line Supervision:
 - Supervise the alarm lines by monitoring each circuit for changes or disturbances in the signal[, and for conditions as described in UL 1076 for line security equipment] [by monitoring for abnormal open, grounded, or shorted conditions] using dc change measurements. System shall initiate an alarm

- in response to an abnormal current, which is a dc change of [5] [10] percent or more for longer than 500 ms.
- Transmit alarm-line-supervision alarm to the Central Station during the next interrogation cycle after the abnormal current condition.
- c. Outputs: Managed by Central Station software.
- 2. Auxiliary Equipment Power: A GFI service outlet inside the Controller enclosure.
- E. Entry-Control Controller:
 - Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personal identity verification devices, door strikes, magnetic latches, gate and door operators, and exit push-buttons.
 - a. Operate as a stand-alone portal Controller using the downloaded database during periods of communication loss between the Controller and the field-device network.
 - b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 - On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 - Privileges shall include, but not be limited to, time of day control, day of week control, group control, and visitor escort control.
 - c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
 - 2. Inputs:
 - a. Data from entry-control devices; use this input to change modes between access and secure.
 - b. Database downloads and updates from the Central Station that include enrollment and privilege information.
 - 3. Outputs:

- a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
- b. Grant or deny entry by sending control signals to portal-control devices and mask intrusion alarm annunciation from sensors stimulated by authorized entries].
- c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the Central Station.
- d. Door Prop Alarm: If a portal is held open for longer than [20 seconds] [time listed in a schedule], alarm sounds.
- 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
- 5. Data Line Problems: For periods of loss of communications with Central Station, or when data transmission is degraded and generating continuous checksum errors, the Controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices.
 - a. Store up to [1000] <Insert number> transactions during periods of communication loss between the Controller and access-control devices for subsequent upload to the Central Station on restoration of communication.
- 6. Controller Power: NFPA 70, Class II power supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 - a. Backup Battery: Premium, valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full 1-year warranty and a pro rata 19-year warranty. With single-stage, constantvoltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 - b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltagecurrent, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.

- c. Backup Power Supply Capacity: [5] [90] minutes of battery supply. Submit battery and charger calculations.
- d. Power Monitoring: Provide manual dynamic battery load test, initiated and monitored at the control center; with automatic disconnection of the Controller when battery voltage drops below Controller limits. Report by using local Controller-mounted LEDs and by communicating status to Central Station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
 - 1) Trouble Alarm: Normal power off load assumed by battery.
 - 2) Trouble Alarm: Low battery.
 - 3) Alarm: Power off.

2.9 PIV MIDDLEWARE

- A. PIV Middleware shall provide three-factor authentication, including biometric matching using a fingerprint capture device capable of single fingerprint capture. Unit shall enable digital certificates to be verified by security personnel using the issuer's certificate authority, SCVP, OCSP responder/repeater, orthe TSA hot list for TWIC cardholders. All cards shall be validated using FIPS-201 challengeresponse protocol in order to identify forged or cloned cards. PIV Middleware solution shall validate all PIV, TWIC, NG CAC, and FRAC cards. TWIC card FASC-Ns shall also be verified against a live or cached TSA hot list.
- B. PIV Middleware shall have ability to :
 - 1. Verify cardholder identity and validates FIPS 201-compliant PIV-II, next-generation (NG) CAC, TWIC, or FRAC credentials in real-time
 - Perform three-factor authentication of cardholder using PIN, biometrics, and certificate (or serial numbers) detecting forged or cloned cards
 - 3. Enroll FASC-N, photo, and pertinent cardholder information into PACS software
 - Automatically suspend a cardholder's badge if his or her PIV, TWIC, or CAC card certificate serial number is on the Certificate Revocation List (CRL)
 - 5. Upload a cardholder transaction audit trail to central database or exports it to a .csv file for centralized transaction management

- 6. Be compatible with biometric mobile terminal for off-site verification and enrollment
- Re-validate imported cardholder certificates on a periodic basis via the Internet
- 8. Operate with commercial, off-the-shelf (COTS) FIPS 201 PIV-II and ANSI INCITS 378-compliant fingerprint capture devices
- 9. Revalidate imported cardholder certificates at regular intervals, ensuring that the credentials used in PACS system are backed by a valid set of digital certificates. Digital certificates are verified against local OCSP repeater/validation authority using the issuer's validation authority, or Microsoft Crypto Application Programming Interface (API) on Windows XP SP3 or Vista.
- Certificate Manager shall fully support SCVP and OCSP for fast, online validation.
- 11. Provide verification of TWIC credentials against a live TSA hot list.
- 12. Support uploading local transactions to a central database for consolidated activity reporting. This application shall support a variety of ODBC- or ADO-compliant databases, including Oracle, SQL Server 2005, Informix, DB2, and Firebird.
- 13. Provide user with ability to produce canned transaction log queries as well as creating queries directly from the SQL database.
- C. PIV Middleware PC requirements:
 - PIV Middleware software shall operate on Intel-based PC with minimum 1.8 GHz CPU, 1 GB RAM, 40 GB hard disk, and Microsoft Windows XP SP2 with Microsoft .NET Framework 2.0
 - 2. Unit shall fingerprint capture devices and smart card reader.
- D. PIV Middleware shall be FIPS 201 approved product.

2.10 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be [800]<insert number>ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.

- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - 3. Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
- D. Display: LED or other type of visual indicator display shall provide visual [and audible] status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall support a variety of card readers that must encompass a wide functional range. The PACS may combine any of the card readers described below for installations requiring multiple types of card reader capability (i.e., card only, card and/or PIN, card and/or biometrics, card and/or pin and/or biometrics, supervised inputs, etc.). These card readers shall be available in the approved technology to meet FIPS 201, and is ISO 14443 A or B, ISO/IEC 7816 compliant. The reader output can be Wiegand, RS-22, 485 or TCP/IP.
- J. Shall be housed in an aluminum bezel with a wide lead-in for easy card entry.
- K. Shall contain read head electronics, and a sender to encode digital door control signals.
- L. LED's shall be utilized to indicate card reader status and access status.

- M. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- N. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.
- O. Shall have a minimum of two programmable inputs and two programmable outputs.
- P. All card readers that utilize keypad controls along with a reader and shall meet the following specifications:
 - Entry control keypads shall use a unique combination of alphanumeric and other symbols as an identifier. Keypads shall contain an integral alphanumeric/special symbols keyboard with symbols arranged in ascending ASCII code ordinal sequence. Communications protocol shall be compatible with the local processor.
- Q. Shall include a Light Emitting Diode (LED) or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected. The design of the keypad display or keypad enclosure shall limit the maximum horizontal and vertical viewing angles of the keypad. The maximum horizontal viewing angle shall be plus and minus five (5) degrees or less off a vertical plane perpendicular to the plane of the face of the keypad display. The maximum vertical viewing angle shall be plus and minus 15 degrees or less off a horizontal plane perpendicular to the plane of the face of the keypad display.
 - Shall respond to passage requests by generating a signal to the local processor. The response time shall be 800 milliseconds or less from the time the last alphanumeric symbol is entered until a response signal is generated.
 - 2. Shall be powered from the source as designed and shall not dissipate more than 150 Watts.
 - 3. Shall be suitable for surface, semi-flush, pedestal, or weatherproof mounting as required.
 - Shall provide a means for users to indicate a duress situation by entering a special code.

- R. PIV Contact Card Reader
 - Application Protocol Data Unit (APDU) Support: At a minimum, the contact interface shall support all card commands for contact based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
 - Buffer Size: The reader must contain a buffer large enough to receive the maximum size frame permitted by International Organization for Standardization International Electrotechnical Commission (ISO/IEC) 7816-3:1997, Section 9.4.
 - Programming Voltage: PIV Readers shall not generate a Programming Voltage.
 - 4. Support for Operating Class: PIV Readers shall support cards with Class A Vccs as defined in ISO/IEC 7816-3:1997 and ISO/IEC 7816-3:1997/Amd 1:2002.
 - Retrieval Time: Retrieval time¹ for 12.5 kilobytes (KB) of data through the contact interface of the reader shall not exceed 2.0 seconds.
 - Transmission Protocol: The PIV Reader shall support both the character-based T=0 protocol and block-based T=1 protocol as defined in ISO/IEC 7816-3:1997.
 - 7. Support for PPS Procedure: The reader shall support Protocol and Parameters Selection (PPS) procedure by having the ability to read character TA1 of the Answer to Reset (ATR) sent by the card as defined in ISO/IEC 7816-3:1997.
- S. Contactless Smart Cards and Readers
 - Smart card readers shall read credential cards whose characteristics of size and technology meet those defined by ISO/IEC 7816, 14443, 15693.
 - The readers shall have "flash" download capability to accommodate card format changes.
 - 3. The card reader shall have the capability of reading the card data and transmitting the data to the main monitoring panel.
 - 4. The card reader shall be contactless and meet or exceed the following technical characteristics:

- a. Data Output Formats: FIPS 201 low outputs the FASC-N in an assortment of Wiegand bit formats from 40 - 200 bits. FIPS 201 medium outputs a combination FASC-N and HMAC in an assortment of Wiegand bit formats from 32 - 232 bits. All Wiegand formats or the upgradeability from Low to Medium Levels can be field configured with the use of a command card.
- b. FIPS 201 readers shall be able to read, but not be limited to, DES fire and iCLASS cards.
- c. Reader range shall comply with ISO standards 7816, 14443, and 15693, and also take into consideration conditions, are at a minimum 1" to 2" (2.5 5 cm).
- d. APDU Support: At a minimum, the contactless interface shall support all card commands for contactless based access specified in Section 7, End-point PIV Card Application Card Command Interface of SP 800-73-1, Interfaces for Personal Identity Verification.
- e. Buffer Size: The reader shall contain a buffer large enough to receive the maximum size frame permitted by ISO/IEC 7816-3, Section 9.4.
- f. ISO 14443 Support: The PIV Reader shall support parts (1 through 4) of ISO/IEC 14443 as amended in the References of this publication.
- g. Type A and B Communication Signal Interfaces: The contactless interface of the reader shall support both the Type A and Type B communication signal interfaces as defined in ISO/IEC 14443-2:2001.
- h. Type A and B Initialization and Anti-Collision The contactless interface of the reader shall support both Type A and Type B initialization and anti-collision methods as defined in ISO/IEC 14443-3:2001.
- i. Type A and B Transmission Protocols: The contactless interface of the reader shall support both Type A and Type B transmission protocols as defined in ISO/IEC 14443-4:2001.
- j. Retrieval Time: Retrieval time for 4 KB of data through the contactless interface of the reader shall not exceed 2.0 seconds.

- k. Transmission Speeds: The contactless interface of the reader shall support bit rates of fc/128 (~106 kbits/s), fc/64(~212 kbits/s), and configurable to allow activation/deactivation.
- Readability Range: The reader shall not be able to read PIV card more than 10cm(4inch) from the reader

2.11 BIOMETRIC IDENTITY VERIFICATION EQUIPMENT

- A. Shall be FIPS 201 and NIST SP 800-76 compliant.
- B. Shall utilize hand/palm, fingerprint, retinal, facial image, or voice verification and could be utilized as secondary authentication in conjunction with card readers in high security area as defined by the VA. (Note: VA policy requires that the use of biometric measurements is limited to secondary authentication in high or medium security applications).
- C. Shall be programmable, addressable, and hardwired directly to the main control panel and individually home run to the main control panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall include a means to construct individual templates or profiles based upon measurements taken from the person to be enrolled. This template shall be stored as part of the System Reference Database Files. The stored template shall be used as a comparative base by the personnel identity verification equipment to generate appropriate signals to the associated local processors.
- F. Shall interface with PACS and SMS and provide the employee's name, contact information, and point of access.
- G. Shall allow for surface, flush, or pedestal mounting.
- H. Shall have communications protocol in place that shall allow for communications with the SMS.
- I. Shall determine when multiple attempts were made for verification, and shall automatically prompt the user for additional attempts up to a maximum of three tries. After a third failed attempt the unit shall generate an entry control alarm. This alarm will report to the SMS and the CCTV system. The camera viewpoint for where the alarm was generated shall automatically be called up onto a monitor and be recorded via the

recording equipment. An alarm within the SMS shall also be generated recording, at a minimum, the date, time, and attempted point of entry.

- J. Hand/Palm Geometry Verification:
 - 1. Shall utilize unique human hand measurements to identify authorized, enrolled personnel.
 - 2. During the scan process the hand geometry device, which shall allow the user's hand to remain in full view during the scanning process, shall a three (3) dimensional measurement of the user's hand identifying its size and shape.
 - 3. This scan process shall start automatically once the user's hand is positioned. The hand geometry device shall be able to use either left or right hands for enrollment and verification.
 - 4. Shall include an LED or other type of visual indicator display and provide visual or visual and audible status indications and user prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
 - 5. Shall only be updated at the unit itself and automatic updates via the SMS shall not be allowed.
 - 6. Any significant change to the user's hand, scars, loss of digit, or any other change that will alter the three dimension view of the hand shall require an update to the unit and SMS.
 - 7. Shall provide an enrollment, recognition, and code/credential verification mode. The enrollment mode shall create a hand template for new personnel and enter the template into the entry control database file created for that person. Template information shall be compatible with the system application software. The operating mode shall be selectable by the system manager/operator from the central processor. When operating in recognition mode, the hand geometry device shall allow passage when the hand scan data from the verification attempt matches a hand geometry template stored in the database files. When operating in code/credential verification mode, the hand scan data from the verification attempt matches the hand geometry template associated with the identification code entered into a keypad; or matches the hand geometry template associated with credential card data read by a card reader.
- K. Fingerprint Verification:

- Shall use a unique human fingerprint pattern to identify authorized, enrolled personnel.
- Shall allow the user's hand to remain in full view during the scanning process, shall incorporate positive measures to establish that the hand or fingers being scanned by the device belong to a living human being.
- 3. Shall provide an optical or other type of scan of the user's fingers. The fingerprint verification scanner shall automatically initiate the scan process provided the user's fingers are positioned.
- 4. LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
- 5. Any significant change to the user's finger such as scars, loss of digit, or any other change that will alter the finger print shall require an update to the unit and SMS.
- 6. Shall provide an adjustable acceptance tolerance or template match criteria under system manager/operator control.
- 7. Shall respond to passage requests by generating signals to the local processor. The verification time shall be 2.0 seconds or less from the moment the finger print analysis scanner initiates the scan process until the fingerprint analysis scanner generates a response signal.
- 8. Shall:
 - a. Provide an enrollment mode, recognition mode, and code/credential verification mode. The enrollment mode shall create a fingerprint template for new personnel and enter the template into the system database file created for that person.
 - b. Template information shall be compatible with the system application software.
 - c. The operating mode shall be selectable by the system manager/operator from the central station.
- 9. When operating in recognition mode, the fingerprint analysis scanner shall allow passage when the fingerprint data from the verification attempt matches a fingerprint template stored in the database files.

- 10. When operating in code/credential verification mode, the fingerprint analysis scanner shall allow passage when the fingerprint data from the verification attempt matches a fingerprint template associated with the identification code. When entered into a keypad or it matches the fingerprint template associated with credential, the card data will then be recognized by the card reader.
- 11. Shall store template transactions involving fingerprint scans. The template match scores shall be stored in the matching personnel data file in a format compatible with the system application software, and shall be used for report generation.
- 12. Shall be unit listed as FIPS 201 Approved product.
- L. Iris Verification:
 - Shall utilize unique patterns within the human eye to identify authorized, enrolled personnel.
 - Shall use ambient light to capture an image of the iris of the person presenting themselves for identification. The resulting video image shall be compared against a stored template that was captured during the enrollment process.
 - 3. Shall utilize a threshold for identification. The efficiency and accuracy of the device shall not be adversely affected by enrollees who wear contact lenses or eye glasses.
 - Shall provide a means for enrollees to align their eye for identification that does not require facial contact with the device.
 - 5. Initiation for the scan should be automatic, but push-button could be provided to initiate the scan process. The device shall include adjustments to accommodate differences in enrollee height and mounting height shall be UFAS compliant.
 - 6. The LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.
 - Verification time for the retinal verification unit shall be no greater that 1.5 seconds from the moment the action is initiated until a response signal has been generated.
 - 8. Shall provide an enrollment mode, recognition mode, and code/credential verification mode:

- a. The enrollment mode shall create an iris template for new personnel and enter the template into the system database file created for that person. Template information shall be compatible with the system application software.
- b. When operating in recognition mode, the retinal verification unit shall allow passage when the retinal verification data from the verification attempt matches an iris template stored in the database files.
- c. When operating in code/credential verification mode, the iris scanner shall allow passage when the retinal verification data from the verification attempt matches the retinal verification template. This will occur when the associated information matches the identification code entered into a keypad or matches the retinal verification template associated with the credential card data when recognized by a card reader.
- 9. Shall store template transactions involving retinal verifications. The template match scores shall be stored in the matching personnel data file in a file format compatible with the system application software, and shall be used for report generation.
- M. Voice Verification:
 - 1. Shall utilize unique patterns within the human speech pattern to identify authorized, enrolled personnel.
 - 2. Shall digitize a profile of a person's speech to produce a stored model voice print, or template. Users shall record their full names utilizing their natural voice tendencies. This process shall be initiated by a push to talk button on the voice verification device.
 - 3. Shall utilize a threshold for identification. The efficiency and accuracy of the device shall not be adversely affected by enrollees who have a speech impediment.
 - 4. Shall provide a means for enrollees to align their voice for identification that does not require contact with the device.
 - 5. The LED or other type of visual indicator displays shall provide a visual or visual and audible status indication and enrollee prompts. The display shall indicate power on/off, and whether user passage requests have been accepted or rejected.

- 6. Verification time for the voice verification unit shall be no greater that 1.5 seconds from the moment the action is initiated until a response signal has been generated.
- 7. Shall provide an enrollment mode, recognition mode, and code/credential verification mode:
 - a. The enrollment mode shall create a voice template for new personnel and enter the template into the system database file created for that person. Template information shall be compatible with the system application software.
 - b. When operating in recognition mode, the voice verification unit shall allow passage when the voice verification data from the verification attempt matches a voice template stored in the database files.
 - c. When operating in code/credential verification mode, the voice verifier shall allow passage when the voice verification data from the verification attempt matches the voice verification template. This will occur when the associated information of the identification code entered into a keypad matches the voice verification template associated with a credential card data is recognized by a card reader.
- 8. Shall store template transactions involving voice verifications. The template match scores shall be stored in the matching personnel data file in a file format compatible with the system application software, MPEG or equivalent, and shall be used for report generation.

2.11 KEYPADS

- A. Designed for use with unique combinations of alphanumeric and other symbols as an Identifier. Keys of keypads shall contain an integral alphanumeric/special symbol keyboard with symbols arranged in [ascending ASCII-code ordinal sequence]. Communications protocol shall be compatible with Controller.
 - Keypad display or enclosure shall limit viewing angles of the keypad as follows:
 - a. Maximum Horizontal Viewing Angle: 5 degrees or less off in either direction of a vertical plane perpendicular to the plane of the face of the keypad display.

- b. Maximum Vertical Viewing Angle: 15 degrees or less off in either direction of a horizontal plane perpendicular to the plane of the face of the keypad display.
- Duress Codes: Provide duress situation indication by entering a special code.

2.12 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.
- C. PIV logical credentials shall contain multiple data elements for the purpose of verifying the cardholder's identity at graduated assurance levels. These mandatory data elements shall collectively comprise the data model for PIV logical credentials, and include the following: 1. CHUID
 - 2. PIN
- D. The credential card (PIV) shall be an ISO 14443 type smart card with contactless interface that operates at 13.56 MHZ.

2.13 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (± 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio

frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

- C. Guard tour stations:
 - The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.
- D. Delayed Egress (DE)
 - 1. General:
 - a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crash bars type mechanical release switches.
 - The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode
 - The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The

100% CONSTRUCTION DOCUMENTS

reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2) Delayed egress doors will have bond sensors.
- 3) Delayed egress activation shall also trigger CCTV call -up.
- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
 - The delay egress device shall automatically reset upon fire alarm system reset.
 - 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.

- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read:

EMERGENCY EXIT.

- PUSH UNTIL
- ALARM SOUNDS

DOOR CAN BE OPENED,

- IN 30 SECONDS.
- Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS interface shall support extended periods of automated and/or manual lock and unlock cycles.

- E. Crash Bar:
 - 1. Emergency Exit with Alarm (Panic):
 - Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one(1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
 - f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
 - g. Normal Exit:
 - Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
 - 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
 - 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications.

The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.

F. Key Bypass:

- Shall be utilized for all doors that have a mortise or rim mounted door hardware.
- Each door shall be individually keyed with one master key per secured area.
- 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
- All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
- 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.
- G. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - Door closing force shall be adjustable to ensure adequate closing control.
 - 3. Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - 4. Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
 - 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
 - Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
 - All automatic door openers and closers shall:
 a. Meet UL standards.

- b. Be fire rated.
- c. Have push and go function to activate power operator or power assist function.
- d. Have push button controls for setting door close and door open positions.
- e. Have open obstruction detection and close obstruction detection built into the unit.
- f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
- g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
- h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.
- H. Door Status Indicators:
 - 1. Shall monitor and report door status to the SMS.
 - 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.
 - d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
 - e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2'' (5 cm).

2.14 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:
 - a. Minimum continuous current rating of [10] <Insert number> A at 120 V ac or [5] <Insert number> A at 240-V ac.
 - b. Contacts that will make 720 VA at [60] <Insert number> A and that will break at 720 VA at [10] <Insert number> A.
 - Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
 - Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.15 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - Allow for exiting a space via either a push button, request to exit, or panic/crash bar.
 - 3. Provide a means of override to the PACS via a keypad or key bypass.
 - 4. Assist door operations utilizing automatic openers and closures.
 - 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - Shall be momentary contact, back lighted push buttons, and stainless-steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.

- a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.
- b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.
- c. Shall have double-break silver contacts that will make 720 VA at 60 amperes and break 720 VA at 10 amperes.
- G. Entry Control Devices:
 - Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
 - 2. Shall be fail-safe in the event of power failure to the PACS system.
 - 3. Shall operate at 24 VCD, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
 - Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or backcheck.
 - 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.
 - c. Rated for a minimum of 1000 lbs. holding strength.
 - d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
 - e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
 - f. Flush mounted within the door frame.

6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:

- a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
- b. Have integrated Request to Exit switch for new doors receiving physical access control devices.
- c. Provide integration of the Electric Mortise Locks with the PACS for:
 - 1) Lock Power
 - 2) Request to Exit switch.
- 7. Electromagnetic Locks:
 - a. These locks shall be without mechanical linkage utilizing no moving parts, and securing the door to its frame solely on electromagnetic force.
 - b. Shall be comprised of two pieces, the mag-lock and the door plate. The electromagnetic locks shall be surface mounted to the door frame and the door plate shall be surface mounted to the door.
 - c. Ensure a diode is installed in line with the DC voltage supplying power to the unit in order to prevent back-check on the system when the electromagnetic lock is powered.
 - d. Electromagnetic locks shall meet the following minimum technical characteristics:

Operating Voltage		24 VDC
Current Draw		.5A
Holding Force	Swing Doors	675 kg (1500 lbs)
	Sliding Doors	225 kg (500 lbs)

- 8. Turnstiles:
 - a. Shall operate at 110 VAC, 60 Hz or 220 VAC, 50 Hz supplied from a dedicated circuit breaker on a security power panel. This device does not require a back-up power source.
 - b. Shall be utilized as a means of monitoring and controlling access in a lobby.
 - c. Shall meet the following minimum requirements:

- 1) Be UFAS compliant.
- 2) Provide either an audible or visual confirmation that access has been granted to a cleared individual.
- Provide an audible alarm in the event a non-cleared individual is attempting to gain access.
- Interface with the SMS and utilize a card reader for accessing and exiting a facility, and provide a recorded event of personnel accessing these points.
- 5) Have a built-in step-down transformer to provide power to a card reader unit.
- 6) Have built-in signal wiring chassis to allow for plug and play capabilities with the PACS.
- Have the ability to detect tailgating within one quarter on an inch to prevent unauthorized access to a facility.

2.17 INTERFACES

- A. CCTV System Interface
 - 1. An RS232 [Ethernet] interface associated driver, and controller shall be provided for connection of the SMS Central Computer to the CCTV Alarm interface and switcher. The interface shall provide alarm data to the CCTV Alarm interface for automatic camera call-up. If required the Security Contractor shall be responsible for programming the command strings into the SMS Server.
- B. Power Supplies:
 - Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.
 - 2. Shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ (enter amperage)A	
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)	
	24 VDC Nominal (27.6 VDC)	
	Filtered and Regulated	
BATTERY	Dependant on Output Voltage shall provide up to <> Ah	
OUTPUT CURRENT	[10] amp max. [@ 13.8] VDC	
	[5] amp max. [@ 27.6] VDC	
PRIMARY FUSE SIZE	6.3 amp (non-removable)	
BATTERY FUSE SIZE	12 amp, 3AG	

CHARGING CIRCUIT Built-in standard

2.21 VIDEO AND CAMERA CONTROL

- A. Control station or designated workstation displays live video from a CCTV source.
 - Control Buttons: On the display window, with separate control buttons to represent Left, Right, Up, Down, Zoom In, Zoom Out, Scan, and a minimum of two custom command auxiliary controls.
 - Provide at least seven icons to represent different types of cameras, with ability to import custom icons. Provide option for display of icons on graphic maps to represent their physical location.
 - 3. Provide the alarm-handling window with a command button that will display the camera associated with the alarm point.
- B. Display mouse-selectable icons representing each camera source, to select source to be displayed. For CCTV sources that are connected to a video switcher, control station shall automatically send control commands through a COM port to display the requested camera when the camera icon is selected.
- C. Allow cameras with preset positioning to be defined by displaying a different icon for each of the presets. Provide control with Next and Previous buttons to allow operator to cycle quickly through the preset positions.

2.22 WIRES AND CABLES

- A. Comply with Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- B. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- C. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire. 1. NFPA 70, Type CMP.

- 2. Flame Resistance: NFPA 262 Flame Test.
- D. RS-485 communications require 2 twisted pairs, with a distance limitation of 4000 feet (1220 m).
- E. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- F. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket. 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- G. Paired Readers and Wiegand Keypads Cables: Paired, 3 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- H. Paired Readers and Wiegand Keypads Cable: Paired, 3 pairs, twisted, No. 20 AWG, stranded (7x28) tinned copper conductors, polyethylene (polyolefin) insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded (19x34) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- I. Plenum-Type, Paired, Readers and Wiegand Keypads Cable: Paired, 3 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, individual aluminum foil-polypropylene tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- J. Plenum-Type, Multiconductor, Readers and Keypads Cable: 6 conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinated-

	RUCT AIR HANDLING TOWER (EALTHCARE SYSTEM	636-18-303 05-28-21
OMAHA		
	ethylene-propylene insulation, overall aluminum foil-polyester	
	shield with 100 percent shield coverage plus tinned copper brai	id shield
	with 85 percent shield coverage, and fluorinated-ethylene-propy	ylene
	jacket.	
	1. NFPA 70, Type CMP.	
	2. Flame Resistance: NFPA 262 Flame Test.	
К.	Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x2	29)
	tinned copper conductors, PVC insulation, unshielded, and PVC	jacket.
	1. NFPA 70, Type CMG.	
	2. Flame Resistance: UL 1581 Vertical Tray.	
L.	Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 16 AWG, s	stranded
	(19x29) tinned copper conductors, PVC insulation, unshielded, a	and PVC
	jacket.	
	1. NFPA 70, Type CMP.	
	2. Flame Resistance: NFPA 262 Flame Test.	
Μ.	Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x3	30)
	tinned copper conductors, polypropylene insulation, overall all	uminum
	foil-polyester tape shield with No. 22 AWG, stranded (7x30) times the stranded (7x30) times the strands of the	nned
	copper drain wire, 100 percent shield coverage, and PVC jacket.	•
	1. NFPA 70, Type CMR.	
	2. Flame Resistance: UL 1666 Riser Flame Test.	
Ν.	Plenum-Type, Paired Input Cable: 1 pair, twisted, No. 22 AWG,	stranded
	(7x30) tinned copper conductors, fluorinated-ethylene-propylene	e
	insulation, aluminum foil-polyester tape shield (foil side out)), with
	No. 22 AWG drain wire, 100 percent shield coverage, and plastic	c jacket.
	1. NFPA 70, Type CMP.	
	2. Flame Resistance: NFPA 262 Flame Test.	
Ο.	Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stra	anded
	(7x26) tinned copper conductors, PVC insulation, unshielded, an	nd PVC
	jacket.	
	1. NFPA 70, Type CMG.	
P.	Plenum-Type, Paired AC Transformer Cable: 1 pair, twisted, No.	. 18 AWG,
	stranded (19x30) tinned copper conductors, fluorinated-ethylene	5-
	propylene insulation, unshielded, and plastic jacket.	
	1. NFPA 70, Type CMP.	
	2. Flame Resistance: NFPA 262 Flame Test.	

28 13 00 - 100

- Q. Elevator Travel Cable: Steel center core, with shielded, twisted pairs, No. 20 AWG conductor size.
 - Steel Center Core Support: Preformed, flexible, low-torsion, zinccoated, steel wire rope; insulated with 60 deg C flame-resistant PVC and covered with a nylon or cotton braid.
 - Shielded Pairs: Insulated copper conductors; color-coded, insulated with 60 deg C flame-resistant PVC; each pair shielded with bare copper braid for 85 percent coverage.
 - 3. Jute Filler: Electrical grade, dry.
 - 4. Binder: Helically wound synthetic fiber.
 - 5. Braid: Rayon or cotton braid applied with 95 percent coverage.
 - Jacket: 60 deg C PVC specifically compounded for flexibility and abrasion resistance. UL VW-1 and CSA FT1 flame rated.
- R. LAN (Ethernet) Cabling: Comply with Division 28 Section "Conductors and Cables for Electronic Safety and Security."

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all

changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 - 7. Prepare and install alarm graphic maps.
 - 8. Develop user-defined fields.
 - 9. Develop screen layout formats.
 - 10. Propose setups for guard tours and key control.
 - 11. Discuss badge layout options; design badges.

12. Complete system diagnostics and operation verification.

- 13. Prepare a specific plan for system testing, startup, and demonstration.
- 14. Develop acceptance test concept and, on approval, develop specifics of the test.
- 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental air spaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- E. Install cables without damaging conductors, shield, or jacket.
- F. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- G. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed [250 feet (75 m)] [500 feet (150 m)] <Insert distance>.
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of [25 feet (8 m)] <Insert distance>.

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.

3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:
 - 1. CCTV:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
 - b. Be able to monitor, control and record cameras on a 24 hours basis.
 - c. Be programmed automatically call up a camera when an access point is but into an alarm state.
 - d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.
 - 2. IDS:
 - a. Be able monitor door control sensors.
 - b. Be able to monitor and control the IDS on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.

- d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.
- 3. Security Access Detection:
 - a. Be able to monitor all objects that have been screened with an xray machine and be able to monitor all data acquired by the bomb detection unit.
 - b. For additional PACS system requirements as they relate to the Security Access Detection, refer to Section 28 13 53, SECURITY ACCESS DETECTION.
- 4. EPPS:
 - a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
 - b. For additional PACS requirements as they relate to the EPPS, refer to Section 28 26 00, ELECTRONIC PERSONAL PROTECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment:
 - The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in

their original configuration without modification may be reused with Contracting Officer approval.

- 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall

be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- N. SMS:
 - Coordinate with the VA agency's IT personnel to place the computer on the local LAN or Intranet and provide the security system protection levels required to insure only authorized VA personnel have access to the system.
 - 2. Program and set-up the SMS to ensure it is in fully operation.
- O. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.
 - Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- P. Biometrics:
 - Connect all signal input and output cables along with all power cables.
 - 2. Program and ensure the device is in operating order.
- Q. Portal Control Devices:
 - Install all signal input and output cables as well as all power cables.
 - 2. Devices shall be surface or flush mounted as per the design package.
 - 3. Program all devices and ensure they are working.
- R. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.
 - RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door,

or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.

- Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- S. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- T. System Start-Up:
 - The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
 - b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - c. System wiring has been tested and verified as correctly connected as indicated.
 - d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
 - Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
 - 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- U. Supplemental Contractor Quality Control:

636-18-303

- representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
- 2. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections[, and to assist in field testing]. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent

of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.

3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.

- 4. Hardware maintenance personnel.
- 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install cameras as an extension to existing Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras and data transmission wiring.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).

- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): a encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

- F. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.
 - The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
 - 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide

consistent oversight of the project cabling throughout design, layout, installation, termination and testing.

G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01
 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00,
 Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - 1) Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.

- d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
- e. Identify all pull box and conduit locations, sizes, and fill capacities.
- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.

- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA): 330-09.....Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors

CONSTRUCT AIR HANDLING TOWER 636 - 18 - 303NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits 802.3af-08.....Power over Ethernet Standard D. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems E. National Electrical Contractors Association (NECA): 303-2005..... Installing Closed Circuit Television (CCTV) Systems F. National Fire Protection Association (NFPA): 70-08..... Article 780-National Electrical Code G. Federal Information Processing Standard (FIPS): 140-2-02.....Security Requirements for Cryptographic Modules H. Underwriters Laboratories, Inc. (UL): 983-06..... Camera Units 3044-01.....Standard for Surveillance Closed Circuit Television Equipment 1.7 COORDINATION A. Coordinate arrangement, mounting, and support of video surveillance equipment:

- 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.

B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Video signal format shall comply with the NTSC standard composite video, interlaced. Composite video signal termination shall be 75 ohms.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- C. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- D. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

- A. All Cameras will be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.
- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.
 - 3. Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.

- 4. Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
- 5. Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
- Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
- P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
- 8. Dummy or fake cameras will not be utilized at any time.
- 9. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.

100% CONSTRUCTION DOCUMENTS

- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.
- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:
 - A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.
 - 2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.
- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.
- L. Coaxial Cables
 - All video signal cables for the VASS System, with exception to the PoE cameras, shall be a coaxial cable and have a characteristic impedance of 75 ohms plus or minus 3 ohms.
 - 2. For runs up to 750 feet use of an RG-59/U is required. The RG-59/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 23 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 3. For runs between 750 feet and 1250 feet, RG-6/U is required. RG-6/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 18 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
 - 4. For runs of 1250 to 2750 feet, RG-11/U is required. RG-11/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 14 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.

100% CONSTRUCTION DOCUMENTS

- 5. All runs greater than 2750 feet will be substituted with a fiber optic cable. If using fiber optics as a signal carrier then the following equipment will be utilized:
 - a. Multimode fiber optic cable a minimum size of 62 microns
 - b. Video transmitter installed at the camera that utilizes 12 VDC or 24 VAC for power.
 - c. Video receiver installed at the switcher.
- 6. RG-59/U Technical Characteristics

AWG	22
Stranding	7x29
Conductor Diameter	.031 in.
Conductor Material	BCC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.145 in.
Outer Shield Type	Braid/Braid
Outer Jacket Material	PVC
Overall Nominal Diameter	.242 in.
UL Temperature Rating	75°C
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.094 µH/ft
Nom. Capacitance	Conductor to Shield 17.0 pF/ft
Nom. Velocity of Propagation	80 %
Nom. Delay	1.3 ns/ft
Nom. Conductor DC Resistance @ 20°C	12.2 Ohms/1000 ft
Nom. Outer Shield DC Resistance @ 20°C	2.4 Ohms/1000 ft
Max. Operating Voltage	UL 300 V RMS

7. RG-6/U Technical Characteristics:

AWG	18
Stranding	7x27
Conductor Diameter	.040 in.
Conductor Material	BC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.180 in.
Outer Shield Material	Trade Name Duofoil

Outer Shield Type	Tape/Braid
Outer Shield %Coverage	100 %
Outer Jacket Material	PVC
Overall Nominal Diameter	.274 in.
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.106 µH/ft
Nom. Capacitance	Conductor to Shield 16.2 pF/ft
Nom. Velocity of Propagation	82 %
Nom. Delay	1.24 ns/ft
Nom. Conductor DC Resistance	6.4 Ohms/1000 ft
Nominal Outer Shield DC Resistance @ 20°C	2.8 Ohms/1000 ft
Max. Operating Voltage	UL 300 V RMS

8. RG-11/U Technical Characteristics:

AWG	15
Stranding	19x27
Conductor Diameter	.064 in.
Conductor Material	BC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.312 in.
Inner Shield Type	Braid
Inner Shield Material	BC - Bare Copper
Inner Shield %Coverage	95 %
Inner Jacket Material	PE - Polyethylene
Inner Jacket Diameter	.391 in.
Outer Shield Type	Braid
Outer Shield Material	BC - Bare Copper
Outer Shield %Coverage	95 %
Outer Jacket Material	Trade Name Belflex
Outer Jacket Material	PVC Blend
Overall Nominal Diameter	.520 in.
Operating Temperature Range	-35°C To +75°C
Non-UL Temperature Rating	75°C
Nom. Characteristic Impedance	75 Ohms

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

Nom. Inductance	0.097 µH/ft
Nom. Capacitance	Conductor to Shield 17.3 pF/ft
Nom. Velocity of Propagation	78 %
Nom. Delay	1.30 ns/ft
Nom. Conductor DC Resistance	3.1 Ohms/1000 ft
Nom. Inner Shield DC Resistance	1.8 Ohms/1000 ft
Nom. Outer Shield DC Resistance	1.4 Ohms/1000 ft
Max. Operating Voltage Non-UL	300 V RMS

- 9. Signal Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.
 - b. If the camera is up to 300 ft from a hub or the server, then use a shielded UTP category 5 (CAT-V) cable a with standard RJ-45 connector at each end. The cable with comply with the Power over Ethernet, IEEE802.3af, Standard.
 - c. If the camera is over 300 ft from a hub or server then utilize a multimode fiber optic cable with a minimum size of 62 microns.
 - d. Provide a separate cable for power.
 - e. CAT-5 Technical Characteristics:

Number of Pairs	4
Total Number of Conductors	8
AWG	24
Stranding	Solid
Conductor Material	BC - Bare Copper
Insulation Material	PO - Polyolefin
Overall Nominal Diameter	.230 in.
IEC Specification	11801 Category 5
TIA/EIA Specification	568-B.2 Category 5e
Max. Capacitance Unbalance	(pF/100 m) 150 pF/100 m
Nom. Velocity of Propagation	70 %
Max. Delay	(ns/100 m) 538 @ 100MHz
Max. Delay Skew	(ns/100m) 45 ns/100 m
Max. Conductor DC Resistance	9.38 Ohms/100
Max. DCR Unbalance@ 20°C	3 %

Max. Operating Voltage

UL 300 V RMS

10. Fiber Optic Cables Technical Characteristics:

Fiber Type	62.5 Micron
Number of Fibers	4
Core Diameter 6	2.5 +/- 2.5 microns
Core Non-Circularity	5% Maximum
Clad Diameter	125 +/- 2 microns
Clad Non-Circularity	1% Maximum
Core-clad Offset	1.5 Microns Maximum
Primary Coating Material	Acrylate
Primary Coating Diameter	245 +/- 10 microns
Secondary Coating Material	Engineering Thermoplastic
Secondary Coating Diameter	900 +/- 50 microns
Strength Member Material	Aramid Yarn
Outer Jacket Material	PVC
Outer Jacket Color	Orange
Overall Diameter	.200 in.
Numerical Aperture	. 275
Maximum Gigabit Ethernet	300 meters
Maximum Gigabit Ethernet	550 meters

11. Power Cables

- a. Will be sized accordingly and shall comply with the NEC. High voltage power cables will be a minimum of three conductors, 14
 AWG, stranded, and coated with a non-conductive polyvinylchloride (PVC) jacket. Low voltage cables will be a minimum of 18 AWG, stranded and non-conductive polyvinylchloride (PVC) jacket.
- b. Will be utilized for all components of the VASS System that require either a 110 VAC 60 Hz or 220 VAC 50 Hz input. Each feed will be connected to a dedicated circuit breaker at a power panel that is primarily for the security system.
- c. All equipment connected to AC power shall be protected from surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used as a means of surge protection.

- d. Shall be rated for either 110 or 220 VAC, 50 or 60 Hz, and shall comply with VA Master Spec 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- e. Low Voltage Power Cables
 - Shall be a minimum of 18 AWG, Stranded and have a polyvinylchloride outer jacket.
 - Cable size shall determined using a basic voltage over distance calculation and shall comply with the NEC's requirements for low voltage cables.

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
 - The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The

636-18-303 05-28-21

100% CONSTRUCTION DOCUMENTS

Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.

- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- E. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines

that are usable in their original configuration without modification may be reused with Contracting Officer approval.

- 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- F. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall

be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- G. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- H. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.

I. Cameras:

- 1. Install the cameras with the focal length lens as indicated for each zone.
- 2. Connect power and signal lines to the camera.
- 3. Aim camera to give field of view as needed to cover the alarm zone.
- 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
- 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
- 6. Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
- 7. PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- J. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.

3.3 SYSTEM START-UP

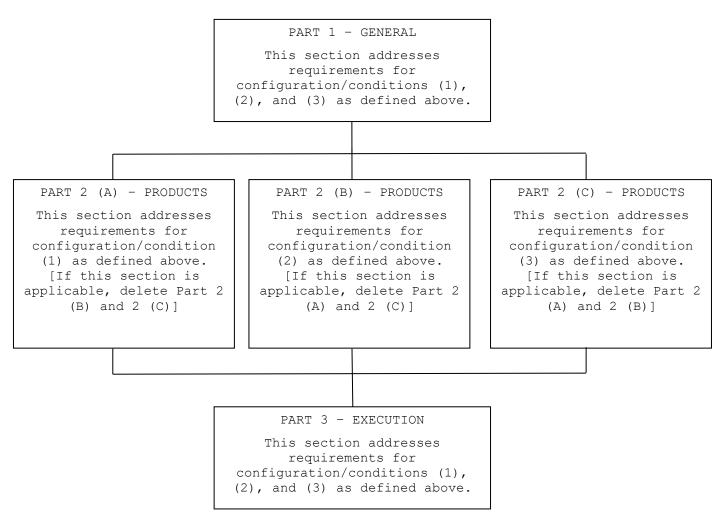
- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
 - A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.

- 3. System wiring has been tested and verified as correctly connected as indicated.
- 4. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING


- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COTR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building(s) shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.
- E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

A. A fully addressable fire alarm system as an extension of an existing fully addressable fire alarm system shall be designed and installed in

accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits

shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.

6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- D. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.
 - E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
 - F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
 - G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
 - H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
 - I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
 - J. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
 - K. Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for integration with physical access control system.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be

responsible for verifying all critical dimensions shown on the drawings provided by VA.

- 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A printout of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.

- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A printout for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
 - 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COTR or his authorized representative.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be

considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COTR or his authorized representative.

- 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency callback hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.
- I. In the event that VA modifies the fire alarm system post-Acceptance but during the 5 year Guaranty Period Service period, Contractor shall be required to verify that the system, as newly modified or added, is consistent with the manufacturer's requirements; any verification performed will be equitably adjusted under the Changes clause. The post-Acceptance modification or addition to the fire alarm system shall

not void the continuing requirements under this contract set forth in the Guarantee Period Service provision for the fire alarm system as modified or added. The contract will be equitably adjusted under the Changes clause for such additional performance.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):
 - NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition
 - NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2010 edition
 - NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition
 - NFPA 70.....National Electrical Code (NEC), 2010 edition
 - NFPA 72.....National Fire Alarm Code, 2010 edition
 - NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. Existing non-addressable equipment may be reused only where indicated on the drawings. All addressable equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the addressable fire alarm system to extend an existing non-addressable system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.
 - 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for

junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.

- Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. A fully addressable fire alarm system used as an extension of an existing fire alarm system shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system. The addressable fire alarm control unit shall be interfaced with the existing fire alarm control unit such that an alarm signal on one unit shall cause an alarm signal on the other unit. The addressable fire alarm control unit shall be located in the same room or space as the non-addressable fire alarm control unit.
 - 2. Each power source shall be supervised from the other source for loss of power.
 - 3. All circuits shall be monitored for integrity.
 - Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch diagonal non-glare screen capable of displaying 24 lines of 80 characters each.

- Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
- 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.
- D. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
 - 3. Power supply for new smoke detectors shall be taken from the addressable fire alarm control unit.
 - Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
 - 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.

- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
 - 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
 - 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
 - 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- I. Remote Transmissions:
 - Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
 - Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.

- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - Under normal operating conditions, the load shall be filtered through a ferro resonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 - 4. Batteries shall be sealed, gel cell type.
 - 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries:
 - Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 - Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
 - 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.
- C. Battery Charger:
 - Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions.

Charger shall operate from a 120-volt, 60 hertz emergency power source.

- Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
- 3. Shall have protection to prevent discharge through the charger.
- Shall have protection for overloads and short circuits on both AC and DC sides.
- 5. A trouble condition shall actuate the fire alarm trouble signal.
- 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. Where the alarm originates on the non-addressable system, the addressable system shall indicate on the LCD display "SEE _________ FIRE ALARM CONTROL PANEL" where the blank is filled in with the make and model of the existing addressable fire alarm control panel.
 - 4. The initial alarm received shall be indicated as such.
 - 5. A selector switch shall be provided for viewing subsequent alarm messages.
 - 6. The display shall be UL listed for fire alarm application.
 - 7. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COTR.

2.6 ALARM NOTIFICATION APPLIANCES

- A. Bells:
 - Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
 - Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).

- 3. Mount on removable adapter plates on outlet boxes.
- 4. Bells located outdoors shall be weatherproof type with metal housing and protective grille.
- 5. Each bell circuit shall have a minimum of 20 percent spare capacity.
- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - Strobes may be combined with the audible notification appliances specified herein.
- C. Horns:
 - 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
 - 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.7 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-break glass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.

- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - 4. All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

- Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
- Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
- 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
- Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector - Elevator P-) for each

elevator group. Locate key test station in plain view on elevator machine room wall.

- D. Water Flow and Pressure Switches:
 - Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
 - 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 12 00, FIRE-SUPPRESSION STANDPIPES and Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
 - 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.
- E. Extinguishing System Connections:
 - 1. Kitchen Range Hood and Duct Suppression Systems:
 - a. Each suppression system shall be equipped with a micro-switch connected to the building fire alarm control unit. Discharge of a suppression system shall automatically send a alarm signal to the building fire detection and alarm system for annunciation.
 - b. Operation of this suppression system shall also automatically shut off all sources of fuel and heat to all equipment requiring protection under the same hood.
 - 2. Each gaseous suppression system shall be monitored for system alarm and system trouble conditions via addressable interface devices.

2.8 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".

- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
 - 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
 - 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
 - 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.
 - 7. Fire supervisory signals required by NFPA 20 and monitored by the pump controller shall be provided and monitored by way of address reporting interface devices for the fire pump located// indicate location.

2.9 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the addressable fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.

- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.10 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.11 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.12 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 3. Heat detectors 2 of each type
 - 4. Fire alarm strobes 5
 - 5. Fire alarm bells 5
 - 6. Smoke detectors 20
 - 7. Duct smoke detectors with all appurtenances 1

- 8. Sprinkler system water flow switch 1 of each size
- 9. Sprinkler system water pressure switch 1 of each type
- 10. Sprinkler valve tamper switch 1 of each type
- 11. Control equipment utility locksets 5
- 12. Control equipment keys 25
- 14.2.5 oz containers aerosol smoke 12
- 15. Monitor modules 3
- 16. Control modules 3
- 17. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- C. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- D. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COTR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.13 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.

- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
 - F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
 - G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
 - H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
 - I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
 - J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
 - K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions

toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.

- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.
- M. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in Buildings . For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Buildings.
 - 3. Release only the magnetic door holders on the floor from which alarm was initiated.
 - Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- C. Smoke detectors in the primary elevator lobbies of Buildings shall, in addition to the above functions, return all elevators in the bank to the secondary floor.
- D. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.

- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor .
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall be provided for each smoke zone of Buildings. The messages shall be arranged with a 3 second alert tone, a // "Code Red" message and a description of the fire alarm area (building number, floor, level and smoke zone). A sample of such a message is as follows: Alert Tone Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing Code Red Building One, Second Floor, East Wing

4.2 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall automatically transmit a 3 second tone alert and a pre-recorded fire alarm message throughout the building.

- - END - -

SECTION 31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 3 inches; organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698.
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.

- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.
- E. Foundation System Requirements: Section 31 62 00, DRIVEN PILES, Section 31 63 16, AUGER CAST GROUT PILES, Section 31 63 26, DRILLED CAISSONS, FLOWABLE FILL, Section 31 23 23.33. //

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Classified Excavation: Removal and disposal of all material not defined as rock.
- C. Rock Excavation:
 - 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
 - 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 1 cubic yard capacity, properly used, having adequate power and in good running condition.
 - 3. Boulders or other detached stones each having a volume of 1/2 cubic yard or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

- A. Measurement: Cross section and measure the uncovered and separated materials, and compute quantities by the Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:
 - 1. 12 inches outside of the perimeter of formed footings.
 - 2. 24 inches outside the face of concrete work for which forms are required, except for footings.
 - 3. 6 inches below the bottom of pipe and not more than the pipe diameter plus 24 inches in width for pipe trenches.
 - The outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- C. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- C. American Association of State Highway and Transportation Officials (AASHTO):

T99-10......Moisture-Density Relations of Soils Using a 5.5 lb Rammer and a 12 inch Drop CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS T180-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 10 lb Rammer and a 18 inch Drop D. American Society for Testing and Materials (ASTM): C33-03.....Concrete Aggregate D698-e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort D1140-00.....Amount of Material in Soils Finer than the No. 200 Sieve D1556-00.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method D1557-09.....Laboratory Compaction Characteristics of Soil Using Modified Effort D2167-94 (2001).....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method D2487-06.....Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) D6938-10.....Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from on site and off site sources having a minimum dry density of 110 pcf, a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.
- B. Granular Fill:
 - Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, No. 200 sieveand no more than 2 percent by weight passing the No. 4 size sieve.
 - Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 1/2 inch to No. 4.

- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 3/4 inch to 1 1/4 inches excluding top growth. There shall be no broken pads and torn or uneven ends
- F Buried Warning and Identification Tape: Polyethylene plastic and acidand alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes: Red: Electric
 - G. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.003 inch. Tape shall have a minimum strength of 1500 psi lengthwise, and 1250 psi crosswise, with a maximum 350 percent elongation.
 - H. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastictape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.004 inch. Tape shall have a minimum strength of 1500 psi lengthwise and 1250 psi crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 3 feet deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
 - I. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.
- B. Grubbing: Remove stumps and roots 3 inches and larger diameter. Undisturbed sound stumps, roots up to 3 inches diameter, and nonperishable solid objects which will be a minimum of 3 feet below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 15 feet of new construction and 7'-6" of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.
- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 1/2 cubic foot in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 2 inches in any dimension from topsoil used in final grading. Topsoil work, such as stripping,

100% CONSTRUCTION DOCUMENTS

stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.

- 2. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 12 inches on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to it's angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
 - 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill support in compliance with Specification Section 31 23 23.33, FLOWABLE FILL, under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. Groundwater

flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 3 feet of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material.C.

Blasting: Blasting shall not be permitted.

- D. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - Fill excess cut under footings or foundations with 3000 psi concrete, poured separately from the footings.
 - Do not tamp earth for backfilling in footing bottoms, except as specified.

E. Trench Earthwork:

- 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 6 inches loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - e. Provide buried utility lines with utility identification tape.
 Bury tape 12 inches below finished grade; under pavements and slabs, bury tape 6 inches below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 12 inches above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each

end of the pipe, with a minimum of 3 feet of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - Class I: Angular, 0.25 to 1.5 inches, graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 1.5 inches, including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable, and replace with acceptable material. G. Finished elevation of subgrade shall be as follows:
 - Pavement Areas bottom of the pavement or base course as applicable.
 - Planting and Lawn Areas 4 inches below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer.
- C. Placing: Place material in horizontal layers not exceeding 8 inches in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 10 feet of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer to not less than 95 percent of the maximum density determined in accordance with the following test method ASTM D698. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.
- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right

636-18-303

05-28-21

100% CONSTRUCTION DOCUMENTS

to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Governmentcontrolled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.

F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 10 feeta minimum five percent (5%) slope.
- D. The finished grade shall be 6 inches below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 6 inches, unless otherwise indicated.

100% CONSTRUCTION DOCUMENTS

- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 0.25 inches of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 4 inches, new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 4 inches. Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 4 inches of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.
- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 4 inches at a rate of 25 pounds per 1000 square feet.
- D. Seeding: Seed at a rate of 4 pounds per 1000 square feet and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 150 pounds per foot of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure

100% CONSTRUCTION DOCUMENTS

sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 150 pounds per foot of the roller width to improve contact of sod with the soil.

F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 6 mil polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

SECTION 31 23 19 DEWATERING

SPEC WRITER NOTES:

- 2. Surface water included in this work shall include water that appears on the surface as rainfall or snowmelt runoff, or ground water conditions below grades that appear at the surface in the form of weeps or springs. Dewatering of surface water from flowing streams, brooks, lakes, ponds, or rivers identified on USGS topographic maps or shown on the plans as flowing shall not be included in this specification section.
- 3. If large, complex systems for dewatering are required, or dewatering or pressure relief is critical with regard to construction of the project, damage to permanent work, and safety, a Type B dewatering specification per UFC 3-220-5 "Dewatering and Groundwater Control" should be used.

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies performance of dewatering required to lower and control ground water table levels and hydrostatic pressures to permit excavation, backfill, and construction to be performed in the dry. Control of surface water shall be considered as part of the work under this specification.

1.2 SUMMARY:

- A. The work to be completed by the Contractor includes, but is not necessarily limited to the following:
 - 1. Implementation of the Erosion and Sedimentation Control Plan.
 - 2. Dewater excavations, including seepage and precipitation.
- B. The Contractor shall be responsible for providing all materials, equipment, labor, and services necessary for care of water and erosion control. Excavation work shall not begin before the Erosion and Sedimentation Control Plan is in place.

1.3 REQUIREMENT:

A. Dewatering system shall be of sufficient size and capacity necessary to lower and maintain ground water table to an elevation at least // 300 mm (1 foot) // below lowest foundation subgrade or bottom of pipe trench and to allow material to be excavated//, piles to be driven, and concrete placed,// in a reasonably dry condition. Materials to be removed shall be sufficiently dry to permit excavation to grades shown and to stabilize excavation slopes where sheeting is not required. Operate dewatering system continuously until backfill work has been completed.

- B. Reduce hydrostatic head below any excavation to the extent that water level in the construction area is a minimum of 300 mm (1 foot) below prevailing excavation surface.
- C. Prevent loss of fines, seepage, boils, quick conditions or softening of foundation strata.
- D. Maintain stability of sides and bottom of excavation.
- E. Construction operations are performed in the dry.
- F. Control of surface and subsurface water is part of dewatering requirements. Maintain adequate control so that:
 - The stability of excavated and constructed slopes are not adversely affected by saturated soil, including water entering prepared subbase and subgrades where underlying materials are not free draining or are subject to swelling or freeze-thaw action.
 - 2. Erosion is controlled.
 - 3. Flooding of excavations or damage to structures does not occur.
 - 4. Surface water drains away from excavations.
 - 5. Excavations are protected from becoming wet from surface water, or insure excavations are dry before additional work is undertaken.
- G. Permitting Requirements: The contractor shall comply with and obtain the required State and County permits where the work is performed.

1.4 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Submittal requirements as specified in Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.11, PHYSICAL DATA.

F. Excavation, backfilling, site grade and utilities: Section 31 20 00, EARTH MOVING.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Drawings and Design Data:
 - Submit drawings and data showing the method to be employed in dewatering excavated areas 30 days before commencement of excavation.
 - Material shall include: location, depth and size of wellpoints, headers, sumps, ditches, size and location of discharge lines, capacities of pumps and standby units, and detailed description of dewatering methods to be employed to convey the water from site to adequate disposal.
 - 3. Include a written report outlining control procedures to be adopted if dewatering problem arises.
 - 4. Capacities of pumps, prime movers, and standby equipment.
 - 5. Design calculations proving adequacy of system and selected equipment. The dewatering system shall be designed using accepted and professional methods of design and engineering consistent with the best modern practice. The dewatering system shall include the deep wells, wellpoints, and other equipment, appurtenances, and related earthwork necessary to perform the function.
 - 6. Detailed description of dewatering procedure and maintenance method.
 - 7. Materials submitted shall be in a format acceptable for inclusion in required permit applications to any and all regulatory agencies for which permits for discharge water from the dewatering system are required due to the discharge reaching regulated bodies of water.
- C. Inspection Reports.

D. All required permits.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Install a dewatering system to lower and control ground surface water in order to permit excavation, construction of structure, and placement of backfill materials to be performed under dry conditions. Make the dewatering system adequate to pre-drain the water-bearing strata above

and below the bottom of structure foundations, utilities and other excavations.

B. In addition, reduce hydrostatic pressure head in water-bearing strata below structure foundations, utility lines, and other excavations, to extent that water levels in construction area are a minimum of // 300 mm (1 foot) // below prevailing excavation surface at all times.

3.2 OPERATION:

- A. Prior to any excavation below the ground water table, place system into operation to lower water table as required and operate it continuously 24 hours a day, 7 days a week until utilities and structures have been satisfactorily constructed, which includes the placement of backfill materials and dewatering is no longer required.
- B. Place an adequate weight of backfill material to prevent buoyancy prior to discontinuing operation of the system.

3.3 WATER DISPOSAL:

- A. Dispose of water removed from the excavations in such a manner as:
 - 1. Will not endanger portions of work under construction or completed.
 - 2. Will cause no inconvenience to Government or to others working near site.
 - 3. Will comply with the stipulations of required permits for disposal of water.
 - 4. Will Control Runoff: The Contractor shall be responsible for control of runoff in all work areas including but not limited to: excavations, access roads, parking areas, laydown, and staging areas. The Contractor shall provide, operate, and maintain all ditches, basins, sumps, culverts, site grading, and pumping facilities to divert, collect, and remove all water from the work areas. All water shall be removed from the immediate work areas and shall be disposed of in accordance with applicable permits.
- B. Excavation Dewatering:
 - The Contractor shall be responsible for providing all facilities required to divert, collect, control, and remove water from all construction work areas and excavations.
 - Drainage features shall have sufficient capacity to avoid flooding of work areas.
 - 3. Drainage features shall be so arranged and altered as required to avoid degradation of the final excavated surface(s).

- 4. The Contractor shall utilize all necessary erosion and sediment control measures as described herein to avoid construction related degradation of the natural water quality.
- C. Dewatering equipment shall be provided to remove and dispose of all surface and ground water entering excavations, trenches, or other parts of the work during construction. Each excavation shall be kept dry during subgrade preparation and continually thereafter until the structure to be built, or the pipe to be installed therein, is completed to the extent that no damage from hydrostatic pressure, flotation, or other cause will result.

3.4 STANDBY EQUIPMENT:

Provide complete standby equipment, installed and available for immediate operation, as may be required to adequately maintain dewatering on a continuous basis and in the event that all or any part of the system may become inadequate or fail.

3.5 CORRECTIVE ACTION:

If dewatering requirements are not satisfied due to inadequacy or failure of the dewatering system (loosening of the foundation strata, or instability of slopes, or damage to foundations or structures), perform work necessary for reinstatement of foundation soil and damaged structure or damages to work in place resulting from such inadequacy or failure by Contractor, at no additional cost to Government.

3.6 DAMAGES:

Immediately repair damages to adjacent facilities caused by dewatering operations.

3.7 REMOVAL:

Insure compliance with all conditions of regulating permits and provide such information to the Resident Engineer. Obtain written approval from Resident Engineer before discontinuing operation of dewatering system.

----- E N D -----

SECTION 31 63 16 AUGER CAST GROUT PILES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies excavation and concrete required for construction of auger-placed concrete piles

1.2 DEFINITION

A. Auger-placed concrete pile (ACP): Pile formed by rotation of a continuous flight hollow-shaft pile augured into the ground to the indicated depth. Grout is injected through auger shaft as auger is being withdrawn in such a way as to exert removing pressure on withdrawing earth-filled auger as well as lateral pressure on soil surrounding hole.

1.3 RELATED WORK

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Concrete: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. Subsurface investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CONTRACT BASIS

- A. Contract price for ACP's will be based upon total length of piles shown on the Contract Documents and number of pile load tests indicated in the Contract Documents. Length of piles will be measured as shown.
 - Adjustment of contract price shall be based upon total length of piles placed, and not on length of individual piles placed. When total length of completed piles is greater or less than length shown, contract price adjustment will be made in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable.
 - Contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable when artificial materials that are not shown are encountered.

1.5 CONTRACTOR QUALIFICATIONS

A. Approval by Contracting Officer is required of service of proposed Contractor and will be based upon submission by Contractor of certification that:

- Contractor has technical qualifications, experience, trained personnel and facilities to install auger placed concrete piles as specified. Approval will not be given, however, where an experience record is one of unsatisfactory performance.
- Contractor has installed ACP's on three installations similar and equivalent to this project for 5 years. Submit list of installations.

1.6 TOLERANCES

A. Locate piles where indicated. The maximum permissible variation of the center of each pile from the required locations is 50 mm (2 inches) at the ground surface. No pile shall be out of required axial alignment by more than 2 percent. Periodically check the required axial alignment of each pile during the drilling operation and after reaching the required tip elevation with not less than 1.5 m (5 feet) of the augerflight extending above the ground surface.

1.7 DESIGN MODIFICATIONS

- A. Where piles are installed exceeding specified tolerances for plumb or location, the foundation design will be analyzed by the Resident Engineer and if necessary redesigned by Resident Engineer. Costs for analysis, redesign, and remediation shall be responsibility of Contractor.
- B. Additional piles and pile cap modifications necessitated by redesign shall be furnished and installed, at no additional cost to the Government.

1.8 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Certification to Examination of Site and Records: Before proceeding with the Work, submit copy of certification in acceptable form signed by the Contractor, stating that careful examination has been made of the site, existing structures, and records of utility lines, test boring records, soil samples, and subsurface exploration reports by the Owner's Geotechnical Engineer, Drawings, and Specifications.
- C. Shop Drawings and Miscellaneous Submittals:
 - 1. Description of pile drilling equipment.
 - 2. Description of grout pump and pressure gage calibration reports.
 - 3. Pile Installation Recorder (PIR) calibration reports.

- 4. Complete description of method for ACP pile installation with a pile layout plan referenced to the structural plans, including a numbering system capable of identifying each individual pile, pile sizes, including pile length and tip elevations, reinforcing steel, and waterproofing details. In addition, furnish a detailed description of construction procedures, including steel shells, if used, and auguring methods.
- 5. Steel Reinforcement Shop Drawings: Comply with ACI 315. Furnish shop drawings prepared by a Professional Engineer licensed in the state of installation that include placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
 - a. Prior to fabrication: Indicate steel grades, sizes, bending details, protective coatings, spacing, placement and supports.
 - b. Supplementary Product Literature: Furnish manufacturer's literature describing general properties of each product to be used in the Work.
 - c. Certifications: Furnish manufacturer's certified reports of mill tests for reinforcing steel and anchorage devices, including physical and chemical analysis.
- 6. Pile Installation records for all ACP's.
- D. Reports:
 - 1. Installation of each pile
 - 2. Pile location and plumbness
 - 3. Total quantity of grout placed
 - 4. Load Test
- E. Product Data: Submit copies of manufacturers' specifications for the following products, including copies of laboratory test reports and other data as may be required to show compliance with these specifications.
 - Fly Ash or Ground Granulated Blast Furnace Slag: ASTM C618, Class C or F and ASTM C989, Grade 100 or 120, respectively.
 - 2. Plasticizing admixture: ASTM C1017/C1017M, Type II.
 - 3. Grout Fluidifier: ASTM C937
 - 4. Aggregate sieve analysis: ASTM C33.

- 5. Aggregate sodium sulfate soundness tests: ASTM C88.
- 6. Portland cement: ASTM C150, Type I, Test Piles Type III.
- Reinforcing Steel: ASTM A615/A615M, Grade 60 and ASTM A722/A722M, Type II, Thread Bar Type
- 8. Steel Casing: ASTM A572, Grade 50/Grade 60
- F. Certificates: Contractor's qualifications as specified: Experienced specialty piling subcontractor having a minimum of 5 years successful experience installing Work of same type required for this project, and evidence of satisfactory completion of at least ten ACP installations comparable in scope of the Work and subsurface conditions. Employ only skilled tradesmen who are thoroughly experienced with the materials and equipment to be used in the Work.
- G. Contractor's Concrete Testing: Submit 3 copies of the laboratory testing reports to the Resident Engineer, the owner's Geotechnical Consultant, and other pertinent parties.
 - 1. Submit report and certification of aggregate.
 - Laboratory Test Reports: Submit for evaluation grout materials and mix designs.
- H. Pile Load Testing:
 - 1. A schedule and sequencing plan for pile testing and installation.
 - 2. Pile Installation Recorder (PIR) details.
 - 3. Pile Installation Recorder (PIR) reports.
 - 4. Pile Load Test Work Plan:
 - a. At least two weeks before commencing pile load testing work, the Contractor shall submit a pile load test work plan describing the equipment, apparatus, procedures, and schedule for testing ACP's in accordance with ASTM D1143, ASTM D3689, ASTM D3966 and as specified herein, to verify the design pile capacity. The work plan shall also include the proposed instrumentation of the test pile indicating depth, location, and details of the pile.
 - b. As part of the Pile Load Test Work Plan, submit shop drawings and other information describing the loading and test monitoring arrangement for pile load tests, including the following:
 - 1) Structural design of the test load support/reaction frame.
 - Details of equipment and apparatus to be used for the monitoring load and pile movements.

- Data on testing and measuring equipment including required jack, load cell and/or gauge calibrations.
- Sample field data recording sheets or examples of automated data acquisition records proposed for recording load test data.
- I. Independent Testing and Inspection Agency: The Contractor shall retain an Independent Testing and Inspection Agency (Agency) to document, monitor, and observe load test, probe pile, test pile, and production pile work. This Agency shall submit field reports and test results required by Section 3.2 for pile load tests, pile installations, and grout testing and inspection. They shall submit a pile installation report for each pile no later than three days after the installation is complete.
- J. Welding Certificates.
- K. Qualification Data: For Installer, Land Surveyor, and Testing and Inspection Agency.
- L. Upon completion of ACP installations, the Contractor shall submit five copies of drawings indicating actual in-place pile locations. The Contractor shall pay for all surveying costs. Drawings must be submitted prior to beginning any pile cap or mat installation. One electronic copy of the drawings shall be submitted in AutoCAD DWG format on CD-ROM.
- M. Record drawings at Project closeout according to Division 01 Section "Closeout Procedures."

1.9 QUALITY CONTROL

- A. Contractor's Quality Control Responsibilities: Contractor is solely responsible for quality control of the Work.
- B. A Quality Control Program shall be submitted by the Contractor at least two weeks prior to the commencement of work. The implementation of a Contractor Quality Control Program does not relieve the Contractor from the responsibility to provide work in accordance with the Contract Documents, applicable codes, regulations, and Governing Authorities.
- C. Contractor's Independent Testing and Inspection Agency (Agency): The Contractor shall retain at his own expense, the services of a qualified Independent Testing and Inspection Agency, licensed in the state of the project, to provide testing and inspection services during the installation of all foundation piling involved in this Work. This firm

shall also provide consultation services to the Contractor if problems are encountered during the execution of the Work. The Agency shall be primarily concerned with the testing and construction methods which will result in finished foundation piling of the required quality and strength. The Agency shall also be concerned with preventing settlement and/or damage to surrounding structures, roads, utilities, embankments, etc., both within the property lines and on adjoining properties during the construction.

- D. The Agency shall be experienced in the testing and installation of ACP foundations. It shall have been involved in at least 8 different ACP projects in the last 5 years, and shall have experience in recommending, testing, and specifying ACP's for similar subsurface conditions.
- E. Survey Work: The Contractor shall engage a qualified land surveyor or professional engineer to perform surveys, layouts, and measurements for ACP's. The surveyor shall record actual measurements of each ACP's location, shaft diameter, bottom and top elevations, deviations from specified tolerances, and other specified data.
- F. Contractor's Grout Mix Designer: The Contractor shall employ, at his own expense, a testing laboratory to design grout mixes, conduct tests and submit reports for the design mixes. The Grout Mix Designer shall be qualified according to ASTM C1077 and ASTM E329 to perform material evaluation tests and to design concrete mixes.
- G. Welding Standards: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1
 - 2. AWS D1.4
- H. Regulatory Requirements: Comply with applicable requirements of the laws, codes, ordinances and regulations of Federal, State and Municipal authorities having jurisdiction. Obtain necessary approvals from all such authorities.

1.10 QUALITY ASSURANCE

A. The Owner shall retain the services of a Geotechnical Consultant (Consultant) to provide general observation of all pile operations and to provide technical advice to the Owner with regard to pile operations and performance. B. The Consultant shall have been involved in at least 8 different ACP projects in the last 5 years, and shall have experience in recommending, testing, and specifying ACP's for similar subsurface conditions.

1.11 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

в.	American Society for Te	sting and Materials (ASTM):
	A572/A572M-07	.Standard Specification for High Strength Low
		Alloy Columbium-Vanadium Structural Steel
	A615/A615M-09-b	Standard Specification for Deformed and Plain
		Carbon-Steel Bar for Concrete Reinforcement
	A722/A722M-07	.Standard Specification for Uncoated High-
		Strength Steel Bar for Prestressing Concrete
	C33/C33M-11a	.Standard Specification for Concrete Aggregates
	C88-05	.Standard Test Method for Soundness of
		Aggregates by Use of Sodium Sulfate or
		Magnesium Sulfate
	C109/C109M-11b	.Standard Test Method for Compressive Strength
		of Hydraulic Cement Mortars (using 2-in. or [50
		mm] Cube Specimens)
	C150-11	.Standard Specification for Portland Cement
	C404-11	.Standard Specification for Aggregates for
		Masonry Grout
	C618-12	.Standard Specification for Coal Fly Ash and Raw
		or Calcined Natural Pozzolan for Use in
		Concrete
	C937-10	Standard Specification for Grout Fluidifier for
		Preplaced-Aggregate Concrete
	C942-10	.Standard Test Method for Compressive Strength
		of Grouts for Preplaced-Aggregate Concrete in
		the Laboratory
	С989/С989М-11	Standard Specification for Ground Granulated
		Blast-Furnace Slag for Use in Concrete and
		Mortars

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS C1017/C1017M-07.....Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete C1077-11c.....Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation D1143/D1143M-07.....Standard Test Methods for Deep Foundations Under Static Axial Compressive Load D3689-07.....Standard Test Method for Deep Foundations Under Static Axial Tensile Load D3966-07.....Standard Test Methods for Deep Foundations Under Lateral Loads E329-11.....Standard Specification for Agencies Engaged in Construction Inspections, Testing, or Special Inspections C. American Concrete Institute (ACI): 315-99.....Details and Detailing of Concrete Reinforcement D. American Welding Society (AWS): D1.1 (2010).....Structural Welding Code - Steel D1.4 (2011).....Structural Welding Code - Reinforcing Steel PART 2 - PRODUCTS 2.1 MATERIALS A. Portland Cement: ASTM C150, Type I, Test piles Type III. B. Grout Fluidifier: ASTM C937. C. Plasticizing admixture: ASTM C1017/C1017M, Type II D. Ash or Ground Granulated Blast Furnace Slag: ASTM C618, Class C or F and ASTM C989, Grade 100 or 120, respectively. E. Water: Fresh, clean, and potable. F. Aggregate: ASTM C404, Size No. 1 or Size No. 2. G. Reinforcing Steel: ASTM A615, Grade 60. H. Fine Aggregate: ASTM C33. I. High Strength Reinforcing Steel: ASTM A722, Type II, Thread Bar Type. J. Casings: ASTM A572, Grade 50 or 60. K. Except for probe pile, pile load test and test pile purposes, no pile materials shall be ordered or delivered to the job site until the required load tests have been made and are acceptable to the Resident Engineer. Materials ordered or delivered to the project site prior to

verification of the assumed pile length, will be at the Contractor's risk.

- L. After pile lengths are verified by the pile load test program, deliver materials to the project site in such quantities and at such times to assure the continuity of pile augering operations to the project schedule.
- M. Clearly mark pile leads in 300 mm (1 foot) increments.

2.2 MIXES

- A. Concrete: The grout used shall consist of a mixture of portland cement, sand, fluidifier, and water so proportioned and mixed to be pumped and to fill all voids in the foundation material. Mixture shall be proportioned to provide a minimum compressive strength of 20.6 Mpa (3000 psi) at 28 days.
- B. Mix Design: Testing Laboratory, retained by Contractor, shall design a mix to produce concrete as specified and perform tests as required. Certified test reports (duplicate) shall be submitted. Reports shall include proportions of design mix.
- C. Concrete-mix design adjustments may be considered if characteristics of materials, Project conditions, weather, test results, or other circumstances warrant. Resubmit and obtain approval from the Resident Engineer of proposed changes to concrete-mix design.
- D. Improper Mix: Immediately notify the Concrete Testing Laboratory and the Resident Engineer if at any time during construction the accepted mix design proves to be unsatisfactory for any reason. The Contractor's Concrete Mix Designer shall modify the design, subject to the review of the Resident Engineer, until a satisfactory mix is obtained.

2.3 EQUIPMENT

- A. Augering Equipment:
 - 1. Equipment shall consist of a continuous-flight, hollow-shaft auger which shall be rotated into the ground to the required pile depth as established by the pile load tests. Advance the auger at a continuous rate that prevents removal of excess soil. Stop advancement after reaching the required depth. The hole in the bottom of the auger shall be closed with a suitable plug while being advanced into the ground. The plug shall be removed by grout or with a reinforcing bar. At the start of pumping grout, raise the auger from 150 to 300 mm (6 to 12 inches) and after the grout

pressure builds sufficiently, redrill the auger to the previously established tip elevation. Cement grout shall then be injected through the auger shaft as the auger is being withdrawn, in such a way as to exert removing pressure on the withdrawing earth filled auger flights as well as lateral pressure on the soil surrounding the grout-filled pile hole. Grout pumping pressures shall be measured and shall be maintained high enough at all times to offset hydrostatic and lateral earth pressures. The auger shall rotate in a positive direction and shall be withdrawn in a steady continuous motion.

- 2. The auger flighting shall be continuous from the auger head to the top of auger without gaps or other breaks. The auger flighting shall be uniform in diameter throughout its length and shall be the diameter specified for the piles less a maximum of 3 percent.
- 3. The hole through which the high-strength grout is pumped during the placement of the pile shall be located at the bottom of the auger head below the bar containing the cutting teeth.
- Augers over 12000 mm (40 feet) in length shall contain a middle guide.
- 5. The piling leads should be prevented from rotating by a stabilizing arm or by firmly placing the bottom of the leads into the ground or by some other acceptable means. Leads shall be marked at 300 mm (1 foot) intervals to facilitate measurement of auger penetration.
- B. Mixing and Pumping Equipment:
 - Only approved pumping and mixing equipment shall be used in the preparation and handling of the grout. A screen to remove over-size particles shall be placed at the pump inlet. All oil or other rust inhibitor shall be removed from mixing drums and grout pumps. All materials shall be such as to produce a homogeneous grout of the desired consistency.
 - a. The grout pump shall be a positive displacement piston type pump capable of developing displacing pressures at the pump not less than 2.5 Mpa (350 psi). The grout pump shall be provided with a pressure gauge in clear view of the equipment operator. The grout pump shall be calibrated at the beginning of the work to determine the volume of grout pumped per stroke. A positive method of counting grout pump strokes shall be provided by the

Pile Contractor. Such methods may include digital or mechanical stroke counters or other acceptable methods.

- C. Pile Installation Recorder (PIR):
 - 1. The Contractor shall provide a PIR for ACP's for use by the Agency and the Consultant during pile installation. The PIR shall be used for each piling rig. The PIR shall record appropriate information during both the augering phase and during the grouting phase of the installation to assure minimum grout volume pumped per unit depth increment, and shall print results immediately upon completion of each pile.

PART 3 - EXECUTION

3.1 GENERAL

- A. Survey: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and levels and stake pile locations.
- B. Before installing piles adjacent to any existing utilities, the Contractor shall notify the utility owner to ensure that protective Work will be coordinated and performed in accordance with the requirements of the utility owner. If any existing service lines, utilities and utility structures to remain in service are uncovered or encountered during these operations, protect, from damage and provide support if necessary.
- C. Should uncharted or incorrectly charted piping or other utilities be encountered during piling operations, immediately notify the Resident Engineer and the utility owner. Cooperate with the utility owner in keeping their respective services, utilities and facilities in operation.
- D. After all ACP's are in place, the Surveyor shall make a field survey of completed piles and shall submit a drawing to the Resident Engineer showing the plumbness of the piles and the actual pile locations with respect to planned pile locations.
- E. Pile Record: Submit complete and accurate record of all auger-placed piles to the Resident Engineer. Record shall indicate the pile location, diameter, length, elevation of bottom and top of pile, and the quantity of grout used in each pile. Any unusual conditions encountered during pile installation shall also be noted.

F. Completion Certificate: The Contractor shall provide a written statement, stamped by a Professional Engineer registered in the State of the Work, verifying that the piles were installed per the Contract Documents, and that any piles not installed per the Contract Documents were installed in such a manner that they will not have an negative impact on the proposed structure.

3.2 ALLOWABLE LOAD ON PILES

- A. Probe Piles:
 - A minimum of ten probe piles shall be installed prior to the installation of the production piles in manner utilizing identical equipment, methods, and materials for all piling.
 - probe piles shall be used by the Contractor to refine the operations of the equipment and shall not be installed at production pile locations.
 - 3. The location of the probe piles shall be submitted to the Resident Engineer prior to their installation. If, in the opinion of Resident Engineer, the probe pile locations shown are not representative of the area, alternate locations will be provided by Resident Engineer.
 - 4. Reaction piles for the load test pile may be used as probe piles.
- B. Load test piles:
 - Load tests will be performed on a minimum of 1 probe pile. The data from the load test will be used to verify pile design load.
 - 2. Contractor shall conduct load tests in accordance with ASTM D1143, ASTM D3689, ASTM D3966 standard loading procedure. These tests will be conducted at no additional cost to the Government. No additional piles shall be installed until test reports of test piles are received and approved by Resident Engineer.
 - 3. Additional load tests or an increase in production pile length may be required if the test pile fails the load test.

3.3 INSTALLATION

- A. The length and drilling criteria of production piles will be determined by the Resident Engineer from the installation of the probe piles, reaction piles, test piles, and the pile load tests. The installation shall be performed in an orderly sequence.
- B. Advance the auger at a continuous rate that prevents removal of excess soil. Stop advancement after reaching the required depth or refusal criteria.

- C. Auger refusal is defined as a rate of auger penetration of less than 300 mm (1 foot) per minute of drilling.
- D. The hole in the bottom of the auger shall be closed while being advanced into the ground with a suitable plug. The plug shall be removed by grout pressure or with the reinforcing bar.
- E. Place continuous center reinforcing through the hollow-stemmed auger prior to placement of grout. Tie top of reinforcing in place after removal of auger. Use bar spacers to center reinforcing bars.
- F. At the start of pumping grout, raise the auger from 150 to 300 mm (6 to 12 inches) and after the grout pressure builds up sufficiently, redrill the auger to the previously established tip elevation.
- G. Maintain at least 3000 mm (10 feet) of grout on the auger flighting above the injection point during raising of the auger. Positive rotation of the auger shall be maintained throughout placement of the grout. Rate of grout injection and rate of auger withdrawal from the soil shall be coordinated as to maintain at all times the minimum grout head and a positive pressure on the gauges. The total volume of grout shall be at least 115 percent of the theoretical volume for each pile, except, after grout is flowing at the ground surface from the auger flighting, the rate of grout injection and auger withdrawal shall be coordinated so that there is a constant grout flow at the surface. If pumping of grout is interrupted for any reason, the Contractor shall reinsert the auger at least 1500 mm (5 feet) into the pile and regrout.
- H. Minimum volume of grout placed in hole shall be at least the nominal volume plus 15 percent of hole. Volume of grout per linear meter (linear foot) of pile shall be not less than volume of grout per meter (volume of grout per foot) of the load test pile. Make volume measurements in the presence of Resident Engineer.
- I. Auger hoisting equipment shall be provided that will enable the auger to be rotated while being withdrawn smoothly and steadily.
- J. The spoil that accumulates around the auger during injection of the grout shall be promptly cleared away upon completion of the installation.
- K. Provide OSHA protective caps on all projecting reinforcement.
- L. Materials shall be accurately measured by volume or by weight as they are fed to the mixer. Order of placing the materials in mixer shall be as follows: (1) water, (2) fluidifier, and (3) other solids in order of

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

increasing particle size. Provide grout injection equipment with a pressure gage in clear view of the equipment operator. A second pressure gauge shall be located near auger rig where it can be observed. Rate of injection and rate of auger withdrawal from soil shall be so coordinated as to maintain at all times a positive pressure on gage which will indicate existence of a removing pressure on bottom of auger flight. Magnitude of this pressure and performance of other augering and grouting procedures, such as rate of augering, rate of grout injection, and control of grout return around the auger flight, are dependent on soil conditions, and equipment capability shall be at option of Contractor, subject to approval of Resident Engineer. Equipment for pumping grout shall be positive displacement pump capable of developing a pressure at pump not less than 2.5 MPa (350 psi). Pump shall be calibrated by an approved method to verify accuracy of indicated discharge. Remove oil or other rust inhibitors from mixing drums and pumps. Auger hoisting equipment shall be capable of withdrawing auger smoothly and at a constant rate. If the auger jumps upward during withdrawal, it shall be reinserted, and rate of withdrawal decreased to prevent further jumping.

- M. Locate piles as shown unless otherwise directed by Resident Engineer. Do not place piles closer than 1050 mm (3.5 feet) center to center until grout in adjacent piles has set for 24 hours. In locations where there are no concrete slabs or other means of distributing load of the equipment placing piles, the equipment shall be kept at least 3000 mm (10 feet) away from pile location, or upper 3000 mm (10 feet) of pile shall be cased.
- N. Where pile top is near surface or above bottom of excavation, place metal sleeves of proper diameter around pile top.
- O. Cut off the tops of piles, square with pile axis and at the elevations indicated by removing fresh grout from the top of the pile or by cutting off hardened grout down to final cutoff point at any time after initial set has occurred. Where the pile cut-off is near the surface or above the bottom of the excavation, sleeves or casing of the proper diameter and at least 457 mm (18 inches) in length shall be placed around the pile tops. (Special conditions may require metal sleeves of additional length).

- P. Redrill the pile to the original depth at no additional cost to the Owner if any of the following occurs:
 - 1. The design pile reinforcement cannot be placed manually in the top of any pile following completion of grouting.
 - 2. The trap door at the bottom discharge outlet fails to open completely, effectively creating a side discharge condition.
 - 3. Loss of grout head occurs for any reason during pile installation.
 - 4. There is more than a twenty-minute delay during the grouting of any individual pile.
 - 5. There is a drop in grout level after completion of the pile, which exceeds the average for the remainder of the pile installations by more than 600 mm (2 feet).
- Q. The Contractor shall install additional piles at no additional cost for damaged, misaligned and/or mislocated piles. Contractor shall also be responsible for costs of concrete and reinforcing for required modifications to pile caps/grade beams due to damaged piles and/or misaligned or mislocated piles.
- R. If the grout level in any completed pile drops, the pile shall be rejected and replaced.
- S. No pile shall be loaded until the grout has attained full design strength.

3.4 OBSTRUCTIONS:

- A. The advancement of the augers through naturally occurring materials such as cobbles, boulders and rock ledges, as outlined in the Geotechnical Report, is the responsibility of the Contractor. The Contractor is responsible for providing the necessary means and methods of advancing the augers through this material. The length of short piles terminated due to such foreseeable material will not be included in the total length of pile for payment at the unit price. Additional adjacent piles, as required by the Resident Engineer, will also not be included in the total length of piles for payment.
- B. In the event that unforeseen non-augerable material is encountered, such as cobbles, boulders, rock ledge, metal timbers or debris which causes the rate of penetration to be reduced to less than 300 mm (1 foot) per minute above the desired tip elevation, or causes the pile to drift from its location, then the pile shall be completed to the depth of the non-augerable material in accordance with these specifications.

The length of such short piles shall be included in the total length of pile for payment at the unit price. If required by the Resident Engineer, additional adjacent piles shall be placed and the length of these additional piles shall also be included in the total length of piles for payment.

3.5 QUALITY CONTROL AND ASSURANCE:

- A. The Contractor shall retain the services of a qualified Independent Testing and Inspection Agency (Agency), licensed in the state of the project, to provide Quality Control through testing and inspection services during the installation of all foundation piling involved in this Work.
- B. The Owner shall employ a Geotechnical Consultant (Consultant) to provide Quality Assurance through general observation and consultation of all pile operations.
- C. The Contractor and their Agency shall cooperate with the Consultant and the Resident Engineer in the performance of the Work. The presence of Consultant shall in no way relieve the Contractor of his obligation to perform the pile installation in accordance with the Contract Documents and these Specifications.
- D. Grout Mix: The grout mix shall be tested by making a minimum of nine, 50 mm (2 inches) cubes for each day during which piles are placed. A set of nine cubes shall consist of three cubes to be tested at seven days, and three cubes to be tested at 28 days and three cubes held in reserve. Test cubes shall be cured and tested in accordance with ASTM C109/C109M. Cube specimens may be restrained from expansion as described in ASTM C942.
- E. Pile Acceptance: The Agency shall immediately notify the Consultant and the Resident Engineer if any pile is not in conformance with these Specifications. The volume of grout placed in each pile shall be a minimum of 115% of theoretical volume of the pile. The amount of grout placed in each 1500 mm (5 feet) increments of the pile shall be checked continuously during installation. The cost of removing and replacing Auger Cast Piles, which are not in conformance, shall be borne by the Pile Contractor.
- F. Reports: The Agency shall maintain an installation record of each pile. The record shall note the project name and number, name of Contractors, pile location, design pile capacity, pile tip elevation, pile top

elevation, depth of auger advancement, (total and continuous) quantity of grout placed, reinforcing steel placement, and any unusual occurrences during the pile installation. The grout quantity shall be determined by recording grout pump displacement or by other acceptable means. The Consultant shall also maintain a daily report, which summarizes all work performed by the Contractor.

3.6 CORRECTIONS OF DEFICIENCIES:

- A. The contractor shall notify the Resident Engineer in writing, of the failure of a pile to meet any requirement of the Section. Such written notification shall include all information required for the evaluation of remedial measures, including all information required for redesign.
- B. Based on the survey provided, if a pile fails to comply with the location or tolerance requirements of 1.6, or the design load requirements noted on the Contract Documents, the Resident Engineer will calculate the load capacity requirements of that pile or, if in a pile group, each pile in that pile group, based on the actual, "as-driven" locations and inclinations. If the calculation indicates that the loading on that pile or, if in a pile group, on any pile in that pile group, exceeds the design load, then the Contractor shall perform such remedial work as the Resident Engineer in his sole discretion may require including but not limited to furnishing and installing additional piles at locations approved by the Resident Engineer and modifying concrete or reinforcement steel. These corrective measures shall be performed solely at the Contractor's expense.
- C. If a pile fails to comply with the requirements of this Section and the Resident Engineer of record determines that modification to concrete or reinforcement steel, or the driving of additional piles is necessary, the Engineer of record will perform all required reanalysis, redesign and detailing. All reanalysis, redesign and redetailing costs will be the responsibility of the contractor and reimbursed as a change to the contract.
- D. The Contractor, at his option and at any time that he determines that a pile will not satisfy the requirements of this Section for a reason other than encountering an unforeseen underground obstruction, may, subject to the provisions of this specification, abandon such pile and replace it with a new pile or piles rather than await direction or approval from the Resident Engineer. However, the Contractor, in

exercising this option, assumes the risk that such replacement pile or piles will be acceptable to the Engineer.

E. Abandoned piles shall be cut off 300 mm (1 foot) below the elevation of the bottom of the pile cap or mat as shown on the Contract Drawings and will not be paid for.

3.7 CLEAN UP:

- A. All debris from excavation of objectionable material, removal of obstructions, and any material not to remain as part of the construction are to be removed and disposed of by the subcontractor in a legal manner at no additional cost to the Owner.
- B. The site shall be cleaned at frequent intervals and no material shall be stored on the site in a manner, which would obstruct the easy access of equipment and personnel.

- - - E N D - - -

SECTION 32 05 23

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Subbase for concrete pavements.
 - Curbs, gutters, and combination curbs and gutters, and/or wheel stops.
 - Pedestrian Pavement: Walks, grade slabs, pedestrian crossings, wheelchair curb ramps, steps, and/or patios.
 - Vehicular Pavement: Service courts, driveways, parking lots, and/or loading docks.
 - Equipment Pads: Oxygen storage, transformers, propane tanks, and/or generator pads.

1.2 RELATED REQUIREMENTS

- A. Field Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation and Subbase Compaction: Section 31 20 11, EARTHWORK (SHORT FORM).

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 - M147-65-UL-04 Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 - M233-86 Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 - 1. 305R-10 Guide to Hot Weather Concreting.
 - 2. 306R-10 Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 - B101.3 Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 - A615 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.

- 2. A996 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
- 3. A1064 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
- 4. C33 Concrete Aggregates.
- 5. C94 Ready Mixed Concrete.
- 6. C143 Slump of Hydraulic Cement Concrete.
- 7. C150 Portland Cement.
- 8. C171-16 Sheet Materials for Curing Concrete.
- 9. C260 Air Entraining Admixtures for Concrete.
- 10. C309-11 Liquid Membrane Forming Compounds for Curing Concrete.
- 11. C494 Chemical Admixtures for Concrete.
- 12. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 13. C979 Pigments for Integrally Colored Concrete.
- 14. C989 Slag Cement for Use in Concrete and Mortars.
- 15. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 16. D1751-04(2013)e1 Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
- 17. D5893 Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
- 18. D6690-15 Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect/Engineer.
 - c. Inspection and Testing Agency.
 - d. Contractor.
 - e. Installer.
 - f. Other installers responsible for adjacent and intersecting work, including excavation, plantings, traffic markings, etc.
 - 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.

- b. Installation sequence.
- c. Preparatory work.
- d. Protection before, during, and after installation.
- e. Installation.
- f. Terminations.
- g. Transitions and connections to other work.
- h. Inspecting and testing.
- i. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show reinforcing.
 - 3. Include jointing plan for concrete pavements, curbs and gutters.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Samples:
 - 1. Colored Concrete Panel: 4 sq. ft. by 2 inches thick, 3 required, and in the colors as noted in Section 3.18.A herein, with mix data.
- E. Test reports: Certify products comply with specifications.
 - 1. Concrete materials.
 - 2. Select subbase materials.
 - 3. Field test reports.
- F. Certificates: Certify products comply with specifications.
 - 1. Expansion joint filler.
 - 2. Reinforcement.
 - 3. Curing materials.
 - 4. Concrete protective coating.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list.
 - 2. Land surveyor.
- H. Concrete mix design.
- I. Select subbase job-mix design.
- J. Proposed hot and cold weather concreting methods.

- K. Land surveyor's construction staking notes, before placing concrete.
 - 1. Identify discrepancies between field conditions and Drawings.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - 2. Installed specified products with satisfactory service on five similar installations.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
- B. Land Surveyor: Professional land surveyor or engineer registered to provide land surveys in jurisdiction where project is located.
- C. Preconstruction Testing:
 - Engage independent testing laboratory to perform tests and submit reports.
 - Deliver samples to laboratory in number and quantity required for testing.
 - 2. Concrete mix design.
 - 3. Select subbase job-mix design. Report the following:
 - a. Material sources.
 - b. Gradation.
 - c. Plasticity index.
 - d. Liquid limit.
 - e. Laboratory compaction curves indicating maximum density at optimum moisture content.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.
- C. Bulk Products: Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

A. Hot Weather Concreting Procedures: ACI 305R.

- B. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - 2. Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33.
- D. Fine Aggregate: ASTM C33.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260.
- G. Chemical Admixtures: ASTM C494.
- H. Reinforcing Steel: ASTM A615 or ASTM A996, Grade 60; deformed.
- I. Welded Wire Fabric: ASTM A1064, Grade 65; sized as indicated.
- J. Expansion Joint Filler: ASTM D1751.
- K. Sheet Materials for Curing Concrete: ASTM C171.
- 2.2 Color Pigment: ASTM C979/C979M, colored and white powder pigments.SELECT SUBBASE
 - A. Subbase: AASHTO M147; Grade C or .
 - Select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials.

SUBBASE GRADING REQUIREMENTS							
Sieve Siz	ze	Percentage Passing by Mass					
		Grades					
(mm)	(in)	А	В	С	D	E	F

SUBBASE GRADING REQUIREMENTS

Sieve Size		Percentage Passing by Mass					
50	2	100	100				
25	1		75-95	100	100	100	100
9.5	3/8	30-65	40-75	50-85	60-100		
4.47	No. 4	25-55	30-60	35-65	50-85	55-100	70-100
2.00	No. 10	15-40	20-45	25-50	40-70	40-100	55-100
0.425	No. 40	8-20	15-30	15-30	25-45	20-50	30-70
0.075	No. 200	2-8	5-20	5-15	5-20	6-20	8-25

B. Other Acceptable Gradations: Materials within three to five percent, plus or minus, of specified gradation, or as recommended by the geotechnical engineer and approved by the Contracting Officer's Representative.

2.3 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - Plywood: Exterior grade, free of defects and patches on contact surface.
 - Lumber: Sound, grade-marked, S4S stress graded softwood, minimum
 inches thick, free from warp, twist, loose knots, splits, or other defects.
 - 3. Form Coating: As recommended by Architect/Engineer.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - Do not use forms varying from straight line more than 1/8 inch in 10 feet, horizontally and vertically.
- C. Provide flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Burlap: Minimum 7 ounces/sq. yd. dry.
 - 2. Sheet Materials for Curing Concrete: ASTM C171.
 - Curing Compound: ASTM C309, Type 2; liquid membrane forming type, without paraffin or petroleum.

