

DEPARTMENT OF VETERANS AFFAIRS CONTRACT SPECIFICATIONS FOR:

INSTALL EXHAUST FAN DENTAL LAB

PROJECT NUMBER: 656-22-348

AT: VA HEALTH CARE CENTER

4801 VETERANS DRIVE ST. CLOUD MN 56303

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
00 01 10	Table of Contents	04-22
00 01 15	List of Drawing Sheets	05-20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	02-22
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	11-21
01 33 23	Shop Drawings, Product Data, and Samples	06-21
01 35 26	Safety Requirements	11-21
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 74 19	Construction Waste Management	04-22
01 81 13	Sustainable Construction Requirements	10-17
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	08-17
02 12 00	35	00 17
	DIVISION 03 - CONCRETE - NOT USED	
	DIVISION 04 - MASONRY - NOT USED	
	DIVISION 05 - METALS - NOT USED	
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	10-17
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 60 00	Flashing and Sheet Metal	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	04-21
	DIVISION 08 - OPENINGS - NOT USED	
	DIVISION 09 - FINISHES	
09 06 00	Schedule for Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 51 00	Acoustical Ceilings	12-18
09 65 13	Resilient Base and Accessories	01-21
09 91 00	Painting	01-21
0, 1, 00	Taineing	01 21
	DIVISION 10 - SPECIALTIES - NOT USED	

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 11 - EQUIPMENT - NOT USED	
	DIVISION 12 - FURNISHINGS - NOT USED	
	DIVISION 13 - SPECIAL CONSTRUCTION - NOT USED	
	DIVISION 14 - CONVEYING EQUIPEMENT - NOT USED	
	DIVISION 21 - FIRE SUPPRESSION - NOT USED	
	DIVISION 22 - PLUMBING - NOT USED	
	D-1170701 00 11717110 117110 117110 1171	
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
23 05 11	CONDITIONING (HVAC) Common Work Results for HVAC	04-22
23 05 11	Noise and Vibration Control for HVAC Piping and	02-20
20 00 41	Equipment	02.20
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 09 23	Direct-Digital Control System for HVAC	08-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
	DIVISION 25 - INTEGRATED AUTOMATION - NOT USED	
06.05.11	DIVISION 26 - ELECTRICAL	01 16
26 05 11 26 05 19	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables Raceway and Boxes for Electrical Systems	01-17
26 29 21	Enclosed Switches and Circuit Breakers	01-18
20 29 21	Enclosed Switches and Circuit Bleakers	01-17
	DIVISION 27 - COMMUNICATIONS - NOT USED	
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY - NOT USED	
_		
	DIVISION 31 - EARTHWORK - NOT USED	
	DIVISION 32 - EXTERIOR IMPROVEMENTS - NOT USED	
	DIVISION 33 - UTILITIES - NOT USED	
	DIVISION 34 - TRANSPORTATION - NOT USED	
	DIVISION 48 - Electrical Power Generation - NOT USED	

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	<u>Title</u>
G-101	Cover
G-102	GENERAL - 1
A-101	ARCHITECTUAL - 1
M-101	MECHANICAL - 1
M-102	MECHANICAL - 2
M-103	MECHANICAL - 3
M-104	MECHANICAL - 4
M-601	MECHANICAL - 601
M-701	MECHANICAL - 701

- - - E N D - - -

SECTION 01 00 00 GENERAL REQUIREMENTS TABLE OF CONTENTS

1.1 SAFETY REQUIREMENTS	1
1.2 GENERAL INTENTION	1
1.3 STATEMENT OF BID ITEM(S)	5
1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	5
1.5 CONSTRUCTION SECURITY REQUIREMENTS	5
1.6 OPERATIONS AND STORAGE AREAS	10
1.7 ALTERATIONS	16
1.8 DISPOSAL AND RETENTION	18
1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND	
1.10 RESTORATION	
1.13 LAYOUT OF WORK	21
1.14 AS-BUILT DRAWINGS	22
1.15 USE OF ROADWAYS	23
1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	23
1.17 TEMPORARY USE OF EXISTING ELEVATORS	24
1.19 TEMPORARY TOILETS	25
1.20 AVAILABILITY AND USE OF UTILITY SERVICES	25
1.23 INSTRUCTIONS	26
1.24 GOVERNMENT-FERNISHED PROPERTY	28
1.25 RELOCATED EQUIPMENT/ ITEMS	29
1.31 HISTORIC PRESERVATION	30
1.32 REBATE DOCUMENTATION	30
1.33 SITE INSPECTIONS	30
1.34 Project/ Phase Occupancy	32
1.35 Contracting Officer Representative Coordination	32

1.36 REQUIRED PERMITS	33
1.37 GC SUPERVISION	33
1.38 LOCATES	34

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

In addition to the requirements of the safety section, the contractor shall submit Safety Data Sheets per OSHA, for all products, chemicals, etc. to be used on site within 15 business days of contract award. Any changes to the material, products, chemicals planned for use during the project shall be submitted and approved 15 business days prior to bringing the material onsite.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for the 'Dental Lab Exhaust Fan Installation' as required by drawings and specifications.
 - The contract duration shall include all work, inspections, and punch list corrections. Beneficial occupancy and final acceptance shall be achieved within the contract duration.
 - 2. Contract working hours are 8 am to 4:30 pm Monday through Friday, excluding Federal Holidays.
- B. Visits to the site by Bidders may be made only by appointment with the Contracting Officer.
- C. Offices of Vali Cooper International, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by the Contractor. The Contractor shall notify the COR not less than two workdays in advance of the tests/ inspection.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

F. Prior to commencing work, the general contractor shall provide proof that the project supervisor assigned to the project is an OSHA 30 certified "competent person" (CP) (29 CFR 1926.20(b)(2). The CP will maintain a presence at the work site whenever the employees of the general contractor or subcontractors are present.

G. Training:

- The Contractor's project supervisor is required to attend GEMS and Safety training provided by VA St. Cloud. Training must be attended prior to being designated as a job supervisor on any VA St. Cloud construction project.
- 2. All employees of general contractor and subcontractors shall have, at a minimum, the 10-hour OSHA certified Construction Safety course and other relevant competency training, as determined by VA CP with input from the Infection Control Risk Assessment (ICRA) team.
- 3. Submit training records of all such employees for approval before the start of work.
- 4. Notice to proceed will be issued not less than two weeks after receipt of bonds; time extensions will not be granted because of the need for training.

H. Identification Badge:

All contractor employees working on this project will be required to obtain and wear while on VA property, a VA picture identification badge. The badge will only be issued to those employees having the appropriate OSHA Construction Safety Cards. All completed badge request forms, proof of OSHA training and any other required certificates shall be submitted electronically 30 business days in advance of working on site. Contractors will then be issued a badge free of charge by the VA. A separate site visit prior to performing work by each contractor employee shall be expected to obtain a badge. Contractors shall not perform work without a VA issued badge. All ID badges must be returned upon contract completion. There will be a \$200 charge for each PIV/ Flash ID badge not returned at the end of the contract. There will be a \$25 charge for "facility" badges and "contractor" or consultant badges. Reference security procedures for additional information. Payments to invoices will be withheld for badging noncompliance.

Contractor and subcontractor employees that will work on VA property, shall submit the following information to the Contracting Officer's Representative (COR) when requesting a badge:

First, middle and last name (Legal name, as shown on picture ID)

Date of Birth (DOB)

Social Security Number (SSN)

Height

Eye Color

Hair Color

Name of Firm or Company

Place of Birth: Town/State

VA Contract Number

VA Project Name

I. Project Acceptance (Substantial Completion):

Name of COR

- The acceptance of a project for substantial completion is to include the following:
 - a. The completion of all items to meet the criteria of the contract drawings and specifications to the satisfaction of the Contracting Officer (CO). Items for correction may be considered to be punch list items, as determined by the CO, if the COR finds them to be minor in correction. Value for the corrections will be held by the VA, as determined by the CO, until all corrections are completed to the satisfaction of the CO.
- b. The VA will not accept a project, or phase of a project as determined by contract documents, as substantially complete until a complete passing test and balance report of the HVAC system has been submitted and accepted as complete and passing by the CO. It is recommended that the HVAC system be completed with sufficient time to make corrections to submit a passing report. A time extension to the contract will not be considered for corrections to the HVAC system that are determined by the CO to be installation or design errors if within the contract.

- c. Occupancy and/or use of contractor provided/ installed items does not require acceptance by the government. Contractor is to coordinate with the COR and the Contracting Officer when this condition exists.
- d. In addition to the above items, the following conditions included in the contract shall be satisfied prior to requesting a final inspection to consider a substantial completion date.
 - 1. All items completed within Division 1.
 - a. Occupied flushing of the building or similar commissioning activities identified prior to request of the final inspection may be considered punch list items subject to the discretion of the COR and Contracting Officer.
 - 2. All items completed within Division 2 thru 7.
 - 3. All items completed within Division 9.
 - a. No more than 1 patch and paint repair within 100 linear feet of wall shall be accepted as a punch list condition per project/ phase. Unfinished painting conditions shall not be accepted as punch list items (i.e., cuts, blemishes, flashing etc.).
 - b. No more than 1 flooring repair per 200 square feet shall be accepted as a punch list condition. Flooring repair is defined as gaps between tiles, grout damage, grout stains, grout gaps, broken tiles/ flooring, scratches in tile/ grout/ flooring, gaps between wall base and flooring, incomplete transitions, poor adhesion, discoloration, etc.
 - c. No more than 1 ceiling repair per 200 square feet shall be accepted as a punch list condition.
 - 4. All items completed within Division 23.
 - a. Occupied flushing of the building or similar commissioning activities identified prior to request of the final inspection may be considered punch list items subject to the discretion of the COR and Contracting Officer.
 - 7. All items completed within Division 26.

E. General contractor to have dedicated site superintendent that is assigned to this project only. Contractor to include project management, site supervision and related expenses for the entire period of performance.

1.3 STATEMENT OF BID ITEM(S)

A. ITEM I, Dental Lab Exhaust Installation: Work includes general construction, and alterations.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

- A. AFTER AWARD OF CONTRACT, Contractor is to provide his/ her own drawings and specifications as downloaded from the Vendor Portal.
- B. The Contractor has the Duty of Coordination. By executing the contract, the contractor agrees the contract package has been reviewed (prior to bid) to ensure that each trade included all work required to construct functional systems.
- C. There is no requirement that the construction documents be completely accurate. Minor clarifications and coordination of details are not changes due to defective specifications.
- D. Omissions from the drawings or specifications or the misdescription of details of work which are manifestly necessary to carry out the intent of the drawings and specifications, or which are customarily performed, shall not relieve the contractor from performing such omitted or misdescribed details of the work, but they shall be performed as if fully and correctly set forth and described in the drawings and specifications. The contractor shall furnish and install complete and functional systems.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan: A. Security Plan:
 - 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:

- General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. All contractor and subcontractor employees working on this project are subject to a background investigation. VA has the right to refuse to badge any employee that does not pass the background investigation. It is expected that the contractor will have the employee scheduled for the issuance of a badge well in advance of starting work. Due to the badge process, the employee will not be able come to the VA, receive badge, and conduct work on same day. There will be a \$200 fine for badges issued and not returned upon completion of project.
- 3. Before starting work the General Contractor shall give 15 business days' notice to the COR so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 4. For working outside the "regular hours" as defined in the contract, the General Contractor shall give 15 business days' notice to the Contracting Officer and the COR so that arrangements can be made. This notice is separate from any notices required for utility shutdown described later in this section.
- 5. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 6. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- 7. The prime contractor shall secure the entire construction operation (interior and exterior, staging, work area(s), etc.) to prevent unauthorized access and to maintain appropriate (1- or 2-hour fire rating) fire separation between construction activities and VA space. It is the contractor's responsibility to furnish and install temporary walls/ ceiling, chain link 8' fences, doors, gates, hardware for doors and/or gates as needed for their activities. Not

all temporary provisions are illustrated on the construction documents. The contractor shall include 64 square feet of sheetrock assembly patching to patch existing walls used as construction barriers to a 1-hour fire barrier rating in each project phase. The contractor shall include 20 linear feet of red in color, fire caulk patching to existing walls used as construction barriers in each project phase. The contractor shall include UL listed fire barrier assemblies for temporary fire barrier protection thru construction barriers and other permanent fire barriers.

Prior to installing temporary walls, the contractor and the COR shall inspect the existing conditions to determine if existing penetrations exist in existing fire barriers. The contractor shall ensure all fire barriers around the construction site are compliant prior to commencing with other non-fire barrier related construction activities.

Temporary construction walls/ ceilings shall be constructed of noncombustible material (metal framing with gypsum sheathing), per a UL rated 1hr fire rated assembly, sound insulated with mineral wool batts and to a level 2 finish on the public side of the wall/ ceiling. If the temporary construction wall/ ceiling will remain in place for more than 5 business days, it shall be painted to cover, the color of the adjacent wall. Wood shall not be used in the temporary wall/ ceiling assemblies. Corner guards or similar protective furnishing shall be at the contractor's discretion. It is the contractor's responsibility to repair/ maintain the temporary assemblies due to wear and tear caused by operations of the VA, contractor shall include costs for upkeep of the temporary barriers. Not all temporary wall/ ceiling locations are illustrated on the plans. The contractor shall include material and labor as needed to separate VA occupied space and the construction activity. Temporary walls/ ceilings shall be assembled in a manner to control dust per ICRA and remain compliant with below fire-resistant poly duration limitations.

Temporary construction doors (interior and exterior) shall be an UL rated assembly with a minimum rating to be installed into a 1 hr. fire rated wall. Not all construction ingress and egress doors are illustrated on the plans. The contractor shall include material and

labor for temporary doors and hardware to separate VA occupied space and the construction site. Repairing existing doors with wood filler due to temporary door hardware is not allowed. If the contractor alters an existing door for use as a temporary construction door, it shall be replaced with a new like and kind door assembly.

Fire resistant poly products per NFPA 241 shall only be used as dust control. It shall be used for up to (1) 8-hour work shift in a single location.

8. Contractor shall comply with VHA St. Cloud influenza policy (VHA Directive 1192.01 and VHA Directive 1013). Contractor shall direct all subcontractors working on site to also comply with VHA St. Cloud influenza policy. To comply with this policy, all contractors must complete a Health Care Personnel Influenza Vaccination Form during the influenza season which is generally from December 1 through March 31; however, it can vary from one season or geographic location to another. For security reasons, these forms are to be submitted directly to the St. Cloud VA Infection Prevention Nurse, whom will document and track influenza vaccination status. Starting at the end of December until the end of March, Contractor shall provide monthly a list of all contractors working on site. This list will be provided to the St. Cloud VA Infection Prevention Nurse whom can check against their documentation to confirm forms have been received for all contractors working on site during the influenza season. A copy of Directive 1192.01 and Directive 1013 and Health Care Personnel Influenza Vaccination Forms are available upon request.

C. Key Control:

1. Door hardware installed in construction doors is to be self-closing and storage function lock, able to receive a BEST 7 pin core and only operable with a key. The VA will install the construction core and issue keys to the contractor's personnel. All construction fences are to be locked with a VA lock in series, so VA engineering and police personnel have emergency access at all times.

Construction fences are to be kept locked at all times to prevent access by patients and VA unauthorized staff. Contractor is to provide means of egress from the site that keeps the site secure

from the exterior. Keys to necessary construction areas can be checked out with the approval of the COR. The contractor is to give a minimum of 15 business days' notice for security approval for areas that need to be entered for construction purposes.

- 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation.
- 3. VA construction core keys will be issued to the contractor as deemed necessary by the COR. All keys must be returned when no longer needed or upon completion of the contract. There will be a \$25 charge for each key not returned at the end of the contract. Should VA security be compromised as a result of failure to return a key(s), there will be an additional charge to the contractor of \$25 for each door re-cored. There will be a \$75 charge for any VA padlocks not returned by the contractor.

D. Document Control:

- Before starting any work, the General Contractor/ Subcontractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.

- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

E. Motor Vehicle Restrictions

- 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 5 business days before the date and time of access. Contractor shall maintain a list of vehicles of all employees (general contractor and subcontractors) working on their site. List shall include employee name, vehicle make, model, color and license plate number.
- 2. Ten parking permits shall be issued for General Contractor and subcontractor for parking in the east contractor lot. This lot is gravel, with minimum maintenance. No overnight parking of contractor vehicles allowed in this lot. No equipment and/or materials are allowed in this lot.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the COR and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be

- removed by the Contractor at its expense upon completion of the work. With the written consent of the COR, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. This includes crossing curbs and other features when temporary roads and pedestrian walkways are used. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as shown on the drawings.
- E. Workmen are subject to rules of Health Care System applicable to their conduct.
- F. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction materials, debris, standing construction equipment and vehicles at all times.
- G. Execute work so as to interfere as little as possible with the normal functioning of the Health Care System as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. The Contractor shall notify the COR prior to the use of equipment and tools that transmit vibrations and noises that can be either felt or heard outside the work site (core drilling, chipping hammer, jack hammer, etc.). COR approval to use such equipment and tools shall be obtained in advance, not less than 10 business days prior to the use of such tools, in order to allow advance coordination with health care staff. Contractor to include pricing in the offer for executing this work off hours, before 8am and/or after 4:30 pm or as indicated in the construction documents.

This applies to all VA occupied space and any occupied space adjacent to construction activities where noise above 80 decibel or vibration can be felt or heard.

- 1. Do not store materials and equipment in other than assigned areas.
- 2. Contractor shall coordinate and utilize just in time material and equipment delivery system. Long term storage of material is not allowed. Storage of common construction material beyond 5 business days is not allowed. Schedule delivery of materials and equipment to construction working areas in quantities sufficient for not more than 5 workdays as the staging/ storage areas as indicated on the plans allow. Provide unobstructed access to Health Care System areas required to remain in operation.

H. Phasing:

- 1. The Health Care System must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled 15 business days in advance and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks.
- 2. To insure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of the site, building, or portion thereof. In addition, Contractor shall notify the COR 15 business days in advance of the proposed date of starting work in each specific area of site, building or portion thereof. All phasing dates shall be arranged to insure accomplishment of this work in successive phases as detailed in the Construction Drawings for phasing. Unless noted otherwise, 15 business days between each phase is required for VA activations and move relocates. The contractor shall include this coordination time in their schedule.
- I. Building No. 3 will be occupied during performance of work, but immediate areas of alterations will be cordoned off for construction.