2.5 CONCRETE MIXES

A. Design concrete mixes according to ASTM C94/C94M, Option C.

B. Concrete Type: Air-entrained. See Table I.

TABLE I - CONCRETE TYPES						
Concrete	Minimum 28 Day	Non-Air-Entrained		Air-Entrained		
Туре	Compressive	Min. Cement	Max.	Min. Cement	Max.	
	Strength f'c	lbs./cu. yd.	Water	lbs./cu. yd.	Water	
	psi		Cement		Cement	
			Ratio		Ratio	
A	5000 1,3	630	0.45	650	0.40	
В	4000 1,3	550	0.55	570	0.50	
С	3000 1,3	470	0.65	490	0.55	
D	3000 1,2	500	*	520	*	
Footnotes:						
1. If trial mixes are used, achieve compressive strength 1,200 psi in excess						

of f'c. For concrete strengths greater than 5,000 psi) achieve compressive strength 1,400 psi in excess of f'c.

2. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.

3. Laboratory Determined according to ACI 211.1 for normal weight concrete.

C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP				
APPLICATION	MAXIMUM SLUMP			
Curb & Gutter	3 inches			
Pedestrian Pavement	3 inches			
Vehicular Pavement	2 inches Machine Finished			
	4 inches Hand Finished			
Equipment Pad	3 to 4 inches			

2.6 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.
- C. Sealants:
 - Concrete Paving Expansion Joints: ASTM D5893, Type SL, single component, self-leveling, silicone joint sealant.

- Concrete Paving Joints: ASTM D6690, Type IV, hot-applied, single component joint sealant.
- D. Concrete Protective Coating: AASHTO M233 linseed oil mixture.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Prepare, construct, and finish subgrade. See Section 31 20 00, EARTHWORK.
- D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

- A. Placing:
 - 1. Place subbase material on prepared subgrade in uniform layer to required contour and grades, and to maximum 8 inches loose depth.
 - When required compacted thickness exceeds 6 inches, place subbase material in equal thickness layers.
 - When subbase elevation is 1/2 inch or more below required grade, excavate subbase minimum 3 inches deep. Place and compact subbase to required grade.
- B. Compaction:
 - Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
 - 2. Maintain subbase at optimum moisture content for compaction.
 - Compact each subbase layer to minimum 95 percent or 100 percent of maximum density as specified in Section 31 20 11, EARTHWORK (SHORT FORM).
- C. Subbase Tolerances:
 - 1. Variation from Indicated Grade: Maximum 3/8 inch.
 - 2. Variation from Indicated Thickness: Maximum 1/2 inch.
- D. Protection:
 - 1. Protect subbase from damage until concrete is placed.
 - 2. Reconstruct damaged subbase before placing concrete.

3.3 SETTING FORMS

A. Form Substrate:

- Compact form substrate to uniformly support forms along entire length.
- Correct substrate imperfections and variations by cutting, filling, and compacting.
- B. Form Setting:
 - Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
 - 2. Remove forms when removal will not damage concrete and when required for finishing.
 - 3. Clean and oil forms before each use.
 - 4. Correct forms, when required, immediately before placing concrete.
- C. Land Surveyor: Establish control, alignment, and grade for forms.
 - 1. Notify Contracting Officer's Representative immediately when discrepancies exist between field conditions and drawings.
 - 2. Correct discrepancies greater than 1 inch before placing concrete.
- D. Form Tolerances:
 - 1. Variation from Indicated Line: Maximum 1/4 inch.
 - 2. Variation from Indicated Grade: Maximum 1/8 inch in 10 feet.

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 - 1. Conform to details shown.
 - 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on approved submittal Drawings.
- B. Place transverse construction joints of type shown, where indicated, and whenever concrete placement is suspended for more than 30 minutes.
- C. Provide butt-type joint with dowels in curb and gutter at planned joint locations.

D. Provide keyed joints with tie bars when joint occurs in middle third of planned curb and gutter joint interval.

3.7 CONTRACTION JOINTS

- A. Tool or cut joints to width, depth, and radius edge shown on drawings using grooving tool, jointer, or saw.
- B. Construct joints in curbs and gutters by inserting 1/8 inch steel plates conforming to curb and gutter cross sections.
 - 1. Keep plates in place until concrete can hold its shape.
- C. Finish joint edges with edging tool.
- D. Score pedestrian pavement with grooving tool or jointer.

3.8 EXPANSION JOINTS

- A. Form expansion joints with expansion joint filler of thickness shown on drawings.
 - Locate joints around perimeter of structures and features abutting site work concrete.
 - 2. Create complete, uniform separation between structure and site work concrete.
- B. Extend expansion joint material full depth of concrete with top edge of joint filler below finished concrete surface where sealant is indicated on Drawings.
- C. Cut and shape material matching cross section.
- D. Anchor with approved devices to prevent displacing during placing and finishing operations.
- E. Round joint edges with edging tool.

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 - 1. Obtain Contracting Officer's Representative approval.
 - 2. Remove debris and other foreign material.
 - 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 - 1. Vibrate concrete against forms and along joints.
 - 2. Avoid excess vibration and handling causing segregation.
- D. Place concrete continuously between joints without bulkheads.

- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.
- 3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS
 - A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.
 - B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
 - C. Strike concrete surface to proper section ready for consolidation.
 - D. Consolidate concrete with approved mechanical finishing equipment.
 - E. Finish concrete surface with wood or metal float.
 - F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 PLACING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete as close as possible to its final position.
- B. Place concrete continuously between construction joints without cold joints.
- C. Strike and consolidate concrete with finishing machine, vibrating screed, or by hand-finishing.
- D. Finish concrete surface to elevation and crown shown on drawings.
- E. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- F. Obtain Contracting Officer's Representative's approval before placing adjacent lanes.
- G. Curb-Forming Machines: Curb-forming machines for constructing curbs and gutter will be approved based on trial use on the project. When equipment produces unsatisfactory results, discontinue use of the equipment at any time during construction and accomplish work by hand method construction. Remove unsatisfactory work and reconstruct full length between regularly scheduled joints. Dispose of removed portions off the project site.

3.12 FORM REMOVAL

A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.

B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.13 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below, unless otherwise indicated on Drawings:
 - Consolidating, floating, striking, troweling, texturing, and joint edging.
- B. Use edging tool with 1/4 inch radius, unless otherwise shown on Drawings.
- C. Keep finishing equipment and tools clean and suitable for use.

3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, Wheelchair Curb Ramps, Terraces, and/or Patios:
 - Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 - 2. Finish slab edges and formed transverse joints with edger.
 - 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1/16 inch deep profile.
 - 4. Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 - 5. Paving Tolerances:
 - a. Variation from Indicated Plane: Maximum (3/16 inch in 10 feet.
 - b. Variation from Indicated Thickness: Maximum 1/4 inch.
 - Replace paving within joint boundary when paving exceeds specified tolerances.
- B. Step Treads, Risers and Sidewalls: Finish as specified for pedestrian pavement, except as follows:
 - 1. Remove riser forms sequentially, starting with top riser.
 - Rub riser face with wood or concrete rubbing block and water. Remove blemishes, form marks, and tool marks. Use outside edger to round nosing; use inside edger to finish bottom of riser.
 - 3. Apply uniform brush finish to treads, risers, and sidewall.
 - a. Apply stiff brush finish to treads to provide slip resistant surface complying with ANSI B101.3.
 - 4. Step Tolerance:
 - a. Variation from Indicated Plane: Maximum 3/16 inch in 10 feet.

3.15 CONCRETE FINISHING - VEHICULAR PAVEMENT

- A. Align finish surfaces where new and existing pavements abut.
- B. Longitudinally float pavement surface to profile and grade indicated on drawings.
- C. Straighten surface removing irregularities and maintaining specified tolerances while concrete is plastic.
- D. Finish pavement edges and joints with edging tool.
- E. Broom finish concrete surface after bleed water dissipates and before concrete hardens.
 - 1. Broom surface transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1/8 inch deep profile.
- F. Pavement Tolerances:
 - Variation from Indicated Plane: Maximum 1/4 inch in 10 feet tested parallel and perpendicular to traffic direction at maximum 5 feet intervals.
 - 2. Variation from Indicated Thickness: Maximum 1/4 inch.
- G. Replace paving within joint boundary when paving exceeds specified tolerances.

3.16 CONCRETE FINISHING - CURBS AND GUTTERS

- A. Round edges of gutter and top of curb with edging tool.
- B. Gutter and Curb Top:
 - 1. Float surfaces and finish with smooth wood or metal float until true to grade and section and uniform color.
 - Finish surfaces, while still plastic, longitudinally with bristle brush.
- C. Curb Face:
 - Remove curb form and immediately rub curb face with wood or concrete rubbing block removing blemishes, form marks, and tool marks and providing uniform color.
 - 2. Brush curb face, while still plastic, matching gutter and curb top.
- D. Curb and Gutter Tolerances: Except at grade changes or curves.
 - 1. Variation from Indicated Plane and Grade:
 - a. Gutter: Maximum 1/8 inch in 10 feet.
 - b. Curb Top and Face: Maximum 1/4 inch in 10 feet.
- E. Replace curbs and gutters within joint boundary when curbs and gutters exceed specified tolerances.
- F. Correct depressions causing standing water.

3.17 CONCRETE FINISHING - EQUIPMENT PADS

- A. Strike pad surface to elevation shown on Drawings.
- B. Provide smooth, dense float finish, free from depressions or irregularities.
- C. Finish pad edges with edger.
- D. After removing forms, rub pad edge faces with wood or concrete rubbing block, removing blemishes, form marks, and tool marks and providing uniform color.
- E. Pad Tolerances:
 - 1. Variation from Indicated Plane: Maximum 1/8 inch in 10 feet.
 - 2. Variation from Indicated Elevation: Maximum 1/4 inch.
 - 3. Variation from Indicated Thickness: Maximum 1/4 inch.
- F. Replace pads when pads exceed specified tolerances.

3.18 SPECIAL FINISHES

- A. Colored Concrete: Add integral color pigment to the pedestrian concrete paving mix at batch plant and/or onsite. Introduce sufficient quantities of mineral oxide pigment to produce the tri-color to match and compliment the surrounding building facades.
- B. Stamped Concrete: Provide a rubberized or metal template(s) to create a herringbone pattern in the tri-colored area on the patio and shown on the plans.
 - The pattern will typically align at least with the edges closest to the existing buildings.
 - All attempts will be made to have to pattern look like it was handplaced pavers - e.g., no thin and narrow block pattern.

3.19 CONCRETE CURING

- A. Concrete Protection:
 - 1. Protect unhardened concrete from rain and flowing water.
 - 2. Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
 - Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.
 - a. Replace pavement damaged by curing method allowing concrete cracking.
 - Employ another curing method as directed by Contracting Officer's Representative.

32 05 23 - 14

- B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:
 - Burlap Mat: Provide minimum two layers kept saturated with water during curing period. Overlap Mats at least 6 inches.
 - 2. Sheet Materials:
 - a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
 - b. Overlap sheets minimum 12 inches.
 - c. Securely anchor sheet materials preventing displacement.
 - 3. Curing Compound:
 - a. Protect joints indicated to receive sealants preventing contamination from curing compound.
 - Insert moistened paper or fiber rope into joint or cover joint with waterproof paper.
 - c. Apply curing compound before concrete dries.
 - d. Apply curing compound in two coats at right angles to each other.
 - e. Application Rate: Maximum 200 sq. ft./gallon, both coats.
 - Immediately reapply curing compound to surfaces damaged during curing period.

3.20 CONCRETE PROTECTIVE COATING

- A. Apply protective coating of linseed oil mixture to exposed-to-view concrete surfaces, drainage structures, and features that project through, into, or against concrete exterior improvements to protect the concrete against deicing materials.
- B. Complete backfilling and curing operation before applying protective coating.
- C. Dry and thoroughly clean concrete before each application.
- D. Apply two coats, with maximum coverage of 50 sq. yds./gal.; first coat, and maximum 70 sq. yds./gal.; second coat, except apply commercially prepared mixture according to manufacturer's instructions.
- E. Protect coated surfaces from vehicular and pedestrian traffic until dry.
- F. Do not heat protective coating, and do not expose protective coating to open flame, sparks, or fire adjacent to open containers or applicators. Do not apply material at temperatures lower than 50 degrees F.

3.21 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section
 - 01 45 29, TESTING LABORATORY SERVICES.
 - 1. Compaction.
 - a. Pavement subgrade.
 - b. Curb, gutter, and sidewalk.
 - 2. Concrete:
 - a. Delivery samples.
 - b. Field samples.
 - 3. Slip Resistance: Steps and pedestrian paving.

3.22 CLEANING

- A. After completing curing:
 - 1. Remove burlap and sheet curing materials.
 - 2. Sweep concrete clean, removing foreign matter from the joints.
 - 3. Seal joints as specified.

3.23 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.
 - Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -

SECTION 32 12 16 ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.2 RELATED WORK

- A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 11, EARTHWORK (SHORT FORM).

1.3 INSPECTION OF PLANT AND EQUIPMENT

The Resident Engineer shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use.

1.4 ALIGNMENT AND GRADE CONTROL

The Contractor's Registered Professional Land Surveyor shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Data and Test Reports:
 - Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by State Highway Department.
 - Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by State Highway Department.
 - 3. Job-mix formula.
- C. Certifications:

- 1. Asphalt prime and tack coat material certificate of conformance to State Highway Department requirements.
- 2. Asphalt cement certificate of conformance to State Highway Department requirements.
- 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the State Highway Specification.
- D. One copy of the local State Highway Department Specifications.
- E. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground.

PART 2 - PRODUCTS

2.1 GENERAL

A. Asphaltic base and asphalt concrete materials shall conform to the requirements of the following and other appropriate sections of the latest version of the State Highway Material Specifications, including amendments, addenda and errata. Where the term "Engineer" or "Commission" is referenced in the State Highway Specifications, it shall mean the VA Resident Engineer or VA Contracting Officer.

2.2 AGGREGATES

- A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined.
- B. Subbase aggregate (where required) maximum size: 1-1/2".
- C. Base aggregate maximum size:
 - 1. Base course over 6" thick: 1-1/2";
 - 2. Other base courses: 3/4".
- D. Asphaltic base course:
 - 1. Maximum particle size not to exceed 1".
 - 2. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.
- E. Aggregates for asphaltic concrete paving: Provide a mixture of sand, mineral aggregate, and liquid asphalt mixed in such proportions that the percentage by weight will be within:

Sieve Sizes	Percentage Passing
3/4"	100
3/8"	67 to 85
1/4"	50 to 65

32 12 16 - 2

plus 50/60 penetration liquid asphalt at 5 percent to 6-1/2 percent of the combined dry aggregates.

2.3 ASPHALTS

- A. Comply with provisions of Asphalt Institute Specification SS2:
 - 1. Asphalt cement: Penetration grade 50/60
 - 2. Prime coat: Cut-back type, grade MC-250
 - 3. Tack coat: Uniformly emulsified, grade SS-1H

2.4 SEALER

- A. Provide a sealer consisting of suitable fibrated chemical type asphalt base binders and fillers having a container consistency suitable for troweling after thorough stirring, and containing no clay or other deleterious substance.
- B. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.

PART 3 - EXECUTION

3.1 GENERAL

The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the State Highway Specifications for the type of material specified.

3.2 MIXING ASPHALTIC CONCRETE MATERIALS

- A. Provide hot plant-mixed asphaltic concrete paving materials.
 - Temperature leaving the plant: 290 degrees F minimum, 320 degrees F maximum.
 - 2. Temperature at time of placing: 280 degrees F minimum.

3.3 SUBGRADE

- A. Shape to line and grade and compact with self-propelled rollers.
- B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled.
- C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled.

- D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade.
- E. Proof-roll the subgrade with maximum 50 ton gross weight dump truck as directed by VA Resident Engineer or VA Contracting Officer. If pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade.

3.4 BASE COURSES

- A. Subbase (when required)
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course.
- B. Base
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course.
- C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus 0.0" to plus 0.5".
- D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 3/16 inch in ten feet.
- E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction.

3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING

- A. Remove all loose materials from the compacted base.
- B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- C. Receipt of asphaltic concrete materials:
 - Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 280 degrees F.
 - Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 50 degrees F, not during fog, rain, or other unsuitable conditions.

 $32 \ 12 \ 16 \ - \ 4$

- D. Spreading:
 - 1. Spread material in a manner that requires the least handling.
 - 2. Where thickness of finished paving will be 3" or less, spread in one layer.
- E. Rolling:
 - After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings.
 - 2. Roll in at least two directions until no roller marks are visible.
 - 3. Finished paving smoothness tolerance:
 - a. No depressions which will retain standing water.
 - b. No deviation greater than 1/8" in six feet.

3.6 APPLICATION OF SEAL COAT

- A. Prepare the surfaces, mix the seal coat material, and apply in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- B. Achieve a finished surface seal which, when dry and thoroughly set, is smooth, tough, resilient, of uniform black color, and free from coarse textured areas, lap marks, ridges, and other surface irregularities.
- C. When sealing new asphalt paving wait an entire year to allow for the expansion and contraction of a year's cycle of both warm and cool temperatures. This allows for the asphalt's oils to properly cure and begin oxidation before applying a seal coat.
- D. When seal coating in less than a year apply two coats, spray applied. This application method is preferred for less than a year application when there is still plenty of asphalt cement present for the seal coat to bond to.

3.7 PROTECTION

Protect the asphaltic concrete paved areas from traffic until the sealer is set and cured and does not pick up under foot or wheeled traffic.

3.8 FINAL CLEAN-UP

Remove all debris, rubbish, and excess material from the work area.

- - - E N D - - -

32 12 16 - 5

SECTION 32 17 23 PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Paint on pavement surfaces, in form of traffic lanes, parking bays, areas restricted to handicapped persons, crosswalks, and other detail pavement markings.

1.2 RELATED REQUIREMENTS

- A. Paint VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Paint Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. Federal Specifications (Fed. Spec.):
 - 1. TT-P-1952F Paint, Traffic and Airfield Marking, Waterborne.
- C. Master Painters Institute (MPI):
 - 1. No. 97 Traffic Marking Paint, Latex.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show pavement marking configuration and dimensions.
 - 2. Show international symbol of accessibility at designated parking spaces.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Application instructions.
- D. Certificates: Certify products comply with specifications.
- E. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.

a. Project Experience List: Provide contact names and addresses for completed projects.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 55 degrees F for minimum 48 hours before installation.
 - a. Surface to be painted and ambient temperature: Minimum50 degrees F and maximum 95 degrees F.
- B. Field Measurements: Verify field conditions affecting traffic marking installation. Show field measurements on Submittal Drawings.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design paint complying with specified performance:
 - 1. Application: Fed. Spec. TT-P-1952.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run.
 - 1. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Paints and coatings.

2.3 SANDBLASTING EQUIPMENT

 A. Air compressor, hoses, and nozzles of proper size and capacity as required for cleaning painted surfaces. Compressor to provide minimum 150 cfm of air at pressure of minimum 90 psi at each nozzle used.

2.4 PAINT APPLICATOR

A. Apply marking paint with approved mechanical equipment. Provide equipment with constant agitation of paint and travel at controlled speeds. Synchronize one or more paint "guns" to automatically begin and cut off paint flow in case of skip lines. Equipment to have manual control to apply continuous lines of varying length and marking widths as indicated on Drawings. Provide pneumatic spray guns for hand application of paint in areas where mobile paint applicator cannot be used.

2.5 PAINT

A. Paint: MPI No. 97. For obliterating existing markings comply with Fed. Spec. TT-P-1952. Provide minimum 5 gallon containers.

2.6 REFLECTIVE GLASS BEADS

A. Not required.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - Allow new pavement surfaces to cure for period of minimum 14 days before application of marking materials.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or combination of these methods.
 - Completely remove rubber deposits, existing paint markings, and other coatings adhering to pavement with scrapers, wire brushings, sandblasting, mechanical abrasion, or approved chemicals as directed by Contracting Officer's Representative.
 - As an option, comply with Fed. Spec. TT-P-1952 for removal of existing paint markings on asphalt pavement. Apply black paint in as many coats as necessary to completely obliterate existing markings.

- 4. Where oil or grease are present on old pavements to be marked, scrub affected areas with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinse thoroughly after each application.
 - a. After cleaning, seal oil-soaked areas with cut shellac to prevent bleeding through new paint.
- Clean and dry surface before pavement marking. Do not begin any marking until Contracting Officer's Representative inspected surface and gives permission to proceed.

3.2 TEMPORARY PAVEMENT MARKING

A. Apply Temporary Pavement Markings of colors, widths and lengths shown on drawings or directed by Contracting Officer's Representative. After temporary marking has served its purpose and when so ordered by Contracting Officer's Representative, remove temporary marking by carefully controlled sandblasting, approved grinding equipment, or other approved method to prevent damage on applied surface.

3.3 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.4 PAINT APPLICATION

- A. Apply uniformly painted pavement marking of required colors, length, and width with true, sharp edges and ends on properly cured, prepared, and dried surfaces.
- B. Comply with details as indicated on drawings and established control points.
- C. Apply paint at wet film thickness of 0.015 inch. Apply paint in one coat. When directed by Contracting Officer's Representative, apply additional coats at markings showing light spots. Comply with paint manufacturer's maximum drying time requirements to prevent undue softening of asphalt, and pick-up, displacement, or discoloration by tires of traffic.
- D. When deficiency in marking drying occurs, discontinue paint operations until cause of slow drying is determined and corrected.

- E. Remove and replace marking applied less than minimum material rates, deviates from true alignment, exceeds stipulated length and width tolerances, or shows light spots, smears, or other deficiencies or irregularities.
- F. Remove marking by carefully controlled sandblasting, approved grinding equipment, or other approve method to prevent damage on applied surface.

3.5 DETAIL PAVEMENT MARKING APPLICATION

- A. Apply Detail Pavement Markings, exclusive of actual traffic lane marking as follows:
 - 1. At exit and entrance islands and turnouts.
 - 2. On curbs.
 - 3. At crosswalks.
 - 4. At parking bays.
 - 5. Other locations as indicated on drawings.
- B. Apply International Handicapped Symbol at indicated parking spaces. Color as shown on drawings. Apply paint for symbol using suitable template that will provide pavement marking with true, sharp edges and ends.
- C. Install detail pavement markings of colors, widths and lengths, and design pattern at locations indicated on drawings.

3.6 TOLERANCES

- A. Length and Width of Lines: Plus or minus 3 inches and plus or minus 1/8 inch, respectively, in case of skip markings.
- B. Length of intervals exceeding line length tolerance are not acceptable.

3.7 CLEANING

A. Remove excess paint before paint sets.

3.8 PROTECTION

- A. Protect pavement markings from traffic and construction operations.
 - Protect newly painted markings from vehicular traffic until paint is dry and track free.
 - Place warning signs at beginning of wet line, and at points well in advance of marking equipment for alerting approaching traffic from both directions.
 - Place small flags or other similarly effective small objects near freshly applied markings at frequent intervals to reduce crossing by traffic.

- - - E N D - - -

SECTION 32 90 00 PLANTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Soils and turf.

1.2 RELATED REQUIREMENTS

1.3 DEFINITIONS

- A. Pesticide: Any substance or mixture of substances, including biological control agents, that may prevent, destroy, repel, or mitigate pests and is specifically labeled for use by U.S. Environmental Protection Agency (EPA). Also, any substance used as plant regulator, defoliant, disinfectant, or biocide.
- B. Stand of Turf: 100percent of established species.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute (ANSI):
 - 1. Z60.1-2014 Nursery Stock.
- C. American Society for Testing And Materials (ASTM):
 - B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 2. C33 Concrete Aggregates.
 - 3. C136 Sieve Analysis of Fine and Coarse Aggregates.
 - 4. C602-13a Agricultural Liming Materials.
 - 5. D977-13e1 Emulsified Asphalt.
 - 6. D5268-13 Topsoil Used for Landscaping Purposes.
- D. Hortus Third: Concise Dictionary of Plants Cultivated in United States and Canada.
- E. Tree Care Industry Association (TCIA):
 - A300P1-2008 Tree Care Operations Trees, Shrubs and Other Woody Plant Maintenance Standard Practices (Pruning).
 - 2. Z133.1-2012 Arboricultural Operations Safety Requirements.
- F. Turfgrass Producers International (TPI):
 - 1. 2006 Guideline Specifications to Turfgrass Sodding.
- G. United States Department of Agriculture (USDA):
 - 1. DOA SSIR 42-2014 Soil Survey Laboratory Methods Manual.

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS 2. Handbook No. 60 - Diagnosis and Improvement of Saline and Alkali Soils.

1.5 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Contractor.
 - c. Installer.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Inspection of planting materials.
 - b. Installation schedule.
 - c. Installation sequence.
 - d. Preparatory work.
 - e. Protection before, during, and after installation.
 - f. Installation.
 - g. Inspecting.
 - h. Environmental procedures.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
 - 3. Warranty.
- C. Sustainable Construction Submittals:
- D. Test reports: Certify products comply with specifications.
- E. Certificates: Certify products comply with specifications.
 - 1. Seed and Turf Materials: Notarized certificate of product analysis.
- F. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer, including supervisor with project experience list.
- G. Operation and Maintenance Data:
 - 1. Care instructions for turf.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - 2. Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
 - 3. Member in good standing of either Professional Landcare Network or American Nursery and Landscape Association.
 - 4. Field supervisor or Personnel assigned to Work certified in one of following categories from Professional Landcare Network and submit one copy of certificate to Contracting Officer's Representative:
 - Certified Landscape Technician (CLT) Exterior, with installation, maintenance, or irrigation, designated CLT-Exterior.
 - Certified Landscape Technician (CLT) Interior, designated CLT-Interior.
 - c. Certified Ornamental Landscape Professional, designated COLP.
- B. Contracting Officer's Representative may review sod either at place of growth or project site before planting for compliance with requirements. Contracting Officer's Representative retains right to inspect sod to determine if any unacceptable conditions exist and to reject any areas of sod at any time during Project. All rejected areas of sod must be immediately removed from Project site.
 - Submit sod source information to Contracting Officer's Representative seven days in advance of delivery to Project site.
- C. Material Test Reports: For standardized ASTM D5268 topsoil, existing native surface topsoil, and imported or manufactured topsoil.
 - For each unamended soil type, provide soil analysis and written report by qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange capacity; sodium absorption ratio; deleterious material; pH; and mineral and plant-nutrient content of soil.
 - 2. Comply with USDA's Handbook No. 60 testing methods and written recommendations.
 - 3. Soil-testing laboratory to oversee soil sampling; with depth, location, and number of samples to be taken per instructions from Contracting Officer's Representative. Take minimum 3 representative

samples from varied locations for each soil to be used or amended for sodding purposes.

- 4. Report suitability of tested soil for plant growth.
- 5. Based on test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1000 sq. ft. or volume per 1 cu. yd. for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable turf growth.
- 6. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.

1.8 DELIVERY

- A. Deliver packaged products in manufacturer's original sealed packaging.
- B. Bulk Products:
 - Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.
 - Install erosion control materials to prevent erosion or displacement of bulk products.

1.9 STORAGE AND HANDLING

- A. Store seeds and other packaged materials in dry locations away from contaminants.
- B. Plant Storage and Protection: Store and protect plants not planted on day of arrival at Project site as follows:
 - Shade and protect plants in outdoor storage areas from wind and direct sunlight until planted.
 - Keep plants in moist condition until planted by watering with fine mist spray.
 - Do not store plant materials directly on concrete or bituminous surfaces.
- C. Topsoil: Before stockpiling topsoil, eradicate on site undesirable growing vegetation. Clear and grub existing vegetation three to four weeks before stockpiling existing topsoil.
- D. Handling: Do not drop or dump sod from vehicles. Avoid damaging sod being moved from nursery or storage area to planting site. Remove damaged or rejected sod from Project site.

1.10 FIELD CONDITIONS

- A. Environment:
 - 1. Coordinate installation of sod during optimal planting seasons.
 - 2. Sodding Dates:
 - a. Turf Grass Installation: From April 1 to June 15 for spring and from September 1 to November 1 for fall.
 - Restrictions: Do not sod when ground is frozen, snow covered, muddy, or when air temperature exceed 90 degrees F.
- B. Weather Limitations: Install sod only during current and forecasted weather conditions that are comply with plant requirements. Apply associated products in compliance with manufacturers' instructions.

1.11 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant plantings and against material defects.
 - 1. Warranty Period: Two years.
 - 2. Turf Warranty Periods will begin from date of Government acceptance of project or phase for beneficial use and occupancy.
 - 3. Contracting Officer's Representative will reinspect turf at end of Warranty Period. Replace any dead, missing, or defective turf immediately. Warranty Period will end on date of this inspection provided Contractor has complied with warranty work required by this specification. Comply with following requirements:
 - Replace areas of sod that are dead, missing or defective before final inspection.
 - Complete remedial measures directed by Contracting Officer's Representative to ensure turf survival.
 - c. Repair damage caused while making turf replacements.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Provide each product from one source or manufacturer.
- B. Sustainable Construction Requirements:
 - 1. Select products with recycled content to achieve overall Project recycled content requirement.
 - a. Fertilizer.
 - 2. Biobased Content:

- a. Organic Mulch: 100 percent.
- b. Peat: 100 percent.

2.2 SOD

- A. Sod: Nursery grown, certified and classified in TPI's "Guideline Specifications to Turfgrass Sodding" as GSS. Machine cut sod at uniform thickness of 3/4 inch within tolerance of 1/4 inch, excluding top growth and thatch. Each individual sod piece to be strong enough to support its own weight when lifted by ends. Broken pads, irregularly shaped pieces, and torn or uneven ends will not be permitted.
- B. Sod Species: Genetically pure, free of weeds, pests, and disease.
 - 1. All Locations:
 - a. Midnight Kentucky Bluegrass 29.73%
 - b. Lunar Kentucky Bluegrass 24.76%
 - c. Noble Kentucky Bluegrass 14.78%
 - d. Prosperity Kentucky Bluegrass 14.76%
 - e. Hampton Kentucky Bluegrass 14.64%
 - f. Other Crop 0.00%
 - g. Inert Matter 1.33%
 - h. Weed Seed 0.00%

2.3 SEED

- A. Grass Seed: State-certified seed of latest season's crop delivered in original sealed packages, bearing producer's guaranteed analysis for percentages of mixtures, purity, germination, weed seed content, and inert material. Label in conformance with AMS Seed Act and applicable state seed laws. Wet, moldy, or otherwise damaged seed will not be acceptable. Field mixes will be acceptable when field mix is performed on site in presence of Contracting Officer's Representative.
- B. Seed Mixtures: Proportion seed mixtures by weight.1. All Locations: Same as 'Sodding' section.

2.4 PLANTING SOILS

A. Planting Soil: Evaluate soil for use as topsoil according to ASTM D5268. From 5 to 10 percent organic matter as determined by topsoil composition tests of Organic Carbon, 6A, Chemical Analysis Method described in USDA DOA SSIR 42. Maximum particle size, 3/4 inch, with maximum 3 percent retained on 1/4 inch screen. Mix topsoil with following soil amendments and fertilizers as recommended by soils analysis.

- B. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process and stockpiled on-site. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 - 1. Supplement with another specified planting soil when quantities are insufficient.
 - 2. Mix existing, native surface topsoil with soil amendments and fertilizers as recommended by soils analysis.
- C. Imported Planting Soil: Imported topsoil or manufactured topsoil from off-site sources are acceptable if sufficient topsoil is not available on site to meet specified depth. At least 10 days before topsoil delivery, notify Contracting Officer's Representative of topsoil sources. Obtain imported topsoil displaced from naturally well-drained construction or mining sites where topsoil is at 4 inches deep. Topsoil from agricultural land, bogs, or marshes will be rejected.

2.5 INORGANIC SOIL AMENDMENTS

- A. Lime: Commercial grade limestone containing calcium carbonate equivalent (CCE) specified in ASTM C602 of minimum 80 percent.
- B. Sulfur: 100 percent elemental.
- C. Iron Sulfate: 100 percent elemental.
- D. Aluminum Sulfate: Commercial grade.
- E. Perlite: Horticultural grade.
- F. Agricultural Gypsum: Coarsely ground from recycled scrap gypsum board comprised of calcium sulfate dehydrate 91 percent, calcium 22 percent, sulfur 17 percent, minimum 96 percent passing through 850 micrometers 20 mesh screen, 100 percent passing through 970 micrometers 16 mesh screen.
- G. Coarse Sand: ASTM C33/C33M, clean and free of materials harmful to plants.
- H. Vermiculite: Horticultural grade for planters.
- I. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.
- J. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.6 ORGANIC SOIL AMENDMENTS

- A. Organic Matter: Commercially prepared compost. Free of substances toxic to plantings and as follows:
 - Organic Matter Content: Wood cellulose fiber, wood chips, ground or shredded bark, shredded hardwood, bark peelings, pine straw mulch, pine needles from project site when available. Biobased content 100 percent. Wood cellulose fiber processed to contain no growth or germination-inhibiting factors, dyed with non-toxic, biodegradable dye to appropriate color to facilitate visual metering of materials application.
 - Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.
- B. Peat: Natural product of sphagnum moss peat, peat moss, hypnum moss, peat reed sedge peat, peat humus, derived from fresh-water site, conforming to ASTM D4427 and containing no invasive species, including seeds. Shred and granulate peat to pass 1/2 inch mesh screen and condition in storage pile for minimum 6 months after excavation. Biobased content minimum 100 percent.
- C. Composted Derivatives: Ground bark, nitolized sawdust, humus, or other green wood waste material free of stones, sticks, invasive species, including seeds, and soil stabilized with nitrogen and having following properties:
 - 1. Particle Size: Minimum percent by weight passing:
 - a. No. 4 mesh screen: 95.
 - b. No. 8 mesh screen: 80.
 - 2. Nitrogen Content: Minimum percent based on dry weight:
 - a. Fir sawdust: 0.7.
 - b. Fir or pine bark: 1.0.
 - 3. Biobased Content: 100 percent.
- D. Manure: Well-rotted, horse or cattle manure containing maximum 25 percent by volume of straw, sawdust, or other bedding materials; free of seeds, stones, sticks, soil, and other invasive species.

2.7 PLANT FERTILIZERS

A. Soil Test: Evaluate existing soil conditions and requirements before fertilizer selection and application to minimize use of all fertilizers and chemical products. Obtain approval of Contracting Officer's Representative for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements. Fertilizers to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer applicable to specific areas as required for Project conditions and application. Provide commercial grade plant and turf fertilizers, free flowing, uniform in composition and conforms to applicable state and federal regulations.

- B. Granular Fertilizer: Organic, granular controlled release fertilizer containing minimum percentages, by weight, of plant food nutrients.
 - Composition: Nitrogen, phosphorous, potassium, sulfur, and iron in amounts recommended in soil reports from qualified soil-testing laboratory.

2.8 EROSION CONTROL

- A. Erosion Control Blankets: 70 percent agricultural straw and 30 percent coconut fiber matrix 12 months.
- B. Erosion Control Fabric: Knitted construction of polypropylene yarn with uniform mesh openings 3/4 to 1 inch square with strips of biodegradable paper. Minimum filler paper strip life of six months.
- C. Erosion Control Net: Heavy, twisted jute mesh weighing approximately 1.22 pounds per linear yard and 4 feet wide with mesh openings approximately 1 inch square.
- D. Erosion Control Material Anchors: As recommended by erosion control material manufacturer.

2.9 BIOSTIMULANTS

A. Biostimulants: Formulation containing soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions.

2.10 WATER

A. Water: Source approved by Contracting Officer's Representative and suitable quality for irrigation, containing no elements toxic to plant life, including acids, alkalis, salts, chemical pollutants, and organic matter. Use collected storm water or graywater when available.

2.11 PESTICIDES

A. Consider IPM (Integrated Pest Management) practices to minimize use of all pesticides and chemical products. Obtain Contracting Officer's

Representative's approval for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.
 - Verify that no materials that would inhibit plant growth are present in planting area. If such materials are present, remove soil and contaminants ad directed by Contracting Officer's Representative and provide new planting soil.
 - Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
 - Suspend soil spreading, grading, and tilling operations if soil moisture becomes excessive. Resume soil preparations when moisture content returns to acceptable level.
 - 4. If soil is excessively dry, not workable, and too dusty, moisten uniformly.
 - 5. Special conditions may exist that warrant variance in specified planting dates or conditions. Submit written request to Contracting Officer's Representative stating special conditions and proposed variance.
- B. Proceed with planting operations only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Protect existing and proposed landscape features, elements, and site construction and completed work from damage. Protect trees, vegetation, and other designated features by erecting high-visibility, reusable construction fencing. Locate fence no closer to trees than drip line. Plan equipment and vehicle access to minimize and confine soil disturbance and compaction to areas indicated on drawings.
- B. Install erosion control materials at all areas inside or outside limits of construction that are disturbed by planting operations. Provide erosion control and seeding with native plant species to protect slopes.

3.3 TREE AND SHRUB PRUNING

- A. Pruning: Performed by trained and experience personnel according to TCIA A300P1.
- B. Remove dead and broken branches. Prune only to correct structural defects.
- C. Retain typical growth shape of individual plants with as much height and spread as practical. Do not central leader on trees. Make cuts with sharp instruments. Do not flush cut with trunk or adjacent branches. Collars to remain in place.
- D. Do not apply tree wound dressing to cuts.

3.4 SODDING

- A. Place sod maximum 36 hours after initial harvesting according to TPI GSS, except as modified herein.
- B. For slopes 2 to 1 and greater, lay sod with long edge perpendicular to contour. For V-ditches and flat bottomed ditches, lay sod with long edge perpendicular to water flow. Anchor each piece of sod with wood pegs or wire staples maximum 24 inches on center. On sloped areas, start sodding at bottom of slope.
- C. Finishing: After sodding, blend edges of sodded area smoothly into surrounding area. Eliminate air pockets and provide true and even surface. Trim frayed areas and patch holes and missing areas with sod.
- D. Rolling: Immediately after sodding, firm entire area, except slopes in excess of 3: 1, with roller maximum 90 lbs. for each foot of roller width.
- E. Watering: Start watering sodded areas as required by daily temperature and wind conditions. Water at rate sufficient to ensure thorough wetting of soil to minimum 6 inches deep. Prevent run-off, puddling, and wilting. Do not drive watering trucks over turf areas, unless otherwise directed. Prevent watering of other adjacent areas or plant materials.

3.5 SEEDING

A. Broadcast and Drop Seeding: Uniformly broadcast seed at rate of 5 pounds per 1000 square feet. Use broadcast or drop seeders. Sow one-half seed in one direction and sow remainder at right angles to first sowing. Cover seed uniformly to maximum 1/4 inch deep in clay soils and 13 mm (1/2 inch) deep in sandy soils by means of spike-tooth harrow, cultipacker, raking, or other approved device.

- B. Drill Seeding: Drill seed at rate of 5 pounds per 1000 sq. ft. Use grass seed drills //. Drill seed uniformly to 13 mm (1/2 inch) deep.
- C. Rolling: Immediately after seeding, firm entire area, except for slopes in excess of 3 to 1, with roller not exceeding 90 lb./ft. of roller width.

3.6 HYDROSEEDING

- A. Mix water with wood cellulose fiber, paper fiber, or recycled paper at rate of 1,000 lb. per acre dry weight. Add seed and fertilizer to fiber and water and mix to produce homogeneous slurry.
 - 1. Broadcast seed mixture at rate of 5 pounds per 1000 square feet.
 - Hydraulically spray slurry to form uniformly impregnated grass seed cover. Spread with one application with no second application of mulch.

3.7 TURF RENOVATION

A. General: Restore to original condition existing turf areas damaged during turf installation and construction operations. Keep at least one paved pedestrian access route and one paved vehicular access route to each building clean at all times. Clean other paving when work in adjacent areas is complete.

3.8 SLOPE EROSION CONTROL MAINTENANCE

- A. Provide slope erosion control maintenance to prevent undermining of all slopes in newly landscaped areas. Maintenance tasks include immediate repairs to weak spots in sloped areas and maintaining clean, clear culverts.
 - 1. Fill eroded areas with amended topsoil and replant with same plant species.
 - 2. Reinstall erosion control materials damaged due to slope erosion.

3.9 TURF MAINTENANCE

- A. Mow turf to uniform finished height measured from soil. Perform mowing in manner that prevents scalping, rutting, bruising, uneven and rough cutting. Before mowing, remove and dispose of all rubbish, debris, trash, leaves, rocks, paper, and limbs or branches on turf areas. Sweep or vacuum clean adjacent paved areas.
- B. Apply fertilizer in manner that promotes health, growth, vigor, color and appearance of cultivated turf areas. Determine method of application, fertilizer type and frequencies by results of laboratory soil analysis. Provide organic fertilizer. If organic fertilizer does

not produce desired effect, contact Contracting Officer's Representative for approval before applying synthetic fertilizer. Apply fertilizer by approved methods and according to manufacturer's instructions.

C. Watering: Perform irrigation in manner that promotes health, growth, color, and appearance of cultivated vegetation, complying with Federal, State, and local water agency and authority directives. Prevent overwatering, water run-off, erosion, and ponding due to excessive quantities or rate of application.

3.10 CLEANING

A. Remove and legally dispose of all excess soil and planting debris.

3.11 PROTECTION

- A. Protect plants from traffic and construction operations.
- B. Provide temporary fences or enclosures and signage, at planted areas.Maintain fences and enclosures during maintenance period.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

SECTION 33 08 00

COMMISSIONING OF SITE UTILITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. The requirements of this Section apply to all sections of Division 31.B.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Other Section(s) noted herein.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility site utilities systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 31 is part of the construction process. Documentation and testing of these systems is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility site utilities systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.

- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

- A. Commissioning of Site Utility systems will require inspection of individual elements of the site utility systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule site utility systems inspections as required to support the Commissioning Process.
- B. Additional inspection, testing, video, etc. reporting and requirements are included in the following specifications, but not limited to:
 - Section 33 10 00 --- WATER UTILITIES
 - Section 33 30 00 --- SANITARY SEWER UTILITIES
 - Section 33 40 00 --- STORM SEWER UTILITIES

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 31 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING (NOT USED)

3.5 TRAINING OF VA PERSONNEL (NOT USED)

----- END -----

SECTION 33 10 00

WATER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of underground water distribution for domestic and/or fire supply systems outside the building that are complete and ready for operation. This includes piping, structures, appurtenances and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Concrete: Section 03 30 53, (SHORT FORM) CAST IN-PLACE CONCRETE.

1.3 DEFINITIONS

- A. Water distribution system: Pipelines and appurtenances which are part of the distribution system outside the building for potable water and fire supply.
- B. Water service line: Pipeline from main line to 5 feet outside of building.

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic.
- B. DI: Ductile iron pipe.
- C.WOG: Water, Oil and Gas.

1.5 DELIVERY, STORAGE AND HANDLING

- A. Ensure that values are dry and internally protected against rust and corrosion. Protect values against damage to threaded ends and flange faces.
- B. Use a sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- C. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- D. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.

- E. Store plastic piping protected from direct sunlight and support to prevent sagging and bending.
- F. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.

1.6 COORDINATION

- A. Coordinate connection to water main with Public Utility company.
- B. Coordinate water service lines with building contractor.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least three years. Digital electronic devices, software and systems such as controls, instruments or computer work stations shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
- C. Regulatory requirements:
 - Comply with the rules and regulations of the public utility company having jurisdiction over the connection to public water lines and the extension and/or modifications to public utility systems.
 - Comply with the rules and regulations of the Federal, State, and/or Local Health Department having jurisdiction for potable waterservice.
 - 3. Comply with rules and regulations of Federal, State, and/or Local authorities having jurisdiction for fire-suppression water-service piping including materials, hose threads, installation and testing.

- D. Provide certification of factory hydrostatic testing of not less than 500 psi in accordance with AWWA C151. Piping materials shall bear the label, stamp or other markings of the specified testing agency.
- E. Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation.
- F. Applicable codes:
 - 1. Plumbing Systems: IPC, International Plumbing Code.
 - Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction and marked for intended use.
 - 3. Fire-service main products shall be listed in the FM Global "Approval Guide" or Underwriters Laboratories (UL) "Fire Protection Equipment Directory".

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI):

MSS SP-60-2004Connecting Flange Joint Between Tapping Sleeves and Tapping Valves

MSS SP-108-2002.....Resilient-Seated Cast Iron, Eccentric Plug Valves

MSS SP-123-1998(R2006)..Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube

C. American Society of Mechanical Engineers (ASME):

A112.1.2-2004.....Air Gaps in Plumbing Systems (for Plumbing Fixtures and Water-Connected Receptors))

A112.6.3-2001.....Floor Drains

B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250

B16.18-2001.....Cast Copper Alloy Solder Joint Pressure Fittings

33 10 00-3

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS B16.22-2001.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings; Classes 150, 300, 600, 900, 1500 and 2500 B31..... Piping Standards D. American Society for Testing and Materials (ASTM): A36..... Structural Steel A48.....Gray Iron Castings A536-84(2009).....Ductile Iron Castings A674-10.....Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids B61-08..... Steam or Valve Bronze Castings B62-09.....Composition Bronze or Ounce Metal Castings B88.....Seamless Copper Water Tube C651-05.....Disinfecting Water Mains C858-10e1.....Underground Precast Utility Structures D1785-06.....Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2239-03.....Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter D2464-06.....Threaded Poly (Vinyl Chloride) PVC Pipe Fittings, Schedule 80 D2466-06.....Poly (Vinyl Chloride) (PVC) Pipe Fittings, Schedule 40 D2467-06.....Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80 D2609-02(2008).....Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe D3350-10a.....Polyethylene Plastics Pipe and Fittings Materials 33 10 00-4

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS F714-10.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F1267-07.....Metal, Expanded, Steel E. American Water Works Association (AWWA): B300-10.....Hypochlorites B301-10.....Liquid Chlorine C104-08.....Cement-Mortar Lining for Ductile Iron Pipe and Fittings C105/A21.5-10.....Polyethylene Encasement for Ductile Iron Pipe Systems C110-08..... Ductile Iron and Gray-Iron Fittings C111/A21.11-07.....Rubber-Gasket Joints for Ductile Iron Pressure Pipe and Fittings C115/A21.11-11.....Flanged Ductile Iron Pipe with Ductile Iron or Gray-Iron Threaded Flanges C151/A21.51-09.....Ductile Iron Pipe, Centrifugally Cast C153/A21.53-11.....Ductile Iron Compact Fittings for Water Service C502-05.....Dry-Barrel Fire Hydrants C503-05.....Wet-Barrel Fire Hydrants C504-10.....Rubber-Seated Butterfly Valves C508-09.....Swing-Check Valves for Waterworks Service, 2-In. Through 24-In. (50-mm Through 600-mm) NPS C509-09.....Resilient-Seated Gate Valves for Water Supply Service C510-07.....Double Check Valve Backflow Prevention Assembly C511-07.....Reduced-Pressure Principle Backflow Prevention Assembly C512-07.....Air Release, Air/Vacuum and Combination Air Valves

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS C550-05.....Protective Interior Coatings for Valves and Hydrants C600-10..... Installation of Ductile Iron Mains and Their Appurtenances C605-11......Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water C606-11.....Grooved and Shouldered Joints C651-05.....Disinfecting Water Mains C700-09.....Cold-Water Meters, "Displacement Type," Bronze Main Case C800-05.....Underground Service Line Valves and Fittings C900-09.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution C906-07.....Polyethylene (PE) Pressure Pipe and Fittings, 4 In. (100 mm) Through 64 In. (1,600 mm), for Water Distribution and Transmission C907-04.....Injection-Molded PVC Pressure Fittings, 4 Inch through 12 Inch (100 mm through 300 mm), for Water Distribution M23-2nd Ed.....PVC Pipe, Design and Installation M44-2nd Ed.....Distribution Valves: Selection, Installation, Field Testing and Maintenance F. National Fire Protection Association (NFPA): NFPA 24-2010 Ed.....Installation of Private Fire Service Mains and Their Appurtenances NFPA 1963-2009 Ed.....Fire Hose Connections G. NSF International (NSF): NSF/ANSI 14 (2013).....Plastics Piping System Components and Related Materials

33 10 00-6

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS NSF/ANSI 61-2012.....Drinking Water System Components - Health Effects NSF/ANSI 372-2011.....Drinking Water System Components - Lead Content H. American Welding Society (AWS): A5.8 A5.8 Braze Welding I. American Society of Safety Engineers (ASSE): 1003-2009Water Pressure Reducing Valves 1015-2009......Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies 1020-2004..... Pressure Vacuum Breaker Assembly 1047-2009.....Performance Requirements for Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies 1048-2009..... Performance Requirements for Double Check Detector Fire Protection Backflow Prevention Assemblies 1060-2006..... Performance Requirements for Outdoor Enclosures for Fluid Conveying Components J. Underwriters' Laboratories (UL): 246..... Hydrants for Fire-Protection Service 262.....Gate Valves for Fire-Protection Service 312.....Check Valves for Fire-Protection Service 405..... Connection Devices 753.....Alarm Accessories for Automatic Water-Supply Control Valves for Fire Protection Service 789..... Indicator Posts for Fire-Protection Service 1091.....Butterfly Valves for Fire-Protection Service 1285.....Pipe and Couplings, Polyvinyl Chloride (PVC), and Oriented Polyvinyl Chloride (PVCO) for Underground Fire Service 33 10 00-7

1.9 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF/ANSI 61 or NSF 372.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF/ANSI 14 and shall be NSF listed for the service intended.