- 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Health Care System's operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc. to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Health Care System operations will continue during the construction period.
- Immediate areas of alterations not mentioned in preceding Subparagraph 1 will be temporarily vacated while alterations are performed.
- J. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 8 feet minimum height, around the construction area(s) indicated on the drawings or as required confining all construction activities and staged materials, equipment etc. All fences designed and intended to run parallel to sidewalks and roadways shall be at least 5' away from the edge/ shoulder of sidewalks and/or roadways. Provide vehicle and "man gate" (s) for access with necessary hardware, including hasps and padlocks. The "man-gate" (s) shall have panic hardware installed on the gate to allow emergency egress from the construction staging area(s) and construction work zone(s) to the public way. Contractor must provide hardware on gate to provide exit ability of contractor's staff and not allow access to unauthorized persons at the facility. An exterior grade metal door and frame (with appropriate hardware per ingress & egress requirements) professionally and securely installed into the fence assembly can be an alternative to "man gate (s)". VA engineering staff must have the ability to access this gate at any time. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Access to the contractors' staging area and/or work site shall remain secure at

- all times. Secure is defined as locked to prevent unauthorized entrance to the construction site or during times of entrance or delivery, a construction representative shall be within 10 yards of the gate, monitoring the gate to prevent unauthorized access. Removal of construction fence shall be coordinated in advance with the COR.
- K. When a building or part of a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - 2. Contractor shall maintain in code compliant operating condition and provide any temporary material and equipment for existing fire protection and alarm equipment until the final systems are operational. During renovation the contractor shall alter the existing and/or install a temporary fire sprinkler system, compliant with NFPA to be used until the final system is operational. In connection with fire alarm equipment, Contractor will make arrangements for a pre-inspection of the site with the VA's Fire Protection System Representative whichever will be required to respond to an alarm from Contractor's employee or watchman.
 - L. Utilities Services: Maintain existing utility services for Health Care System at all times. Not all details will be shown on the construction plan. Contractor shall request any additional information prior to bid if needed, contractor shall field verify electrical, HVAC, water, sewer, and life systems in project area to provide material and equipment to maintain existing utilities for construction, life safety and operations of adjacent/ impacted patients and/or staff. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, the Contractor shall coordinate in advance with the COR and receive COR approval to proceed prior to any such cuts or caps. The Contractor shall coordinate with the COR and the Utility Company when

applicable. Utility pathways no longer used shall be removed back to the common source (main, branch, panel, junction box, etc.).

- 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without 15 business day notice and prior approval of the COR. No "HOT TAPPING" of any utility service other than storm or sanitary utilities is allowed unless under extreme circumstances. If these circumstances are determined appropriate and approved by the Chief Engineer, all work must follow Facilities Management Memorandum 23 "Hot Tapping Procedures". All services under work shall be isolated and all energy released before work begins. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Health Care System Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for additional requirements.
- 2. Contractor shall submit a request to interrupt any such services to the COR, in writing, 15 business days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption. The contractor will identify the detailed work activity plan related including a contingency plan with this request. The request shall be submitted to the COR via the RFI process.
- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Health Care System. Interruption time approved by Health Care System may occur at other than Contractor's normal working hours.
- 4. Major interruptions (any utility systems affecting operations of the Health Care System, i.e., power, water, steam, heating, cooling etc. outside of the immediate construction work site) of any system must be requested, in writing, at least 15 business days prior to the desired time and shall be performed as directed by the COR.

- 5. In case of a contract construction emergency, service will be interrupted on approval of the COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- M. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes, and the like (including hangers and all supports) shall be removed back to the common source (panels, main lines, branch lines, etc.).
- N. To minimize interference of construction activities with flow of Health Care System traffic, comply with the following:
 - 1. Keep roads, walks and entrances to grounds/ parking/ occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times with approval.
 - 2. The Contractor shall submit proposed methods and scheduling of required cutting, altering and removal of existing roads, walks and entrances to the COR no less than 15 workdays in advance of any such work. Plans for such work must be approved in advance by the COR.
- O. Coordinate the work for this contract with other construction operations and notify the COR in advance of scheduling of traffic and the use of roadways, as specified in the Article, 'USE OF ROADWAYS'.

1.7 ALTERATIONS

A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR, in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall contain the following:

- Existing condition and types of resilient flooring, doors, windows, walls, and other surfaces not required to be altered throughout the building.
- Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage, and routes of access to areas within buildings where alterations occur, and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of the COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by the Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls, and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workers in executing work of this contract.
- D. Protection: Provide the following protective measures:

- Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
- Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled, and equipment moved and/ or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust, and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Health Care System.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all surfaces including but not limited to asphalt, sidewalks, curbs, structures, equipment, and

vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound. Any grass that is damaged during construction will have the pre-existing grade restored, be sodded and maintained until the sod is firmly rooted as determined by the COR. Sod will be watered by contractor and may not exceed 4 inches while the contractor is responsible for the sod. Any trees/ shrubs not identified for demolition shall remain. The contractor shall protect the existing trees/ shrubs from damage by enclosing the dripline area with plastic fence. No material, vehicles and/or equipment shall be stored within this protected area. Tree trimming is not allowed as the trees are considered "historic". Contractors shall make all reasonable efforts to use other methods to not conflict with trees (i.e., shorter/ smaller equipment).

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

C. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements. At a minimum, the contractor is to comply with all EPA regulations for protection from storm water pollution that would be caused by construction and implement all required safeties to maintain compliance. Also, all wash downs for

concrete trucks is to be conducted off site. No containment areas are allowed on site.

D. Contractor shall maintain grounds in and around their construction site including all staging, storage and parking areas assigned to this contract (referred to as construction area). Contractor shall remove debris promptly within construction areas. Contractor shall mow and weed whip the construction areas and weed whip on the public side of their construction fences. Mowing and whipping shall occur on regular basis at all times throughout the active contract to prevent vegetation from exceeding 4" in height. Weed control shall be maintained throughout the construction contract period with a plan approved by the COR to return construction site to the preexisting condition unless stated otherwise.

Contractor shall make all reasonable attempts to prevent tracking or other type of unintentional debris transferring of material. Should this occur, the contractor shall complete clean up the affected areas within 2 hours of the discovery.

Inlet protection bags shall be clear of debris after each rain event. Any erosion control blankets, or spikes used shall be biodegradable.

Contractor shall not use a "restricted use" herbicide.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as shown in the drawings or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without prior written approval of the CO. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged.

 Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched,

- repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA - NOT USED

1.12 PROFESSIONAL SURVEYING SERVICES - NOT USED

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and benchmarks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

B. During progress of work, and particularly as work progresses from floor to floor, Contractor shall have line grades and plumbness of all major form work checked and certified by a registered land surveyor or registered civil engineer as meeting requirements of contract drawings. Furnish such certification to the COR before any major items of

concrete work are placed. In addition, Contractor shall furnish to the COR certificates from a registered land surveyor or registered civil engineer that the following work is complete in every respect as required by contract drawings.

- 1. Lines of each building and/or addition.
- 2. Elevations of bottoms of footings and tops of floors of each building and/or addition.
- 3. Lines and elevations of sewers and of all outside distribution systems.
- C. Whenever changes from contract drawings are made in line or grading requiring certificates, record such changes on a reproducible drawing bearing the registered land surveyor or registered civil engineer seal, and forward these drawings upon completion of work to the COR.
- D. The Contractor shall perform the surveying and layout work of this and other articles and specifications in accordance with the provisions of Article "Professional Surveying Services".

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications, and clarifications (Field coordination, Request For Information, Architectural Supplemental Info, PR's etc.). These drawings shall be maintained and protected in a professional manner. All information shall be legible to a reasonable person.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Health Care System property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed, and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.16 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - 1. Permission to use each unit or system must be given by the Contracting Officer in writing. Any such equipment shall be installed and maintained in accordance with the written agreement and following provisions
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2017 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct. Motors shall not be overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be reduced to contract specifications or, in the absence of contracting specifications, to at or below manufacturer's specifications for typical installations.

- 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained, and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.17 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - 1. Contractor makes advance arrangements with the COR for use of elevators. The COR will ascertain that elevators are in proper condition. Contractor may use elevators in Building 3 for daily use between the hours of 08:00 16:30 and for special nonrecurring time intervals once permission is granted by the COR. Personnel for operating elevators will not be provided by the Department of Veterans Affairs.
 - 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.

- b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
- c. Finish flooring.

1.18 TEMPORARY USE OF NEW ELEVATORS - NOT USED

1.19 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by the COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.20 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The Contractor shall carefully conserve all utilities furnished.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall furnish and install temporary utility meters at Contractor's expense and furnish the Health Care System a monthly record of the Contractor's usage of all furnished utilities including but not limited to electricity, water and steam.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open flame devices including but not limited to 'salamander' is not permitted on St Cloud VA property. Use only indirect heat exchanger heaters. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Health Care System heating distribution system.

- 2. If the contractor elects not to connect to the nearest available steam supply, gas/ fuel heaters will be allowed with a submitted plan that is approved by the COR and facility Safety Officer.
 - a. Gas/ fuel heaters must be an indirect heat unit with a heat exchanger. The unit must utilize a fresh air intake and exhaust outdoors.
 - b. All gas/ fuel is to be supplied by the contractor at contractor's expense.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes may be cause for revocation (at Contracting Officer's discretion) of use of water from Health Care System's system.
 - 2. Water from the potable water system may not be used for irrigation. Irrigation water is available on campus near the Sauk River pump from Monday through Friday, June through the end of September between the hours of 1pm to 4pm. Contractor shall arrange for transportation of water, and source of water outside of those times.