2.2 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.3 SAFETY GUARDS

A. All equipment shall have moving parts protected to prevent personal injury. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4 inch bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.

2.4 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 DUCTILE IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi.
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi.
 - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Gaskets: AWWA C111, rubber.
- C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, round-grooved ends.
 - Grooved-End, Ductile-Iron Pipe Appurtenances: ASTM A47, malleableiron castings or ASTM A536, ductile-iron castings with dimensions matching pipe, 350 psi.
 - Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductileiron-pipe dimensions, Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
 - 3. Gaskets: AWWA C111.
- D. Flanged Ductile Iron Pipe: AWWA C115/A21.11, with factory applied screwed long hub flanges.
 - 1. Flanges: ASME B16.1 for 250 psi pressure ratings, as necessary.
 - 2. Wall Sleeve Castings, size and types shown on the drawings, shall be hot dipped galvanized per ASTM A123.
 - 3. Pipe and fittings exposed to view in the finished work are to be painted in accordance with Section 09 91 00, PAINTING. Pipe shall be shop primed with one coat of rust inhibitive primer. Final paint color shall match the final wall color.
- E. Cement Mortar Internal Lining: Cement mortar lining and bituminous seal coat as per AWWA C104.
- F. Exterior Pipe Coating: The exterior of pipe shall have the standard asphaltic coating.

2.6 POLYVINYL CHLORIDE PIPE AND FITTINGS

A. PVC, Schedule 40 Pipe: ASTM D1785.

1. PVC, Schedule 40 Socket Fittings: ASTM D2466.

- B. PVC, Schedule 80 Pipe: ASTM D1785.
 - 1. PVC, Schedule 80 Socket Fittings: ASTM D2467.
 - 2. PVC, Schedule 80 Threaded Fittings: ASTM D2464.
- C. PVC, AWWA Pipe: AWWA C900, Class 200, with bell end with gasket, and with spigot end.
 - 1. Comply with UL 1285 for fire-service mains if indicated.
 - 2. PVC Fabricated Fittings: AWWA C900, Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - Push-on-Joint, Ductile-Iron Fittings: // AWWA C110, ductile- or grayiron standard pattern.

a.Gaskets: AWWA C111, rubber.

5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern. a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.7 PE PIPE AND FITTINGS

- A. PE, ASTM Pipe: ASTM D2239, SIDR No. 5.3, 7, or 9; with PE compound number required to give pressure rating not less than 200 psi.
 - Insert Fittings for PE Pipe: ASTM D2609, made of PA, PP, or PVC with serrated male insert ends matching inside of pipe. Include bands or crimp rings.
 - 2. Molded PE Fittings: ASTM D3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.
- B. PE, AWWA Pipe: AWWA C906, DR No. 7.3, 9, or 9.3; with PE compound number required to give pressure rating not less than 200 psi.
 - 1. PE, AWWA Fittings: AWWA C906, socket- or butt-fusion type, with DR number matching pipe and PE compound number required to give pressure rating not less than 200 psi.
- C. PE, Fire-Service Pipe: ASTM F714, AWWA C906, or equivalent for PE water pipe; FMG approved, with minimum thickness equivalent to FMG Class 200.
 - 1. Molded PE Fittings: ASTM D3350, PE resin, socket-or butt-fusion type, made to match PE pipe dimensions and class.

2.8 COPPER TUBE AND FITTINGS

A. Soft Copper Tubing: ASTM B88, Type K water tube, annealed temper.

33 10 00-10

- B. Hard Copper Tubing: ASTM B88, Type K water tube, drawn temper.
- C. Fittings: ASME B16.18, cast copper alloy, solder joint pressure fittings.
- D. Brazing Alloy: AWS A5.8/A5.8M, Classification BCuP.
- E. Bronze Flanges: ASME B16.24, Class 300 flanges if required to match piping.
- F. Copper Unions: ANSI MSS SP-123, cast copper alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

2.9 VALVES

- A. Gate Valves: AWWA C509, Non-rising Stem, Resilient Seat, 200 psi.
 - Valves 3 inches and larger: Resilient seat valve with gray- or ductile iron body and bonnet; cast iron or bronze double-disc gate; bronze gate rings; non-rising bronze stem and stem nut.
 - 2. Interior and exterior coating: AWWA C550, thermo-setting or fusion epoxy.
 - 3. Underground valve nut: Furnish valves with 2 inch nut for socket wrench operation.
 - 4. Aboveground and pit operation: Furnish valves with hand wheels.
 - 5. End connections shall be mechanical joint or match main line pipe.

B. Gate Valve Accessories and Specialties

- 1. Tapping-Sleeve Assembly: ANSI MSS SP-60; sleeve and valve to be compatible with the drilling matching.
 - a. Tapping Sleeve: Stainless-Steel, two-piece bolted sleeve. Sleeve to match the size and type of pipe material being tapped.
 - b. Valve shall include one raised face flange mating tapping-sleeve flange.
- 2. Valve Boxes: AWWA M44 with top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel.
- 3. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut. (Provide two wrenches for Project.)
- 4. Indicator Posts: UL 789, FMG approved, vertical-type, cast iron body with operating wrench, extension rod, and adjustable cast iron barrel of length required for depth of burial of valve.

- C. Swing Check Valves:
 - Valves smaller than 2 inches: ASTM B61, resilient seat, bronze body and bonnet, pressure rating of 200 psi. Ends to match main line piping.
 - 2. Valves 2 inches or larger: AWWA 508, resilient seat valve with iron body and bonnet, pressure rating of 200 psi.
 - 3. Coating: AWWA C550, fusion epoxy coated.
- D. Detector Check Valves
 - Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 - a. Standards: UL 312 and FMG approved, 175 psi.
- E. Butterfly Valves
 - 1. Rubber-Seated Butterfly Valve: AWWA C504.
 - a. Provide rubber seated butterfly valve cast or ductile iron body, flanged, minimum pressure of 150 psi.
 - 2. UL Butterfly Valve: UL 1091 and FMG approved.
 - a. Provide metal on resilient material seating butterfly valves that are UL 1091 and FMG approved, cast or ductile iron body, flanged, minimum pressure of 175 psi.
- F. Plug Valves: ANSI MSS SP-108, resilient-seated eccentric plug valve, minimum pressure of 175 psi.
- G. Corporation Valves and Curb Valves
 - Curb Valves: AWWA C800, bronze body, ground-key plug or ball, wide tee head, with inlet and outlet matching service piping material, minimum pressure of 200 psi.
 - 2. Service Boxes for Curb Valves: AWWA M44, cast iron telescoping top section; plug shall include lettering "WATER"; bottom section with base that fits over curb valve.
 - 3. Shutoff Rods: Steel, tee-handle with one pointed end. Stem length shall extend 2 feet above top of valve box for operation of deepest buried valve, with slotted end matching curb valve.
- H. Post-Indicator: NFPA 24 and be fully compatible with the valve and supervisory switches.

```
I. Water Meter: SECTION 25 10 10, ADVANCED UTILITY METERING SYSTEM.
1.
```

Furnish and install meter approved by the Water Service Utility. Forward approval of meter to VA Contracting Officer Representative.

- J. Backflow Preventer
 - 1. Backflow Preventer shall not be located in any area containing fumes that are toxic, poisonous or corrosive.
 - 2. Direct connections between potable water piping and sewer connected wastes shall not exist under any condition with or without backflow protection.
 - 3. Backflow Preventer shall be accessed and have clearances for the required testing, maintenance and repair. Access and clearances shall maintain a minimum of 1 foot between the lowest portion of the assembly and grace, floor or platform. Installations elevated more than 5 feet above the floor or grade shall be provided with a permanent platform capable of supporting a tester or maintenance person.
- K. Reduced-Pressure-Principle Backflow Preventer: AWWA C511 for continuouspressure applications.
 - 1. Pressure loss: 15 psi maximum, through middle 1/3 of flow range.
 - 2. Body:
 - a. Bronze: NPS 2 and smaller, cast iron with interior lining complying with AWWA C550.
 - b. Steel with interior lining complying with AWWA C550 stainless steel for NPS 2-1/2 or larger.
 - 3. End connections:
 - a. Threaded for NPS 2 and smaller.
 - b. Flanged for NPS 2-1/2 and larger.
 - 4. Configuration: Designed for horizontal, straight through flow.
 - 5. Valves:
 - a. Ball type with threaded ends on inlet and outlet of NPS 2 and smaller.
 - b. Resilient seated gate type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - 6. Air-gap fitting: ASME All2.1.2, matching backflow Preventer connection.

2.10 WATER METER BOXES

A. Cast iron body and cover for disc-type water meter, with lettering "WATER METER" in cover; and with slotted, open-bottom base section of length to fit over service piping.

2.11 FIRE HYDRANTS

- A. All hydrants shall have removable interiors capable of replacement without digging up the hydrant and be packable under pressure. Threaded joints or spindles shall be bronze and upper and lower barrels shall be of equal diameter. Upper barrel shall be of sufficient length to permit setting hydrant with barrel flange not more than 4 inches above finished grade. All fire hydrants shall have 6 inch bottom connection. Provide two of hydrant wrenches not less than 14 inches long. Pressure Rating: 250 psi. Hydrant valve shall open by turning operating nut to left or counterclockwise. Exterior finish shall be red alkyd-gloss enamel paint, unless otherwise indicated. Outlet threads shall meet NFPA 1963, with external hose thread used by local fire department. Include cast iron caps with steel chains and Pentagon, 1-1/2 inch point to flat operating and cap nuts.
- B. Dry-Barrel Fire Hydrants:
 - 1. AWWA C502, freestanding, one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4 inch main valve, drain valve, and NPS 6 mechanical-joint inlet; interior coating according to AWWA C550; cast iron body, compressiontype valve opening against pressure and closing.
- C. Wet-Barrel Fire Hydrants:
 - AWWA C503, freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, NPS 6 threaded or flanged inlet, and base section with NPS 6 mechanical-joint inlet; interior coating according to AWWA C550.

2.12 DISINFECTION CHLORINE

- A. Liquid chlorine: AWWA B301.
- B. Sodium Hypochlorite: AWWA B300 with 5 percent to 15 percent available chlorine.
- C.Calcium hypochlorite: AWWA B300 supplied in granular form of 5 g. tablets, and shall contain 65 percent chlorine by weight.

2.13 WARNING TAPE

A. Warning tape shall be standard, 4 mil. Polyethylene, 3 inch wide tape, detectable type, blue with black letters and imprinted with "CAUTION BURIED WATER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Use pipe, fittings, and joining methods for piping systems according to the following applications.
 - Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
 - 2. Do not use flanges or unions for underground piping.
 - 3. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
- B. Underground water-service piping NPS 3/4 to NPS 3 shall be any of the following:
 - Soft copper tube with copper, pressure-seal fittings; and pressuresealed joints.
 - 2. PE, ASTM pipe; molded PE fittings; and heat-fusion joints.
 - 3. PVC, Schedule 40 pipe, socket fittings; and solvent-cemented joints.
- C. Underground water-service piping NPS 4 to NPS 8 (shall be any of the following:
 - Soft copper tube with wrought-copper, solder-joint fittings; and brazed joints.
 - Ductile iron, mechanical-joint pipe; ductile iron, mechanical-joint fittings; and mechanical joints.
 - 3. PE, AWWA pipe; PE, AWWA fittings; and heat-fusion joints.
 - 4. PVC, Schedule 40 pipe; socket fittings; and solvent-cemented joints.
 - 5. PVC, AWWA Class 150 pipe for NPS 4 and NPS 6: NPS 6 PVC, AWWA Class 150 pipe; PVC, AWWA Class 150 molded fittings; and gasketed joints.
 - 6. PVC, AWWA Class 200 pipe for NPS 8: // PVC, AWWA Class 200 fabricated mechanical-joint, ductile iron fittings; and gasketed joints.
- D. Aboveground and Vault Water-Service Piping NPS 3/4 to NPS 3 shall be any of the following:
 - 1. Hard copper tube with copper, pressure-seal fittings; and pressuresealed joints.

2. PVC, Schedule 80 pipe; socket fittings; and solvent-cemented joints.E. Aboveground and vault water-service piping NPS 4 to NPS 8 shall be any of the following:

- Hard copper tube, with wrought-copper, solder-joint fittings; and brazed joints.
- Ductile iron, grooved-end pipe; ductile iron, grooved-end appurtenances; and grooved joints.
- 3. PVC, Schedule 80 with socket fittings; and solvent-cemented joints.
- F. Underground Fire-Service-Main Piping NPS 4 to NPS 12 shall be any of the following:
 - Ductile iron, push-on-joint pipe; ductile iron, push-on-joint fittings; and gasketed mechanical-joint pipe; ductile iron, mechanical-joint fittings; and mechanical joints.
 - 2. PE, Class 200, fire-service pipe; molded PE fittings; and heat-fusion joints.
 - 3. PVC, AWWA Class 200 pipe listed for fire-protection service; PVC Class 150 fabricated or molded fittings; and gasketed joints.
- G. Aboveground and Vault Fire-Service-Main Piping NPS 4 to NPS 12 shall be ductile iron, grooved-end pipe; ductile iron-pipe appurtenances; and grooved joints.
- H. Underground Combined Water-Service and Fire-Service-Main Piping NPS 6 to NPS 12 shall be any of the following:
 - Ductile iron, push-on-joint pipe; Ductile Iron, push-on-joint fittings; and gasketed mechanical-joint pipe; Ductile Iron, mechanical-joint fittings; and mechanical joints.
 - 2. PVC, AWWA Class 200 pipe listed for fire-protection service; PVC fabricated or molded fittings of same Class as pipe; and gasketed joints.
- I. Aboveground and Vault Combined Water Service and Fire-Service-Main Piping NPS 6 to NPS 12 (shall be ductile iron, grooved-end pipe; ductile iron-pipe appurtenances; and grooved joints.

3.2 VALVE APPLICATIONS

- A. Use mechanical-joint-end valves for NPS 3) and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, non-rising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 and smaller installation.
- B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

- 1. Underground Valves, NPS 3 and Larger: AWWA, cast iron, non-risingstem, high-pressure, resilient -seated gate valves with valve box.
- 2. Underground Valves, NPS 4 and Larger, for Indicator Posts: UL/FMG, cast iron, non-rising-stem gate valves with indicator post.
- 3. Use the following for valves in vaults and aboveground:
 - a.Gate Valves, NPS 2 and Smaller: Bronze, non-rising stem.
 - b.Gate Valves, NPS 3 and Larger: AWWA, cast iron, OS&Y rising stem, resilient seated.
 - c. Check Valves: AWWA C508, swing type.

3.3 DUCTILE IRON PIPE

- A. Install Ductile Iron, water-service piping according to AWWA C600 and AWWA M41-3rd Edition.
- B. Pipe shall be sound and clean before laying. When laying is not in progress, the open ends of the pipe shall be closed by watertight plug or other approved means.
- C. When cutting pipe is required, the cutting shall be done by machine, leaving a smooth cut at right angles to the axis of the pipe. Bevel cut ends of pipe to be used with push-on bell to conform to the manufactured spigot end. Cement lining shall be undamaged.
- D. Push on joints shall be made in strict accordance with the manufacturer's instruction. Pipe shall be laid with bell ends looking ahead.

3.4 PVC PIPE

- A. PVC piping shall be installed in strict accordance with the manufacturer's instructions and AWWA C605. Place selected material and thoroughly compacted to one foot above the top of the pipe.
- B. Install Copper Tracer Wire, No. 14 AWG solid, single conductor, insulated. Install in the trench with piping to allow location of the pipe with electronic detectors. The wire shall not be spiraled around the pipe nor taped to the pipe. Wire connections are to be made by stripping the insulation from the wire and soldering with rosin core solder per ASTM 828. Solder joints shall be wrapped with rubber tape and electrical tape. At least every 1000 feet (300 m) provide a 5 pound magnesium anode attached to the main tracer wire by solder. The solder joint shall be wrapped with rubber tape and with electrical tape. An anode shall also be attached at the end of each line.

3.5 COPPER PIPE

- A. Copper piping shall be installed in accordance with the Copper Development Association's Copper Tube Handbook and manufacturer's recommendations.
- B. Copper piping shall be bedded in 6 inches of sand.

3.6 ANCHORAGE INSTALLATION

- A. Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include: concrete thrust blocks, locking mechanical joints, bolted flanged joints.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 - 1. Gasketed-Joint, Ductile Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Fire-Service-Main Piping: According to NFPA 24.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.7 VALVE INSTALLATION

- A. AWWA Valves: Install each underground valve with stem pointing up and with valve box.
- B. MSS Valves: Install as component of connected piping system.
- C. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- D. Relief Valves: Install aboveground with shutoff valve on inlet.
- E. Raise or lower existing valve and curb stop boxes and fire hydrants to finish grade in areas being graded.

3.8 DETECTOR-CHECK VALVE INSTALLATION

- A. Install in vault or aboveground and for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
- B. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.
- с. .

3.9 BACKFLOW PREVENTER INSTALLATION

A. Install backflow Preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.

- B. Do not install backflow Preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow Preventers.
- D. Support NPS 2-1/2 and larger backflow Preventers, valves, and piping near floor and on brick or concrete piers.

3.10 CONCRETE VAULT INSTALLATION

A. Install precast concrete vaults according to ASTM C891.

3.11 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Install water service lines to a point of connection within approximately 5 feet (1500 mm) outside of building(s) to which service is to be connected and make connections thereto. If building services have not been installed provide temporary caps and mark for future connection.

3.12 FIELD QUALITY CONTROL

- A. Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- C. Perform hydrostatic tests at not less than one-and-one-half times working pressure for two hours.
 - Increase pressure in 50-psi increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psi. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- D. Prepare reports of testing activities.

3.13 IDENTIFICATION

A. Install continuous underground warning tape 12 inches directly over piping.

3.14 CLEANING

A. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.

- B. Use purging and disinfecting procedure prescribed by local utility provider or other authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - 1. Fill the water system with a water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 - 2. Drain the system of the previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow system to stand for 3 hours.
 - 3. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- C. Prepare reports of purging and disinfecting activities.

--- E N D ---

SECTION 33 30 00 SANITARY SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of outside, underground sanitary sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTHWORK (Short Form).
- B. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- C. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic
- B. DI: Ductile iron pipe

1.5 DELIVERY, STORAGE AND HANDLING

- A. Store plastic piping protected from direct sunlight and support to prevent sagging and bending. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.
- B. Handle manholes according to manufacturer's written rigging instructions.

1.6 COORDINATION

- A. Coordinate exterior utility lines and connections to building lines up to 5 feet of building wall.
- B. Coordinate connection to public sewer system with Public Utility Company.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.

- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Utility having jurisdiction over the connection to Public Sanitary Sewer lines and the extension, and/or modifications to Public Utility Systems.

1.8 SUBMITTALS:

- A. Manufacturers' Literature and Data shall be submitted for the following as one package:
 - 1. Pipe, Fittings, and, Appurtenances.
 - 2. Jointing Material.
 - 3. Manhole and Structure Material.
 - 4. Frames and Covers.
 - 5. Steps and Ladders.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185..... Steel Welded Wire Reinforcement, Plain, for Concrete

A615.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

A746-99.....Ductile-Iron Gravity Sewer Pipe

- C478-09.....Precast Reinforced Concrete Manhole Sections
- C857-11.....Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
- C890-11.....Minimum Structural Design Loading for Monolithic or Sectional Precast Concrete Water and Wastewater Structures
- C913-08..... Precast Concrete Water and Wastewater Structures

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	100% CONSTRUCTION	636-18-303 05-28-21 J DOCUMENTS
C923-08	.Resilient Connectors Between Reinforce	ed
	Concrete Manhole Structures, Pipes, ar	nd
	Laterals	
C924-02(2009)	.Testing Concrete Pipe Sewer Lines by I Pressure Air Test Method	-wo-
C990-09	.Joints for Concrete Pipe, Manholes, ar Box Sections using Preformed Flexible Sealants	
C1173-10	.Flexible Transition Couplings for Under Piping Systems	erground
C1440-08	.Thermoplastic Elastomeric (TPE) Gasket Materials for Drain, Waste and Vent (I Sewer, Sanitary and Storm Plumbing Sys), (VWC
C1460-08	.Shielded Transition Couplings for Use Dissimilar DWV Pipe and Fittings Above	
C1461-08	Mechanical Couplings Using Thermoplast Elastomeric (TPE) Gaskets for Joining Waste and Vent (DWV), Sewer, Sanitary Plumbing systems for Above and below G	Drain, and Storm
D2321-11	.Underground Installation of Thermoplas for Sewers and Other Gravity-Flow Appl	
D3034-08	.Type PSM Poly(Vinyl Chloride) (PVC) Se and Fittings	ewer Pipe
F477-10	.Elastomeric Seals (Gaskets) for Joinir Pipe	ng Plastic
F679-08	.Poly(Vinyl Chloride) (PVC) Large-Diame Plastic Gravity Sewer Pipe and Fitting	
F891-10	.Coextruded Poly(vinyl Chloride) (PVC) Pipe With a Cellular Core	Plastic
F949-10	.Poly(Vinyl Chloride) (PVC) Corrugated Pipe With a Smooth Interior and Fittir	

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE	636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS	
F1417-11	.Standard Test Method for Installation	
	Acceptance of Plastic Gravity Sewer Lines Using	
	Low-Pressure Air	
F1668-08	.Construction Procedures for Buried Plastic Pipe	
C. American Water Works Association (AWWA):		
C105/A21.5-10	.Polyethylene Encasement for Ductile-Iron Pipe Systems	
C110-08	.Ductile-Iron and Gray-Iron Fittings	
C111/A21.11-06	.Rubber Gasket Joints for Ductile Iron Pressure Pipe and Fittings	
C151/A21.51-09	.Ductile Iron Pipe, Centrifugally Cast	
C153/A21.53-06	.Ductile Iron Compact Fittings for Water Service	
C219-11	.Bolted, Sleeve-Type Couplings for Plain-End Pipe	
C512-07	.Air Release, Air/Vacuum and Combination Air Valves for Water Works Service	
C600-10	.Installation of Ductile-Iron Mains and Their Appurtenances	
C900-07	.Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In., for Water Transmission and Distribution	
D. American Society of Mechanical Engineers:		

D. American Society of Mechanical Engineers: A112.14.1-2003.....Backwater Valves

A112.36.2M-1991....Cleanouts

1.10 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will provide all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. All pipe and fittings used in the construction of force mains shall be rated to meet the system maximum operating pressure with a minimum of 150 psi.
- C. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical Joint Piping
 - 1. Pipe and Fittings: AWWA C151.
 - 2. Compact Fittings: AWWA C153.
 - 3. Gaskets: AWWA C111.
 - 4. Exterior coating: AWWA C151.
 - 5. Interior lining shall be as per ASTM A746.
 - 6. Pipe and fittings shall be polyethylene encased as per AWWA C105.

B. Push-on-Joint Piping:

- 1. Pipe: AWWA C151, with bolt holes in bell.
- 2. Standard Fittings: AWWA C110.
- 3. Compact Fittings: AWWA C153.
- 4. Gaskets: AWWA C111.
- 5. Exterior coating: AWWA C151.
- 6. Interior lining: AWWA C151.
- 7. Pipe and fittings shall be polyethylene encased as per AWWA C105.

2.3 PVC, GRAVITY SEWER PIPE AND FITTINGS

- A. PVC Gravity Sewer Piping:
 - 1. Pipe and Fittings shall conform to ASTM F679, SDR 35.
 - 2. Gaskets: ASTM F477.
- B. PVC Cellular-Core Sewer Piping:
 - Pipe and Fittings: ASTM F891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solventcemented joints.
 - 2. Fittings: ASTM F679 SDR 35.
- C. PVC Corrugated Sewer Piping:
 - 1. Pipe: ASTM F949, corrugated pipe with bell and spigot ends.

- 2. Fittings: ASTM F949.
- 3. Gaskets: ASTM F477.
- D. PVC Type PSM Sewer Piping:
 - 1. Pipe shall conform to ASTM F679, SDR 35.
 - 2. Fittings: ASTM D3034.
 - 3. Gaskets: ASTM F477.

2.4 NONPRESSURE-TYPE TRANSITION COUPLINGS

- A. Comply with ASTM C1173, elastomeric, sleeve type, reducing or transition coupling, for joining underground nonpressure piping. Include ends to match same sizes of main line piping and install corrosion-resistant metal tension bands and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Plastic Pipes: ASTM F477, elastomeric seal.
 - 2. For Dissimilar Pipes: PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings:
 - Couplings shall be elastomeric sleeve with stainless steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Ring-Type, Flexible Couplings:
 - Couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger mainline pipe and for spigot of smaller main line pipe to fit inside ring.
- E. Nonpressure-Type, Rigid Couplings:
 - 1. Coupling shall be ASTM C1461, sleeve-type, reducing- or transitiontype mechanical coupling, molded from ASTM C1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.5 EXPANSION JOINTS AND DEFLECTION FITTINGS

- A. Ductile-Iron, Flexible Expansion Joints:
 - Compound fittings: Fittings shall have a combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one gasketed sleeve section, rated for 250-psi minimum working pressure and for offset and expansion indicated.
- B. Ductile-Iron Expansion Joints:
 - Jointing Material: Joints shall be a three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile iron,

bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psi minimum working pressure and for expansion indicated.

C. Ductile-Iron Deflection Fittings:

 Jointing Material: Compound coupling fittings with ball joint, flexing section, gaskets, and restrained-joint ends shall comply with AWWA C110 or AWWA C153. Include rating for 250-psi minimum working pressure and for up to 15 deg of deflection.

2.6 CLEANOUTS

- A. Cast-Iron Cleanouts:
 - Cleanouts shall be as per ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - Top-Loading Classification(s): Valve loadings shall be designed for Light Duty and/or Medium Duty.
 - 3. Cleanout Riser: Sewer pipe fitting on main line pipe and riser shall be as per ASTM A74, service class.
- B. PVC Cleanouts:
 - PVC body with PVC threaded plug: Cleanout shall be as per ASTM D3034.
 PVC sewer pipe fitting and riser to cleanout.
 - Cleanout Riser: Sewer pipe fitting on main line sewer and riser shall match main line piping.

2.7 MANHOLES

- A. Standard precast concrete manholes and vaults shall be constructed of precast concrete segmental blocks, precast reinforced concrete rings, precast reinforced sections or cast-in-place concrete.
 - Precast Concrete Manholes: Material shall be as per ASTM C478, precast, reinforced concrete, of depth indicated, with sealed joints.
 - Concrete Base: Concrete for base of manhole shall have a minimum compressive strength of 5000 psi at 28 days. Thickness to be 8 inches, minimum.
 - 3. Riser Section: 4 inch minimum thickness, of lengths to provide the total depth of manhole.
 - 4. Top Section: Eccentric-cone type unless otherwise indicated. Top section to match adjustment ring configurations.
 - 5. Joint Sealant: ASTM C990.
 - 6. Resilient Pipe Connectors: ASTM C923.

- 7. Steps: If over 60 inches in depth, individual FRP steps or ladder, with 16 inch minimum width, 12 to 16 inches center-to-center from top to bottom.
- 8. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Concrete Manholes:
 - Description: ASTM C913; designed according to ASTM C890 for AASHTO HS20-44, heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C990, bitumen or butyl rubber.
 - 4. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
 - 5. Steps: If over 60 inches in depth, individual FRP steps or FRP ladder; width 16 inches minimum, 12 to 16 inches center-to-center from top to bottom.
 - 6. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Manhole Base Channels: Manhole channels shall be main line pipe material. Lay main pipe through manhole and cut top of pipe out to be three-fourths of pipe diameter. Slope through manhole to match run slopes of the main pipe.

2.8 CONCRETE

- A. Cast-in-place concrete shall be 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
- B. Reinforcement
 - 1. Reinforcing fabric shall be ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing bars shall be ASTM A615, Grade 60 deformed steel.
- C. Benches shall be concrete, sloped to drain into the channel. Provide 6 inches from the cut section of top of pipe to edge of manhole.
- D. Ballast and Pipe Supports shall be Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.

2.9

2.10 WARNING TAPE

A. Warning tape shall be standard, 4 mil polyethylene 3 inch wide tape detectable type, green with black letters and imprinted with "CAUTION BURIED SEWER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans and details indicate the general location and arrangement of underground sanitary sewer piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at the low point, true to grades and alignment indicated on the drawings, with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
- D. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
- E. Inspect pipes and fittings for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
- F. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
- G. Do not walk on pipe in trenches until covered by layers of bedding or backfill material to a depth of 12 inches (over the crown of the pipe.
- H. Warning tape shall be continuously placed 12 inches above sewer pipe
- I. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- J. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

- K. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process or microtunneling.
- L. Install gravity-flow, non-pressure, drainage piping according to the following:
 - Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 - 2. Install piping with the minimum cover as shown on Drawings.
 - 3. Install ductile iron, gravity sewer piping according to AWWA C600.
 - 4. Install PVC cellular-core, PVC corrugated sewer, PSM sewer and PVC gravity sewer according to ASTM D2321 and ASTM F1668.
- M. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.
- N. Gravity Flow Lines with Secondary Containment (Encasement Pipe):
 - Install per manufacturer's recommendations. Install all pipe centering devices to maintain an interstitial space below the invert of the carrier pipe. Both the carrier and containment pipe shall be tested for leaks.

3.2 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, non-pressure, drainage piping according to the following:
 - 1. Join ductile iron, gravity sewer piping according to AWWA C600 for push-on joints.
 - 2. Join PVC piping according to ASTM D2321.
 - 3. Join dissimilar pipe materials with nonpressure-type, flexible couplings.
- B. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use non-pressure flexible couplings where required to join gravityflow, non-pressure sewer piping unless otherwise indicated.
 - a. Flexible couplings for pipes of same or slightly different OD.
 - b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

2. Use pressure pipe couplings for force-main joints.

3.3 SEWER AND MANHOLE SUPPORTS, CONCRETE CRADLES WITHIN VAULTS

A. Install reinforced concrete as detailed on the drawings. The concrete shall not restrict access for future maintenance of the joints within the piping system.

3.4 BUILDING SERVICE LINES

A. Install sanitary sewer service lines to point of connection within approximately 5 feet outside of building(s) where service is required and make connections. Coordinate the invert and location of the service line with the Contractor installing the building lines.

3.5 MANHOLE INSTALLATION

- A. Install manholes complete with appurtenances and accessories indicated.
 - Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch or cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top, shall be sealed as per manufacturer's recommendations. Adjust the length of the rings so that the top section will be at the required elevation. Cutting the top section is not acceptable.

3. Concrete manhole risers and tops: Install as specified.

- B. Designed Concrete Structures:
 - Concrete structures shall be installed in accordance with Section 03 30 53, (Short Form) CAST-IN-PLACE CONCRETE.
- C. Do not build structures when air temperature is 32 deg F, or below.
- D. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
- E. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- F. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. In unpaved areas, the rim elevation shall be 2 inches above the adjacent finish grade.
- G. Install manhole frames and covers on a mortar bed, such that frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until

the adjacent pavement is placed. Install an 8 inches thick, by 12 inches (300 mm) wide concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.6 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Cleanouts should be 6 inches in diameter and consist of a ductile iron 45 degree fitting on end of run, or combination Y fitting and 1/8 bend in the run with ductile iron pipe extension, water tight plug or cap and cast frame and cover flush with finished grade. Install piping so cleanouts open in direction of flow in sewer pipe.
 - Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification cleanouts in paved foottraffic areas.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete, 18 by 18 by 12 inches 1 inch above surrounding grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
- D. The top of the cleanout assembly shall be 2 inches below the bottom of the cover to prevent loads being transferred from the frame and cover to the piping.

3.7 CONNECTIONS

- A. Make connections to existing piping and underground manholes by coring and installing the pipe at the design invert. Install an elastomeric gasket around the pipe, and grout the interstitial space between the pipe and the core.
- B. Connection to an existing manhole: The bench of the manhole shall be cleaned and reshaped to provide a smooth flowline for all new pipes connected to the manhole.
- C. Use commercially manufactured wye fittings for piping branch connections. Encase entire wye fitting plus 6-inch (150-mm) overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - Make branch connections from the side into existing piping, NPS 4 to NPS 20, by removing a section of the existing pipe.
 - 2. Make branch connections from the side into existing piping, NPS 21 or larger, or to underground manholes by cutting an opening into existing unit large enough to allow 3 inches of concrete to be packed

around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in concrete to provide additional support of collar from connection to undisturbed ground.

3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.8 AIR RELEASE VALVES

- A. Set values in vault or force mains with adequate space for maintenance of the value. The vault shall have a solid floor to prevent all sanitary blowoff from being absorbed into the soils.
- B. Valves shall be set plumb and supported to the vault. Maintain accessibility to the isolation valve on the air valve line.
- C. Install the valve after the completion of testing of the pressure (force) main.

3.9 REGRADING

- A. Raise or lower existing manholes and structures frames and covers, cleanout frames and covers and valve boxes in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Adjust the elevation of the cleanout pipe riser, and reinstall the cap or plug. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.10 CLOSING ABANDONED SANITARY SEWER SYSTEMS

- A. Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed.
 - 1. Piping under and within 5 feet of building areas shall be completely removed.
 - 2. Piping outside of building areas shall be completely removed.

- B. Excavate around manholes as required and use either procedure below:
 - Manholes and structures outside of building areas: Remove frame and cover, cut and remove the top of an elevation of 2 feet below finished grade. Fill the remaining portion with compacted gravel or crushed rock or concrete.
 - 2. Manholes and structures with building areas: Remove frame and cover and remove the entire structure and the base.
- C. Backfill to grade according to Division 31 Section 31 20 11, EARTHWORK (Short Form).
- D. When the limit of the abandonment terminates in an existing manhole to remain, the flow line in the bench of the manhole to the abandoned line shall be filled with concrete and shaped to maintain the flowline of the lines to remain.

3.11 PIPE SEPARATION

- A. Horizontal Separation Water Mains and Sewers:
 - Existing and proposed water mains shall be at least 10 feet horizontally from any proposed gravity flow and pressure (force main) sanitary sewer or sewer service connection.
 - 2. Gravity flow mains and pressure (force) mains may be located closer than 10 feet but not closer than 6 feet to a water main when: a. Local conditions prevent a lateral separation of 10 feet; and
 - b. The water main invert is at least 18 inches above the crown of the gravity sewer or 24 inches above the crown of the pressure (force) main; and the water main is in a separate trench separated by undisturbed earth.
 - 3. When it is impossible to meet (1) or (2) above, both the water main and sanitary sewer main shall be constructed of push-on or mechanical joint ductile iron pipe.
- B. Vertical Separation Water Mains and Sewers at Crossings:
 - Water mains shall be separated from sewer mains so that the invert of the water main is a minimum of 24 inches above the crown of gravity flow sewer or 48 inches above the crown of pressure (force) mains. The vertical separation shall be maintained within 10 feet horizontally of the sewer and water crossing. When these vertical separations are met, no additional protection is required.
 - In no case shall pressure (force) sanitary main cross above, or within 24 inches of water lines.

- 3. When it is impossible to meet (1) above, the gravity flow sewer may be installed 18 inches above or 12 inches below the water main, provided that both the water main and sewer shall be constructed of push-on or mechanical ductile pipe. Pressure (Force) sewers may be installed 24 inches below the water line provided both the water line and sewer line are constructed of ductile iron pipe.
- 4. The required vertical separation between the sewer and the water main shall extend on each side of the crossing until the perpendicular distance from the water main to the sewer line is at least 10 feet.

3.12 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edges of underground manholes.

3.13 FIELD QUALITY CONTROL

- A. All systems shall be inspected and obtain the Resident Engineer's approval. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- B. To inspect, thoroughly flush out the lines and manholes before inspection. Lamp test between structures and show full bore indicating sewer is true to line and grade. Lips at joints on the inside of gravity sewer lines are not acceptable.
 - 1. Submit separate report for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c.Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Re-inspect and repeat procedure until results are satisfactory.
- C. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - 1. Test plastic gravity sewer piping according to ASTM F1417.
 - 2. Test concrete gravity sewer piping according to ASTM C924.

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

- 3. Clean and isolate the section of sewer line to be tested. Plug or cap the ends of all branches, laterals, tees, wyes, and stubs to be included in the test to prevent air leakage. The line shall be pressurized to 4 psi and allowed to stabilize. After pressure stabilization, the pressure shall be dropped to 3.5 psi greater than the average back-pressure of any groundwater above the sewer.
- 4. For force mains, perform testing after supports and anchors are installed. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psi.
- 5. Testing of Fiberglass Sewage Holding Tanks shall show no leakage during a 5 psi air pressure test with 5:1 safety factor.
- 6. Testing of Concrete Wet Well shall show no leakage with the wet well completely filled with water for a duration of 4 hours.

3.14 CLEANING

A. Clean dirt and superfluous material from interior of piping.

--- E N D ---

SECTION 33 40 00 STORM SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 53, (SHORT FORM) CAST-IN-PLACE CONCRETE.
- C. Materials and Testing Report Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- D. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

- A. HDPE: High-density polyethylene
- B. PE: Polyethylene
- C. PVC: Polyvinyl Chloride

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Handle manholes, catch basins, and/or stormwater inlets according to manufacturer's written rigging instructions.

1.6 COORDINATION

A. Coordinate exterior utility lines and connections to building services up to the actual extent of building wall.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.

1.8 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185..... Steel Welded Wire Reinforcement, Plain, for Concrete

- A242 (2009).....High-Strength Low-Alloy Structural Steel
- A536-84(2009).....Ductile Iron Castings
- A615.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
- C33.....Concrete Aggregates
- C76-11.....Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
- C139-10.....Concrete Masonry Units for Construction of Catch Basins and Manholes
- C150.....Portland Cement
- C443-10.....Joints for Concrete Pipe and Manholes, Using Rubber Gaskets
- C478-09.....Precast Reinforced Concrete Manhole Sections
- C857-07......Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
- C891-09..... Installation of Underground Precast Concrete Utility Structures
- C913-08..... Precast Concrete Water and Wastewater Structures
- C923-08.....Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals
- C924-02(2009).....Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS C990-09.....Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants C1103-03(2009).....Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines C1173-08.....Flexible Transition Couplings for Underground Piping Systems C1433-10.....Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers C1479-10.....Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations D448-08..... Bizes of Aggregate for Road and Bridge Construction D698-07e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)D1056-07.....Flexible Cellular Materials-Sponge or Expanded Rubber D1785-06.....Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2321-11.....Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2774-08.....Underground Installation of Thermoplastic Pressure Piping D3034-08.....Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings D3350-10.....Polyethylene Plastics Pipe and Fittings Materials D3753-05e1.....Glass-Fiber-Reinforced Polyester Manholes and Wetwells D4101-11.....Polypropylene Injection and Extrusion Materials

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05 - 28 - 21OMAHA, NE 100% CONSTRUCTION DOCUMENTS D5926-09.....Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems F477-10.....Elastomeric Seals (Gaskets) for Joining Plastic Pipe F679-08.....Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings F714-10.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F794-03(2009).....Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter F891-10.....Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F894-07.....Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10.....Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11.....Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08.....Construction Procedures for Buried Plastic Pipe C. American Association of State Highway and Transportation Officials (AASHTO): M198-10.....Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants M252-09.....Corrugated Polyethylene Drainage Pipe M294-10.....Corrugated Polyethylene Pipe, 12 to 60 In. (300 to 1500 mm) Diameter

D. American Water Works Association(AWWA):

NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

636-18-303

M23-2nd ed.....PVC Pipe "Design And Installation"

E. American Society of Mechanical Engineers (ASME):

A112.6.3-2001.....Floor and Trench Drains

A112.14.1-2003.....Backwater Valves

A112.36.2M-1991....Cleanouts

F. American Concrete Institute (ACI):

CONSTRUCT AIR HANDLING TOWER

318-05..... Structural Commentary and Commentary

- 350/350M-06.....Environmental Engineering Concrete Structures and Commentary
- G. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control

1.10 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 PE PIPE AND FITTINGS

- A. Corrugated PE drainage pipe and fittings, NPS 3 to NPS 10; ASTM F714, SDR 21 with smooth waterway for coupling joints.
 - Silt-tight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.

- B. Corrugated PE pipe and fittings, NPS 12 to NPS 60; ASTM F714, SDR 21 for pipes 3 to 24 inches with smooth waterway for coupling joints. Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.
 - Silt-tight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.
 - 2. Water tight joints shall be made using a PVC or PE coupling and rubber gaskets as recommended by the pipe manufacturer. Rubber gaskets shall conform to ASTM F477. Soil tight joints shall conform to requirements in AASHTO HB-17, Division II, for soil tightness and shall be as recommended by the manufacturer.
- C. Profile Wall PE Pipe: Pipe shall comply with ASTM F894, Class 160.
 - Profile Wall PE Plastic Pipe Joints: Joints shall be as per ASTM F894, gasket with integral bell.
- D. PVC Pipe And Fittings
 - PVC Cellular-Core Pipe And Fittings: ASTM F891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 - 2. Fittings: ASTM D3034, Schedule 40, PVC socket-type fittings.
- E. PVC Corrugated Sewer Piping
 - 1. Pipe: ASTM F949, PVC, corrugated pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM F949, PVC molded or fabricated, socket type.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- F. PVC Profile Sewer Piping
 - 1. Pipe: ASTM F794, PVC profile, gravity sewer pipe with bell-and-spigot ends.
 - 2. Fittings: ASTM D3034, PVC with bell ends.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- G. PVC Gravity Sewer Piping
 - 1. Pipe and fittings shall be ASTM F679, PVC gravity sewer pipe with bell-and-spigot ends.
 - 2. Gaskets: ASTM F477, elastomeric seals for gasketed joints.

2.3 NONPRESSURE TRANSITION COUPLINGS

A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground non-pressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

33 40 00-6

B. Sleeve Materials

- 1. For concrete pipes: ASTM C443, rubber.
- 2. For plastic pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
- 3. For dissimilar pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings: Couplings shall be an elastomeric sleeve with // stainless-steel shear ring and // corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, flexible couplings shall be elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
- E. Ring-Type, flexible couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.4 CLEANOUTS

A. Plastic Cleanouts shall have PVC body with PVC threaded plug. Pipe fitting and riser to cleanout shall be of same material as main line pipe.

2.5 MANHOLES AND CATCH BASINS

- A. Standard Precast Concrete Manholes:
 - Description: ASTM C478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 - 4. Base Section: 6 inch minimum thickness for floor slab and 4-inch (102 mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 - 5. Riser Sections: 4 inch minimum thickness, and lengths to provide depth indicated.
 - 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slabtop type is indicated, and top of cone of size that matches grade rings.
 - 7. Joint Sealant: ASTM C990, bitumen or butyl rubber.
 - 8. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.

- 9. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches. Individual FRP steps or FRP ladder, width of 16 inches minimum, spaced at 12 to 16 inch intervals.
- 10. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Precast Concrete Manholes:
 - Description: ASTM C913; designed for A-16 (AASHTO HS20-44), heavytraffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
 - 4. Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
 - 5. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches. Individual FRP steps or FRP ladder, width of 16 inches minimum, spaced at 12 to 16 inch intervals.
 - 6. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Manhole Frames and Covers:
 - 1. Description: Ferrous; 24 inch ID by 7 to 9 inch (riser with 4 inch minimum width flange and 26-inch (diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
 - 2. Material: ASTM A536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.6 CONCRETE FOR MANHOLES AND CATCH BASINS

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C150, Type II.
 - 2. Fine Aggregate: ASTM C33, sand.
 - 3. Coarse Aggregate: ASTM C33, crushed gravel.
 - 4. Water: Potable.
- B. Concrete Design Mix: 4000 psi minimum, compressive strength in 28 days.

- 1. Reinforcing Fabric: ASTM A185, steel, welded wire fabric, plain.
- 2. Reinforcing Bars: ASTM A615, Grade 60 deformed steel.
- C. Manhole Channels and Benches: Channels shall be the main line pipe material. Include benches in all manholes and catch basins.
 - 1. Channels: Main line pipe material or concrete invert. Height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope. Invert Slope: Same slope as the main line pipe. Bench to be concrete, sloped to drain into channel. Minimum of 6 inch slope from main line pipe to wall sides.
- D. .

2.7 RESILIENT CONNECTORS AND DOWNSPOUT BOOTS FOR BUILDING ROOF DRAINS

A. Resilient connectors and downspout boots: Flexible, watertight connectors used for connecting pipe to manholes and inlets, and shall conform to ASTM C923.

2.8 WARNING TAPE

A. Standard, 4-Mil polyethylene 3 inch wide tape detectable type, green with black letters, and imprinted with "CAUTION BURIED STORM DRAIN LINE BELOW".

PART 3 - EXECUTION

3.1 PIPE BEDDING

A. The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class IB or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.2 PIPING INSTALLATION

A. Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Install piping as indicated, to

extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

- B. Install piping with minimum cover as shown on the Drawings.
- C. Install all piping materials beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 1. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
 - 2. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
 - 3. Inspect pipes and fittings, for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
 - 4. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
 - 5. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
 - 6. Do not walk on pipe in trenches until covered by layers of shading to a depth of 12 inches over the crown of the pipe.
 - 7. Warning tape shall be continuously placed 12 inches above storm sewer piping.
- D. Install manholes for changes in direction unless fittings are indicated.Use fittings for branch connections unless direct tap into existing sewer is indicated.
- E. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- F. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

3.3 REGRADING

A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast

iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.