1.21 NEW TELEPHONE EQUIPMENT - NOT USED

1.22 TESTS - NOT USED

1.23 INSTRUCTIONS

- A. Contractor will be provided an electronic copy of the VA equipment log spreadsheet. During the initial start-up, the contractor shall submit the populated spreadsheet to include the following information for each piece of equipment:
 - o Equipment installed
 - o Manufacturer of equipment
 - o Model # of equipment
 - o Serial # of equipment
 - o Location of equipment
 - o Market value of equipment
 - o Purchase date of equipment
 - o Manufacturer warranty end date of equipment

- Contractor shall also furnish Maintenance and Operating manuals (hard copies and electronic), completed start-up check lists and verbal instructions when the equipment is activated and as required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed quides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Training for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until training for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. The Contractor shall coordinate and schedule all training in advance with the COR. Training shall be considered concluded only when the COR is

satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications.

1.24 GOVERNMENT-FURNISHED PROPERTY

- A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings.
- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Health Care System.
- C. Contractor shall be prepared to receive this equipment from Government and store or place such equipment not less than 90 days before Completion Date of project.
- D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - 1. Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages.
 - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
- E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and

- the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.
- F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.
- G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.25 RELOCATED EQUIPMENT/ ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove, and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.
- E. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

- 1.26 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT NOT USED
- 1.27 CONSTRUCTION SIGN NOT USED
- 1.28 SAFETY SIGN NOT USED
- 1.29 PHOTOGRAPHIC DOCUMENTATION NOT USED
- 1.30 FINAL ELEVATION DIGITAL IMAGES NOT USED

1.31 HISTORIC PRESERVATION

Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up. The Contractor shall cease work at the point of discovery in order to protect the find from damage, pending direction from the Contracting Officer as to how to proceed.

1.32 REBATE DOCUMENTATION

A. As the VA is involved in rebate programs for installed materials and equipment, the contractor is to provide information to the COR including invoices, information sheets, etc. as required for the government to successfully receive rebates.

1.33 SITE INSPECTIONS

- A. The Government reserves the right to inspect the project site during contractor performance. Inspections shall conform to FAR 52.246-12 and herein described.
- B. Inspections shall be conducted randomly on a daily basis by the assigned COR and/or other Facilities Management (FM) staff members.

 Once per week project sites may be inspected by Facilities Management team. Work shall continue during these inspections as usual, as these are routine compliance inspections.
- C. Throughout the duration of the project the contractor shall schedule critical milestone inspections and obtain approval from the Contracting Officer and COR in order to proceed with the work.
 - 1. At minimum the Contractor shall schedule inspections for any underground, in floor, in wall, above ceiling, concrete, concrete reinforcement, partial final and final inspection work. If any work is covered without inspection, it is the Contractor's responsibility to uncover the work at the Contractors expense for inspection. These

is inspections are for the benefit of the Government. It is the contractor's responsibility (regardless of an inspection and/or results of an inspection) to comply with the terms of the contract.

- a. Above ceiling inspections are treated as final inspections for items above the ceiling. All items shall be installed into the ceiling with exception of the acoustical tile or finished surface (sheetrock etc.). Ceiling tile or finished surface required for items to be mounted to (such as speakers) are allowed to be installed prior to inspection. One M&O clearance pre-inspection with appropriate contractor coordination drawings is allowed prior to above ceiling inspection
- 2. Contractor shall request inspection date 15 business days prior to the proposed inspection date. The Government will make all reasonable attempts to schedule inspection within 5 business days of the proposed inspection date. However, an alternate date may be scheduled by the COR. This shall not constitute a delay to the schedule, if within a reasonable time period.
- 3. Written inspection reports will be furnished to the contractor by the Government. In the event there are discrepancies that effect follow on tasks, the Contractor shall not proceed with work without written approval from the Contracting Officer. This inspection log is generic; the specific project may require additional or less inspections depending upon the construction, site location and impacts. Coordinate with COR and Contracting Officer throughout the project for more information. Contracting Officers have the final authority on all punch lists. If the COR chooses to send an informal punch list to the contractor, that punch list is for reference only. If the COR chooses to send this information, they have at least 5 business days to format and submit to the contractor.
- 4. Inspections by VA and or A/E personnel do not release the contractor from following the contract documents. The contractor shall have all work completed and ready for the requested inspection. The VA reserves the right to deny an inspection due to incomplete, unacceptable work. The contractor cannot claim delays for failure to prepare for requested inspection. All inspection requests must be

- submitted 15 business days prior to the requested date. Reasonable attempts will be made to accommodate the Contractor's request.
- 5. Should VA personnel identify items that do not meet or exceed the requirements for maintenance and safety clearances it is the contractor's responsibility to remove and reinstall the item(s) at no additional cost to the Government.
- 6. At the start of any Contractor requested inspection, the Contractor shall submit to the COR 3 copies of the Contractor's inspection records. The Contractor shall develop, maintain and document an inspection system acceptable to the Government to ensure that all work performed under the contract conforms to the contract requirements. The Contractor shall maintain complete inspection records documenting deficiencies and corrective actions. The Superintendent shall sign off on each deficiency listed upon completion.

1.34 Project/ Phase Occupancy

A. Prior to VA occupancy of any portion of the project the contractor shall provide all training (maintenance of equipment, operation of equipment, lockout/tag out training of equipment), operation manuals, maintenance manuals, safety manuals (including lockout/tag out and permit required confine space forms completed by contractors on the VA format used during construction), as built documents, the VA inspection packet and inspection records kept by the contractors which demonstrate contract compliance. The contractor will not be granted a time extension and will not be allowed to proceed due to not providing proper documents for the VA to occupy the space.

1.35 Contracting Officer Representative Coordination

A Contracting Officer Representative (COR) will be onsite while the contract is active. CORs will be available at all times for emergencies. Contractors are to coordinate with the CORs schedule for inspections, coordination, etc. It is the responsibility of the contractor to submit Requests For Information (RFI) within a reasonable time frame. Typical RFI processing duration is 15 - 20 calendar days per RFI, subject to complexity. Contractor has a duty to coordinate upcoming work and seek clarifications in a timely manner to prevent

contract delays and diligently pursue the contract. Contractor shall provide submittals for COR's and/or A/E's review within a reasonable time frame. Typical submittal review process duration is 25 calendar days per submittal, subject to complexity of the submittal.

A. For working outside the "regular hours" as defined in the contract, the General Contractor shall give 15 business days' notice to the Contracting Officer and the COR so that arrangements can be made. This notice is separate from any notices required for utility shutdown described in other sections.

1.36 Required Permits

The contractor shall request and coordinate information to obtain the following permits.

- A. Storm Water Pollution Prevention Plan
- B. Infectious Control Risk Assessment
- C. Excavation/ Trenching
- D. Hot Work
- E. Lock Out/ Tag Out
- F. Confined Space
- G. Energized Work
 - o Including removing electrical panel covers
- H. Demolition Permit
 - o Will be approved after NFPA 241, ICRA, security, other temporary safety/ security measures including approved GEMS measures are installed by the contractor per contract.

1.37 GC Supervision

The contractor shall request and coordinate information to comply with supervision requirements

A. The GC shall employee a superintendent either via contract or via direct employee.

- B. Each superintendent shall be assigned to only 1 contract/ project for the duration of the period of performance of the contract.
- C. Each superintendent shall have construction management experience in a healthcare setting.
- D. Each superintendent shall have ICRA, SWPPP and OSHA 30 certification.
- E. Each superintendent shall assume responsibility of the construction site under this contract and the safety of those who enter it.

1.38 Locates

A. The GC shall contract/ employ a locate crew for locating public and private utilities on VA grounds. Any locate paint, flags or other locate markers on the VA grounds, not contained in an approved construction fence after 10 business days is consider abandoned. VA will remove locate markers to maintain grounds. It will be the contractor's responsibility to relocate the utilities if needed. Damage to existing utilities is subject to repair by the contractor.

- - - E N D - - -

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/ BID/ BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.

B. The Contracting Officer has the right to approve or disapprove the proposed consultant and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/ cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/ event ID schedule showing project

duration; phase completion dates; and other data, including event cost. Each activity/ event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/ event ID, activity/ event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/ event relationships shall be restricted to finish-to-start or start-tostart without lead or lag constraints. Activity/ event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/ delays shall be entered at the first update after the

These changes/ delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/ delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised

- computer-produced activity/ event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.
- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.

1.6 WORK ACTIVITY/ EVENT COST DATA

- A. The Contractor shall cost load all work activities/ events except procurement activities. The cumulative amount of all cost loaded work activities/ events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/ events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/ event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/ event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/ events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 for (PAYMENTS UNDER FIXED PRICE CONSTRUCTION).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/ event of the construction schedule required by this Section, a responsibility code for all activities/ events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/ events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/ events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/ events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/ event with a minimum duration of five workdays at the end of each phase and immediately preceding any VA move activity/ event required by the contract phasing for that phase.
 - 2. Show not only the activities/ events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
 - 3. Break up the work into activities/ events of a duration no longer than 20 workdays each or one reporting period, except as to non-construction activities/ events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/ events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
 - 4. Describe work activities/ events clearly, so the work is readily identifiable for assessment of completion. Activities/ events labeled "start," "continue," or "completion," are not specific and

- will not be allowed. Lead and lag time activities will not be acceptable.
- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.
 - Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.
- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/ Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/ events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

A. Monthly, the contractor shall submit an application and certificate for payment using VA Form 10-6001a or the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 - Article 70 Without NAS-CPM or Article 71 Including NAS-CPM for (PAYMENTS UNDER FIXED PRICE CONSTRUCTION). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule.

Monthly payment requests shall include: a listing of all agreed upon

- project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/ completed activities or events.
 - 2. Remaining duration for each activity/ event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - 4. Changes in activity/ event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/ events.
 - 6. Logic and duration revisions required by this section of the specifications.
 - 7. Activity/ event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and COR for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor

shall use the schedule logic and/or durations provided and approved by the COR. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the COR within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.

D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.

- 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
- 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/ event changes including predecessors and successors for any of the following reasons:
 - 1. Delay in completion of any activity/ event or group of activities/ events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.
 - 4. When there is, or has been, a substantial revision to the activity/ event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.

- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes, and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/ event logic, durations (in workdays) and costs are obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/ events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.

D. All delays due to non-work activities/ events such as RFI's, WEATHER, STRIKES, and similar non-work activities/ events shall be analyzed on a month-by-month basis.

- - - E N D - - -

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or

product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.

- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying

- submittals required by the contract documents, but which have been omitted from the submittal register.
- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The VA will provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.

- D. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- E. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.

- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data will be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title, location, and number.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - 4. Name, address, and telephone number of subcontractor('s), supplier('s), manufacturer('s), and any other subcontractor('s) associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - 6. When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are compliant with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side-by-side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

1	CONTRACTOR
 	(Firm Name)
I I	
Approve	ed
Approv	ed with corrections as noted on submittal data and/or eets(s)
SIGNATURE:	
TITLE:	
DATE:	

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer.
- B. Compile the electronic submittal file as a single, complete document.

 Name the electronic submittal file specifically according to its contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.
- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the Contracting Officer.

- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Up to 3 additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the VA.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards, and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
 - 1. "Approved": authorizes the Contractor to proceed with the work covered.
 - 2. "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.

- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS	2
1.2	DEFINITIONS	3
1.3	REGULATORY REQUIREMENTS	4
1.4	ACCIDENT PREVENTION PLAN (APP)	5
1.5	ACTIVITY HAZARD ANALYSES (AHAs)	9
1.6	PRECONSTRUCTION CONFERENCE	10
1.7	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP)	
1.8	TRAINING	11
1.9	INSPECTIONS	13
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS	13
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE)	14
1.12	INFECTION CONTROL	15
1.13	TUBERCULOSIS SCREENING	21
1.14	FIRE SAFETY	21
1.15	ELECTRICAL	23
1.16	FALL PROTECTION	25
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS	25
1.18	EXCAVATION AND TRENCHES	26
1.19	CRANES	28
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/ TAGOUT)	29
1.21	CONFINED SPACE ENTRY	29
1.22	WELDING AND CUTTING	29
1.23	LADDERS	30
1.24	FLOOR & WALL OPENINGS	30

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):
 - A10.1-2011......Pre-Project & Pre-Task Safety and Health
 Planning
 - A10.34-2012......Protection of the Public on or Adjacent to Construction Sites
 - A10.38-2013......Basic Elements of an Employer's Program to
 Provide a Safe and Healthful Work Environment
 American National Standard Construction and
 Demolition Operations
- C. American Society for Testing and Materials (ASTM):
 - E84-2013......Surface Burning Characteristics of Building
 Materials
- D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

- E. National Fire Protection Association (NFPA):
 - 10-2018......Standard for Portable Fire Extinguishers
 - 30-2018......Flammable and Combustible Liquids Code
 - 51B-2019......Standard for Fire Prevention During Welding,
 Cutting and Other Hot Work
 - 70-2020.....National Electrical Code
 - 70B-2019......Recommended Practice for Electrical Equipment

 Maintenance
 - 70E-2018Standard for Electrical Safety in the Workplace
 - 99-2018.....Health Care Facilities Code
 - 241-2019......Standard for Safeguarding Construction,
 Alteration, and Demolition Operations
- F. The Joint Commission (TJC)
 - TJC ManualComprehensive Accreditation and Certification

 Manual
- G. U.S. Nuclear Regulatory Commission

- 10 CFR 20Standards for Protection Against Radiation
- H. U.S. Occupational Safety and Health Administration (OSHA):
 - 29 CFR 1910Safety and Health Regulations for General Industry
 - 29 CFR 1926Safety and Health Regulations for Construction Industry
- I. VHA Directive 7712 Fire Protection
- J. VHA Directive 7715 Safety and Health During Construction
- K. FAR Clause 52.236-13, Accident Prevention in all construction contracts

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to powerlines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous, or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/ Incident Criticality Categories:
 - No impact near miss incidents that should be investigated but are not required to be reported to the VA.
 - 2. Minor incident/ impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA.
 - 3. Moderate incident/ impact Any work-related injury or illness that
 results in:

- a. Days away from work (any time lost after day of injury/ illness onset)
- b. Restricted work
- c. Transfer to another job
- d. Medical treatment beyond first aid
- e. Loss of consciousness
- A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in a-e above or,
- 5. Any incident that leads to major equipment damage (greater than \$5000).
- F. These incidents must be investigated and are required to be reported to the VA:
 - 1 Major incident/ impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.
- G. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment, even if provided by a physician or registered person.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules, and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer or COR.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/ sub-elements and in order as follows:
 - a. SIGNATURE SHEET. Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience)
 - 2) Plan approver (company/ corporate officers authorized to obligate the company)
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).

b. BACKGROUND INFORMATION.

List the following:

- 1) Contractor
- 2) Contract number
- 3) Project name
- 4) Brief project description
- 5) Description of work to be performed, and location
- 6) Phases of work anticipated (these will require an AHA)

C. STATEMENT OF SAFETY AND HEALTH POLICY.

Provide a copy of current corporate/ company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.

d. RESPONSIBILITIES AND LINES OF AUTHORITIES.

Provide the following:

- 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program
- 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/ qualification to meet specific OSHA Competent/ Qualified Person(s) requirements must be attached
- 4) Requirements that no work shall be performed unless a designated competent person is present on the job site
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs)
- 6) Lines of authority
- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified

e. SUBCONTRACTORS AND SUPPLIERS.

If applicable, provide procedures for coordinating SOH activities with other employers on the job site:

- 1) Identification of subcontractors and suppliers (if known)
- 2) Safety responsibilities of subcontractors and suppliers

f. TRAINING.

- 1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/ NFPA 70E, machine/ equipment lockout, confined space, etc.) and any requirements for periodic retraining/ recertification are required.
- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/ conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs).
- 5) FAR Clause 52.236-13, Accident Prevention in all construction contracts.

g. SAFETY AND HEALTH INSPECTIONS.

- 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/ qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- 2) Any external inspections/ certifications that may be required (e.g., contracted CSP or CSHT).

h. ACCIDENT/ INCIDENT INVESTIGATION & REPORTING.

The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/ incident investigation procedure and identify the person(s) responsible to provide the following to the COR:

- 1) Exposure data (man-hours worked)
- 2) Accident investigation reports
- 3) Project site injury and illness logs

i. PLANS (PROGRAMS, PROCEDURES) REQUIRED.

Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in

site-specific compliance and accident prevention plans. These Plans shall include but are not limited to procedures for addressing the risks associates with the following:

- 1) Emergency response
- 2) Contingency for severe weather
- 3) Fire Prevention
- 4) Medical Support
- 5) Posting of emergency telephone numbers
- 6) Prevention of alcohol and drug abuse
- 7) Site sanitation (housekeeping, drinking water, toilets)
- 8) Night operations and lighting
- 9) Hazard communication program
- 10) Welding/ Cutting "Hot" work
- 11) Electrical Safe Work Practices (Electrical LOTO/ NFPA 70E)
- 12) General Electrical Safety
- 13) Hazardous energy control (Machine LOTO)
- 14) Site-Specific Fall Protection & Prevention
- 15) Excavation/ trenching
- 16) Asbestos abatement
- 17) Lead abatement
- 18) Crane Critical lift
- 19) Respiratory protection
- 20) Health hazard control program
- 21) Radiation Safety Program
- 22) Abrasive blasting
- 23) Heat/ Cold Stress Monitoring
- 24) Crystalline Silica Monitoring (Assessment)
- 25) Demolition plan (to include engineering survey)
- 26) Formwork and shoring erection and removal
- 27) Precast Concrete
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012)
- C. Submit the APP to the Contracting officer for review, for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of

- this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, *Accident Prevention*, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer and COR. Should any severe hazard exposure become evident, (i.e., imminent danger) stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/ remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/ Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/ qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.

- 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/ qualified person(s).
 - a. If more than one Competent/ Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/ Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/ Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative or Government Designated Authority.

1.6 PRECONSTRUCTION CONFERENCE:

A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor

superintendents, and any other assigned safety and health professionals.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e., Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/ Life Safety, Ladder, Rigging, Scaffolds, and Trenches/ Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e., Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/ Life Safety, Ladder, Rigging, Scaffolds, and Trenches/ Excavations).
- D. The SSHO or an equally qualified Designated Representative/ alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State, and local requirements are met

for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.

- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/ fall protection, fire safety/ life safety, ladder, rigging, scaffolds, and trenches/ excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES, 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting, etc. Documentation shall be provided to the Contracting Officer Representative that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to the Contracting Officer Representative or Government Designated Authority.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Contracting Officer Representative or Government Designated Authority as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation, or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative or Government Designated Authority determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent) and provide the report to the Contracting Officer Representative or Government Designated Authority within 5 calendar days of the accident. The Contracting Officer Representative or Government Designated Authority will provide copies of any required or special forms.

- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative or Government Designated Authority monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative or Government Designated Authority monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative or Government Designated Authority as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the Contracting Officer Representative or Government Designated Authority in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - 2. Safety glasses unless written authorization is given by the Contracting Officer Representative or Government Designated Authority in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative or Government Designated Authority in circumstances of no foot hazards.
 - 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities.

 Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e., Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer Representative or Government Designated Authority before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Resident ICRA Nurse. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class IIB, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:
 - 1) Notify the Contracting Officer Representative or Government Designated Authority
 - 2) Execute work by methods to minimize raising dust from construction operations.
 - 3) Ceiling tiles: Immediately replace a ceiling tile displaced for visual inspection.
 - b. Upon Completion:
 - 1) Clean work area upon completion of task
 - 2) Notify the Contracting Officer Representative or Government Designated Authority
 - 2. Class II requirements:
 - a. During Construction Work:
 - Notify the Contracting Officer Representative or Government Designated Authority

- 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
- 3) Water mist work surfaces to control dust while cutting.
- 4) Seal unused doors with duct tape.
- 5) Block off and seal air vents.
- 6) Remove or isolate HVAC system in areas where work is being performed.

b. Upon Completion:

- 1) Wipe work surfaces with cleaner/ disinfectant.
- 2) Contain construction waste before transport in tightly covered containers.
- 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
- 4) Upon completion, restore HVAC system where work was performed
- 5) Notify the Contracting Officer Representative or Government Designated Authority

3. Class III requirements:

- a. During Construction Work:
 - Obtain permit from the Contracting Officer Representative or Government Designated Authority
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration, and monitored by the contractor.
 - 5) Contain construction waste before transport in tightly covered containers.

6) Cover transport receptacles or carts. Tape covering unless solid lid.

b. Upon Completion:

- Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative or Government Designated Authority and thoroughly cleaned by the VA Environmental Services Department.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Vacuum work area with HEPA filtered vacuums.
- 4) Wet mop area with cleaner/ disinfectant.
- 5) Upon completion, restore HVAC system where work was performed.
- 6) Return permit to the Contracting Officer Representative or Government Designated Authority

4. Class IV requirements:

- a. During Construction Work:
 - Obtain permit from the Contracting Officer Representative or Government Designated Authority
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration, and monitored by the contractor.
 - 5) Seal holes, pipes, conduits, and punctures.
 - 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.

7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.

b. Upon Completion:

- Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative or Government Designated Authority with thorough cleaning by the VA Environmental Services Dept.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Contain construction waste before transport in tightly covered containers.
- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/ disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return permit to the Contracting Officer Representative or Government Designated Authority
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - 2. Construction, demolition, or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight

- d. Class III & IV Barriers at penetration of ceiling envelopes, chases, and ceiling spaces to stop movement air and debris
- e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

- 1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
- 2. Barrier Doors: Self Closing, One-hour fire-rated, solid core wood in steel frame, painted
- 3. Dust proof two-hour fire-rated drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches \times 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center
- F. A dust control program will be established and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to the Facility CSC for review for

- compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g., aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off Carpet/ Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
 - 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and

- dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

I. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e., vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING - NOT USED

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Facility Safety, Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police, and other emergency response forces in accordance with NFPA 241.

- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire-retardant metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/ smoke rated doors with self-closing devices.
 - 2. Install two-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts, and openings enclosures.
 - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use, and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with the Contracting Officer Representative or Government Designated Authority.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative or Government Designated Authority.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch

for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with the Contracting Officer Representative or Government Designated Authority. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.

- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with the Contracting Officer Representative or Government Designated Authority.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Obtain permits from the Contracting Officer Representative or Government Designated Authority at least 24 hours in advance.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to the Contracting Officer Representative or Government Designated Authority.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.

- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards or is infeasible due to equipment design or operational limitations is energized work permitted. The Chief Engineer, with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.
 - 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/ Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/ Tagout Procedures are required at all other times.
 - 2. Verification of the absence of voltage after de-energization and lockout/ tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
 - 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the Contracting Officer Representative or Government Designated Authority.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Contracting Officer

- Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30-ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30-ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E 2015, Chapter 1, Article 110.4(C)(2).

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.

- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature.
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.
- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/ jurisdiction-issued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Contracting Officer Representative or Government Designated Authority prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall

be closed out and provided to the Contracting Officer Representative or Government Designated Authority. The permit shall be maintained onsite and the first section of the permit shall include the following:

- 1. Estimated start time & stop time.
- 2. Specific location and nature of the work.
- 3. Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
- 4. Indication of whether soil or concrete removal to an offsite location is necessary.
- 5. Indication of whether soil samples are required to determined soil contamination.
- 6. Indication of coordination with local authority (i.e., "One Call") or contractor's effort to determine utility location with search and survey equipment.
- 7. Indication of review of site drawings for proximity of utilities to digging/drilling.
- C. The second section of the permit for excavations greater than five feet in depth shall include the following:
 - 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetrometer will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 Type B, greater than 1.5 Tons/FT2 Type A without condition to reduce to Type B).
 - 2. Indication of selected protective system (sloping/ benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/ Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
 - 3. Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.

- 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.
- D As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - 1. The planned dig site will be outlined/ marked in white prior to locating the utilities.
 - 2. Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 3. 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained
- E. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- F. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified, or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Contracting Officer Representative (COR), 14 days prior to the scheduled lift complete with route for truck carrying load, crane load

analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.

- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf. is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/ TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/ trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Contracting Officer Representative or other Government Designated Authority.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer Representative or other Government Designated Authority. Obtain permits from Contracting Officer Representative or other Government Designated Authority, as needed, daily.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - 2. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/ openings are any that measure over 2 in (51 mm) in any direction of a walking/ working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof holes/ openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toe-boards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color-

coded or equivalent methods (e.g., red or orange X''). Workers must be made aware of the meaning for color coding and equivalent methods.

- 3. Roofing material such as roofing membrane, insulation, or felts covering or partly covering openings or holes shall be immediately cut out. No hole or opening shall be left unattended unless covered.
- 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
- 5. Workers are prohibited from standing/ walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc. http://www.aluminum.org

AABC Associated Air Balance Council

https://www.aabc.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AASHTO American Association of State Highway and Transportation

Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA American Gear Manufacturers Association, Inc.

http://www.agma.org

AΗ American Hort https://www.americanhort.org AHAM Association of Home Appliance Manufacturers http://www.aham.org American Institute of Architects AIA http://www.aia.org AISC American Institute of Steel Construction http://www.aisc.org American Iron and Steel Institute AISI http://www.steel.org American Institute of Timber Construction AITC https://aitc-glulam.org AMCA Air Movement and Control Association, Inc. http://www.amca.org American National Standards Institute, Inc. ANSI http://www.ansi.org The Engineered Wood Association APA http://www.apawood.org Air-Conditioning and Refrigeration Institute ARI http://www.ari.org ARPM Association for Rubber Product Manufacturers https://arpm.com ASABE American Society of Agricultural and Biological Engineers https://www.asabe.org ASCE American Society of Civil Engineers http://www.asce.org ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org

ASME American Society of Mechanical Engineers http://www.asme.org American Society of Sanitary Engineering International ASSE http://www.asse-plumbing.org ASTM American Society for Testing and Materials International http://www.astm.org AWI Architectural Woodwork Institute https://www.awinet.org AWS American Welding Society https://www.aws.org American Water Works Association AWWA https://www.awwa.org ВНМА Builders Hardware Manufacturers Association https://www.buildershardware.com BTA The Brick Industry Association http://www.gobrick.com CAGI Compressed Air and Gas Institute https://www.cagi.org Compressed Gas Association, Inc. CGA https://www.cganet.com CI The Chlorine Institute, Inc. https://www.chlorineinstitute.org CISCA Ceilings and Interior Systems Construction Association https://www.cisca.org CISPI Cast Iron Soil Pipe Institute https://www.cispi.org CLFMI Chain Link Fence Manufacturers Institute https://www.chainlinkinfo.org CPA Composite Panel Association https://www.compositepanel.org

СРМВ Concrete Plant Manufacturers Bureau https://www.cpmb.org CRA California Redwood Association http://www.calredwood.org CRSI Concrete Reinforcing Steel Institute https://www.crsi.org CTI Cooling Technology Institute https://www.cti.org Decorative Hardwoods Association DHA https://www.decorativehardwoods.org Door and Hardware Institute DHI https://www.dhi.org EGSA Electrical Generating Systems Association http://www.egsa.org EEI Edison Electric Institute https://www.eei.org United States Environmental Protection Agency EPA https://www.epa.gov ETL Testing Services ETL http://www.intertek.com FAA Federal Aviation Administration https://www.faa.gov FCC Federal Communications Commission https://www.fcc.gov FPS Forest Products Society http://www.forestprod.org GANA Glass Association of North America http://www.glasswebsite.com Factory Mutual Global Insurance FMhttps://www.fmglobal.com

GΑ Gypsum Association https://gypsum.org General Services Administration GSA https://www.gsa.gov ΗI Hydraulic Institute http://www.pumps.org ICC International Code Council https://shop.iccsafe.org ICEA Insulated Cable Engineers Association https://www.icea.net ICAC Institute of Clean Air Companies http://www.icac.com IEEE Institute of Electrical and Electronics Engineers https://www.ieee.org TGMA Insulating Glass Manufacturers Alliance https://www.igmaonline.org International Municipal Signal Association IMSA http://www.imsasafety.org Metal Building Manufacturers Association MBMA https://www.mbma.com MSS Manufacturers Standardization Society of the Valve and Fittings Industry http://msshq.org National Association of Architectural Metal Manufacturers NAAMM https://www.naamm.org PHCC Plumbing-Heating-Cooling Contractors Association https://www.phccweb.org NBS National Bureau of Standards See - NIST NBBI The National Board of Boiler and Pressure Vessel Inspectors https://www.nationalboard.org