B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.4 CONNECTIONS TO EXISTING VA-OWNED MANHOLES

A. Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.5 CONNECTIONS TO EXISTING PUBLIC UTILITY MANHOLES

- A. Comply with all rules and regulations of the public utility.
- B. Cleanout Installation
 - Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast iron soil pipe fittings in sewer pipes at branches for cleanouts and cast iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - a. Use Medium-Duty, top-loading classification cleanouts in earth, unpaved foot-traffic and/or paved foot-traffic areas.
 - b. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic areas.
 - 2. Set cleanout frames and covers in earth in cast in-place concrete block, 12 by 12 by 6 inches deep. Set with tops flush with surrounding earth grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 MANHOLE INSTALLATION

- A. Install manholes, complete with appurtenances and accessories indicated. Install precast concrete manhole sections with sealants according to ASTM C891.
- B. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops no more than 3 inches above finished surface elsewhere unless otherwise indicated.

33 40 00-11

- C. Circular Structures:
 - Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch or cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top shall be sealed with a preform flexible gasket material specifically manufactured for this type of application. Adjust the length of the rings so that the eccentric conical top section will be at the required elevation. Cutting the conical top section is not acceptable.
 - 3. Precast reinforced concrete manhole risers and tops. Install as specified for precast reinforced concrete rings.
- D. Rectangular Structures:
 - Precast concrete structures shall be placed on an 8 inch reinforced concrete pad, or be provided with a precast concrete base section. Structures provided with a base section shall be set on an 8 inch thick aggregate base course compacted to a minimum of 95 percent of the maximum density as determined by ASTM D698. Set precast section true and plumb. Seal all joints with preform flexible gasket material.
 - 2. Do not build structures when air temperature is 32 deg F, or below.
 - 3. Invert channels shall be smooth and semicircular in shape conforming to inside of adjacent sewer section. Make changes in direction of flow with a smooth curve of as large a radius as size of structure will permit. Make changes in size and grade of channels gradually and evenly. Construct invert channels by one of the listed methods: a. Forming directly in concrete base of structure.
 - b. Building up with brick and mortar.
 - 4. Floor of structure outside the channels shall be smooth and slope toward channels not less than 1 to 12 or more than 1 to 6. Bottom slab and benches shall be concrete.
 - 5. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.

- 6. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- 7. Install manhole frames and covers on a mortar bed, and flush with the finish pavement. Frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. In unpaved areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade. Install an 8 inch (203 mm) thick, by 12 inch (300 mm) concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.7 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.8 STORMWATER INLET AND OUTLET INSTALLATION

- Α..
- B. Construct riprap of broken stone.
- C. Install outlets that spill onto grade, with flared end sections that match pipe.
- D. Construct energy dissipaters at outlets.

3.9 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edge of underground structures.

3.10 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.

- 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
- 4. Reinspect and repeat procedure until results are satisfactory.

3.11 TESTING OF STORM SEWERS:

A. Submit separate report for each test.

- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours advance notice.
 - 4. Submit separate report for each test.
 - 5. Air test gravity sewers. Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.
- C. Leaks and loss in test pressure constitute defects that must be repaired. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.12 CLEANING

A. Clean interior of piping of dirt and superfluous materials. // Flush with potable water. // Flush with water //.

--- E N D ---

SECTION 33 46 13 FOUNDATION DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of foundation drainage systems, including installation, backfill, and cleanout extensions, to a point of connection to storm sewer.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- C. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- E. Cathodic Protection: Section 26 42 00, CATHODIC PROTECTION.

1.3 DEFINITIONS

A. Subdrainage: Foundation drainage system that collects and removes subsurface or seepage water from building foundation from building to discharge pond.

1.4 ABBREVIATIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. HDPE: High-density polyethylene plastic.
- C. PE: Polyethylene plastic.
- D. PVC: Polyvinyl chloride plastic.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.

1.6 COORDINATION

- A. Coordinate connection to storm sewer main, if approved, with the Public Agency responsible for the storm sewer system.
- B. Coordinate exterior utility lines and connections to foundation building drain.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Agency having jurisdiction over the connection to public storm sewer lines or the requirements for discharge of subsurface drainage.

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

A48-03Gray Iron Castings		
	Nonreinforced Concrete Sewer, Storm Drain, and Culvert Pipe	
C33/C33M-11	Concrete Aggregates	
	Joints for Concrete Pipe and Manholes, Using Rubber Gaskets	
C444-03(2009)	Perforated Concrete Pipe	
C578-10a	Rigid, Cellular Polystyrene Thermal Insulation	
	Flexible Transition Couplings for Underground Piping Systems	
	Sizes of Aggregate for Road and Bridge Construction	
	Standard Test Method for Compressive Properties of Rigid Cellular Plastics	

CONSTRUCT AIR HANDLING TOWER 636-18-303 NWI HEALTHCARE SYSTEM 05-28-21 OMAHA, NE 100% CONSTRUCTION DOCUMENTS D2235-04(2011).....Solvent Cement for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe and Fittings D2321-11......Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2751-05.....Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings D3034-08.....Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings D3350-10a.....Polyethylene Plastic Pipe and Fittings Material D4491-99a(2009).....Test Methods for Water Permeability of Geotextiles by Permittivity D4716-08.....Test Method for Determining the (In-plane) Flow Rate per Unit Width and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head D5926-09.....Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems D6707-06 (2011).....Circular-Knit Geotextile for Use in Subsurface Drainage Applications F405-05..... Corrugated Polyethylene (PE) Pipe and Fittings F477-10......Elastomeric Seals (Gaskets) for Joining Plastic Pipe F667-06.....Larger Diameter Corrugated Polyethylene Pipe and Fittings F2648-10.....2 to 60 Inch Annular Corrugated Profile Wall Polyethylene (PE) Pipe and Fittings for Land Drainage Applications

1.9 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the

33 46 13 - 3

Contractor will furnish all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 PERFORATED-WALL PIPES AND FITTINGS FOR VAULTS OR MANHOLES

- A. Perforated PE Pipe and Fittings:
 - 1. Pipe shall be ASTM D2648, ASTM F405, or ASTM F667, Type CP; corrugated, for coupled joints.
 - 2. Couplings: Manufacturer's standard.
- B. Perforated PVC Sewer Pipe and Fittings shall be ASTM D3034.
- C. Perforated Concrete Pipe and Fittings: ASTM C444, Type 1, and applicable requirements in ASTM C14, Class 2, socket-and-spigot ends for gasketed joints.
 - 1. Gaskets: ASTM C443, rubber.

2.4 SOLID-WALL PIPES AND FITTINGS

- A. ABS Sewer Pipe and Fittings shall meet ASTM D2751.
 - 1. Solvent Cement: ASTM D2235.
 - 2. Gaskets: ASTM F477.
- B. PE Pipe and Fittings: ASTM D3350 or F405.
- C. PVC Sewer Pipe and Fittings: ASTM D3034.
 - 1. Gaskets: ASTM F477.

2.5 SPECIAL PIPE COUPLINGS

- A. Comply with ASTM C1173 for joining underground non-pressure piping. Include ends of same sizes as piping to be joined and corrosionresistant metal tension band and tightening mechanism on each end.
 - 1. Sleeve Materials:
 - a. For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
 - Unshielded Flexible Couplings: Elastomeric sleeve with // stainlesssteel shear ring and // corrosion-resistant metal tension band and tightening mechanism on each end.

2.6 CLEANOUTS

- A. Cleanouts: Cast-iron parts shall conform to ASTM A48. Lid shall be secured, scoriated, Medium Loading class. Include cast-iron ferrule and countersunk, brass cleanout plug.
- B. Cleanout PVC Extension shall conform to ASTM D3034. PVC extensions shall have watertight joints and long sweep elbow fittings. PVC cleanout shall have threaded plug and threaded pipe hub.

2.7 SOIL MATERIALS

- A. Drainage Material
 - 1. Bedding shall be crushed stone, 3/4 inch (20 mm) to No. 4 per ASTM D448, at a minimum or as per geotechnical recommendations.
 - 2. Fill to 1 foot (300 mm) above pipe shall be Crushed stone, 3/4 inch (20 mm) to No. 4 per ASTM D448, at a minimum or as per geotechnical recommendations.
- B. Concrete Sand shall be ASTM C33.

2.8 GEOTEXTILE FILTER FABRICS

- A. Geotextile fabric shall conform to ASTM 6707. Elongation will be greater than 50 percent and the flow rate shall range from 110 to 330 gpm/sq. ft. (4480 to 13440 L/min. per sq. m).
 - 1. Structure Type shall be Nonwoven, needle-punched continuous filament or woven, monofilament or multifilament.
 - 2. Style(s) shall be Flat and sock.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces and areas for suitable conditions where subdrainage systems are to be installed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PIPING APPLICATIONS

- A. Underground Subdrainage Piping shall be:
 - 1. Perforated PE pipe and fittings, couplings, and coupled joints.
 - 2. Perforated PVC sewer pipe and fittings for loose, bell-and-spigot joints.
- B. Header Piping shall be:
 - 1. ABS pipe and fittings, gaskets, and gasketed and solvent-cemented joints.
 - Cast-iron soil pipe and fittings, Extra-Heavy class; gaskets; and gasketed joints.
 - 3. PE drainage tubing and fittings, couplings, and coupled joints.
 - 4. PVC sewer pipe and fittings, couplings, and coupled joints.

3.3 CLEANOUT APPLICATIONS

- A. In Underground Subdrainage Piping:
 - 1. At Grade in Earth shall be PVC cleanouts.
 - 2. At Grade in Paved Areas shall be Cast-iron cleanouts.

3.4 FOUNDATION DRAINAGE INSTALLATION

- A. Place impervious fill material on subgrade adjacent to bottom of footing after concrete footing forms have been removed. Place and compact impervious fill to dimensions indicated, but not less than 6 inches (150 mm) deep and 12 inches (300 mm) wide.
- B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
- C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches (100 mm).
- D. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive or tape and install drainage piping.

- E. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.
- F. After satisfactory testing, cover drainage piping to width of at least 6 inches (150 mm) on side away from footing and above top of pipe to within 12 inches (300 mm) of finish grade.
- G. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.
- H. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches (100 mm).
- I. Place initial backfill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches (150 mm). Thoroughly compact each layer. Final backfill to finish elevations and slope away from building.

3.5 PIPING INSTALLATION

- A. Install piping beginning at low points of system, true to grades and alignment indicated, with unbroken continuity of invert. Bed piping with full bearing in filtering material. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions and other requirements indicated.
 - Foundation Subdrainage: Install piping pitched down in direction of flow, at a minimum slope of 0.5 percent and with a minimum cover of 36 inches (915 mm), unless otherwise indicated.
 - 2. Lay perforated pipe with perforations down.
 - 3. Excavate recesses in trench bottom for bell ends of pipe. Lay pipe with bells facing upslope and with spigot end entered fully into adjacent bell.
- B. Use increasers, reducers, and couplings made for different sizes or materials of pipes and fittings being connected. Reduction of pipe size in direction of flow is prohibited.
- C. Install ABS piping, PE piping, and PVC piping according to ASTM D2321.

3.6 PIPE JOINT CONSTRUCTION

- A. Cast-Iron Soil Pipe and Fittings: Hub and spigot, with rubber compression gaskets according to ASTM A74. Use gaskets that match class of pipe and fittings.
- B. Join ABS pipe and fittings according to ASTM D2751.
- C. Join PE pipe or perforated PE pipe, tubing, and fittings with couplings for soil-tight joints according to ASTM D2321.

33 46 13 - 7

- D. Join PVC pipe and fittings according to ASTM D2729.
- E. Join perforated PVC pipe and fittings according to ASTM D2729.
- F. Join perforated concrete pipe and fittings with gaskets according to ASTM C443.
- G. Special Pipe Couplings: Join piping made of different materials and dimensions with special couplings made for this application. Use couplings that are compatible with and fit materials and dimensions of both pipes.

3.7 CLEANOUT INSTALLATION

- A. Cleanouts for Foundation Subdrainage:
 - Install cleanouts from piping to grade. Locate cleanouts at beginning of piping run and at changes in direction. Install fittings so cleanouts open in direction of flow in piping.
 - 2. In vehicular-traffic areas, use NPS 4 (DN 100) cast-iron soil pipe and fittings for piping branch fittings and riser extensions to cleanout. Set cleanout frames and covers in a cast-in-place concrete anchor, 18 by 18 by 12 inches (450 by 450 by 300 mm) in depth. Set top of cleanout flush with grade. Cast-iron pipe may also be used for cleanouts in nonvehicular-traffic areas.
 - 3. In nonvehicular-traffic areas, use NPS 4 (DN 100) PVC pipe and fittings for piping branch fittings and riser extensions to cleanout. Set cleanout frames and covers in a cast-in-place concrete anchor, 12 by 12 by 4 inches (300 by 300 by 100 mm) in depth. Set top of cleanout plug 1 inch (25 mm) above grade.

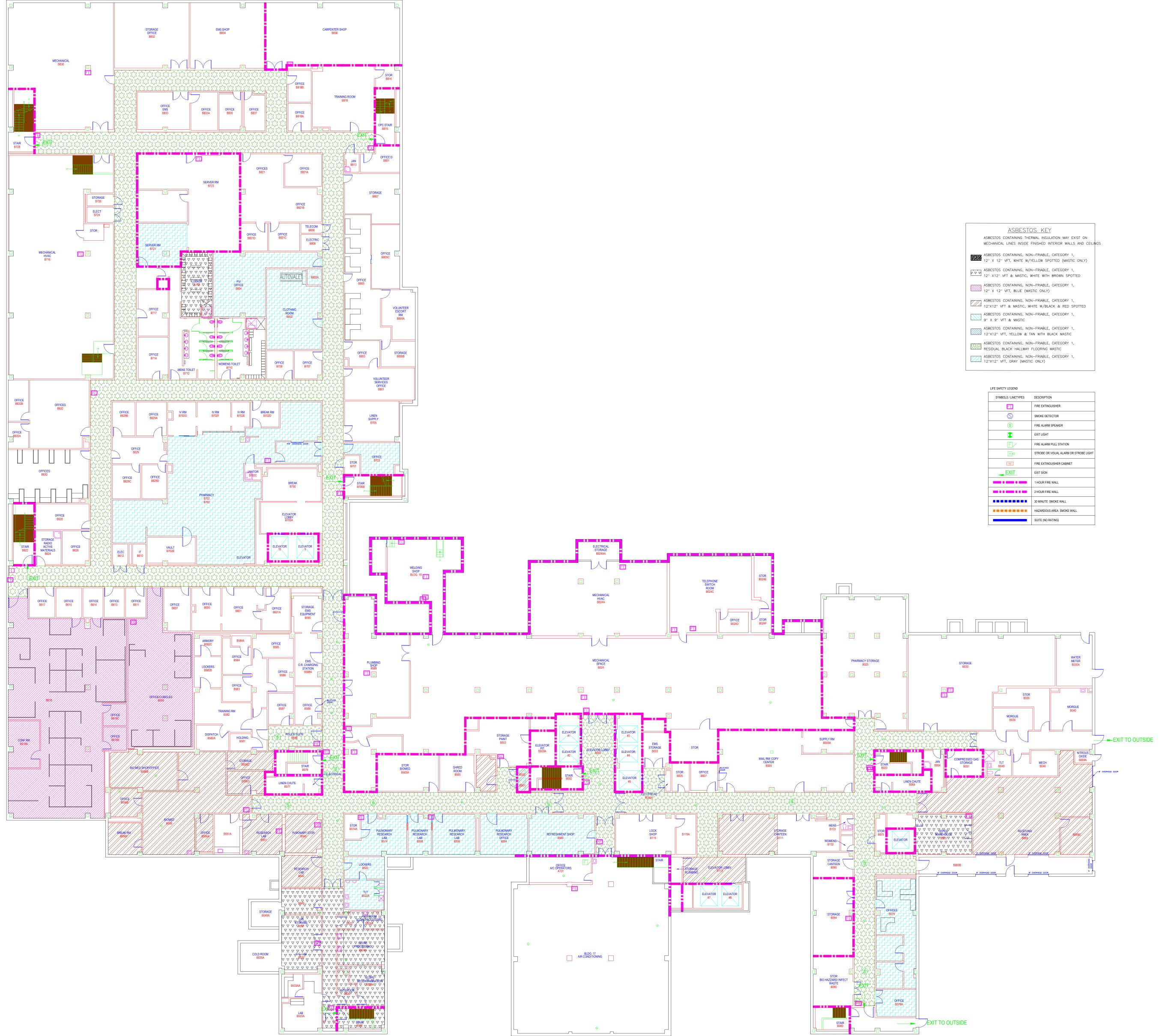
3.8 CONNECTIONS

A. Where required, connect low elevations of foundation subdrainage to stormwater sump pumps.

3.9 IDENTIFICATION

- A. Install PE warning tape or detectable warning tape over ferrous piping.
- B. Install detectable warning tape over nonferrous piping and over edges of underground structures.

3.10 FIELD QUALITY CONTROL

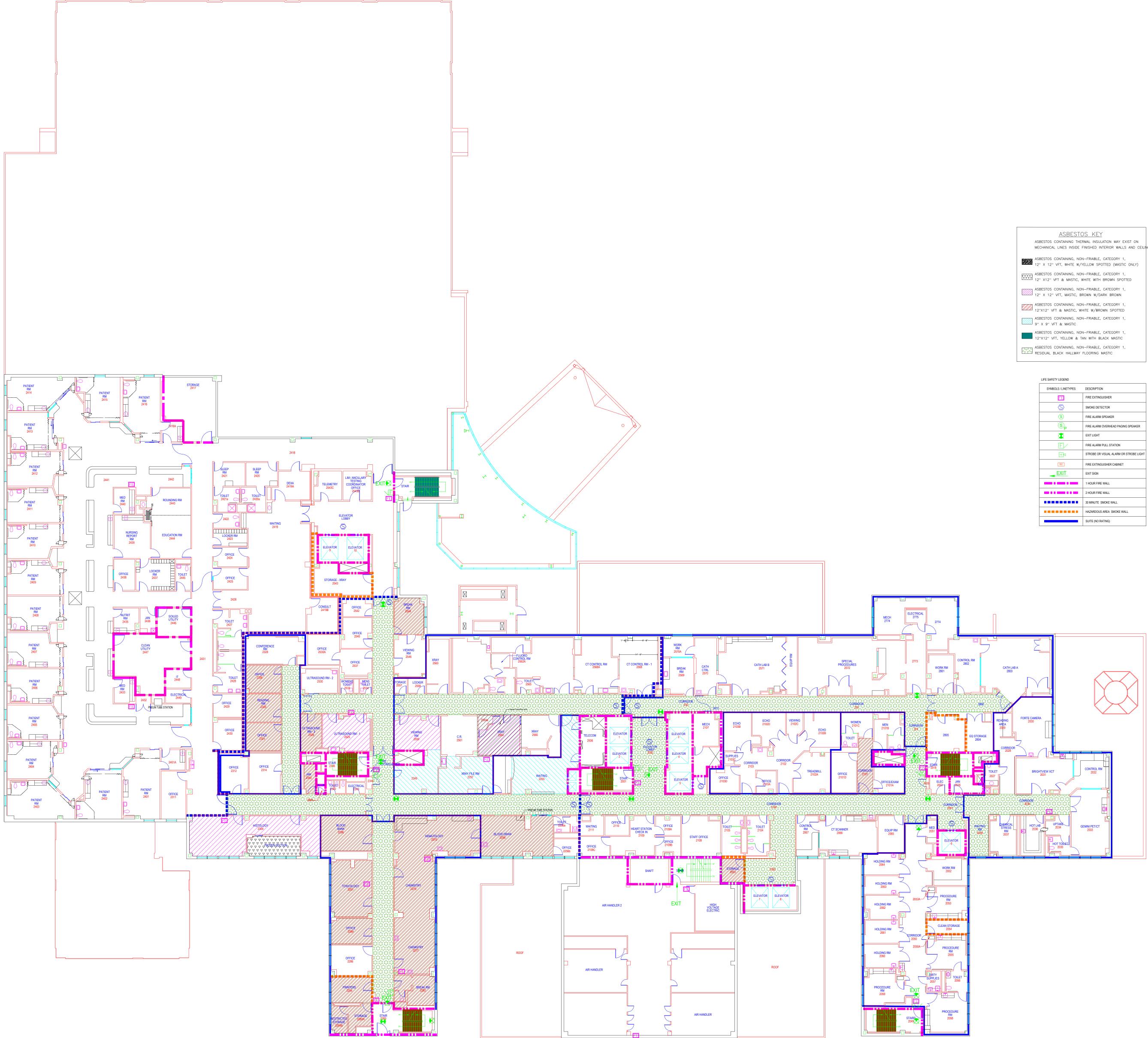

A. Testing: After installing drainage course to top of piping, test drain piping with water to ensure free flow before backfilling. Remove obstructions, replace damaged components, and repeat test until results are satisfactory.

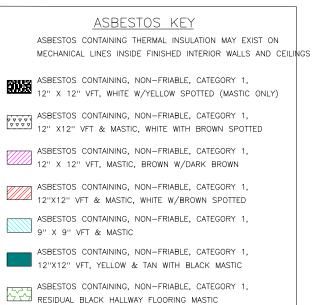
3.11 CLEANING

A. Clear interior of installed piping and structures of dirt and other superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of each day or when work stops.

--- E N D ---

Attachments



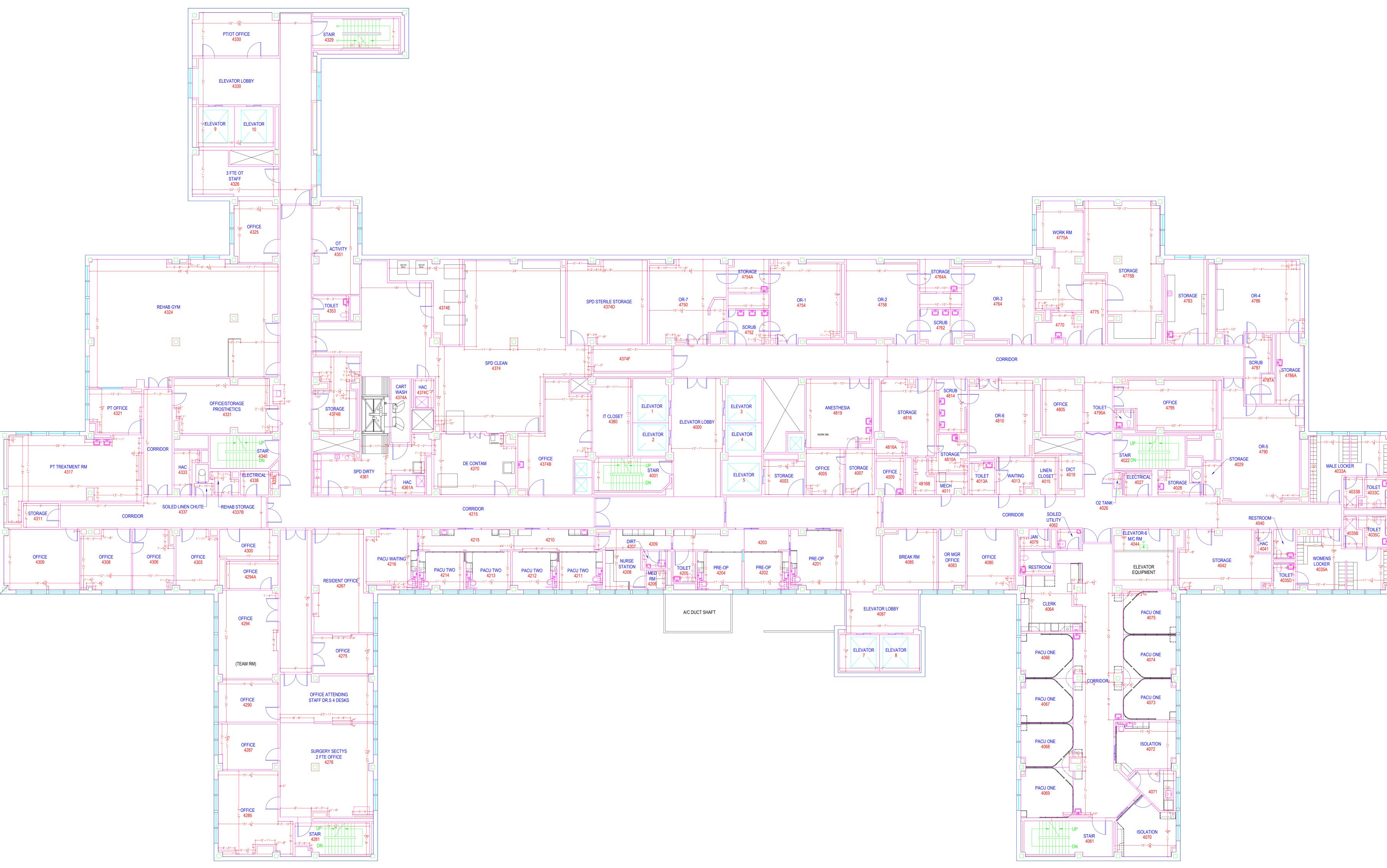


SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
S	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
\₩	EXIT LIGHT
E⁄	FIRE ALARM PULL STATION
₀⊲	STROBE OR VISUAL ALARM OR STROBE LIGHT
FEC	FIRE EXTINGUISHER CABINET
EXIT	EXIT SIGN
	1 HOUR FIRE WALL
	2 HOUR FIRE WALL
	30 MINUTE SMOKE WALL
	HAZARDOUS AREA SMOKE WALL
	SUITE (NO RATING)

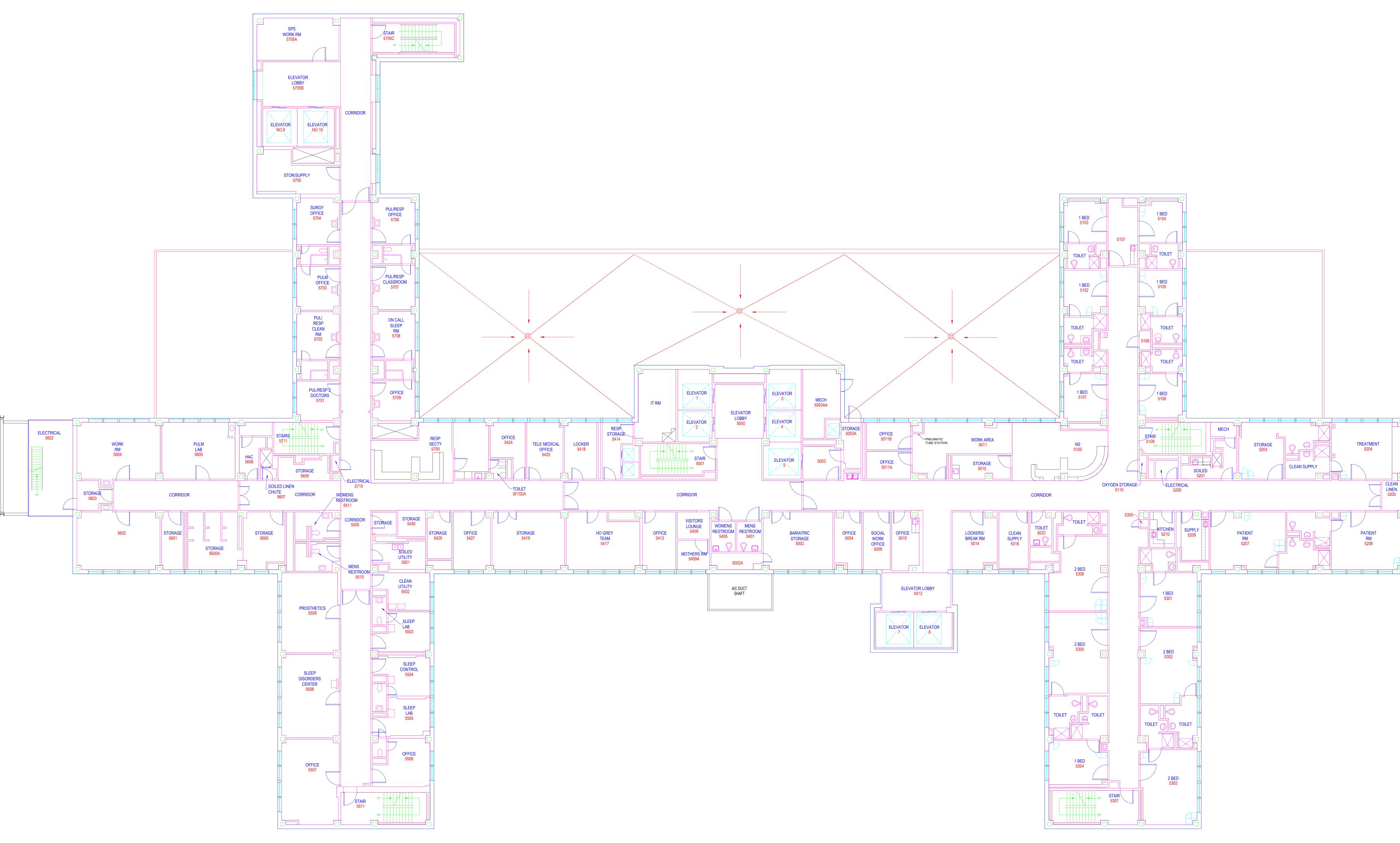
	ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CEILI	NGS
<u> </u>	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, MASTIC ON SINK, BLACK	
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT & MASTIC, WHITE W/BLACK SPOTTED (MASTIC O	NLY)
<u> </u>	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)	
ΣΣΣ	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, RESIDUAL BLACK HALLWAY FLOORING MASTIC	



SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
Ś	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
S _P	FIRE ALARM OVERHEAD PAGING SPEAKER
X	EXIT LIGHT
E	FIRE ALARM PULL STATION
•	STROBE OR VISUAL ALARM OR STROBE LIGHT
FEC	FIRE EXTINGUISHER CABINET
EXIT	EXIT SIGN
	1 HOUR FIRE WALL
	2 HOUR FIRE WALL
	30 MINUTE SMOKE WALL
	HAZARDOUS AREA SMOKE WALL
	SUITE (NO RATING)

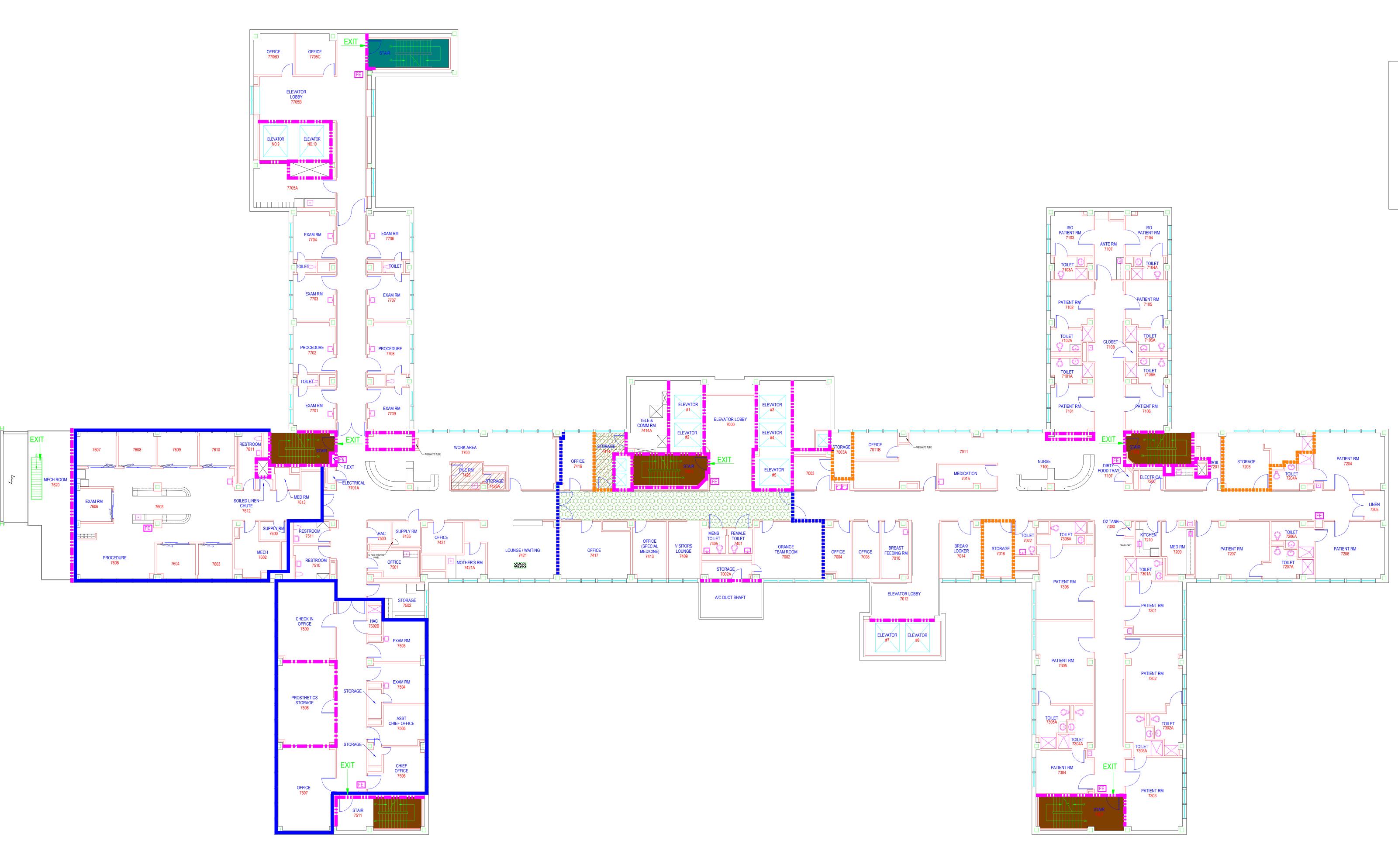


	ASBESTOS KEY ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CEI
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT & MASTIC, WHITE W/BROWN SPOTTED
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12'' X 12'' VFT, YELLOW & TAN WITH BLACK MASTIC
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, RESIDUAL BLACK HALLWAY FLOORING MASTIC
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9'' X 9'' VFT & MASTIC


SYMBOLS / LINETYPES DESCRIPTION



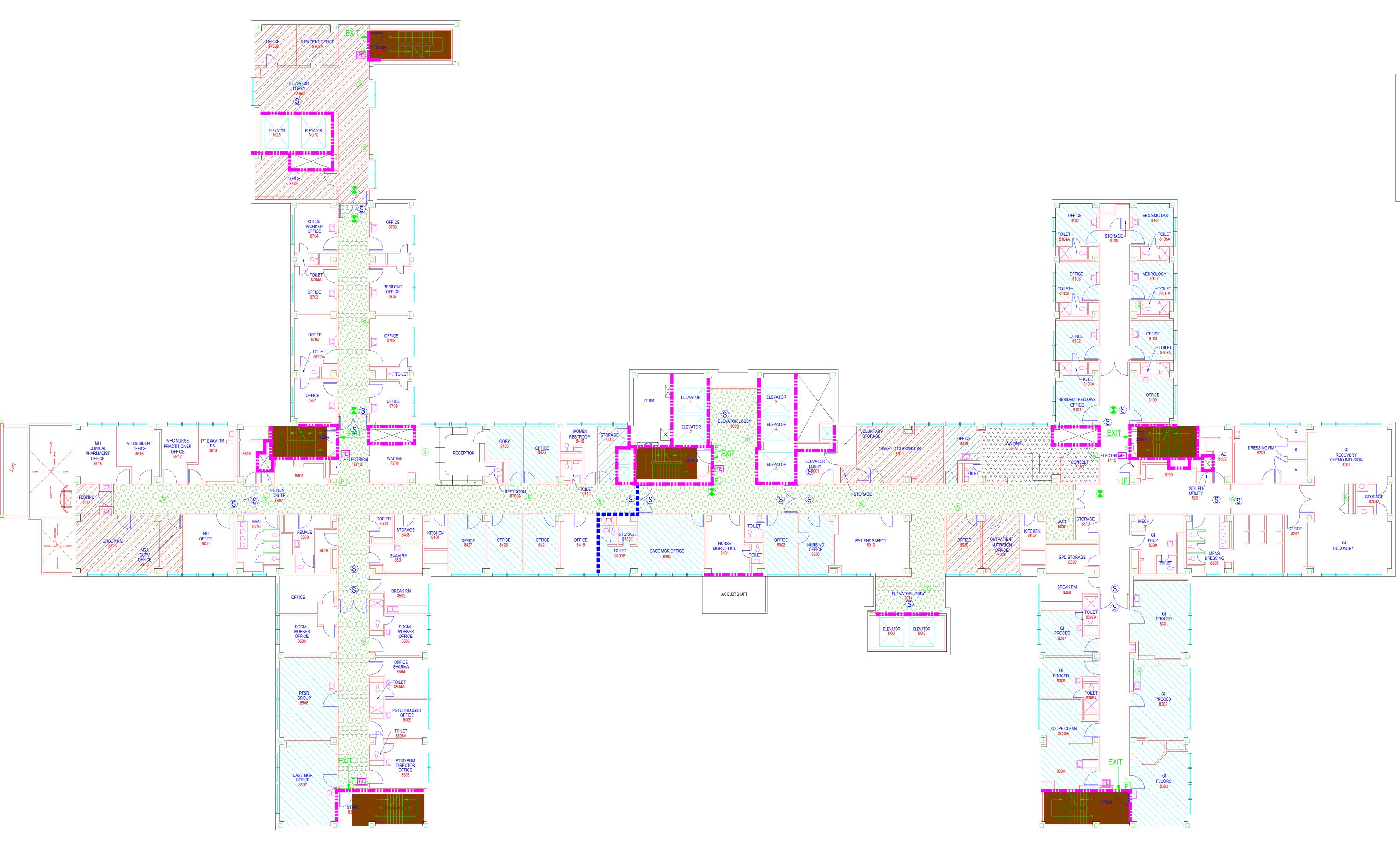
_		
]
N N		
_	Т	
		-]