NEC National Electric Code See - NFPA National Fire Protection Association NEMA National Electrical Manufacturers Association https://www.nema.org NFPA National Fire Protection Association https://www.nfpa.org NHLA National Hardwood Lumber Association https://www.nhla.com National Institute of Health NIH https://www.nih.gov NIST National Institute of Standards and Technology https://www.nist.gov Northeastern Lumber Manufacturers Association, Inc. NELMA http://www.nelma.org NPA National Particleboard Association (See CPA, Composite Panel Association) NSF National Sanitation Foundation http://www.nsf.org OSHA Occupational Safety and Health Administration Department of Labor https://www.osha.gov PCA Portland Cement Association https://www.cement.org Precast Prestressed Concrete Institute PCI https://www.pci.org Plastics Pipe Institute PPI https://www.plasticpipe.org Porcelain Enamel Institute PEI http://www.porcelainenamel.com Post-Tensioning Institute PTI http://www.post-tensioning.org

RFCI Resilient Floor Covering Institute https://www.rfci.com RIS Redwood Inspection Service (See Western Wood Products Association) https://www.wwpa.org SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org SDI Steel Door Institute http://www.steeldoor.org SJI Steel Joist Institute https://www.steeljoist.org SMACNA Sheet Metal & Air-Conditioning Contractors' National Association https://www.smacna.org SSPC The Society for Protective Coatings https://www.sspc.org STI Steel Tank Institute https://www.steeltank.com Steel Window Institute SWI https://www.steelwindows.com TCNA Tile Council of North America https://www.tcnatile.com TEMA Tubular Exchanger Manufacturers Association http://www.tema.org

Underwriters' Laboratories Incorporated

Truss Plate Institute
https://www.tpinst.org

https://www.ul.com

(See ICC)

The Uniform Building Code

TPI

UBC

UL

ULC Underwriters' Laboratories of Canada

https://www.ulc.ca

WCLB West Coast Lumber Inspection Bureau

http://www.wclib.org

WDMA Window and Door Manufacturers Association

https://www.wdma.com

WRCLA Western Red Cedar Lumber Association

https://www.realcedar.com

WWPA Western Wood Products Association

http://www.wwpa.org

- - - E N D - - -

SECTION 01 45 00 QUALITY CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for Contractor Quality Control (CQC) for Design-Bid-Build (DBB) or Design-Build (DB) construction projects. This section can be used for both project types.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. ASTM International (ASTM)
 - 1. D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 - 2. E329 (2014a) Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction

1.3 SUBMITTALS

Government approval is required for all submittals. CQC inspection reports shall be submitted under this Specification section and follow the [Applicable CQC Control Phase (Preparatory, Initial, or Follow-Up)]: [Applicable Specification section] naming convention.

- 1. Preconstruction Submittals
 - a. Interim CQC Plan
 - b. COC Plan
 - c. Additional Requirements for Design Quality Control (DQC) Plan
- 2. Design Data
 - a. Discipline-Specific Checklists
 - b. Design Quality Control
- 3. Test Reports
 - a. Verification Statement

PART 2 PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system. that complies with the FAR Clause 52.246.12 titled "Inspection of Construction". QC consists of plans, procedures, and organization necessary to produce an end product which complies with the Contract requirements. The QC system covers all design and construction operations, both onsite and offsite, and be keyed to the proposed design and construction sequence. The project superintendent will be held responsible for the quality of work and is subject to removal by the Contracting Office or Authorized designee for non-compliance with the quality requirements specified in the Contract. In this context the highest level manager responsible for the overall construction activities at the site, including quality and production is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CQC PLAN:

- A. Submit the CQC Plan no later than 15 days after receipt of Notice to Proceed (NTP), proposed to implement the requirements of the FAR Clause 52.246.12 titled "Inspection of Construction". The Government will consider an Interim CQC Plan for the first 15 days of operation, which must be accepted within 10 business days of NTP. Construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an Interim plan applicable to the particular feature of work to be started. Work outside of the accepted Interim CQC Plan will not be permitted to begin until acceptance of a CQC Plan or another Interim CQC Plan containing the additional work scope is accepted.
- B. Content of the CQC Plan: Include, as a minimum, the following to cover all design and construction operations, both onsite and offsite, including work by subcontractors, designers of record consultants, architects/ engineers (A/E), fabricators, suppliers, and purchasing agents:
 - A description of the QC organization, including a chart showing lines of authority and acknowledgement that the CQC staff will

- implement the three phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.
- The name, qualifications (in resume format) duties, responsibilities, and authorities of each person assigned a CQC function.
- 3. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will be issued by the CQC System Manager. Furnish copies of these letters to the Contracting Officer or Authorized designee.
- 4. Procedures for scheduling, reviewing, certifying, and managing submittals including those of subcontractors, designers of record, consultants, A/E's offsite fabricators, suppliers and purchasing agents. These procedures must be in accordance with Section 01 33 23 Shop Drawings, Product Data, and Samples.
- 5. Control, verification, and acceptance of testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer or Authorized designee are required to be used)
- Procedures for tracking Preparatory, Initial, and Follow-Up control
 phases and control, verification, and acceptance tests including
 documentation.
- 7. Procedures for tracking design and construction deficiencies from identification through acceptable corrective action. Establish verification procedures that identified deficiencies have been corrected.
- 8. Reporting procedures, including proposed reporting formats.
- 9. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different

- environment. Although each section of specifications can generally be considered as a definable feature of work, there are frequently more than one definable feature under a particular section. This list will be agreed upon during the Coordination meeting.
- C. Additional Requirements for Design Quality Control (DQC) Plan: The following additional requirements apply to the DQC Plan for DB projects only and not DBB projects:
 - 1. Submit and maintain a DQC Plan as an effective QC program which assures that all services required by this contract are performed and provided in a manner that meets professional architectural and engineering quality standards. As a minimum, all documents must be technically reviewed by competent, independent reviewers identified in the DQC Plan. The same element that produced the product may not perform the independent technical review (ITR). Correct errors and deficiencies in the design documents prior to submitting them to the Government.
 - 2. Include the design schedule in the master project schedule, showing the sequence of events involved in carrying out the project design tasks within the specific Contract period. This should be at a detailed level of scheduling sufficient to identify all major design tasks, including those that control the flow of work. Include review and correction periods associated with each item. This should be a forward planning as well as a project monitoring tool. The schedule reflects calendar days and not dates for each activity. If the schedule is changed, submit a revised schedule reflecting the change within 7 calendar days. Include in the DQC Plan the disciplinespecific checklists to be used during the design and quality control of each submittal. Submit at each design phase as part of the project documentation these completed discipline-specific checklists.
 - 3. Implement the DQC Plan by a DQC Manager who has the responsibility of being cognizant of and assuring that all documents on the project have been coordinated. This individual must be a person who has verifiable engineering or architectural design experience and is a Professional Engineer or Registered Architect within the state of Construction location. Notify the Contracting Officer or Authorized designee, in writing, of the name of the individual, and the name of an alternate person assigned to the position.

- D. Acceptance of Plan: Acceptance of the Contractor's plan is required prior to the start of design and construction. Acceptance is conditional and will be predicated on satisfactory performance during the design and construction. The Government reserves the right to require the Contractor to make changes in the CQC Plan and operations including removal of personnel as necessary, to obtain the quality specified.
- E. Notification of Changes: After acceptance of the CQC Plan, notify the Contracting Officer or Authorized designee in writing of any proposed change. Proposed changes are subject to acceptance by the Government prior to implementation by the Contractor.

3.3 COORDINATION MEETING

After the Preconstruction Conference Post-award Conference before start of design or construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer or Authorized designee to discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 5 business days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be developed, including the forms for recording the CC operations, design activities (if applicable), control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's, Management, and control with the Government's Quality Assurance. Minutes of the meeting will be prepared by the Government, signed by both the Contractor and Contracting Officer or Authorized designee and will become a part of the contract file. There can be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION

A. Personnel Requirements: The requirements for the CQC organization are a Safety and Health Manager, CQC System Manager, a Design Quality Manager (if applicable), and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager shall satisfy the requirements of Specification 01 35 26 Safety Requirements and reports directly to a senior project (or corporate) official independent from the CQC System Manager. The Safety

and Health Manager will also serve as a member of the CQC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer or Authorized designee. Provide adequate office space, filing systems, and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawings submittals, schedules and all other project documentation to the CQC organization. The CQC organization is responsible to maintain these documents and records at the site at all times, except as otherwise acceptable to the Government.

- B. CQC System Manager: Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC system Manager is required to be a graduate of construction management, PM or SRE (to determine qualifications based on project complexity at construction review) with a minimum of 5 years construction experience on construction similar to the scope of this Contract. This CQC System manager is on the site at all times during construction and is employed by the General Contractor. The CQC System Manager is assigned as CQC System Manager but has duties as project superintendent in addition to quality control. Identify in the plan an alternate to serve in the event of the CDQC System Manager's absence. The requirements for the alternate are the same as the CQC System Manager.
- C. CQC Personnel: In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist in the CQC System Manager for the following areas, as applicable: electrical, mechanical, civil, structural, environmental, architectural, materials technician submittals clerk, Commissioning Agent/ LEED specialist, and low voltage systems. These individuals or specified technical companies are employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically

present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the Experience Matrix listed herein. These individuals can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality controls duties as described in the CQC Plan. A single person can cover more than one area provided that the single person is qualified to perform QC activities in each designated and that workload allows.