	ASBESTOS KEY ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CEILIN	NGS
35 5 55	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)	
<u> </u>	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT & MASTIC, WHITE WITH BROWN SPOTTED	
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, OFF-WHITE W/BROWN SPOTTED (MASTIC ONLY)	
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12''X12'' VFT, GRAY (MASTIC ONLY)	
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9'' X 9'' VFT & MASTIC	
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12''X12'' VFT, YELLOW & TAN WITH BLACK MASTIC	
~~~~	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, RESIDUAL BLACK HALLWAY FLOORING MASTIC	

SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
$\langle \mathbf{S} \rangle$	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
$\mathbf{X}$	EXIT LIGHT
F	FIRE ALARM PULL STATION
	STROBE OR VISUAL ALARM OR STROBE LIGHT
FEC	FIRE EXTINGUISHER CABINET

EXIT SIGN

SUITE (NO RATING)


Y	)
	_
T	

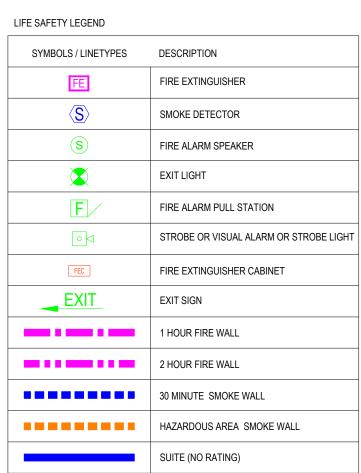


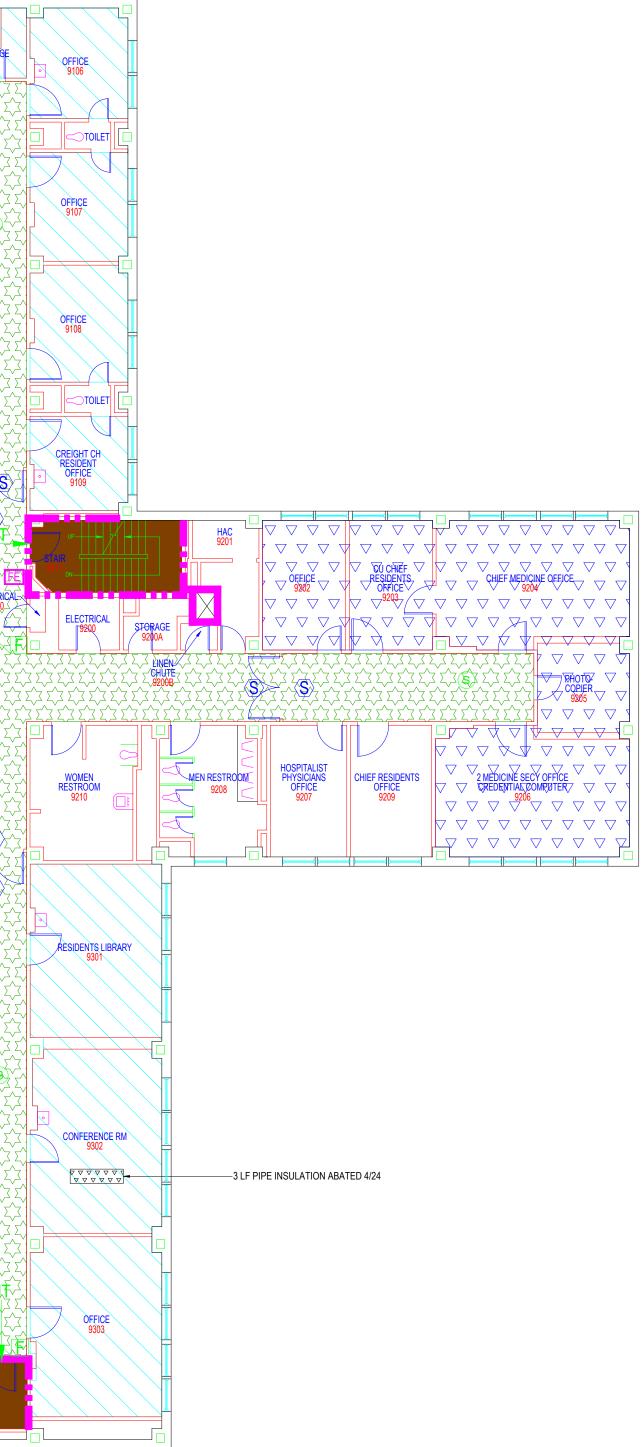
	ASBESTOS KEY asbestos containing thermal insulation may exist on mechanical lines inside finished interior walls and ce
<u> </u>	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, MASTIC ON SINK, BLACK
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, GRAY
995 995	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, YELLOW & TAN WITH BLACK MASTIC
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1,

LIFE SAFETY LEGEND	
SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
$\langle S \rangle$	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
	EXIT LIGHT
F	FIRE ALARM PULL STATION
	STROBE OR VISUAL ALARM OR STROBE LIG
FEC	FIRE EXTINGUISHER CABINET
EXIT	EXIT SIGN
	1 HOUR FIRE WALL
	2 HOUR FIRE WALL
	30 MINUTE SMOKE WALL
	HAZARDOUS AREA SMOKE WALL
	SUITE (NO RATING)

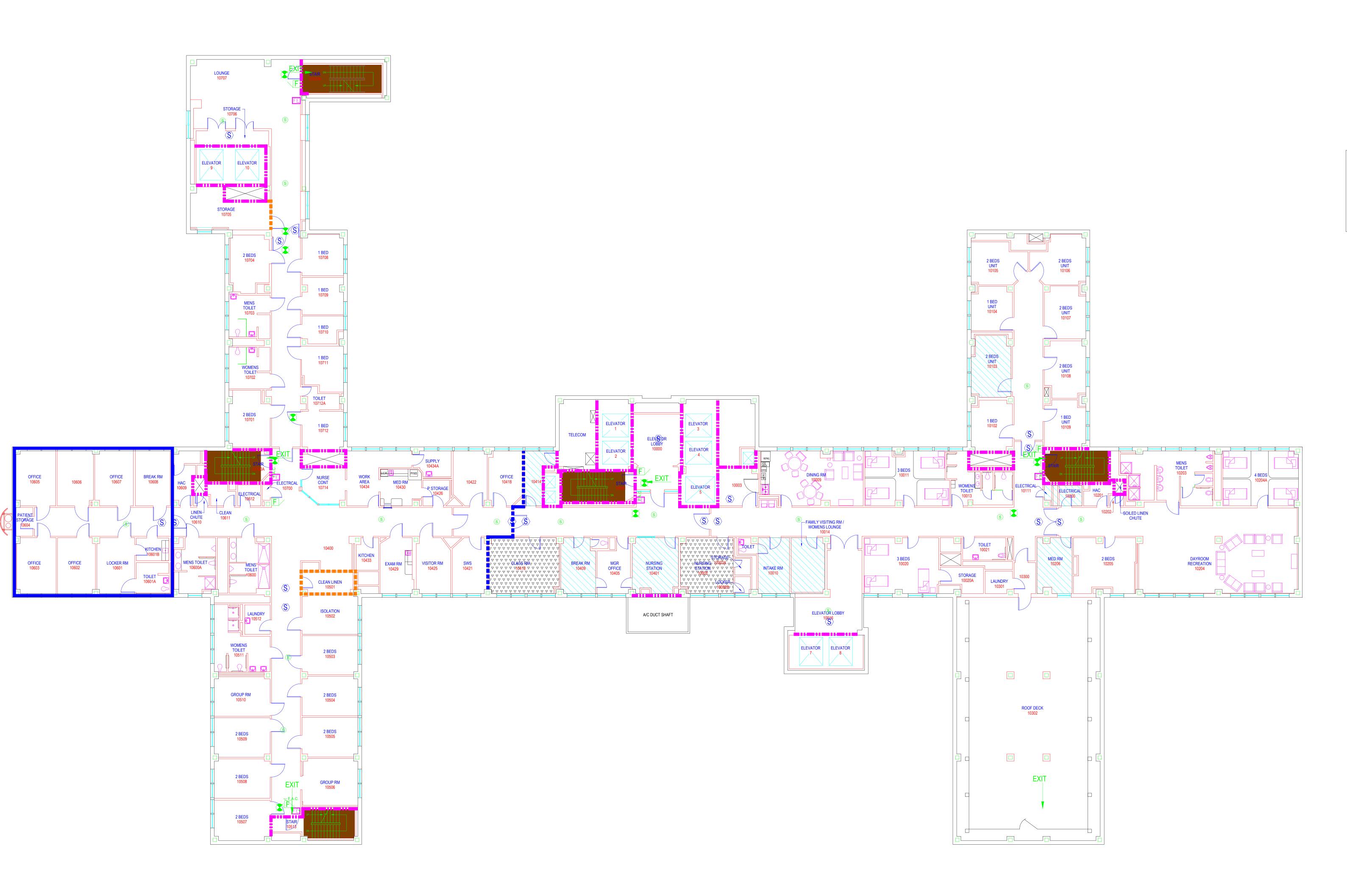

N	ŝS
BE LIGHT	




# ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CEILINGS Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT & MASTIC, WHITE W/BLACK & RED SPOTTED Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY) Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY) Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY) Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY) Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY) Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY) Image: ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, RESIDUAL BLACK HALLWAY FLOORING MASTIC


LIFE SAFETY LEGEND	
SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
$\langle \underline{S} \rangle$	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
	EXIT LIGHT
F	FIRE ALARM PULL STATION
	STROBE OR VISUAL ALARM OR STROBE LIGHT
FEC	FIRE EXTINGUISHER CABINET
EXIT	EXIT SIGN
	1 HOUR FIRE WALL
	2 HOUR FIRE WALL
	30 MINUTE SMOKE WALL
	HAZARDOUS AREA SMOKE WALL
	SUITE (NO RATING)

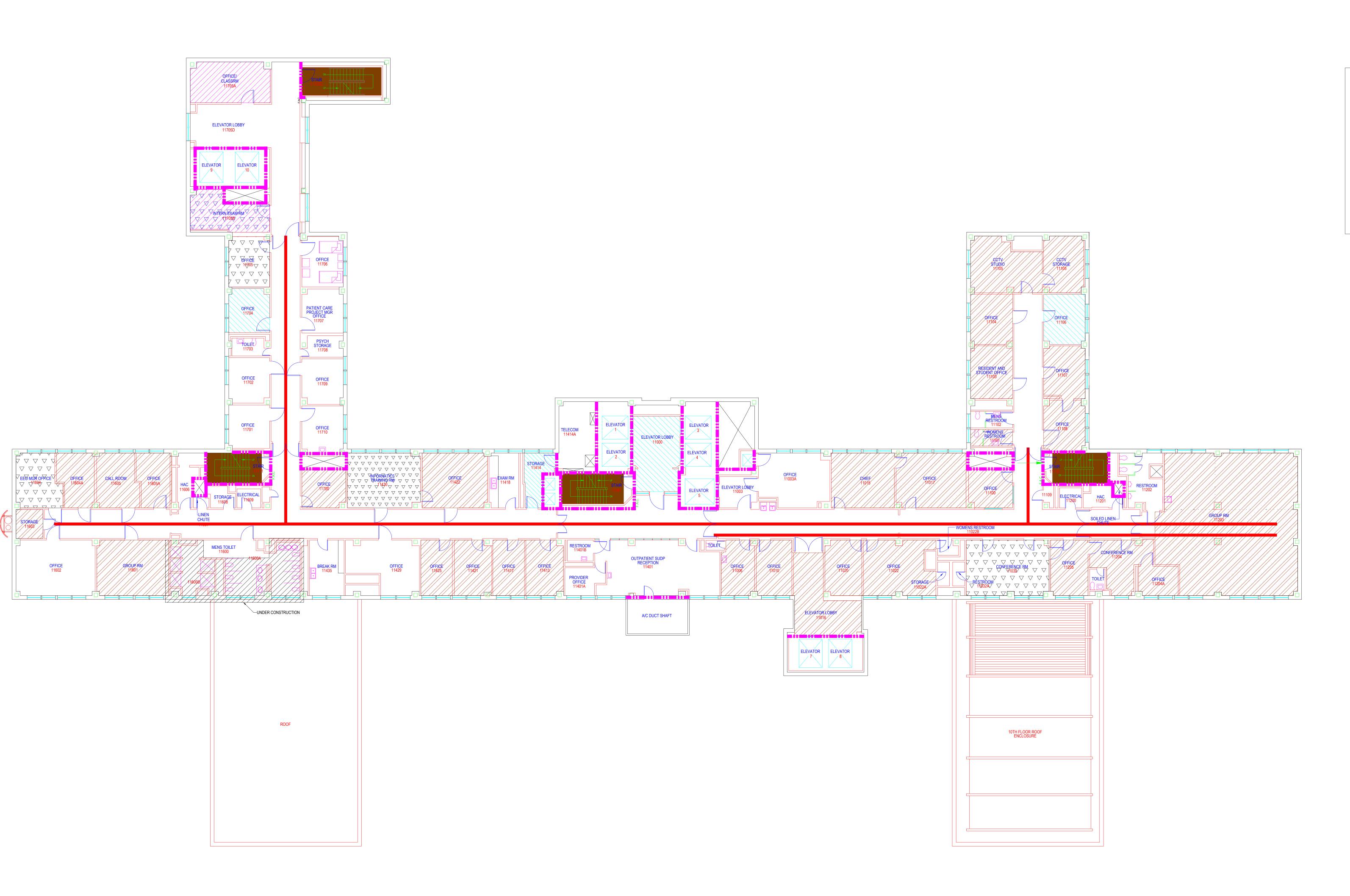




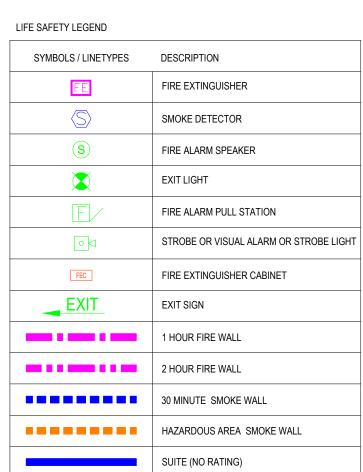

	ASBESTOS KEY
	ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND C
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12'' X 12'' VFT & MASTIC, BROWN W/DARK BROWN
35 <u>5</u> 55	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12'' X 12'' VFT, YELLOW & TAN WITH BLACK MASTIC
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, RESIDUAL BLACK HALLWAY FLOORING MASTIC
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9'' X 9'' VFT & MASTIC, WHITE W/DARK BROWN
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9" X 9" VFT & MASTIC, WHITE W/BROWN SPECKS
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9'' X 9'' VFT & MASTIC



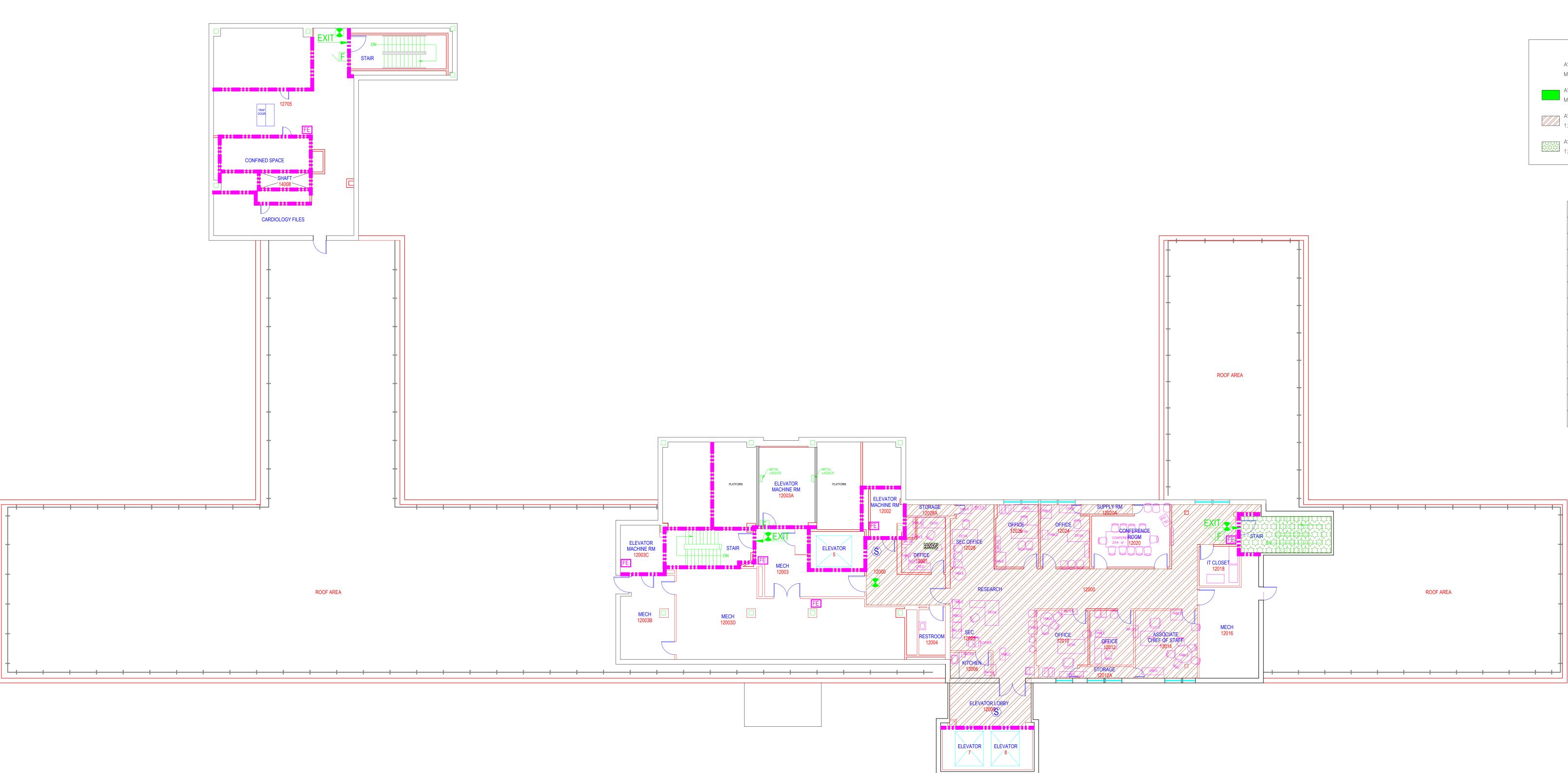


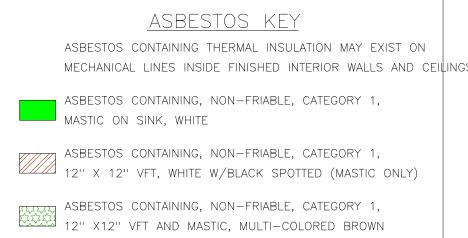






LIFE SAFETY LEGEND	
SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
Ś	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
	EXIT LIGHT
F	FIRE ALARM PULL STATION
	STROBE OR VISUAL ALARM OR STROBE LIGHT
FEC	FIRE EXTINGUISHER CABINET
EXIT	EXIT SIGN
	1 HOUR FIRE WALL
	2 HOUR FIRE WALL
	30 MINUTE SMOKE WALL
	HAZARDOUS AREA SMOKE WALL
	SUITE (NO RATING)

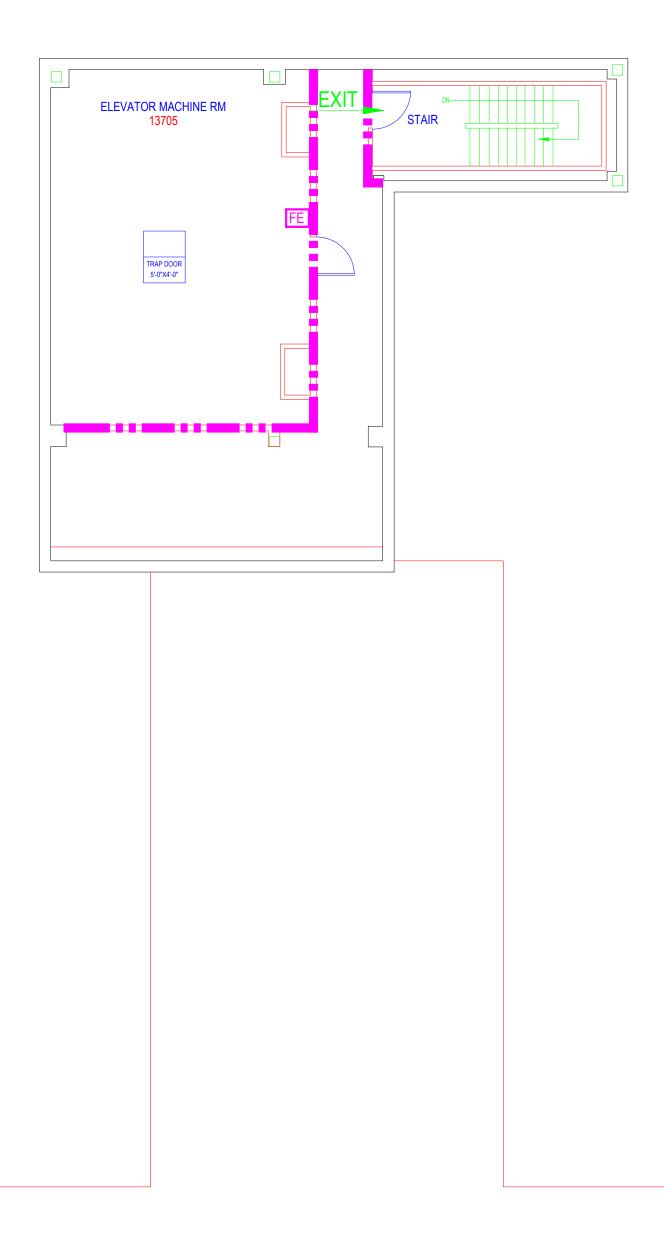
	ASBESTOS KEY
	ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CI
33 <u>5</u> 5	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12'' X12'' VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)
	ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9'' X 9'' VFT & MASTIC



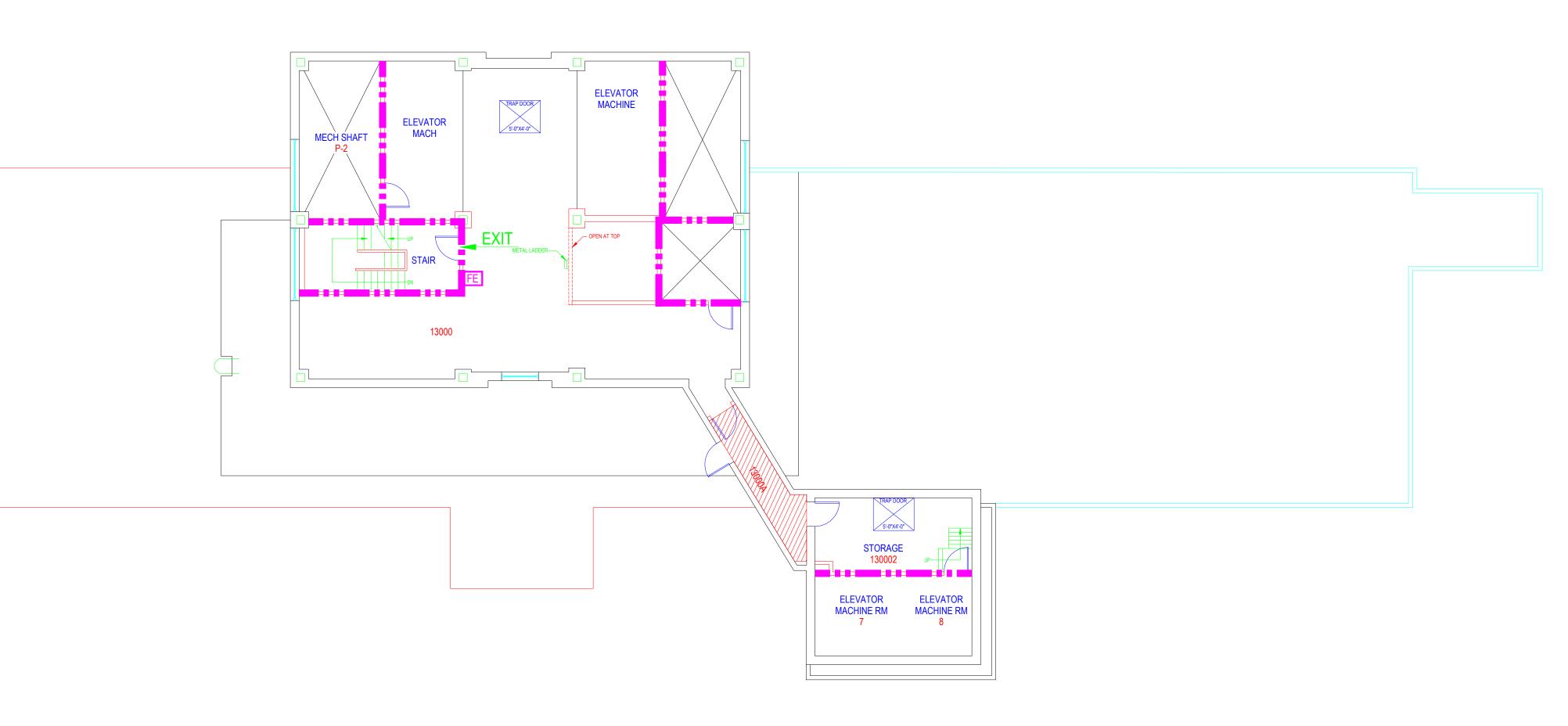




ASBESTOS KEY
ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CE
ASSUMED ASBESTOS CONTAINING, FRIABLE, TSI PIPING INSULATION, AIR-CELL
ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12"X12" VFT AND MASTIC, BROWN W/DARK BROWN
ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/GREEN SPOTTED
ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1,
ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X12" VFT, WHITE W/YELLOW SPOTTED (MASTIC ONLY)
ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 9'' X 9'' VFT AND MASTICS







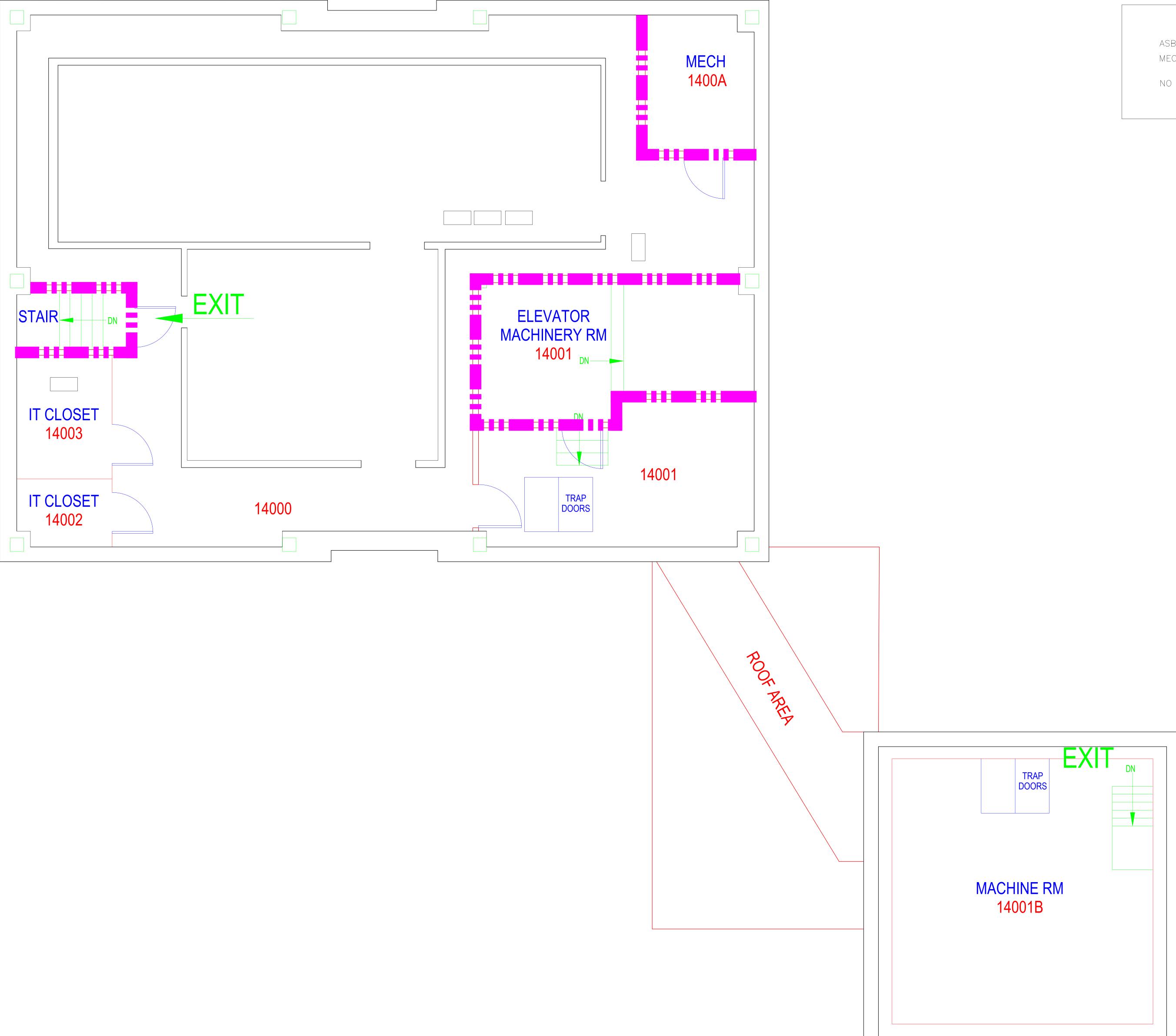




LIFE SAFETY LEGEND

SYMBOLS / LINETYPES	DESCRIPTION	
FE	FIRE EXTINGUISHER	
$\langle S \rangle$	SMOKE DETECTOR	
S	FIRE ALARM SPEAKER	
$\mathbf{X}$	EXIT LIGHT	
F	FIRE ALARM PULL STATION	
	STROBE OR VISUAL ALARM OR STROBE LIGHT	
FEC	FIRE EXTINGUISHER CABINET	
EXIT	EXIT SIGN	
	1 HOUR FIRE WALL	
	2 HOUR FIRE WALL	
	30 MINUTE SMOKE WALL	
	HAZARDOUS AREA SMOKE WALL	
	SUITE (NO RATING)	



11th FLOOR ROOF




<u>ASBESTOS KEY</u>
ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CEIL
ASBESTOS CONTAINING, NON-FRIABLE, CATEGORY 1, 12" X 12" VFT AND MASTIC GRAY

# LIFE SAFETY LEGEND

SYMBOLS / LINETYPES	DESCRIPTION
FE	FIRE EXTINGUISHER
$\langle S \rangle$	SMOKE DETECTOR
S	FIRE ALARM SPEAKER
	EXIT LIGHT
F	FIRE ALARM PULL STATION
	STROBE OR VISUAL ALARM OR STROBE LIGHT
FEC	FIRE EXTINGUISHER CABINET
EXIT	EXIT SIGN
	1 HOUR FIRE WALL
	2 HOUR FIRE WALL
	30 MINUTE SMOKE WALL
	HAZARDOUS AREA SMOKE WALL
	SUITE (NO RATING)

LINGS



# <u>ASBESTOS KEY</u>

ASBESTOS CONTAINING THERMAL INSULATION MAY EXIST ON MECHANICAL LINES INSIDE FINISHED INTERIOR WALLS AND CEILINGS

NO VISIBLE SUSPECT ASBESTOS

# LIFE SAFETY LEGEND

SYMBOLS / LINETYPES	DESCRIPTION	
FE	FIRE EXTINGUISHER	
$\langle \mathbf{S} \rangle$	SMOKE DETECTOR	
S	FIRE ALARM SPEAKER	
	EXIT LIGHT	
F	FIRE ALARM PULL STATION	
	STROBE OR VISUAL ALARM OR STROBE LIGHT	
FEC	FIRE EXTINGUISHER CABINET	
EXIT	EXIT SIGN	
	1 HOUR FIRE WALL	
	2 HOUR FIRE WALL	
	30 MINUTE SMOKE WALL	
	HAZARDOUS AREA SMOKE WALL	
	SUITE (NO RATING)	



Proposed Air Handling Units Addition Veterans Administration Hospital 4101 Woolworth Avenue Omaha, Nebraska

> June 15, 2021 Terracon Project No. 05205115

Prepared for: Anderson Engineering of Minnesota, LLC Plymouth, Minnesota

> Prepared by: Terracon Consultants, Inc. Omaha, Nebraska



Environmental 📁 Facilities 💷 Geotechnical 🧧 Materials

June 15, 2021

Terracon GeoReport

Anderson Engineering of Minnesota, LLC 113605 1st Avenue North, Suite 100 Plymouth, Minnesota 55441-5454

Attn: Mr. Michael Brandvold, P.E.

Re: Geotechnical Engineering Report Proposed Air Handling Units Addition Veterans Administration Hospital 4101 Woolworth Avenue Omaha, Nebraska Terracon Project No. 05205115

Dear Mr. Brandvold:

We have completed the Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with Terracon Proposal No. P05205115 authorized July 21, 2020. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and floor slabs for the Proposed Air Handling Units Addition project.

We appreciate the opportunity to be of service to you on this project. Please contact us if you have any questions concerning this report or if we may be of further service.

Sincerely, Terracon Consultants, Inc.

Michael S. Hingles

Michael D. Ringler, P.E. Senior Engineer

MDR/AJM:mdr/nm

Distribution: Addressee (pdf)

Andrew J. Miller, P.E.

Senior Engineer

 Terracon Consultants, Inc.
 15080 A Circle
 Omaha, Nebraska 68144

 P (402) 330 2202
 F (402) 330 7606
 terracon.com

# **REPORT TOPICS**

INTRODUCTION	. 1
SITE CONDITIONS	. 1
PROJECT DESCRIPTION	. 3
GEOTECHNICAL CHARACTERIZATION	. 4
GEOTECHNICAL OVERVIEW	. 5
EARTHWORK	. 6
SHALLOW FOUNDATIONS	
DEEP FOUNDATIONS	
SEISMIC CONSIDERATIONS	21
GRADE-SUPPORTED SLABS	21
LATERAL EARTH PRESSURES AND DRAINAGE	22
FROST CONSIDERATIONS	25
GENERAL COMMENTS	26

**Note:** This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

# ATTACHMENTS

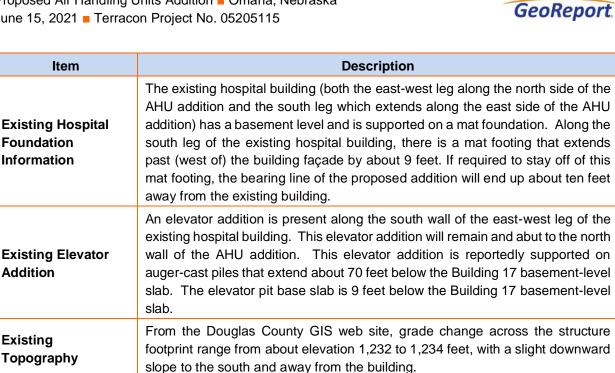
EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

# Veterans Administration Hospital 4101 Woolworth Avenue Omaha, Nebraska Terracon Project No. 05205115 June 15, 2021

# INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the Proposed Air Handling Units Addition (AHU Addition) to the Veterans Administration (VA) Hospital building at 4101 Woolworth Avenue in Omaha, Nebraska. The field exploration included two soil borings and one cone sounding to depths ranging from approximately 93 to 110 feet below existing grades. One additional cone sounding (CPT-AH2) was proposed in our scope but was ultimately omitted by the design team due to utility conflicts and site access constraints. Maps showing the site and boring and cone sounding locations are shown on **Site Location** and **Exploration Plan**, respectively. The results of the laboratory tests performed on soil samples obtained during the field exploration are included on the boring logs and on separate graphs in **Exploration Results**.

Aside from the omission indicated above, our work was completed in general accordance with Terracon proposal-agreement no. P05205115 authorized July 21, 2020. The purposes of this exploration and report are to provide information and geotechnical engineering recommendations relative to:


- Soil conditions
- Groundwater conditions
- Site preparation and earthwork
- Floor slab subgrade preparation
- Foundation design and construction
- Floor slab design and construction
- Seismic site classification per IBC
- Lateral earth pressures and drainage
- Frost considerations



# SITE CONDITIONS

Item	Description	
Parcel Information	The project is located on the south side of the Veteran's Administration (VA) Hospital at 4101 Woolworth Avenue in Omaha, Nebraska.	
	Latitude 41.2423, Longitude -95.974 (approximate). See Site Location.	
Existing Improvements	Existing Veterans Administration (VA) hospital with associated sidewalks, parking lots, landscaped areas, etc. The addition is planned in a congested area containing numerous above-grade and subsurface utilities, including: transformers, chillers, fiber-optic and sewer and electrical utility lines, satellite dish, and other subsurface installations. A cantilever concrete retaining wall is located east of the addition area, providing grade separation down to an adjacent paved parking lot (i.e., east side low). An existing, 1-level structure covers a portion of the air handling unit (AHU)	
	addition footprint. We understand this structure will be removed entirely, and it is assumed to not have a basement and to be supported on spread footings.	
	Building 17 (see below, 2-level structure located west of the AHU addition) abuts the west wall of this 1-level structure.	
	We understand there is a mix of foundation systems under the existing buildings. Foundation information provided by Anderson and IMEG for the existing buildings follows. The following elevations (provided by Anderson) are for reference only and obtained from Architectural drawings. Actual surveyed elevations may differ.	
Existing Hospital Floor Levels	<ul> <li>First (Ground) Floor Elevations:         <ul> <li>234'-6" (Building 1)</li> <li>234'-6" (Educational Building – easterly of Building 17 and with a lower roof)</li> </ul> </li> </ul>	
	<ul> <li>241'-4" (Building 17 – easterly portion and original part)</li> <li>Unknown, possible 234'-6" (Building 17 – westerly portion and addition with a lower roof)</li> <li>Basement Floor Elevation = 221'-4" (Building 1 and (original) Building 17)</li> </ul>	
Existing Building 17	Building 17 is a 2-level structure located west of the AHU addition and has a basement level. The east wall of Building 17 abuts the west wall of the AHU addition. According to building plans, Building 17 is supported on belled piers under the basement-level building mat slab. The piers extend about 31 feet below the basement level with bells up to ten feet in diameter.	

Proposed Air Handling Units Addition - Omaha, Nebraska June 15, 2021 Terracon Project No. 05205115



# **PROJECT DESCRIPTION**

Item	Description	
Information Provided	<ul> <li>Geotechnical RFP from Anderson (May 29)</li> <li>Revised field exploration layout from Anderson (June 29)</li> <li>Existing Site Plan from Anderson (July 2020)</li> <li>AHU 65% Foundation Plan from IMEG (July 2020)</li> </ul>	
Project Description	We understand the project involves the addition of air handling units to the existing hospital. The addition will extend the full height of the existing VA Hospital building (12 levels plus a basement). We understand the addition will be supported on a reinforced concrete mat foundation and deep foundation elements (ACIP piles or straight-sided drilled shafts). The mat foundation will have approximate dimensions of 30 feet by 60 feet for a total footprint of 1,800 square feet.	
Finished Floor Elevation	Assumed to match the basement floor levels of the existing buildings. IMEG FFE of 221'.	
<ul> <li>Maximum Loads</li> <li>Columns: 1,200 kips</li> <li>Slabs: 80 to 125 pounds per square foot (psf)</li> <li>Alternately, if a mat foundation is installed, a sustained contact of about 3,000 psf is estimated</li> </ul>		
Foundation System	The AHU 65% Foundation Plan from IMEG indicates a total of 114 auger- cast-in-place piles under a 4-foot thick structural mat. Each pile is 20 inches in diameter and extends to tip elevation of 1126 feet.	

1[erracon

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



Item	Description	
Grading/Slopes	Grading plan not available. Assumed to involve less than 2 feet of cut or fill, excepting the basement level.	
	Final slopes of 3H:1V (Horizontal: Vertical) or flatter.	
Below Grade Structures	Basement level.	
Free-Standing Retaining Walls	None	
Pavements	None	

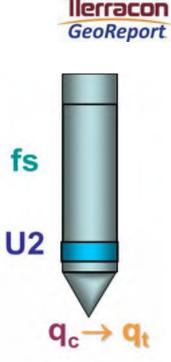
# **GEOTECHNICAL CHARACTERIZATION**

#### Subsurface Profile

We have developed a general characterization of the soil and groundwater conditions based upon our review of the boring and cone sounding information, the geologic setting, and our understanding of the project. This characterization, termed GeoModel, forms the basis for our geotechnical evaluations and recommendations for site preparation, earthwork, foundation and floor slab options. Conditions encountered at each boring and cone sounding location are indicated on the individual boring logs and cone sounding data plot. The GeoModel and individual logs / data plots are provided in **Exploration Results**.

The GeoModel is based upon our boring and cone sounding information. Variations can occur between boring and cone sounding locations and across the site. Previous construction and grading may have created additional variations.

#### **Groundwater Conditions**


The boreholes were advanced to depths of about 43½ feet with hollow-stem augers. Groundwater was not observed in the boreholes to these depths. Below these depths, drilling fluids were introduced to the borehole, and the drilling fluids mask the groundwater and prevent measurement of groundwater levels.

Alternately, a dissipation test was performed in CPT-AH-1 in general accordance with ASTM D6067. A dissipation test is performed by pushing the cone tip to the planned test depth, and then pausing the penetration. The dissipation in pore pressure over time is then measured in a porous stone behind the cone tip (U2 in adjacent diagram) during the pause. The dissipation test data is plotted and included in **Exploration Results**. From this test, we estimate the groundwater level is about 19 feet below existing ground surface.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115

Longer term monitoring in cased holes or piezometers would be required for a more accurate evaluation of the groundwater conditions and seasonal fluctuations.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings and cone sounding were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may vary from than the levels indicated above. In addition, perched water can occur overlying compacted cohesive fill or over dense clay layers; it is typical for perched groundwater to develop overlying the reddish-brown lean clay and overlying the sandy lean clay. The possibility of groundwater level fluctuations and development of perched water conditions should be considered when developing the design and construction plans for the project.



# **GEOTECHNICAL OVERVIEW**

The soil borings and cone sounding encountered clays for the entire depths explored. These clays are typical of the upland stratigraphy in the Omaha area and our previous work at the VA Hospital campus.

We recommend the addition be supported on deep drilled foundations, such as auger-cast-inplace (ACIP) piles or drilled shafts. Recommendations for design and installation of drilled foundations are provided in **Deep Foundations**. The planned construction presents several risks to the existing building, including installing new foundations adjacent to existing foundations and potentially causing settlement of existing foundations.

The borings encountered lean clay soils at the expected basement subgrade. An aggregate base layer of structural fill is recommended below the basement slab / mat foundation, as described in **Earthwork**. A drainage system is recommended around the perimeter of the below-grade walls, as described in **Lateral Earth Pressures**.

The General Comments section provides an understanding of the report limitations.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



# EARTHWORK

#### **Site Preparation**

We recommend existing vegetation and root mat be stripped from the construction area at the start of construction. Tree and shrub root systems should be thoroughly removed from the addition area. This applies both to trees currently on the site and to trees removed in the past several years. An effort should be made to locate records, plats or photographs indicating the past location of trees or other large vegetation. In addition, some of the natural soils may have been desiccated by the tree roots. Desiccated clays present a significant risk of heave if left in-place below floor slabs. Therefore, any soils desiccated by trees or shrub roots should be removed and replaced with approved fill.

Sidewalk and parking lot pavements will also be razed to accommodate AHU addition construction. It is our experience that a saturated zone often develops immediately below existing sidewalks and pavements. The saturated zone forms when surface water infiltrates through cracks in the paving, and then is prevented from draining by the underlying clay and from evaporating by the paving. It is our experience that this saturated zone typically is not more than about 6 inches thick.

Numerous utility lines extend through the addition area. It is our experience that poorly compacted backfill is commonly found adjacent to below-grade basement walls and in utility line trenches. Utility lines should be re-routed outside of the addition area. Any poorly compacted backfill above the lines and adjacent to existing below-grade basement walls should be removed and replaced; however, we anticipate much of the existing fill and backfill will be removed incidentally during excavation to reach the basement slab level.

We recommend a granular working layer, at least 12 inches thick, be installed across the basement excavation. The aggregate base recommended in **Floor Slabs** will be placed on top of the granular working layer immediately prior to placing the floor slab or mat foundation concrete.

Prior to placing the granular working layer, the exposed subgrade should be observed and tested by a geotechnical testing agency, and proofrolled. If soft or unsuitable/unstable soil is found, deepening the excavation to allow removal and replacement of the unsuitable soil may be necessary; however, proximity to adjacent structures/foundations should be considered prior to implementing any overexcavation efforts.

A geotechnical testing agency should be retained to monitor stripping, subgrade stability, existing fill removal, utility abandonment, site excavation, removal of unsuitable materials, and proofrolling. The geotechnical testing agency can assist in identifying existing fill soils or low-strength native soils that should be undercut and removed, as well as identifying additional corrective measures for conditions that may become apparent during construction.



# **Construction Adjacent to Existing Structures**

We recommend that available records (such as previous soils reports, construction plans) and interviews with personnel familiar with the existing structures be collected and reviewed prior to starting construction of the addition. Test pits should be performed to verify bearing levels and supporting soils below the existing structures. The geotechnical engineer can assist in evaluating this information with respect to the proposed construction.

Care should be taken to avoid undermining existing mat foundations, grade beams and gradesupported slabs. Undermining can occur due to excavations and also due to softening of soils if water is allowed to accumulate in the excavation and soak into the soil. Excavations extending below the top of mat foundations or below existing grade beams and floor slabs should be avoided. If such excavations are necessary, The geotechnical engineer should be consulted regarding requirements for sloping, shoring, bracing, or underpinning based on actual conditions encountered during construction.

## **Fill Material Types**

Fill Type ¹	USCS Classification	Acceptable Location for Placement
Low-plasticity, cohesive	CL	
soil	$(LL \le 45 \text{ and } 10 \le PI \le 20)^2$	All locations and elevations.
Granular ³	SP, SW, GW	Aggregate Base below interior slabs-on-grade and the mat foundation. Imported.
Drainage Fill ⁴	SP, SW, GW	Free-draining granular fill. Imported
Granular Working Layer ⁵ SP, SW, GW		As a working layer across the basement slab subgrade. Imported.
On-site soil ⁶	CL	Generally appears suitable for use as low- plasticity cohesive fill.

Structural fill should meet the following material property requirements:

1. Structural fill should consist of approved materials that are free of organic matter or debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. Each proposed fill material should be sampled and evaluated by the prior to its delivery and/or use.

- 2. LL = Liquid Limit, PI = Plasticity Index.
- 3. A well graded granular material, with 100 percent passing the 1-inch sieve, less than 6 percent passing the No. 200 sieve, and less than about 40 percent passing the No. 40 sieve. The geotechnical engineer should review proposed materials. Using a material similar to NDOT Crushed Rock for Surfacing, with 6% or less fines (material passing the #200 sieve) for this layer will improve subgrade stability during compaction and slab construction.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



Fil	l Type ¹	USCS Clas	ssification	A	Acceptable Location for Placement	
4. W	4. Well-graded, free-draining granular material. A general gradation should be 100% passing the 11/2-					
in	inch sieve, less than about 40 percent passing the No. 10 sieve, and less than 6 percent fines. The					
ge	geotechnical testing agency can review proposed materials. NDOT 47B Fine Aggregate for Concrete					
or	or approved alternative.					
<mark>5</mark> . W	Well-graded crushed stone or crushed concrete with a maximum particle size of about 2 inches and					
le	ss than about 10	percent fines. 7	The geotechnica	al testing	g agency can review proposed materials.	

6. Sorting of topsoil and on-site soils containing debris, organics, etc., will be necessary. Delineation of unsuitable on-site soils should be performed in the field by the geotechnical testing agency. Moisture conditioning of the on-site soils will be necessary to facilitate compaction.

A geotechnical testing agency should be retained to evaluate proposed fill materials, including sampling and performing laboratory tests on proposed fill to evaluate compliance with the project specifications. The geotechnical testing agency can also review data for proposed materials which are generated by the contractor or suppliers.

## **Fill Compaction Requirements**

ltem	Structural Fill
Maximum Lift Thickness	<ul><li>8 inches or less in loose thickness when heavy, self-propelled compaction equipment is used</li><li>4 to 6 inches in loose thickness when hand-operated equipment (i.e. jumping jack or plate compactor) is used</li></ul>
Minimum Compaction Requirements ^{1, 2, 3}	95% of maximum, all locations and elevations
Water Content Range ⁴	Low plasticity cohesive: -2% to +3% of optimum Granular: Workable moisture levels

Structural fill should meet the following compaction recommendations:

1. Maximum density and optimum water content as determined by the standard Proctor test (ASTM D 698).

2. If the granular material is a coarse sand or gravel, or of a uniform size, or has a low fines content, compaction comparison to relative density may be more appropriate. In this case, granular materials should be compacted to at least 65% relative density (ASTM D 4253 and D 4254).

- 3. Care should be taken not to overcompact the granular working layer. We recommend that the granular working layer be drifted into place in advance of compaction equipment. Compaction be accomplished with 2 or 3 mutually perpendicular passes vibratory compaction equipment. Instead of a strict compaction requirement, consideration should be given to using visual evaluation of material stability using factors such as surface stability and aggregate interlock when evaluating compaction and performance of the granular material.
- Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction to be achieved without the cohesionless fill material pumping when proofrolled or containing excess water (ponding).

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



Each lift of compacted fill should be tested, evaluated, and reworked as necessary until approved by the geotechnical testing agency prior to placement of additional lifts. Each lift of fill should be tested for density and water content at a frequency of at least one test for every 2,500 and 5,000 square feet in building and pavement areas, respectively. One density and water content test for every 50 linear feet of compacted utility trench backfill.

The geotechnical testing agency should be retained to monitor fill placement and to perform field density tests as each lift of fill is placed in order to evaluate compliance with the design requirements. The geotechnical testing agency should be retained to observe and test floor slab subgrades immediately prior to paving.

# **Utility Trench Bedding and Backfill**

All trench excavations should be made with sufficient working space to permit construction, including backfill placement and compaction. Utility trenches are a common source of water infiltration and migration. If utility trenches are backfilled with relatively clean granular material, they should be capped with either paving or at least 18 inches of cohesive fill to reduce the infiltration and conveyance of surface water through the trench backfill.

We also recommend constructing an effective clay "trench plug" that extends at least 5 feet out from the face of the building exterior. The plug material should consist of either cementitious flowable fill or low permeability clay, and should be placed to completely surround the utility line.

## **Construction Considerations**

Any areas of standing surface water should be drained as far in advance of construction as possible. Any saturated soils should be removed prior to placing fill or proceeding with construction.

The clays encountered in the borings will be sensitive to disturbance from construction activity and water seepage. If precipitation occurs immediately prior to or during construction, the near-surface clay soils could increase in moisture content and become more susceptible to disturbance. Construction activity should be monitored, and should be curtailed if the construction activity is causing subgrade disturbance. The geotechnical testing agency can help with monitoring and developing recommendations to avoid subgrade disturbance.

Surface water should not be allowed to pond and soak into the soil during construction. Construction staging should provide drainage of surface water and precipitation away from the addition area. Any water that collects over or adjacent to construction areas should be promptly removed, along with any softened or disturbed soils. Surface water control in the form of sloping surfaces, drainage ditches and trenches, and sump pits and pumps will be important to avoid ponding and associated delays due to precipitation and seepage.

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs. Construction traffic over the completed subgrade

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to floor slab construction.

As a minimum, all temporary excavations should be sloped or braced as required by Occupational Safety and Health Administration (OSHA) regulations to provide stability and safe working conditions. Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. All excavations should comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

## **Exterior Grading**

Poor site drainage and ponding of surface water can increase the potential for frost heave or settlement. Finished grading slopes should promote drainage away from the buildings and pavements. We recommend final grades for seeded and landscaped areas be sloped at least 5 percent within 10 feet around the buildings. We recommend cohesive backfill be placed in utility trenches and adjacent to building foundations, and this fill be compacted to at least 95 percent of standard Proctor maximum dry density to help prevent surface water infiltration. Roof drains should be extended to discharge on pavements or in lawn areas more than 5 feet from the buildings. Pavements or sidewalks installed adjacent to the building should slope away from the building at a grade of 2% or more.

Overwatering of grass or landscaping vegetation is a significant source of water, and should be avoided near the buildings and pavements. Sprinkler heads should be adjusted to miss the exterior building walls and pavements. Automated watering systems should be programmed to not run after natural rain events, and to not overwater. Any utility leaks should be promptly repaired. Lining the bottom of irrigated planter areas along the buildings with an impermeable moisture barrier, and installing tile lines leading to gravity outlets or sump pits and pumps, would also help to control surface water that infiltrates into these features.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



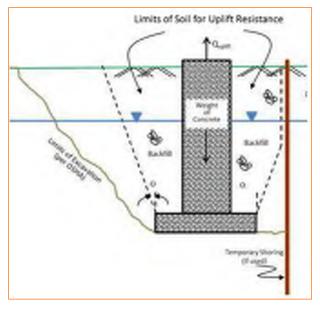
# SHALLOW FOUNDATIONS

#### **Design Parameters – Compressive Loads**

If the site has been prepared in accordance with the recommendations in **Earthwork**, the following design parameters are applicable for lightly-loaded shallow foundations for small appurtenant structures associated with the addition.

Description	Column	Wall
Net allowable soil bearing pressure ¹	1,500 psf	1,500 psf
Minimum dimensions	30 inches	18 inches
Minimum embedment ²	42 inches	42 inches
Estimated total settlement ³	< 1 inch	< 1 inch
Estimated differential settlement ³	2/3-inch between columns	2/3-inch over 30 feet

1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. Assumes level ground within 10 feet of the footing. Assumes any fill, or disturbed or soft soils, will be undercut and replaced.


- 2. For perimeter footings and footings in unheated areas. For frost protection and to reduce the effects of seasonal moisture variations in the subgrade soils. If construction extends into freezing weather, we recommend that either all footings extend to frost depth (as measured from adjacent grade at the time of construction) or that the foundations be protected from the elements by straw, frost blankets, or similar means.
- 3. The foundation settlement will depend upon the variations within the soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of compacted fill, and the quality of the earthwork operations. The above settlement estimates assume the maximum footing size is 7 feet for column footings, 2.5 feet for continuous footings, and relatively uniform loading.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115

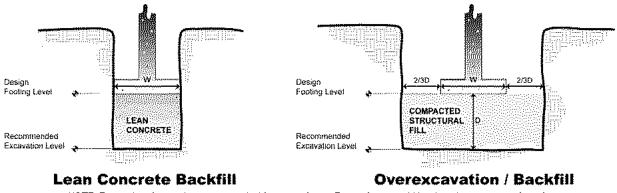


#### **Design Parameters - Uplift Loads**

Uplift resistance of spread footings can be developed from the effective weight of the footing and the overlying soils. As illustrated on the subsequent figure, the effective weight of the soil prism defined by diagonal planes extending up from the top of the perimeter of the foundation to the ground surface at an angle,  $\theta$ , of 20 degrees from the vertical can be included in uplift resistance. The maximum allowable uplift capacity should be taken as a sum of the effective weight of soil plus the dead weight of the foundation, divided by an appropriate factor of safety. A maximum total unit weight of 100 pcf should be used for the backfill. This unit weight should be reduced to 40 pcf for portions of the backfill or natural soils below the groundwater elevation.



#### Footing Installation Adjacent to Existing Building


New foundations placed adjacent to existing building foundations and slabs may cause some additional settlement of the existing structures. To help reduce this risk, no excavations should extend below adjacent grade beams, mat foundations, or slabs. Footing bearing levels should be reviewed relative to the existing basements, mat foundation, and grade beams. We are available to help evaluate the impacts of the new loads on the existing buildings and alternatives to protect existing elements.

Differential settlement between the addition and the existing building is expected to approach the magnitude of the total settlement of the addition. Expansion joints should be provided between the existing building and the addition to accommodate differential movements between the two structures. Underground piping between the two structures should be designed with flexible couplings and utility knockouts in foundation walls should be oversized, so minor deflections in alignment do not result in breakage or distress.



# **Footing Foundation Construction Considerations**

The geotechnical engineer should be retained to observe and test the bearing materials exposed in all foundation excavations. If disturbed or otherwise unsuitable bearing materials are encountered in a footing excavation, the excavation should be extended deeper, as necessary, to suitable materials. The footing could bear directly on the suitable materials at the lower level or on lean concrete backfill placed back up to design bearing level. The footings could also bear on approved, properly compacted backfill extending down to the suitable materials. Overexcavation for compacted backfill placement below footings should extend laterally at least 8 inches beyond the edges of the footings for each foot of depth below footing base elevation. The overexcavation should then be backfilled up to the footing base elevation with approved fill placed and compacted as recommended in **Earthwork**. The adjacent figures depict these options.



NOTE: Excavations in sketches shown vertical for convenience. Excavations should be sloped as necessary for safety.

The clay soils on this site are susceptible to disturbance from construction activities, particularly if the soils have high natural moisture contents or become wetted by surface water or seepage. Care should be taken during excavation and construction of footings to avoid disturbing the bearing soils. The base of all foundation excavations should be free of water and loose material prior to placement of concrete. Concrete should be placed within a few hours after excavating to reduce disturbance of the bearing materials. If the materials at bearing level become excessively dry, disturbed or saturated, the affected material should be removed prior to placing concrete.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



# **DEEP FOUNDATIONS**

#### Discussion

The soils encountered in our exploration generally consist of cohesive soils. We recommend the air handling unit addition be supported on a deep foundation system consisting of either ACIP piles or straight-sided drilled shafts. Other deep foundation alternatives could be considered, such as driven piles. But considering the building loads and stratigraphy encountered in the borings, it is our opinion ACIP piles or straight-sided drilled shafts will be more economical than driven piles. The noise and vibrations associated with driven piles will also cause disturbance to the hospital personnel, patients, equipment, and general operations. The remainder of this report presents our recommendations for an ACIP pile and straight-sided drilled shaft foundation systems. We should be contacted if another foundation system is considered.

Numerous existing structures (satellite, generators, transformers chillers, etc.) and subsurface utilities (communication, water, fiber, electric, etc.) are contained within the AHU addition footprint. Prior to deep foundation installation, these obstructions should be removed or re-routed as necessary, and the resulting excavations backfilled.

Installing deep foundation elements directly adjacent to the existing building presents several risks to the performance of the existing building. Construction risks associated with installing new foundations in close-proximity to the existing foundations can lead to a potential of undermining and/or caving of soil around the existing deep foundation elements. For this reason, the use of casing during drilled shaft installation is recommended. The weight of the new addition will place additional load on the bearing soil under the existing hospital, and this can cause new settlement to occur in the existing building after addition construction is completed. Further discussions are presented in **Construction Adjacent to Existing Building** below.

We anticipate small ancillary structures will be constructed in conjunction with the addition, such as entry ways and landscaping features. We anticipate it will be feasible to support these structures on shallow spread footings, as discussed in **Shallow Foundations**. However, if these structures are sensitive to post-construction settlements, we recommend individual review be undertaken to determine if support on a deep foundation system is appropriate.



# Augered and Cast-in-Place (ACIP) Pile and Drilled Shaft Axial Design Parameters

Soil strength parameters for use in design of auger-cast piles and straight-sided drilled shafts were evaluated from the boring information, cone sounding information, and laboratory test results. Based on this information, the following skin friction and end bearing values are recommended for calculating the allowable capacities of auger-cast piles or drilled shafts for this project.

ACIP Pile and Drilled Shaft Axial Design Parameters ¹			
Approximate Elevation (feet)	Allowable Unit Skin Friction in Compression (psf) ^{2, 3, 4}	Allowable End Bearing Pressure (psf) ⁵	
above 1,190	550	Neglect	
1,190 - 1,160	350	Neglect	
1,160 - 1,135	550	4,000 (elev. 1,160' – 1,140') 6,000 (elev 1,140' – 1,130')	
1,135 - 1,123	1,000	12,000 (elev 1,130' – 1,123')	

1. Design of the piling as structural members should be in accordance with applicable building codes.

2. Allowable side friction values include a factor of safety of at least 2.

- 3. Skin friction should be neglected within 3½ feet of adjacent exterior grade for frost protection. Pile caps and grade beams should extend a minimum of 3½ feet below the lowest adjacent grade.
- 4. Recommended unit skin friction in uplift is ²/₃ of the recommended skin friction in compression. Uplift loads can be resisted by the skin friction in uplift along with the effective weight of the foundation. Tensile load resistance of ACIP piles and drilled shafts should be neglected unless the piles are adequately reinforced. At a minimum, a single centered #9 reinforcing bar should be installed for the full length of each ACIP pile. We recommend the bar be installed, with centralizers, immediately after the ACIP pile is grouted. A bar which cannot be installed full length should be pulled and the pile re-drilled. A reinforcing cage can also be placed in the top section of the ACIP pile, but the installation depth will be limited based on pile diameter and installation considerations. Reinforcing installed within ACIP piles / drilled shafts should include centralizers to assure the steel has adequate concrete cover.
- 5. Allowable end bearing values include a factor of safety of at least 3.

ACIP piles and drilled shafts will derive capacity primarily from skin friction. We recommend a center-to-center pile spacing of 3D or more.

Group effects can be evaluated by comparing the sum of individual piles in a group to the capacity calculated using the perimeter and base of the pile group acting as a unit; the lesser of the two capacities should be used in design. We evaluated several of what we considered to be the critical pile layout geometries of the AHU 65% Foundation Plan for potential group effects. These evaluations indicate group effects do not control axial capacity of the selected geometries. We request the opportunity to review the foundation plan after design is complete, to further evaluate for potential group effects.

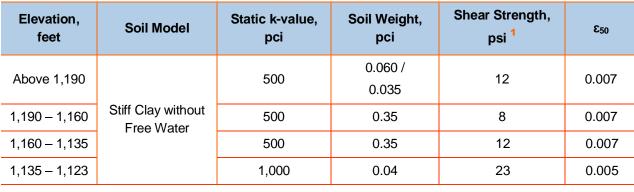
Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



The estimated maximum settlement of a single auger-cast pile foundation or single drilled shaft foundation designed and constructed in accordance with our recommendations is less than ½-inch. The estimated settlement for a pile group will be greater than that for an individual pile, and will depend on element capacity, pile group capacity, pile group orientation, and tip bearing level. For the geometries evaluated for group capacity (see above) and pile tip elevations of 1126 feet or lower, we estimate pile group settlements of about 1 inch. Note this does not include elastic compression of the piles.

We recommend that a pile load test be performed on an ACIP pile if it is necessary to better evaluate pile compression and settlement characteristics, and a pile load test may allow use of higher skin friction or end bearing values than provided above. It is recommended that the geotechnical engineer observe installation of the test pile and evaluate the data to further assess the structure-specific allowable design load capacity and vertical pile spring constant. At least 5 strain gauges are recommended to evaluate load distribution along the pile.

The geotechnical engineer should review and comment on specifications developed for pile installation and monitor pile installation.


## Lateral Loading Design

The structure will be required to resist lateral loads generated by wind, lateral earth pressures, and seismic events as prescribed by the International Building Code (IBC). The design guidelines presented in Lateral Earth Pressures are recommended for pile caps and grade beams. If needed, additional lateral resistance can also be provided by deepening the pile caps or grade beams. Please note the portion of grade beams and pile caps subject to frost should be neglected when evaluating lateral resistance. The allowable passive resistance requires some movement to mobilize resistance.

When considering the lateral resistance of pile elements, the passive resistance values listed in **Lateral Earth Pressures**, applied to the projected width of the pile elements, can be used for a conservative initial estimate. It is our experience a more favorable design is usually achieved by using a computer modeling program (e.g., L-Pile, Group). Parameters for lateral load resistance calculations will vary from structure to structure, and with varying floor levels and pile cap depths.

The following table provides soil parameters for use in the L-Pile and Group programs to evaluate lateral load response of deep foundation elements.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



1. The soils encountered in our exploration are cohesive. Therefore, strength is represented by cohesion and not internal friction.

The geotechnical engineer can provide additional lateral and moment load analysis parameters (L-Pile) for individual piles and pile groups once detailed foundation design information becomes available. It is our experience significant lateral load can be supported by ACIP piles, especially if the pile tops are fixed from rotation.

Group action for lateral resistance of shafts should be taken into account when spacing is less than 8 diameters (center to center). For a group of shafts oriented parallel to a lateral load, design parameters for allowable passive resistance should be reduced in accordance with the following table.

Group Reduction Factors – Laterally Loaded ACIP Piles			
Shaft Spacing Reduction Factors			
(Diameters)	Leading Row	Second Row	Third Row and Higher
8D	1.0	1.0	1.0
5D	0.9	0.85	0.7
3D	0.8	0.6	0.4

Lateral load resistance of piles should be neglected unless the shafts are adequately reinforced. Since installing a long reinforcing cage can be problematic, it may be appropriate to design the foundation elements with deeper pile caps or grade beams or utilize other means of lateral support where high lateral loads occur.

Lateral loads experienced by the addition have the potential to impose new loads on existing buildings. After lateral load information is available, we are available to discuss potential means to mitigate new loads on the existing building or to help evaluate the magnitude of the new loads on the existing building.

lerracon

GeoReport

#### Geotechnical Engineering Report Proposed Air Handling Units Addition ■ Omaha, Nebraska June 15, 2021 ■ Terracon Project No. 05205115



# **ACIP Pile Installation**

The successful completion of ACIP piles depends to a large extent on the equipment and installation procedures. ACIP piles (typically 16 to 18 inches in diameter) are constructed by extending continuous hollow-stemmed augers to a predetermined depth. A fluid cement grout is then injected under pressure through the center of the hollow shaft as the augers are withdrawn, leaving a continuous concrete pile. We recommend the bid documents require the contractor to show experience with similar or greater ACIP pile installation depths than the depths expected for this project.

Care should be taken during the ACIP pile element installation because of the potential for both "necking" and "overdrilling" during the installation procedure. The soft clay soils in the borings are susceptible to loosening upon overdrilling, and can also cause necking if the auger withdrawal procedure is rushed. Controlled withdrawal of the auger will be necessary and a sufficient head of grout should be maintained in the auger system at all times to prevent necking down of the fluid grout due to hydrostatic pressures (for example: a minimum overpump of 115% and a grout head of 7 feet).

Although cobbles and boulders were not encountered in the soil borings, such erratics are possible in the lower sandy lean clay (i.e. glacial till) and can create difficult drilling conditions when the ACIP piles extend into this layer. Should a specific element encounter refusal above design tip elevation, the geotechnical engineer should be consulted to help evaluate pile capacity and condition.

Installing adjacent ACIP piles with clear distance spacing of less than 10 pile diameters should be delayed until mortar in the initial pile has set, typically overnight. This is recommended to avoid possible grout intrusion between the piles which could jeopardize the integrity of both piles. If two piles are separated by a blocking pile (e.g., diagonal corners of a 5-pile group with an "X" configuration blocked by the center pile), the clear distance spacing can be reduced to 7 pile diameters.

It is recommended that the geotechnical engineer review and comment on specifications developed for pile installation. The geotechnical testing agency should also observe installation of ACIP piles on a full-time basis during construction. The quantity of the concrete grout placed should be checked against the calculated volumes required to obtain design pile dimensions. A system is available that monitors grout pressure, grout volume and auger depth simultaneously during pile installation. The data is continuously monitored and analyzed and the results displayed by computer as the pile is installed. We recommend consideration be given to utilizing this system to enhance our capability of monitoring pile installation.



# **Drilled Shaft Construction Considerations**

Although not encountered in the borings, special drilling techniques may be required to penetrate obstructions within the native soils (e.g., gravel, cobbles, or boulders) or for shafts which extend below the water table. Methods and equipment used for drilled shaft installation should leave the side and bottom of the shaft free of loose and disturbed material which would prevent the concrete from contacting undisturbed soil.

We anticipate the drilled pier excavations will extend to significant depth. Therefore, the slurry drilling method and tremie placement of concrete are recommended.

As discussed in the following subsection, we recommend the use of temporary steel casing for construction of the drilled shaft foundations. When casing is removed during concrete placement, care should be exercised to maintain concrete inside the casing at a sufficient level to resist earth and hydrostatic pressures present around the casing exterior. The slump and placement condition of the concrete should be designed to avoid arching. Placement of loose soil backfill should not be permitted around the casing prior to removal.

It is recommended that an approved polymer-based slurry be used to install the drilled shafts to counter-balance the hydraulic forces below the water level and stabilize the wall of the shaft. The slurry level should be maintained above the groundwater level at all times during drilling and through placement of concrete; note that the water level may not be readily visible in the shaft excavation due to the slow seepage rate associated with the native clays. Drilling procedures should avoid excessive negative pressures at the bottom of the excavation. At the completion of excavation, the shaft bottom should be cleaned with a cleanout bucket equipped to prevent backflow and loss of soil from the bucket.

The quality of the slurry used should be tested and verified. The slurry should have a sand content no greater than 1 percent at the time concrete placement commences. The maximum unit weight of the slurry should be established in consultation with the geotechnical engineer.

Concrete should be placed the same day as foundation excavation is completed, as soon as possible after the slurry is tested and the foundation bottom is cleaned. A slump of 7 to 9 inches is recommended when a temporary casing and/or drilling slurry is used. The maximum size of the concrete aggregate should not exceed one-third of the minimum clear spacing between individual reinforcing bars or bundles.

The concrete should be placed through a sealed tremie extending to within 6 inches of the bottom of the shaft and in a manner which does not promote mixing of the concrete and slurry. The tremie should remain inserted several feet into the fresh concrete as it displaces the slurry upward and until placement is complete. The volume of concrete placed should be checked against the calculated volume required to obtain design shaft dimensions. The geotechnical engineer should be retained to review and comment on specifications developed for shaft installation, and actual shaft installation should be monitored by the geotechnical testing agency.



# **Construction Adjacent to Existing Building**

New foundations placed adjacent to existing building foundations and slabs may cause some additional settlement of the existing structures. Floor slab and grade beam bearing levels should be reviewed relative to the existing basements and grade beams.

To help prevent impacts to the existing building supported on belled caissons, we recommend:

- drilled shafts be installed with at least 6 feet of separation between the edges of the existing bell and the drilled shaft
- ACIP piles be installed with at least 3 feet of separation between the edges of the existing bell and the ACIP pile.

To help prevent impacts to the existing building supported on a mat foundation, we recommend:

- drilled shafts be installed with at least 3 feet of separation between the edges of the existing mat and the drilled shaft, and that temporary casing be installed to a depth of at least 15 feet below bearing level of the existing mat foundation
- ACIP piles be installed with at least 2 feet of separation between the edges of the existing mat and the ACIP pile.

Differential settlement between the addition and the existing building is expected to approach the magnitude of the total settlement of the addition. Expansion joints should be provided between the existing building and the addition to accommodate differential movements between the two structures. Underground piping between the two structures should be designed with flexible couplings and utility knockouts in foundation walls should be oversized, so minor deflections in alignment do not result in cracking or distress. Care should be taken during excavation adjacent to existing foundations to avoid disturbing existing foundation bearing soils.

It should be noted that the geometry of the addition has the potential to cause some unusual interactions with the existing building. We understand the mat foundation under the addition has a (East-West) width of about 30 feet, and the height of addition (basement to roof) is about 140 feet, creating a geometric ratio of nearly 5:1. In addition, because the new mat must cantilever over the existing mat, the eastern edge of the new mat will carry additional load and thus may experience more settlement than the western edge. Any differential settlement across the mat will cause roughly five times as much lateral movement at the top of the addition because the addition height is roughly five times the mat foundation width. Planning and design should account for the potential for amplified movement due to the geometry of the addition and also for the direction of the movement to be toward the east wing of the existing building.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



# SEISMIC CONSIDERATIONS

Based upon the results of the borings and the shear wave profile in the cone sounding, we recommend a "Site Class D" according to the 2012 International Building Code (IBC), which references Chapter 20 of ASCE-7.

# **GRADE-SUPPORTED SLABS**

#### **Design Recommendations**

Item	Description
Floor Slab and Mat Foundation support ¹	Aggregate base (see below) underlain by subgrade recommended in Earthwork.
Modulus of subgrade reaction ²	100 pounds per square inch per inch (psi/in) for point loading conditions (conventional slabs only).
Aggregate base course/capillary break below both Floor Slab and Mat Foundation ³	4 to 6 inches of free draining granular material

1. Floor slabs should be structurally independent of any building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation.

- 2. Modulus of subgrade reaction is an estimated value based upon our experience with the subgrade condition, the requirements noted in Earthwork, and the floor slab support as noted in this table. It is provided for point loads. For large area loads the modulus of subgrade reaction will be lower.
- 3. The floor slab design should include a capillary break, comprised of compacted, granular material, as described in Earthwork.

Slabs-on-grade should be isolated from structures and utilities to allow independent movement. Joints should be constructed at regular intervals as recommended by the American Concrete Institute (ACI) to help control the location of any cracking. Keyed and doweled joints should be considered. The owner should be made aware that differential movement between the slabs and foundations could occur.

The use of a vapor retarder should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.



# **Construction Considerations**

On most project sites, the slab subgrades are developed early in the construction phase. However as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, rainfall, etc. As a result, the subgrade may not be suitable for placement of base rock and concrete and corrective action will be required.

We recommend the slab subgrade be rough graded and then proofrolled with a loaded tandem axle dump truck prior to fine grading and placement of base rock. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the affected material with compacted fill. All subgrades should be moisture conditioned and properly compacted to the recommendations in this report immediately prior to placement of the aggregate base course and concrete.

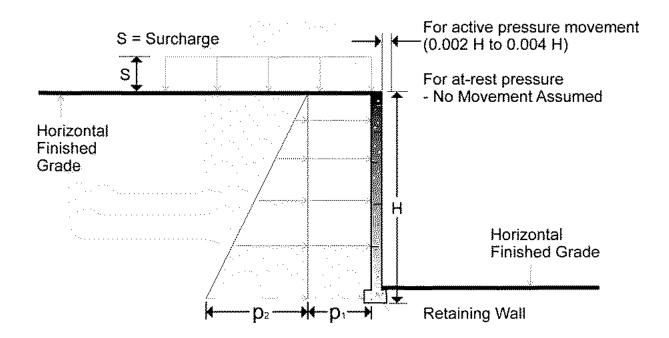
# LATERAL EARTH PRESSURES AND DRAINAGE

# **Construction Considerations**

If a sheet pile shoring system is used in conjunction with a temporary excavation required for construction, we recommend the sheeting extend at least 5 feet below the bottom of the excavation, or deeper if required for lateral support, depending on the bracing system. As a minimum, the design should be sufficient to resist a uniform lateral earth pressure of 40 H in psf, where H is the maximum depth of the excavation below the ground surface in feet. Please note this pressure does not account for surcharge loads due to groundwater, construction equipment or spoil piles. Any surcharge must be taken into account in the design of the retention system.

Design of a shoring system is beyond the scope of this report. Shoring design is frequently performed as part of the construction contract, since it requires information concerning the proposed excavation means and methods and equipment.

## **Permanent Design**


The lateral earth pressure recommendations given in this section are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever, or gravity type concrete walls. These recommendations are not applicable to the design of modular block - geogrid reinforced backfill walls (also termed MSE walls). This report does not address MSE walls. However, we would be pleased to develop a proposal for evaluation and design of such wall systems upon request.

Reinforced concrete walls with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to those indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall movement. The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls.



EARTH PRESSURE COEFFICIENTS				
Earth Pressure Conditions	Coefficient For Backfill Type	Equivalent Fluid Density (Pcf)	Surcharge Pressure, P ₁ (Psf)	Earth Pressure, P₂ (Psf)
Active (Ka)	Granular - 0.33	40	(0.33)S	(40)H
	Lean Clay - 0.36	45	(0.36)S	(45)H
At-Rest (Ko)	Granular - 0.46	55	(0.46)S	(55)H
	Lean Clay - 0.50	60	(0.50)S	(60)H
Passive (Kp)	Granular - 3.0	360		
	Lean Clay - 2.4	290		

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



Applicable conditions to the above include:

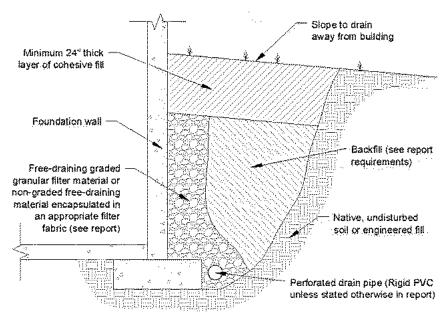
- For active earth pressure, wall must rotate about base, with top lateral movements of about 0.002 H to 0.004 H, where H is wall height
- For passive earth pressure to develop, wall must move horizontally to mobilize resistance
- Uniform surcharge, where S is surcharge pressure
- In-situ soil backfill weight a maximum of 120 pcf
- Horizontal backfill, compacted between 95 and 98 percent of standard Proctor maximum dry density
- No hydrostatic pressure acting on wall
- No loading from compaction equipment
- No loading from nearby footings or slabs
- No dynamic loading
- Finished grade is horizontal both behind wall and at toe of wall
- No safety factor included in soil parameters
- Ignore passive pressure in frost zone

Backfill placed against structures should consist of granular soils or low plasticity cohesive soils. For the granular values to be valid, the granular backfill must extend out from the base of the wall at an angle of at least 45 and 60 degrees from vertical for the active/at-rest and passive cases, respectively. An ultimate coefficient of sliding friction of 0.4 can be used between footing concrete and the underlying soil.

Footings, floor slabs or other loads bearing on backfill behind walls may have a significant influence on the lateral earth pressure. Placing footings within wall backfill and in the zone of active soil influence on the wall should be avoided unless structural analyses indicate the wall can safely withstand the increased pressure.

The preceding earth pressure parameters are based on effective drainage being provided by a perimeter drain installed at the foundation level. If installed, we recommend a drain be installed along the base of the wall with a collection pipe leading to a reliable discharge. If an effective drainage system is not installed, then the retaining wall should be designed for combined hydrostatic and lateral earth pressures calculated using the following values:

	Active Condition ¹	At-Rest Condition ¹
Clay Backfill	90 pcf	100 pcf
Granular Backfill	85 pcf	95 pcf


1. These pressures do not include the influence of surcharge, equipment, or floor loading, which should be added.

Proposed Air Handling Units Addition 
Omaha, Nebraska June 15, 2021 
Terracon Project No. 05205115



## Drainage

A perforated rigid plastic or metal drain line should be installed behind the base of walls extending below adjacent grade. The invert of a drain line around belowgrade areas should be at least 8 inches below the top of subgrade elevation for the low side of the wall. The drain line should be sloped to positive provide gravity drainage to a sump or other suitable outlet. The drain line should be surrounded by free-draining granular



material graded to prevent the intrusion of soil fines into the granular material or the intrusion of the granular material into the drain pipe perforations. Alternatively, a coarse, clean, free-draining granular material could be used to surround the pipe if this material is encapsulated with suitable filter fabric.

At least a 2-foot wide section of free-draining granular fill is recommended for backfill above the drain line and adjacent to the wall and should extend to within 2 feet of final grade. The granular backfill should be capped with compacted cohesive fill to help prevent infiltration of surface water into the drain system.

# **FROST CONSIDERATIONS**

The clayey soils on this site are considered frost susceptible. Grade-supported exterior slabs are expected to heave. The amount of heave may be reduced by providing surface drainage away from the buildings and slabs and toward the site storm drainage system. Structural stoops are recommended adjacent to exterior doors and other movement-sensitive exterior slabs. Consideration should be made to installing drain-tile around the perimeter of exterior slabs that connect directly to the storm drainage system to help further reduce the potential for frost heave.

#### Geotechnical Engineering Report Proposed Air Handling Units Addition ■ Omaha, Nebraska June 15, 2021 ■ Terracon Project No. 05205115



# **GENERAL COMMENTS**

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing. Site safety, excavation support, and dewatering requirements are the responsibility of others.

The analysis and recommendations presented in this report are based upon our understanding of the project, the data obtained from the borings and cone sounding performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between the borings and cone sounding, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Any information we convey prior to the report completion is for informational purposes only and should not be used for decision-making purposes or final design.

Site characteristics as provided in this report are for design purposes and not to estimate excavation or foundation installation cost. Any use of our report in that regard is done at the sole risk of the cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact cost.



ATTACHMENTS



# **EXPLORATION AND TESTING PROCEDURES**

#### **Field Exploration**

**Layout and Elevations:** Terracon personnel provided the boring and cone sounding layout by spotting relative to existing features. Coordinates of the boring and cone sounding locations were obtained using Google Earth.

Ground surface elevations indicated on the boring logs and CPT sounding data plot are approximate and have been rounded to the nearest 1 foot. The elevations were obtained by interpolation from the Douglas County GIS web site. The locations and elevations of the soil borings and CPT soundings should be considered accurate only to the degree implied by the means and methods used to define them.

**Potholing Procedures:** We used augers to chew through the asphalt paving at the boring and cone sounding locations. The boring and cone sounding locations were then potholed using the hydroexcavation technique to a depth of about 7 feet. At the cone sounding location, hollow-stem augers were then installed through the pothole and to a depth of about 10 feet to provide lateral support for the cone rods .

**Soil Boring Procedures:** We advanced the borings with a truck-mounted, rotary drill rig. The boreholes were advanced using continuous-flight hollow-stem augers to depths of about 43½ feet below grade; below these depths, the boreholes were advanced using rotary wash methods.

Samples were obtained using thin-walled tube and split-barrel sampling methods. In the thinwalled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge was pushed hydraulically into the soil to obtain a relatively undisturbed sample. In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. The samples were placed in appropriate containers and taken to our soil laboratory for testing and review.

The boreholes were observed to a depth of about 43½ feet for the presence of groundwater, but no groundwater was observed to this depth. Below this depth, the use of drilling fluids prevented observation of water levels.

Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Typed boring logs were prepared from the field



logs, and represent the engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

**Cone Sounding Procedures:** One cone sounding was performed with a piezometric electronic cone penetrometer (CPTu), in general accordance with ASTM D5778 "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils." This device includes a cone-tipped sounding unit attached to steel rods with flush joint couplings. The sounding unit has electronic strain gauges that measure point resistance and sleeve friction, a transducer that measures pore water pressure, and an inclinometer that measures verticality of the sounding unit. The readings from the cone instruments are transmitted to a computer at the surface that stores the data and provides real-time display of the cone results. A depth encoder device monitors penetration depth and speed as the rods are pushed slowly into the ground. The cone unit records the measured values at approximately 2-cm intervals.

The resistance to penetration can be correlated with soil strength and density properties, and soil types can be estimated. The results of the cone penetrometer testing are plotted and included in **Exploration Results**. It should be noted that the soil behavior types included on the data plots are interpretations based on empirical correlation rather than direct measurements and should be evaluated accordingly.

In addition, we performed shear wave tests in the sounding. The shear wave tests were conducted by placing a concrete beam on the ground and striking the beam with a hammer. The time for the shear wave to transmit through the soil was then recorded by a receiver embedded in the cone tip. The shear wave tests were performed at about 1-meter (3.281-foot) intervals below a depth of 4 meters in the cone sounding. The data were plotted and interpreted by our engineers. The shear wave data are presented on the SCPTu data plot in **Exploration Results**.

A dissipation test was performed at a depth of about 62.3 feet in the cone sounding, in general accordance with ASTM D6067. A dissipation test is performed by pushing the cone tip to the desired depth, and then pausing the penetration. The dissipation in pore pressure at the cone tip is then measured during the pause. A dissipation test provides data that can be used to estimate both hydraulic conductivity of the soil and the hydrostatic pressure at the test depth; the hydrostatic pressure is then correlated to the groundwater level.

We originally planned to push the cone sounding to a depth of about 130 feet; however, we were forced to terminated the sounding at a depth of about 93 feet. As described above, the cone rods were pushed through hollow-stem augers embedded about 10 feet below grade. Dry sand was poured into the annulus between the cone rods and the casing of the hollow-stem augers. At a depth of about 90 feet, the friction between the rods and sands inside the auger built-up to the point where the augers were being pushed into the ground. Due to this additional resistance it was not possible to push the cone sounding beyond 90 feet to the planned 130-foot depth.



### Laboratory Testing

Water content tests were performed on the samples, and density determinations were performed on the thin-walled tube samples. Unconfined compression tests were performed on selected thin-walled tube samples. The unconfined compressive strength of many samples was estimated with a hand penetrometer test. Atterberg limits tests and sand content tests were performed on several selected samples. The results of these laboratory tests are provided on the boring logs.

In addition, one-dimensional consolidation tests were performed on two selected samples. The results of these tests are plotted and included in **Exploration Results** 

The samples were classified in the laboratory based on visual observation and texture. Additional laboratory testing could be performed to more accurately classify the samples. The soil descriptions presented on the boring logs for native soils are in general accordance with the General Notes and Unified Soil Classification System (USCS), both of which are included in **Exploration Results**. The estimated group symbol for the USCS is also shown on the boring logs, and a brief description of the USCS is included in **Exploration Results**.

Procedural standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

# SITE LOCATION AND EXPLORATION PLANS

### Contents:

Site Location Plan Exploration Plan

### SITE LOCATION

Air Handling Unit - VA Hospital 
Omaha, NE
August 24, 2020 
Terracon Project No. 05205115



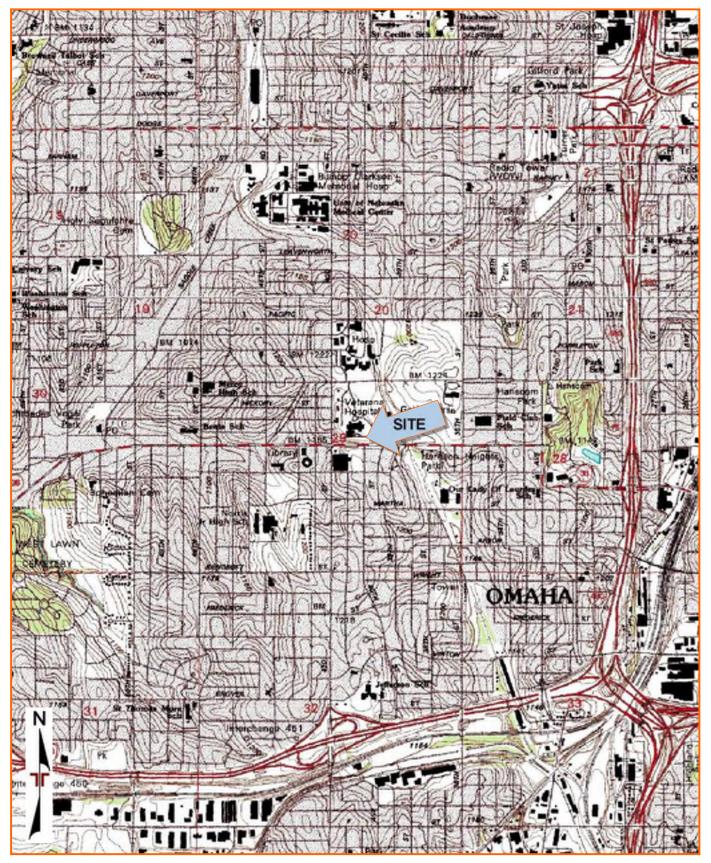



DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

TOPOGRAPHIC MAP IMAGE COURTESY OF THE U.S. GEOLOGICAL SURVEY QUADRANGLES INCLUDE: OMAHA NORTH, NE (1/1/1994) and OMAHA SOUTH, NE (1/1/1994).

### **EXPLORATION PLAN**

Air Handling Unit - VA Hospital 
Omaha, NE
August 24, 2020 
Terracon Project No. 05205115



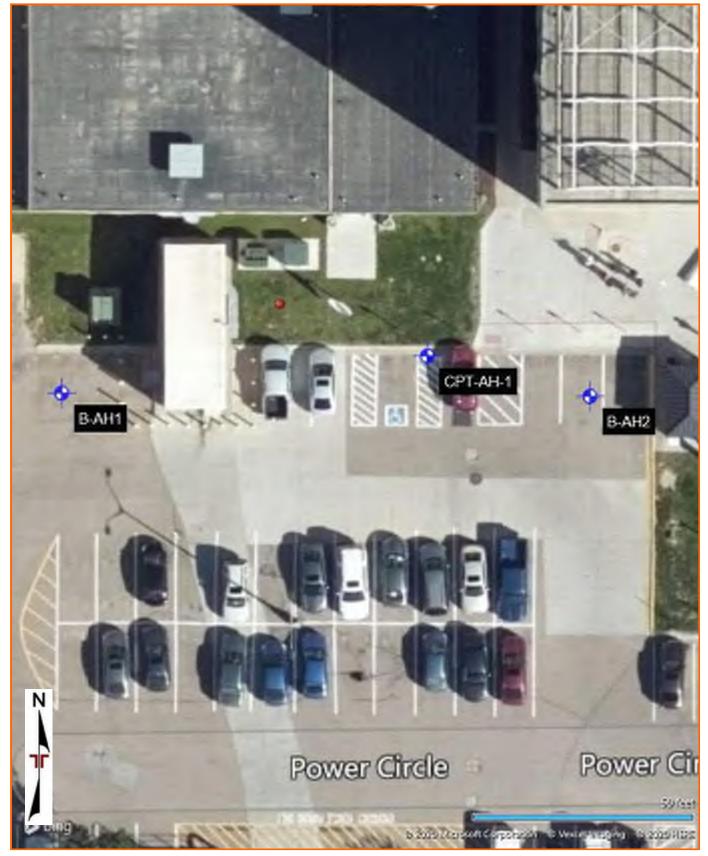
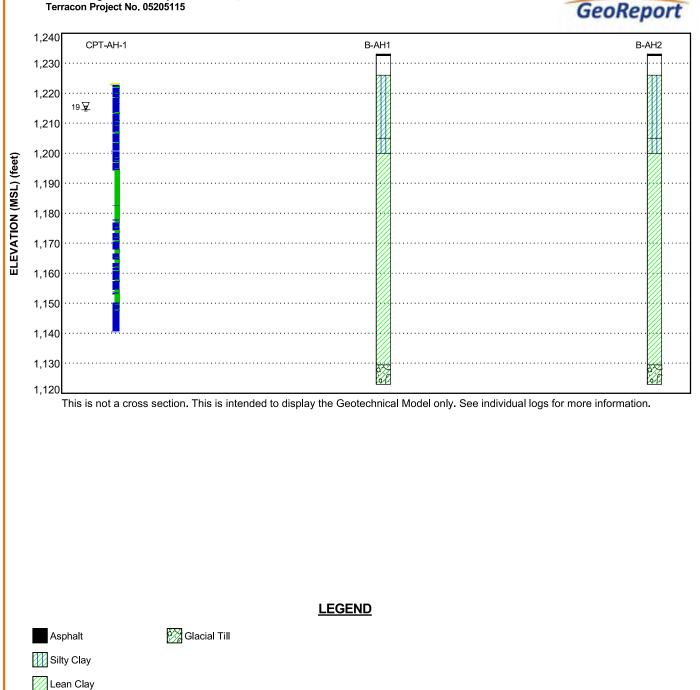



DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS


### **EXPLORATION RESULTS**

### Contents:

GeoModel Boring Logs (B-AH1 and B-AH2) Atterberg Limits Data Summary Consolidation Test Data Plots CPT Data Plot (CPT-AH1) CPT Dissipation Test Data Plot

#### **GEOMODEL**

Air Handling Unit - VA Hospital 📕 Omaha, NE Terracon Project No. 05205115



#### Soil Behavior Type (SBT)



earrow CPT Interpreted Water Depth

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

Terracon

Groundwater levels are temporal. Significant changes are possible over time.

Page 1 of 3

SIT		Plymouth, MN									
211	E: 4101 Woolworth Avenue Omaha, NE										
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 41.2422° Longitude: -95.9742° Surface Elev.: 1233 (Ft.) DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	LABORATORY HP (psf)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	
	0.5 <u>ASPHALTIC CEMENT CONCRETE</u> , (6 inches)1232.5 Potholed to 7 feet below ground surface. Material exposed in sidewalls of pothole appears to be brown clay.	- - - 5-									
	7.0 <u>1226</u> LEAN CLAY (CL), trace sand, brown to light brown, stiff to very stiff	- - - 10-				2500 (HP)		21.4	94	34-22-12	-
		-		$\times$	2-4-4 N=8			20.9			
		- 15 <del>-</del> -		$\overline{\mathbf{X}}$	3-4-5	2000 (HP)		21.3 20.4	91		
		-			N=9	2500 (HP)		21.3	88	33-23-10	-
		20		X	3-5-8 N=13			21.4			
		- - 25-				3000 (HP)		22.6	88		
	28.0 1205 LEAN CLAY (CL), trace sand, light grayish brown, very stiff	- - - 30-				4500 (HP)		23.3	95		
	33.0	-				0.500					
	medium stiff to stiff	- 35- -				3500 (HP)		24.6	92		
		- - 40-				6000 (HP)	2250	22 <u>.</u> 4	97		
	Stratification lines are approximate. In-situ, the transition may be gradual.				Hammer Typ	l e: Auto	matic				L
0-43 band Bori	cement Method: 3½ ft. Hollow Stem Auger; 43½-108½ ft. Wash Bore bigstription of field and lused and additional dat bigstription of field and lused and additional dat See Supporting Informa symbols and abbreviated	aborator a (If any) tion for e	y proce	edures	Notes: Energy transf 1.61 (October Elevation esti rounded to ne	⁻ , 2019). mated fr	om Doug				
	topped with asphalt WATER LEVEL OBSERVATIONS				Boring Started	08-22-2	020	Borin	a Com	pleted: 08-22-	-20
		Boring Started: 08-22-2020         Boring Completed           Drill Rig: 618         Driller: JM & KA									
		) A Cir na, NE			Project No.: 05	205115					

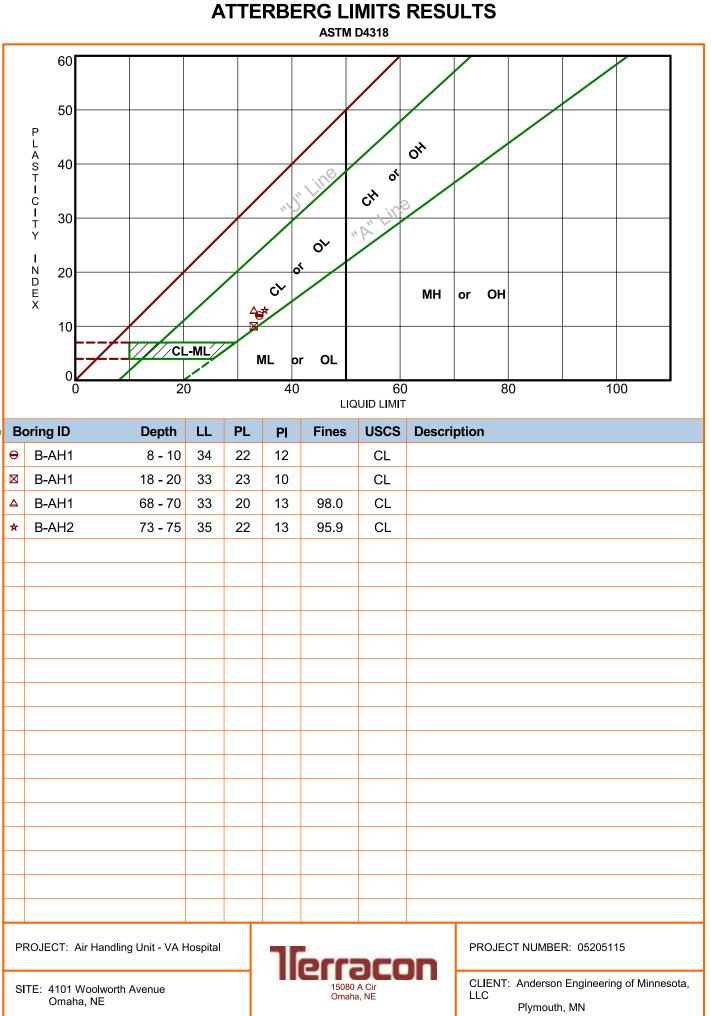
Page 2 of 3

**PROJECT: Air Handling Unit - VA Hospital** CLIENT: Anderson Engineering of Minnesota, LLC Plymouth, MN SITE: 4101 Woolworth Avenue Omaha, NE ATTERBERG LIMITS UNCONFINED COMPRESSIVE STRENGTH (psf) PERCENT FINES LOCATION See Exploration Plan WATER LEVEL OBSERVATIONS SAMPLE TYPE **GRAPHIC LOG** WATER CONTENT (%) LABORATORY HP (psf) DRY UNIT WEIGHT (pcf) FIELD TEST RESULTS DEPTH (Ft.) Latitude: 41.2422° Longitude: -95.9742° LL-PL-PI Surface Elev.: 1233 (Ft.) ELEVATION (Ft.) DEPTH LEAN CLAY (CL), trace sand, light reddish brown, medium stiff to stiff (continued) 4000 2750 22.9 101 (HP) 45 4000 2460 21.4 101 (HP)50 1500 1130 26.4 96 (HP) 55 1500 1720 27.3 95 (HP) 60 27.2 1550 95 65 2500 33-20-13 98 25.2 97 (HP) 70 2810 26.5 98 75 4000 2640 24.4 101 (HP) 80-Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 0-431/2 ft. Hollow Stem Auger; 431/2-1081/2 ft. Wash Bore description of field and laboratory procedures used and additional data (If any). Supporting Information for explanation of See Abandonment Method: symbols and abbreviations. Boring backfilled with auger cuttings and bentonite chips, and topped with asphalt WATER LEVEL OBSERVATIONS Boring Completed: 08-22-2020 Boring Started: 08-22-2020 Not encountered to depth of 431/2 ft raco Drill Rig: 618 Driller: JM & KA 15080 A Cir Project No.: 05205115 Omaha, NE

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT GEO SMART LOG-NO WELL 05205115 AIR HANDLING UNIT GPJ TERRACON DATATEMPLATE GDT 11/6/20

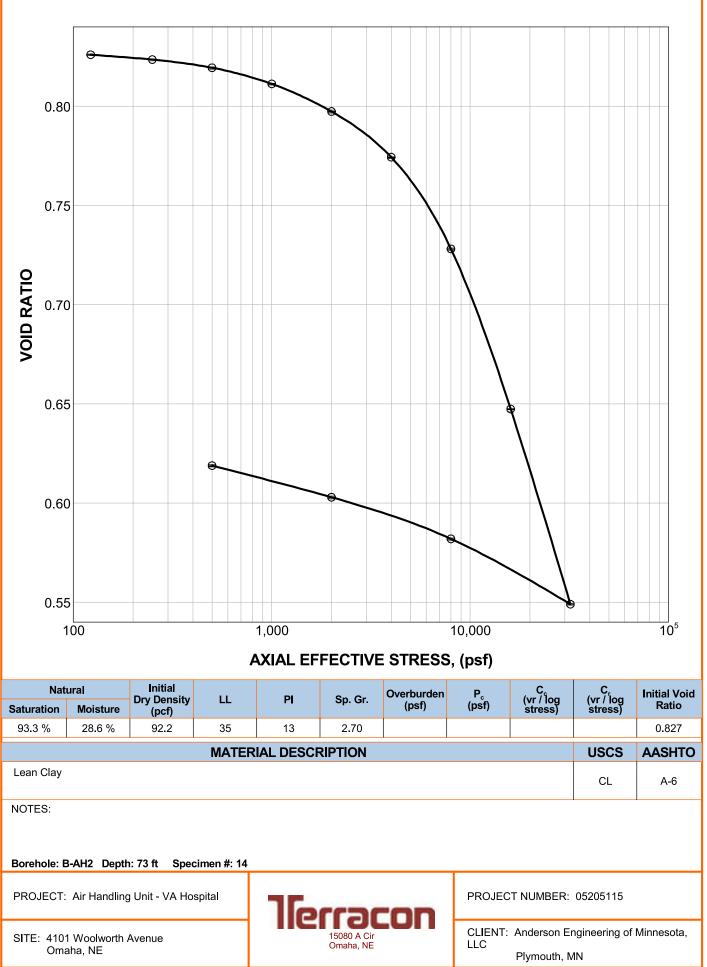
Page 3 of 3 **PROJECT: Air Handling Unit - VA Hospital** CLIENT: Anderson Engineering of Minnesota, LLC Plymouth, MN SITE: 4101 Woolworth Avenue Omaha, NE ATTERBERG LIMITS UNCONFINED COMPRESSIVE STRENGTH (psf) WATER LEVEL OBSERVATIONS PERCENT FINES LOCATION See Exploration Plan SAMPLE TYPE **GRAPHIC LOG** WATER CONTENT (%) LABORATORY HP (psf) DRY UNIT WEIGHT (pcf) FIELD TEST RESULTS DEPTH (Ft.) Latitude: 41.2422° Longitude: -95.9742° LL-PL-PI Surface Elev.: 1233 (Ft.) ELEVATION (Ft.) DEPTH LEAN CLAY (CL), trace sand, light reddish brown, medium stiff to stiff (continued) 4-4-6 26.5 N=10 85 2-3-4 27.7 N=7 90 3-4-7 23.9 N=11 95 becoming very stiff below about 98 feet 6-9-13 25.4 N=22 100 103.5 1129.5 12-18-26 SANDY LEAN CLAY (CL), trace gravel, grayish brown, 15.6 N=44 very stiff to hard 105 9-11-16 17.7 X 110.0 1123 N=27 110 Boring Terminated at 110 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 0-431/2 ft. Hollow Stem Auger; 431/2-1081/2 ft. Wash Bore description of field and laboratory procedures used and additional data (If any) Supporting Information for explanation of Abandonment Method: symbols and abbreviations. Boring backfilled with auger cuttings and bentonite chips, and topped with asphalt WATER LEVEL OBSERVATIONS Boring Completed: 08-22-2020 Boring Started: 08-22-2020 Not encountered to depth of 431/2 ft raco Drill Rig: 618 Driller: JM & KA 15080 A Cir Project No.: 05205115 Omaha, NE

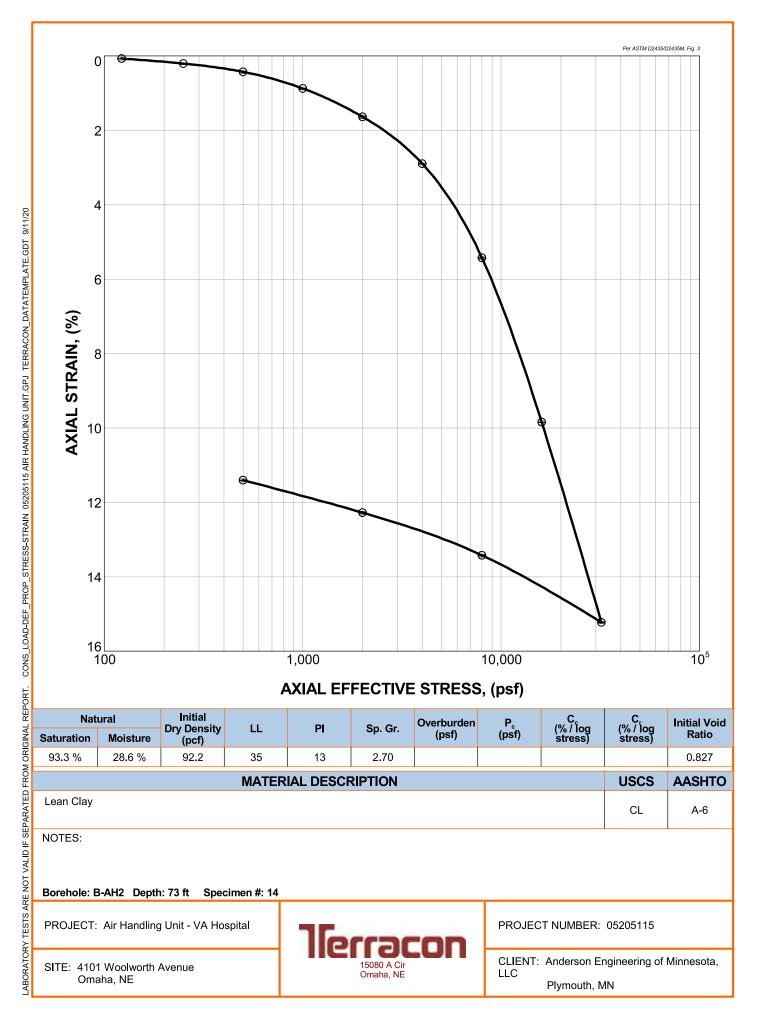
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT GEO SMART LOG-NO WELL 05205115 AIR HANDLING UNIT GPJ TERRACON DATATEMPLATE GDT 11/6/20

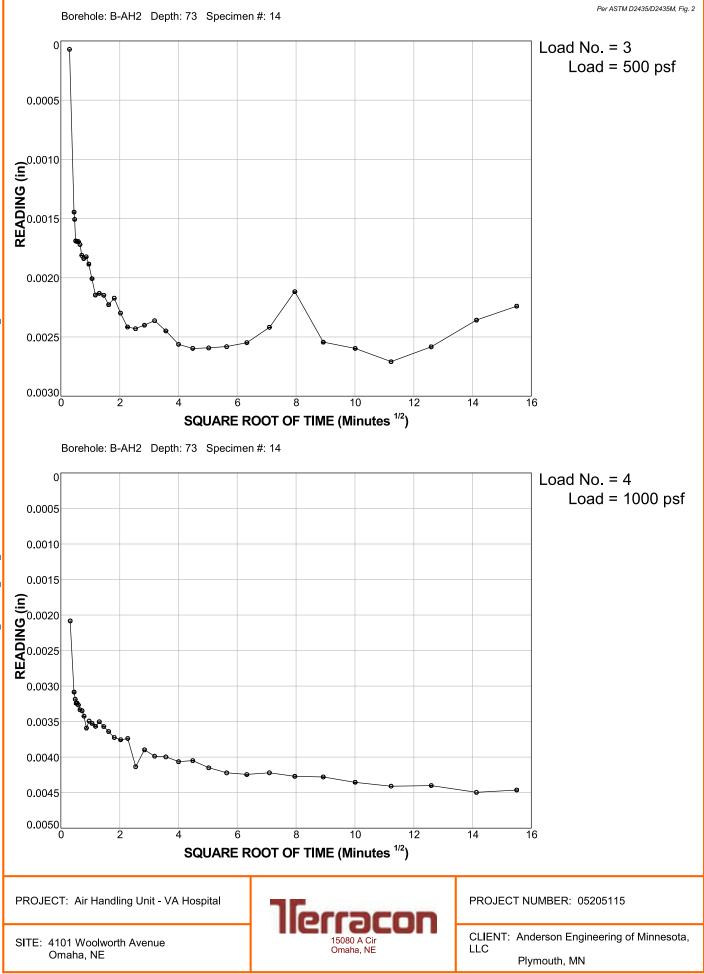

Page 1 of 3

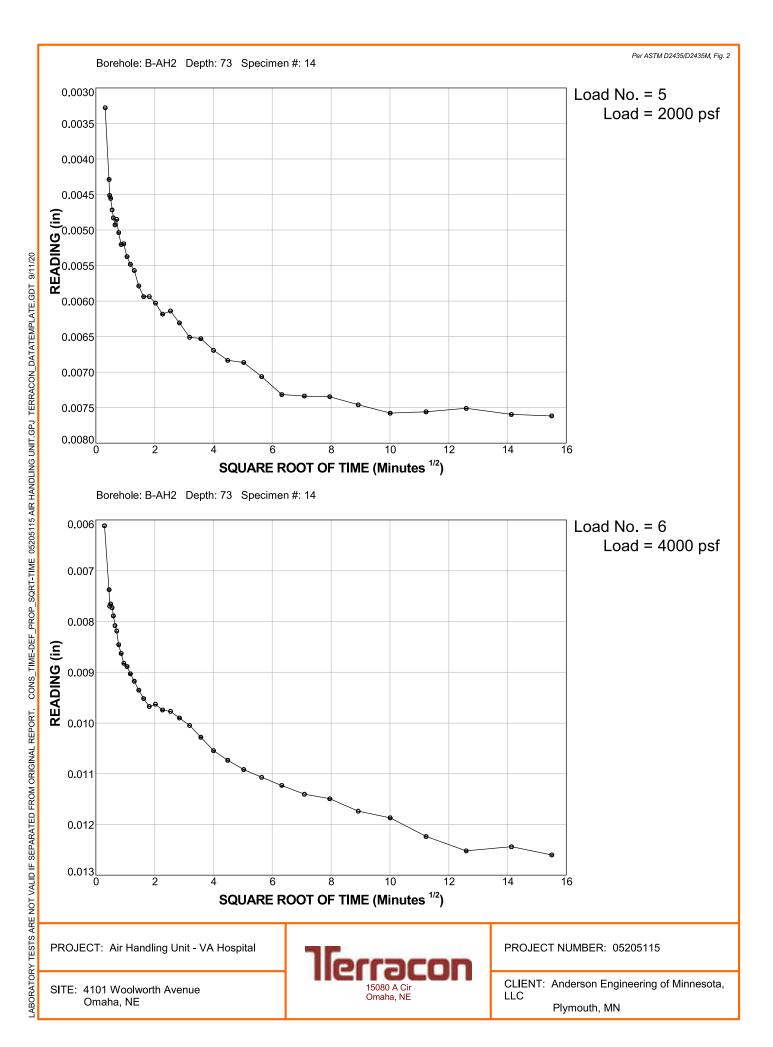
	PROJECT: Air Handling Unit - VA Hospital				CLIENT: Anderson Engineering of Minnesota, LLC Plymouth, MN							
SIT	E: 4101 Woolworth Avenue Omaha, NE											
GRAPH	LOCATION See Exploration Plan Latitude: 41.2422° Longitude: -95.9737° Surfa DEPTH 0.5 <b>ASPHALTIC CEMENT CONCRETE</b> , (6 inches)	ce Elev.: 1233 (Ft.) ELEVATION (Ft.) ~1232.5		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	LABORATORY HP (psf)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	
	Potholed to 7 feet below ground surface. Materia exposed in sidewalls of pothole appears to be briclay.	1	-									
	7.0 LEAN CLAY (CL), trace sand, brown to light brov	<u>1226</u> vn, stiff	5 <del>-</del> -									
	to very stiff		_ 10	×		3-3-4	6500 (HP)		22.2	96		
				e	×	N=7	4000 (HP)		22.5 20.9	95		
			15— _ _		X	4-6-7 N=13			20.7			
			 20			3-5-6	5500 (HP)		21.4 23.1	97		
			- - 25-			N=11	_		23.1			
	28.0 LEAN CLAY (CL), trace sand, light grayish browr	1205 n, very		-			3500 (HP) 4500		22.2 24.2	94 93		
	stiff		30— 				<u>((HP)</u>					
	33.0 LEAN CLAY (CL), trace sand, light reddish brown medium stiff to stiff	<u>1200</u> 1,	- - 35- -				4000 (HP)		23.7	97		
	very stiff layer at about 39 feet		- - 40-					5980	21.2	103		
	Stratification lines are approximate. In-situ, the transition may be	gradual.				Hammer Ty	pe: Auto	matic				
Advancement Method: 0-431/2 ft. Hollow Stem Auger; 431/2-1081/2 ft. Wash Bore Abandonment Method: See Supporting Inform Symbols and abbreviat		cription of field and la d and additional data Supporting Informat	aborator a (If any). tion for e	y proce	dures	Notes: Energy trans 1.61 (Octobe Elevation est rounded to no	r, 2019). imated fr	om Doug				
	ng backfilled with auger cuttings and bentonite chips, topped with asphalt					_			1_			
	WATER LEVEL OBSERVATIONS           Not encountered to depth of 43½ ft			Boring Started: 08-15-2020 Boring Compl Drill Rig: 618 Driller: JM & A								

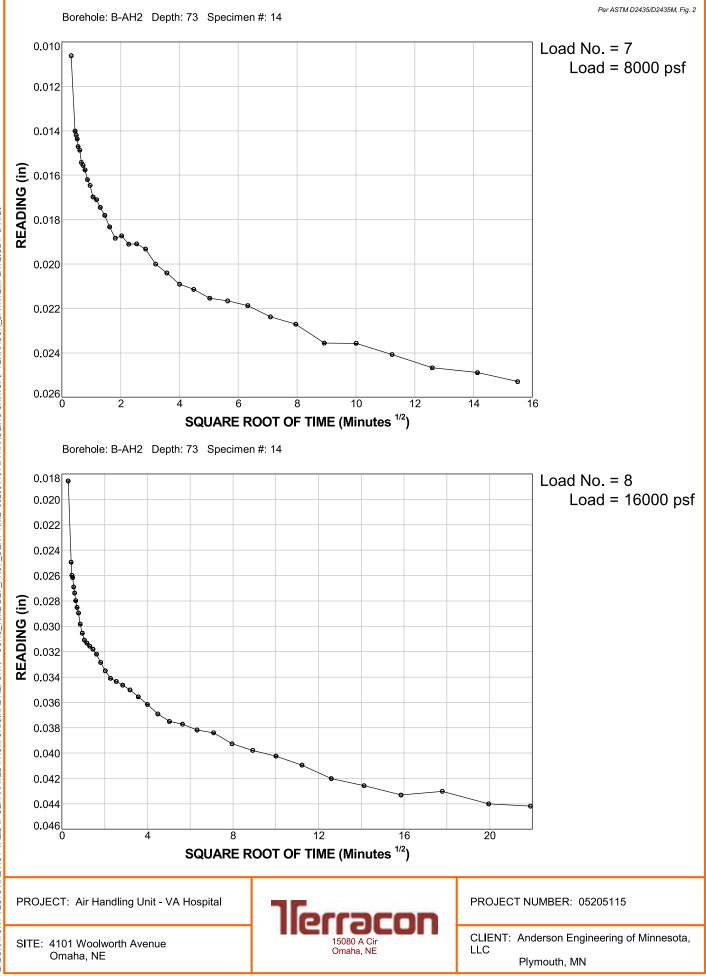
	BORING LOG NO. B-AH2 Page 2 of 3												
PR	PROJECT: Air Handling Unit - VA Hospital			CLIENT: Anderson Engineering of Minnesota, LLC Plymouth, MN									
SIT	E: 4101 Woolworth Avenue Omaha, NE												
90	LOCATION See Exploration Plan		(:	/EL	ΡE	t.o.	RҮ	ED IVE (psf)	(%	۲ cf)	ATTERBERG LIMITS	NES	
GRAPHIC LOG		Surface Elev.: 1233 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	LABORATORY HP (psf)	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES	
	DEPTH LEAN CLAY (CL), trace sand, light reddish b medium stiff to stiff (continued)	ELEVATION (Ft.) rown,		-									
			_				4000	3300	24.1	98			
			45-				(HP)	3300	24.1	90			
			-										
	soft layer at about 49 feet							870	25.8	92			
			_										
			_ 55-					1170	28.3	95			
			-										
			_ 60—					1980	27.5	97			
			-										
			- - 65-					1630	26.3	95			
			- 05										
							2000 (HP)	1160	28.5	93			
			70 -										
			-				3000 (HP)		26.1	96	35-22-13	96	
			75- -										
			-			2-4-5			07.0				
//////	Stratification lines are approximate. In-situ, the transition m	ay be gradual.	80-		$\wedge$	N=9 Hammer Typ	De: Auto	matic	27.0				
Advan 0-43	Advancement Method: 0-431/2 ft. Hollow Stem Auger; 431/2-1081/2 ft. Wash Bore used and additional dat			y proc	es for a edures	Notes:							
Bori	onment Method: ng backfilled with auger cuttings and bentonite chips, topped with asphalt	<ul> <li>See Supporting Information Symbols and abbreviation</li> </ul>	tion for e ons.	xplana	ation of								
	WATER LEVEL OBSERVATIONS				_	Boring Started:	08-15-2	2020	Borir	ng Com	pleted: 08-15-	2020	
	Not encountered to depth of 43½ ft	llerra	70			Drill Rig: 618			-	er: JM 8			
		) A Cir ha, NE			Project No.: 05	205115							

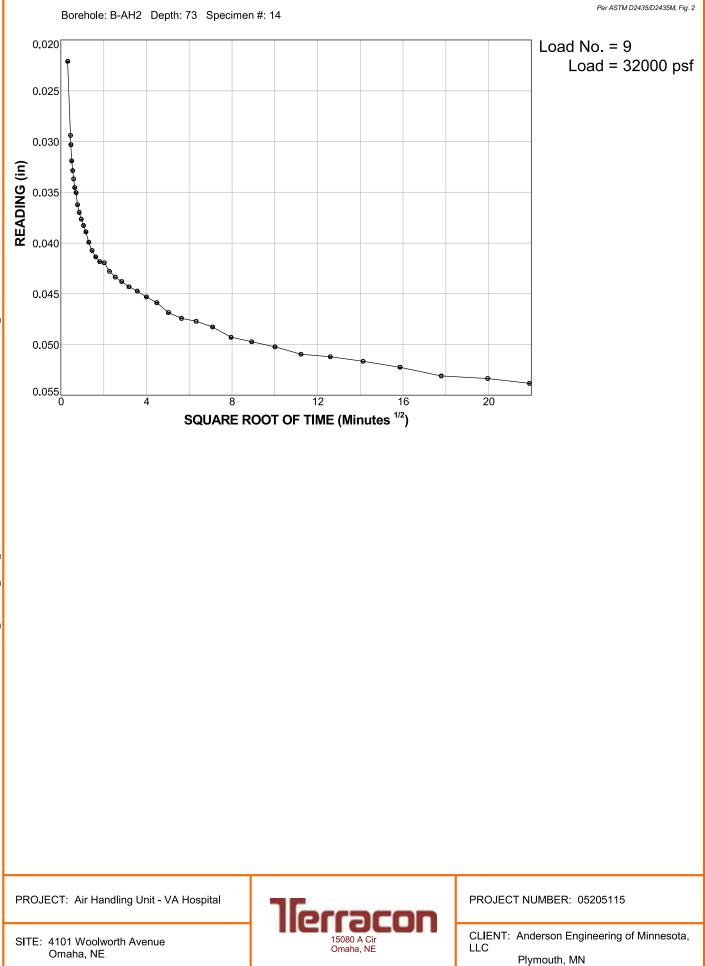

Page 3 of 3 **PROJECT: Air Handling Unit - VA Hospital** CLIENT: Anderson Engineering of Minnesota, LLC Plymouth, MN SITE: 4101 Woolworth Avenue Omaha, NE ATTERBERG LIMITS UNCONFINED COMPRESSIVE STRENGTH (psf) PERCENT FINES LOCATION See Exploration Plan WATER LEVEL OBSERVATIONS SAMPLE TYPE **GRAPHIC LOG** WATER CONTENT (%) LABORATORY HP (psf) DRY UNIT WEIGHT (pcf) FIELD TEST RESULTS DEPTH (Ft.) Latitude: 41.2422° Longitude: -95.9737° LL-PL-PI Surface Elev.: 1233 (Ft.) ELEVATION (Ft.) DEPTH LEAN CLAY (CL), trace sand, light reddish brown, medium stiff to stiff (continued) 2-4-4 25.8 N=8 85 2-4-4 24.8 N=8 90 4-6-8 25.1 N=14 95 becoming very stiff below about 98 feet 5-7-11 26.6 N=18 100 103.5 1129.5 7-20-20 SANDY LEAN CLAY (CL), trace gravel, grayish brown, 19.5 N=40 very stiff to hard 105 12-15-21 17.9 X 110.0 1123 N=36 110 Boring Terminated at 110 Feet Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: Notes: See Exploration and Testing Procedures for a 0-431/2 ft. Hollow Stem Auger; 431/2-1081/2 ft. Wash Bore description of field and laboratory procedures used and additional data (If any) Supporting Information for explanation of Abandonment Method: symbols and abbreviations. Boring backfilled with auger cuttings and bentonite chips, and topped with asphalt WATER LEVEL OBSERVATIONS Boring Completed: 08-15-2020 Boring Started: 08-15-2020 Not encountered to depth of 431/2 ft raco Drill Rig: 618 Driller: JM & AP 15080 A Cir Project No.: 05205115 Omaha, NE

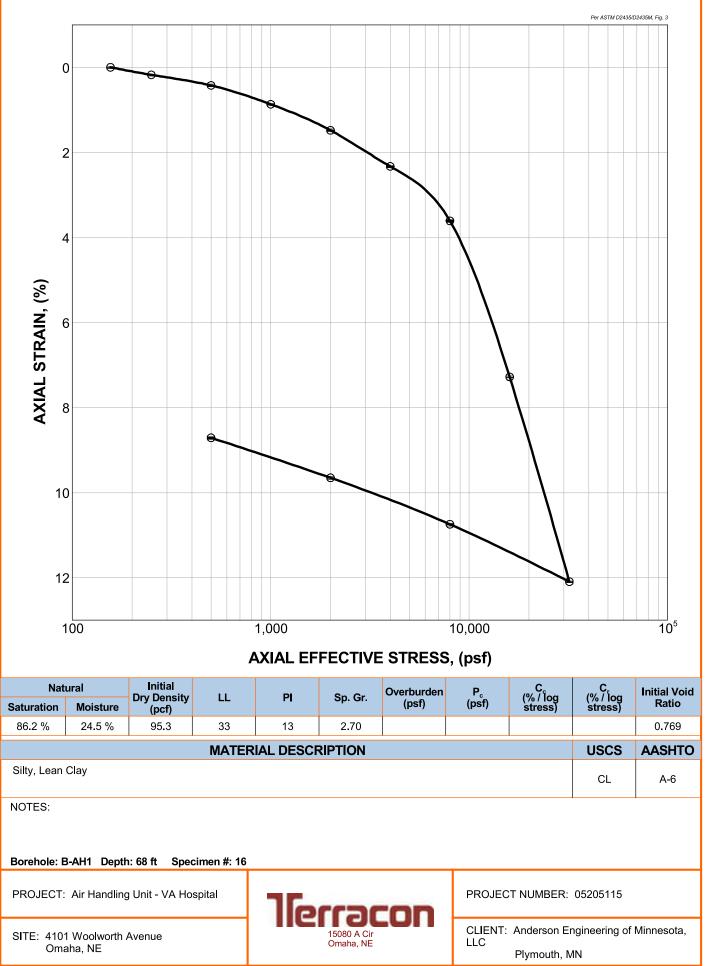

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT GEO SMART LOG-NO WELL 05205115 AIR HANDLING UNIT GPJ TERRACON DATATEMPLATE GDT 11/6/20



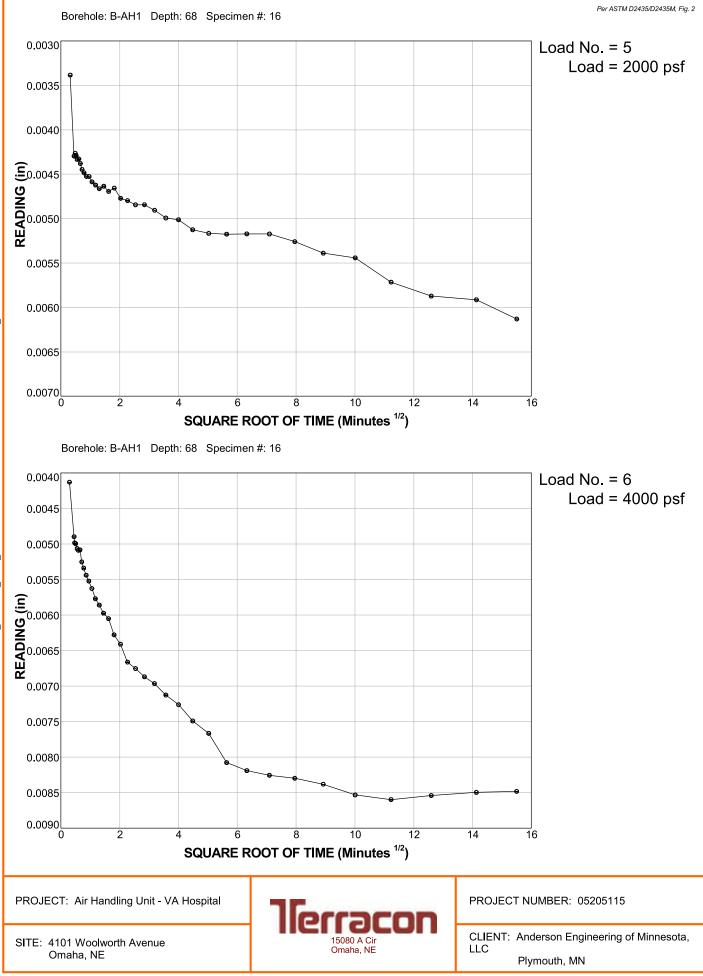


LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ATTERBERG LIMITS 05205115 AIR HANDLING UNIT GPJ TERRACON DATATEMPLATE.GDT 11/2/20

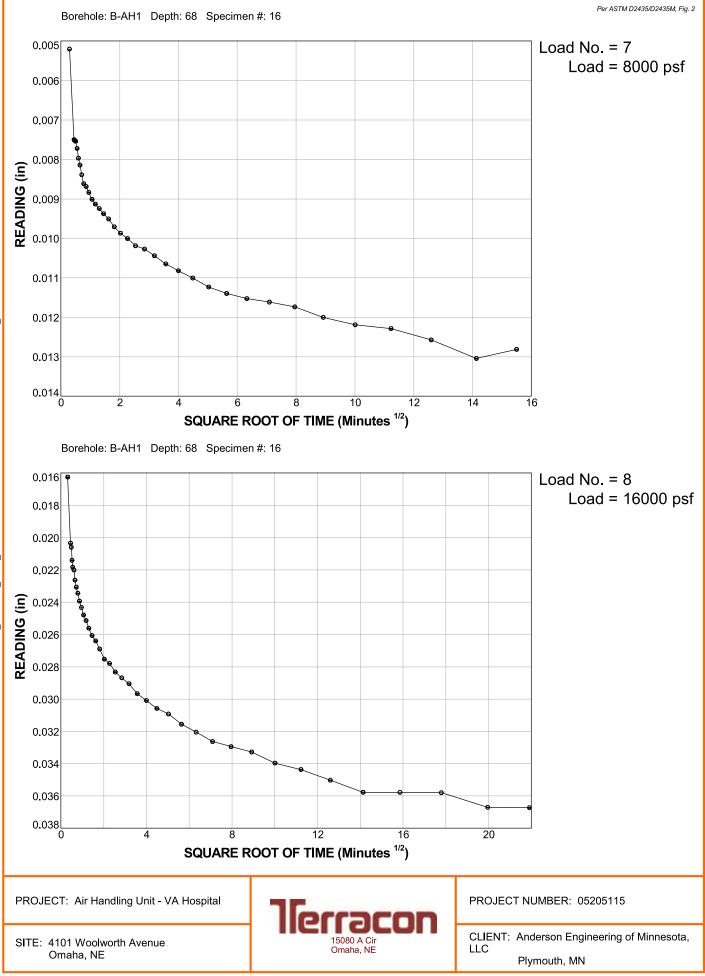


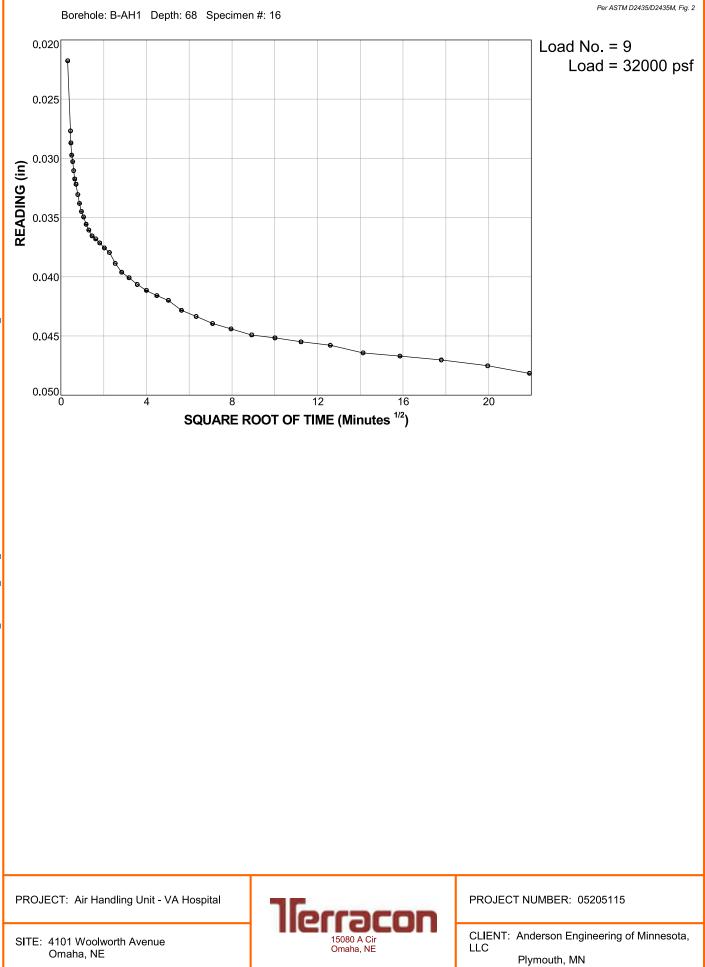



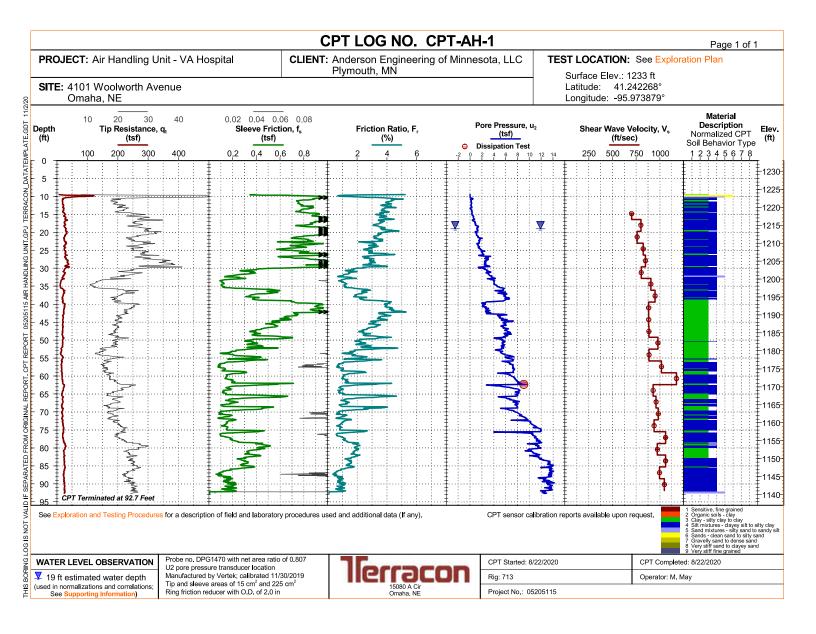


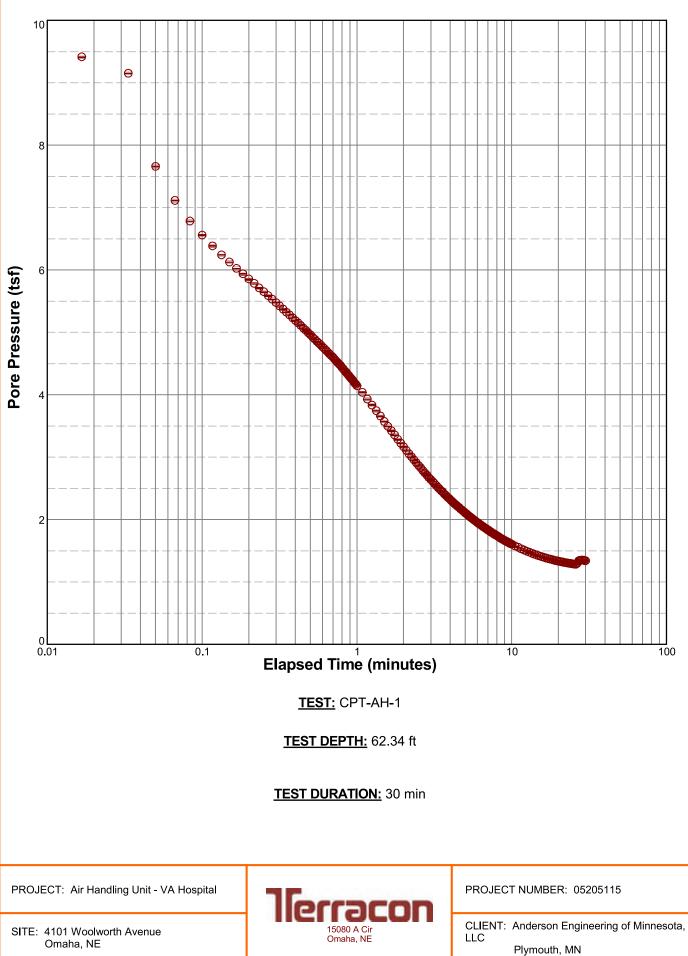





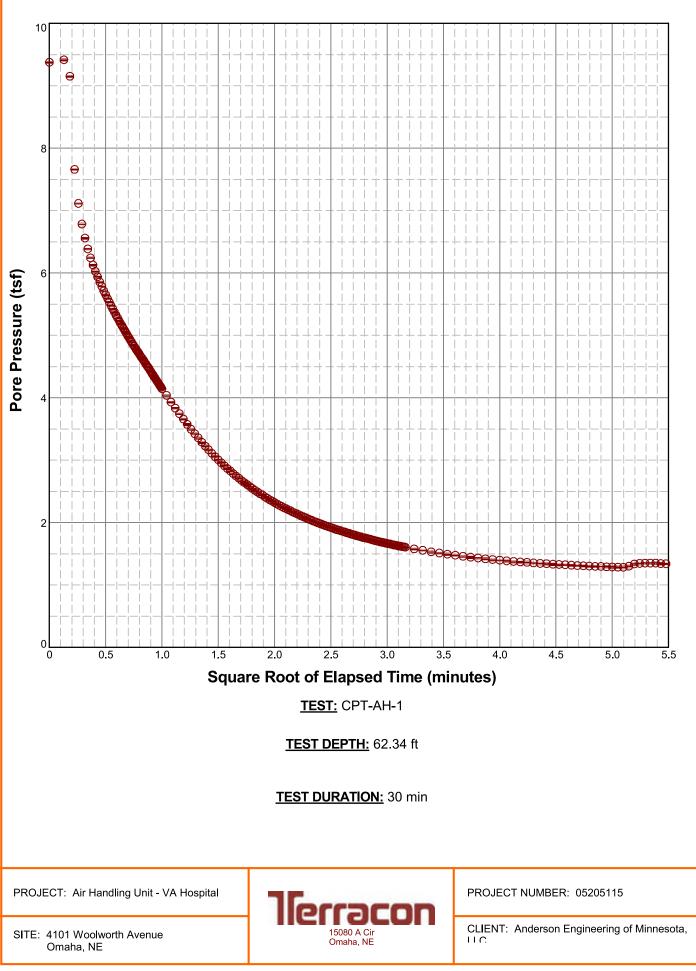






LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. CONS_TIME-DEF_PROP_SQR1-TIME 05205115 AIR HANDLING UNIT GPJ TERRACON_DATATEMPLATE.GDT 9/11/20








# PORE PRESSURE DISSIPATION TEST RESULTS

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. CPT PORE PRESSURE DISSIPATION (LOG) 05205/15 AIR HANDLING UNIT GPJ TERRACON_DATATEMPLATE.GDT 1/12/20



# PORE PRESSURE DISSIPATION TEST RESULTS

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. CPT PORE PRESSURE DISSIPATION (T⁴⁰.5) 05205115 AIR HANDLING UNIT GPJ TERRACON_DATATEMPLATE.GDT 11/2/20

### SUPPORTING INFORMATION

### Contents:

General Notes Unified Soil Classification System General Notes (CPT)

#### **GENERAL NOTES** DESCRIPTION OF SYMBOLS AND ABBREVIATIONS Air Handling Unit - VA Hospital Omaha, NE Terracon Project No. 05205115



SAMPLING	WATER LEVEL	FIELD TESTS			
	_── Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)		
Shelby Tube Standard Penetration Test	Water Level After a Specified Period of Time	(HP)	Hand Penetrometer		
	────────────────────────────────────	(T)	Torvane		
	Cave In Encountered	(DCP)	Dynamic Cone Penetrometer		
	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level		Unconfined Compressive Strength		
			Photo-Ionization Detector		
	observations.	(OVA)	Organic Vapor Analyzer		

#### **DESCRIPTIVE SOIL CLASSIFICATION**

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

#### LOCATION AND ELEVATION NOTES

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

STRENGTH TERMS										
RELATIVE DENSITY	RELATIVE DENSITY OF COARSE-GRAINED SOILS CONSISTENCY OF FINE-GRAINED SOILS									
(More than 50%) Density determined by	retained on No. 200 sieve.) / Standard Penetration Resistance	(50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manua procedures or standard penetration resistance								
Descriptive Term Standard Penetration or (Density) N-Value Blows/Ft.		Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (psf)	Standard Penetration or N-Value Blows/Ft.						
Very Loose	0 - 3	Very Soft	less than 500	0 - 1						
Loose	4 - 9	Soft	500 to 1,000	2 - 4						
Medium Dense	10 - 29	Medium Stiff	1,000 to 2,000	4 - 8						
Dense	30 - 50	Stiff	2,000 to 4,000	8 - 15						
Very Dense	> 50	Very Stiff	4,000 to 8,000	15 - 30						
		Hard	> 8,000	> 30						

#### **RELEVANCE OF SOIL BORING LOG**

The soil boring logs contained within this document are intended for application to the project as described in this document. Use of these soil boring logs for any other purpose may not be appropriate.

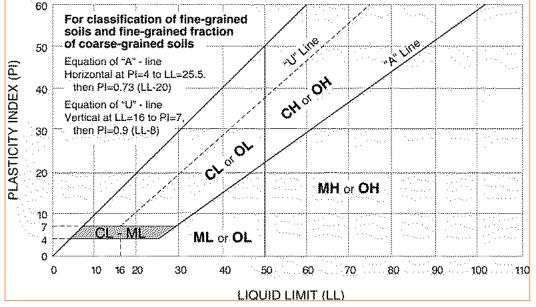
### UNIFIED SOIL CLASSIFICATION SYSTEM



		Soil Classification					
Criteria for Assign	ing Group Symbols	and Group Names	Using Laboratory	Fests A	Group Symbol	Group Name ^B	
		Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel F	
	Gravels: More than 50% of	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or 0	Cc>3.0] <mark>E</mark>	GP	Poorly graded gravel F	
	coarse fraction retained on No. 4 sieve	Gravels with Fines:	Fines classify as ML or N	ЛΗ	GM	Silty gravel F, G, H	
Coarse-Grained Soils:		More than 12% fines ^C	Fines classify as CL or C	н	GC	Clayey gravel ^{F, G, H}	
More than 50% retained on No. 200 sieve		Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand	
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines D	Cu < 6 and/or [Cc<1 or 0	Cc>3.0] <mark>⋿</mark>	SP	Poorly graded sand	
		Sands with Fines:	Fines classify as ML or M	ЛΗ	SM	Silty sand ^{G, H, I}	
		More than 12% fines ^D	Fines classify as CL or C	Н	SC	Clayey sand ^{G, H, I}	
		Incompation	PI > 7 and plots on or ab	ove "A"	CL	Lean clay ^{K, L, M}	
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI < 4 or plots below "A"	line ^J	ML	Silt ^{K, L, M}	
		Organic:	Liquid limit - oven dried	< 0.75	OL	Organic clay K, L, M, N	
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	< 0.75	UL	Organic silt ^{K, L, M, O}	
No. 200 sieve		Inorganic:	PI plots on or above "A"	line	СН	Fat clay ^{K, L, M}	
	Silts and Clays:	morganic.	PI plots below "A" line		MH	Elastic Silt K, L, M	
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay K, L, M, P	
		Organic.	Liquid limit - not dried	< 0.75	ОП	Organic silt K, L, M, Q	
Highly organic soils:	olor, and organic odor		PT	Peat			
A Based on the material passing the 3-inch (75-mm) sieve.			^H If fines are organic, add "with organic fines" to group name.				
If field sample contained	If soil contains $> 15\%$ gravel, add "with gravel" to group name						

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.


$$D_{60}/D_{10}$$
 Cc =  $\frac{(D_{30})^2}{D \times D}$ 

ECu =

- D₁₀ x D₆₀
- ^F If soil contains  $\geq$  15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- If soil contains  $\geq$  15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- KIf soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- $\mathbb{N}$  PI  $\geq$  4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- QPI plots below "A" line.



Responsive Resourceful Reliable

# CPT GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

Air Handling Unit - VA	Hospital 📕 Omaha,	NE		nerrocorr				
Terracon Project No. 0	5205115			GeoReport				
		DESCRIPTION OF GEOTEC	HNICAL CORRELA	ΤΙΟ				
$\label{eq:product} \begin{array}{l} \hline \textbf{DESCRIPTION OF MEASUREMENTS}\\ \hline \textbf{AND CALIBRATIONS}\\ \hline \textbf{To be reported per ASTM D5778;}\\ \hline \textbf{Uncorrected Tip Resistance, q}_c\\ \hline \textbf{Measured force acting on the cone}\\ divided by the cone's projected area\\ \hline \textbf{Corrected Tip Resistance, q}_t\\ \hline Correc$		Normalized Tip Resistance, Q _{in} $Q_{in} = ((q_t - \sigma_{VD})/P_a)(P_a'\sigma'_{VD})^n$ $n = 0.381(l_c) + 0.05(\sigma'_{VO}/P_a) - 0.15$ Over Consolidation Ratio, OCR OCR (1) = 0.25(Q _{in} ) ^{1,25} OCR (2) = 0.33(Q _{in} ) Undrained Shear Strength, S _u $S_u = Q_{in} \times \sigma'_{VO}/N_{kt}$ $N_{kt}$ is a soil-specific factor (shown on S _u plot) Sensitivity, S _t $S_t = (q_t - \sigma_{VO}/N_{kt}) \times (1/f_s)$ Effective Friction Angle, $\phi'$ $\phi'(1) = tan^3(0.373[log(q_t/\sigma'_{VD}) + 0.29])$ $\phi'(2) = 17.6 + 11[log(Q_{in})]$ Unit Weight, $\gamma$ $\gamma = (0.27[log(F_t)]+0.36[log(q_t/atm)]+1.236) \times \gamma_{water}$ $\sigma_{VO}$ is taken as the incremental sum of the unit weights Small Strain Shear Modulus, G ₀ $G_0(2) = 0.015 \times 10^{(0.55/c+1.88)}(q_t - \sigma_{VD})$	$\label{eq:solution} \begin{aligned} &\text{Soil Behavior Type Index, I}_{c} = [(3.47 + \log(Q_{tn})^2 + (\log(F_r) + 1.22)^2]^{0.5} \\ &\text{SPT N}_{60} \\ &\text{N}_{60} = (q_r/atm) / 10^{(1.1288 - 0.28171c)} \\ &\text{Elastic Modulus, E}_s (assumes q/q_{ultmate} \sim 0.3, i.e. FS = 3) \\ &\text{E}_s (1) = 2.6 \forall G_0 \text{ where } \Psi = 0.56 - 0.33 \log Q_{in, clean sand} \\ &\text{E}_s (2) = G_0 \\ &\text{E}_s (3) = 0.015 \times 10^{(0.551c + 1.68)} (q_t - \sigma_{V0}) \\ &\text{E}_s (4) = 2.5 q_t \\ &\text{Constrained Modulus, M} \\ &\text{M} = \alpha_{n} (q_t - \sigma_{V0}) \\ &\text{For } I_c > 2.2 (fine-grained soils) \\ &\alpha_M = Q_n (with maximum of 14 \\ &\text{For } I_c < 2.2 (coarse-grained soils) \\ &\alpha_M = 0.0188 \times 10^{(0.551c + 1.68)} \\ &\text{Hydraulic Conductivity, k} \\ &\text{For } 1.0 < I_c < 3.27 \ k = 10^{(0.952 - 3.04tc)} \\ &\text{For } 3.27 < I_c < 4.0 \ k = 10^{(4.52 - 1.371c)} \\ &\text{Relative Density, D} \\ &D_r = (Q_m / 350)^{0.5} \times 100 \end{aligned}$					
Frictional force acting o divided by its surface ar Normalized Friction Ratio, The ratio as a percenta accounting for overburd <u>To be reported per ASTM D740</u> Shear Wave Velocity, V _s Measured in a Seismic direct measure of soil si	ea F, ge of f _s to q _t , en pressure <u>00, if collected:</u> CPT and provides	<b>REPORTED PARAMETERS</b> CPT logs as provided, at a minimum, report the data as required by ASTM D5778 and ASTM D7400 (if applicable). This minimum data include q _i , f _s , and u. Other correlated parameters may also be provided. These other correlated parameters are interpretations of the measured data based upon published and reliable references, but they do not necessarily represent the actual values that would be derived from direct testing to determine the various parameters. To this end, more than one correlation to a given parameter may be provided. The following chart illustrates estimates of reliability associated with correlated parameters based upon the literature referenced below.						
	1	<b>RELATIVE RELIABILITY OF CPT CORRELAT</b>	IONS					
Permeability, k	Sand	Clay and Silt						
Constrained Modulus, M	5	Clay and Silt Sand	* im	proves with seismic $V_s$ measurements				
Unit Weight, γ		Clay and Silt Sand		ability of CPT-predicted N _{s0} values as				
Effective Friction Angle,  ¢'			Com Per to ti	nmonly measured by the Standard etration Test (SPT) is not provided due ne inherent inaccuracy associated with				
Sensitivity, S _t		Clay and Silt	the	SPT test procedure.				
Undrained Shear Strength, $S_u$		Clay and Silt						

Relative Density, D,

Over Consolidation Ratio, OCR

Small Strain Modulus, G₀* and Elastic Modulus, E_s*

-

#### WATER LEVEL

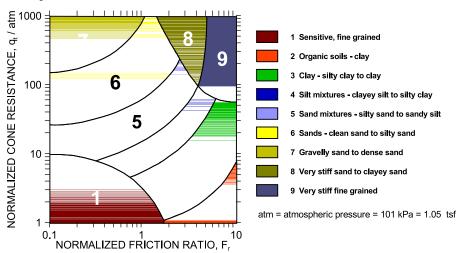
The groundwater level at the CPT location is used to normalize the measurements for vertical overburden pressures and as a result influences the normalized soil behavior type classification and correlated soil parameters. The water level may either be "measured" or "estimated:" *Measured - Depth to water directly measured in the field* 

Sand

Estimated - Depth to water interpolated by the practitioner using pore pressure measurements in coarse grained soils and known site conditions While groundwater levels displayed as "measured" more accurately represent site conditions at the time of testing than those "estimated," in either case the groundwater should be further defined prior to construction as groundwater level variations will occur over time.

Clay and S

#### **CONE PENETRATION SOIL BEHAVIOR TYPE**


The estimated stratigraphic profiles included in the CPT logs are based on relationships between corrected tip resistance ( $q_t$ ), friction resistance ( $f_s$ ), and porewater pressure ( $u_2$ ). The normalized friction ratio ( $F_r$ ) is used to classify the soil behavior type.

Sand

Low Reliability

Clay and Silt Sand

Typically, silts and clays have high F, values and generate large excess penetration porewater pressures; sands have lower F,'s and do not generate excess penetration porewater pressures. The adjacent graph (Robertson *et al.*) presents the soil behavior type correlation used for the logs. This normalized SBT chart, generally considered the most reliable, does not use pore pressure to determine SBT due to its lack of repeatability in onshore CPTs.



⊳

**High Reliability** 

llerracon

#### **REFERENCES**

Kulhawy, F.H., Mayne, P.W., (1997). "Manual on Estimating Soil Properties for Foundation Design," Electric Power Research Institute, Palo Alto, CA. Mayne, P.W., (2013). "Geotechnical Site Exploration in the Year 2013," Georgia Institue of Technology, Atlanta, GA. Robertson, P.K., Cabal, K.L. (2012). "Guide to Cone Penetration Testing for Geotechnical Engineering," Signal Hill, CA. Schmertmann, J.H., (1970). "Static Cone to Compute Static Settlement over Sand," *Journal of the Soil Mechanics and Foundations Division*, 96(SM3), 1011-1043.

CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

#### CERTIFICATIONS PAGE

#### Architect and Coordinating Professional:

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Architect under the laws of the state of Nebraska. I, Thomas Olesak, am the Coordinating Professional on the Construct Air Handling Tower project.

Typed or Printed Name: Thomas Allen Olesak License Number: A-5077 License Expiration Date: 12/31/2022



#### Professional Engineer: (Civil)

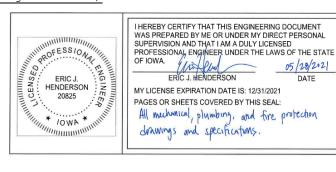
I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of Minnesota.

Typed or Printed Name: Michael B. Brandvold Signature: M. Buddh License Number: 41258 License Expiration Date: 06/30/2022

#### Professional Engineer: (Structural)

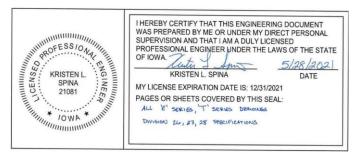
Typed or Printed Name: Alex D. Carnahan License Number: 21414 License Expiration Date: 12/31/2022

SEAL	I hereby certify that this engineering documents was prepared by me or under my direct personal supervision and that I am a duly licensed Professionaal Engineer under the laws of the State of Iowa.
ALEXANDER D. CARNAHAN 21414	(signature) 5/25/21 (signature) (date) Printed or typed name Al-RA Carhahan License number 21414 My license renewal date is December 31, 2022
Western TOWA	Pages or sheets covered by this seal; ALL STRUCTURAL SHEETS AND SPECIFICATIONS


CONSTRUCT AIR HANDLING TOWER NWI HEALTHCARE SYSTEM OMAHA, NE

636-18-303 05-28-21 100% CONSTRUCTION DOCUMENTS

> 05/20/2021 DATE


#### Professional Engineer: (Mechanical, Plumbing and Fire)

Typed or Printed Name: Eric J. Henderson License Number: 20825 License Expiration Date: 12/31/2021



#### Professional Engineer: (Electrical and Technology)

Typed or Printed Name: Kristin Spina License Number: 21081 License Expiration Date: 12/31/2021



- - - END - - -