EXPERIENCE MATRIX

Area	Qualifications
Civil	Graduate Civil Engineer or Construction Manager with 2 years' experience in the type of work being performed on this project, or technician with 5 years related experience.
Mechanical	Graduate Mechanical Engineer with 2 years' experience or construction professional with 5 years of experience supervising mechanical features of work in the field with a construction company.
Electrical	Graduate Electrical Engineer with 2 years related experience or construction professional with 5 years of experience supervising electrical features of work in the field with a construction company.
Structural	Graduate Civil Engineer (with Structural Track or Focus), Structural Engineer, or Construction Manager with 2 years' experience or construction professional with 5 years' experience supervising structural features of work in the field with a construction company.
Architectural	Graduate Architect with 2 years' experience or construction professional with 5 years of related experience.
Environmental	Graduate Environmental Engineer with 3 years' experience.
Submittals	Submittal Clerk with 1 year experience.
Concrete, Pavement, and Soils	Materials Technician with 2 years' experience for the appropriate area.

Area	Qualifications
Testing, Adjusting, and Balancing (TAB)	Specialist must be a member of AABC or an experienced technician of the firm certified by the NEBB.
Design Quality Control Manager	Registered Architect or Professional Engineer

- D. Additional Requirements: In addition to the above experience and education requirements, the CQC System Manager and Alternate CQC System Manager are required to have completed the Construction Quality Management (CQM) for Construction course. If the CQC System Manager does not have a current specification, obtain the CQM for Contractors course identification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer or Authorized designee for information on the next scheduled class.
- E. Organizational Changes: Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer or Authorized designee for acceptance.

3.5 SUBMITTALS AND DELIVERABLES

Submittals have to comply with the requirements in Section 01 33 23 Shop Drawings, Product Data, and Samples. The CQC organization is responsible for certifying that all submittals and deliverables are compliant with the contract requirements.

3.6 CONTROL

- A. CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:
 - 1. Preparatory Phase: This phase is performed prior to beginning work on each definable feature of work after all required plans/ documents/ materials are approved/ accepted, and after copies are at the work site. This phase includes:
 - a. A review of each paragraph of applicable specifications, references codes, and standards. Make available during the

preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.

- b. Review of the Contract drawings.
- c. Check to assure that all materials and equipment have been tested, submitted, and approved.
- d. Review of provisions that have been made to provide required control inspection and testing.
- e. Review Special Inspections required by Special Inspections, that Statement of Special Inspections and the Schedule of Specials Inspections.
- f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.
- g. Examination of required materials, equipment, and sample work to assure that they are on hand conform to approved shop drawings or submitted data, and are properly stored.
- h. Review of the appropriate Activity Hazard Analysis (AHA) to assure safety requirements are met.
- i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards - contract defined or industry standard if not contract defined - for that feature of work.
- j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.
- k. Discussion of the initial control phase.
- 1. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the Preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the Preparatory phase actions by separate minutes prepared by the CQC System Manager and attach to the daily CQC report. Instruct applicable workers as

to the acceptable level of workmanship required in order to meet contract specifications.

- B. Initial Phase: This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:
 - 1. Check work to ensure that it is in full compliance with contract requirements. Review minutes of the Preparatory meeting.
 - Verify adequacy of controls to ensure full contract compliance.
 Verify the required control inspection and testing is in compliance with the contract.
 - 3. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.
 - 4. Resolve all differences.
 - 5. Check safety to include compliance with an upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.
 - 6. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the initial phase for definable features of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with Follow-Up phases.
 - 7. The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.
- C. Follow-Up Phase: Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements until the completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final Follow-Up checks and correct all deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Additional Preparatory and Initial Phases on the same definable features of work if: the quality ongoing work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.

3.7 TESTS

- A. Testing Procedure: Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance test when specified. Procure the services of a Department of Veteran Affairs approved testing laboratory or establish an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:
 - 1. Verify that testing procedures comply with contract requirements.
 - 2. Verify that facilities and testing equipment are available and comply with testing standards.
 - 3. Check test instrument calibration data against certified standards.
 - 4. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.
 - 5. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the unique sequential control number identifying the test. If approved by the Contracting Officer or Authorized designee, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test facility directly to the Contracting Officer or Authorized designee. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.

B. Testing Laboratories:

- 1. Capability Check: The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.
- 2. Capability Recheck: If the selected laboratory fails the capability check, the Contractor will be assessed a charge equal to value of recheck to reimburse the Government for each succeeding recheck of

- the laboratory or the checking of a subsequently selected laboratory. Such costs will be deducted from the Contract amount due the Contractor.
- C. Onsite Laboratory: The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

- A. Punch-Out Inspection: Conduct an inspection of the work by the CQC system Manager near the end of the work, or any increment of the work established by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications. Include within the list of deficiencies the estimated date by which the deficiencies will be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is accomplished, notify the Government that the facility is ready for the Government Pre-Final Inspection.
- B. Pre-Final Inspection: The Government will perform the Pre-Final Inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final Acceptance Inspection with the customer can be scheduled. Correct any items noted on the Pre-Final Inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate construction completion dates.
- C. Final Acceptance Inspection: The Contractor's QC Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Authorized designee is required to be in attendance at the Final Acceptance Inspection. Additional Government personnel can also be in attendance. The Final Acceptance Inspection will be formally scheduled by the Contracting Officer's or Authorized designee based upon results of the Pre-Final Inspection. Notify the Contracting Officer through the Resident Engineer office at least 14 days prior to the Final Acceptance Inspection and include the

Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date schedule for the Final Acceptance Inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with FAR Clause 52.246-12 titled "Inspection of Construction".

3.9 DOCUMENTATION

- A. Quality Control Activities: Maintain current records providing factual evidence that required QC activities and tests have been performed.

 Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:
 - The name and area of responsibility of the Contractor/ Subcontractor.
 - 2. Operating plant/ equipment with hours worked, idle, or down for repair.
 - 3. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.
 - 4. Test and control activities performed with results and references to specification/ drawing requirements. Identify the Control Phase (Preparatory, Initial, and/or Follow-Up). List deficiencies noted, along with corrective action.
 - Quantity of materials received at the site with statement as to acceptability, storage, and reference to specification/ drawing requirements.
 - 6. Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.
 - 7. Offsite surveillance activities, including actions taken.
 - 8. Job safety evaluations stating what was checked, results, and instructions or corrective actions.
 - 9. Instructions given/ received and conflicts in plans and specifications.
 - 10. Provide documentation of design quality control activities. For independent design reviews, provide, as a minimum, identification of

the Independent Technical Reviewer (ITR) team, the ITR review comments, responses, and the record of resolution of the comments.

B. Verification Statement: Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily with 1 week after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, prepare and submit on report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work will be for that day only. Reports need to be signed and dated by the CQC System Manager. Include copies of test reports and copies of reports prepared by all subordinate QC personnel within the CQC System Manager Report.

3.10 SAMPLE FORMS

Templates of various quality control reports can be found on the Whole Building Design Guide website at https://www.wbdg.org/FFC/NAVGRAPH/ 01%2045%2000.00%2020 quality control reports.pdf

3.11 NOTIFICATION OF NONCOMPLIANCE

The Contracting Officer or Authorized designee will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor should take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

--- End of Section ---

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
- D. Waste Management Plan development and implementation.
- E. Techniques to minimize waste generation.
- F. Sorting and separating of waste materials.
- G. Salvage of existing materials and items for reuse or resale.
- H. Recycling of materials that cannot be reused or sold.
- I. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inert (e.g., concrete, masonry, and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc.).
 - Metal products (e.g., steel, wire, beverage containers, copper, etc.).
 - 7. Sheathings
 - 8. Cardboard, paper, and packaging.
 - 9. Bitumen roofing materials.
 - 10. Plastics (e.g., ABS, PVC).
 - 11. Carpet and/or pad.
 - 12. Gypsum board.
 - 13. Insulation.
 - 14. Paint.
 - 15. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Division 1 Sustainability specifications

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction/ Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/ Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the COR a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/ Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - a) The names and locations of mixed debris reuse and recycling facilities or sites.
 - b) The names and locations of trash disposal landfill facilities or sites.
 - c) Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.
- E. Target waste diversion rate by material and an overall diversion rate.
- F. Final report documenting the results of implementation of the preconstruction waste management plan.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction
 - 1. Green Building Initiative (GBI): Green Globes for New Construction 2019

1.7 RECORDS

A. Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the Green Globes for New Construction 2019 Technical Reference Manual.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices.

- Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

A. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.
- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.

- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).
- H. VHA Directive 0058 VA Green Purchasing Program.
- I. VHA Directive 7707 VHA Green Environmental Management System (GEMS) and Governing Environmental Policy Statement.

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - 1. Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make a reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.
- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include

all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.

- D. Construction Indoor Air Quality (IAQ) Management Plan:
 - 1. Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.
 - d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
 - e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
 - f. Instruction procedures and schedule for implementing building flush-out.

E. Product Submittals:

- 1. Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
- 2. Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's product categories. Data to include percentage of biobased content and source of biobased material.
- 3. Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.

- 4. For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.
- F. Sustainable Construction Progress Reports: Concurrent with each
 Application for Payment, submit a Sustainable Construction Progress
 Report to confirm adherence with Sustainability Action Plan.
 - 1. Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data.
 - 2. Include updated and current Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 3. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.
- G. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - 1. Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 2. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - 3. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - 4. Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description of each approach, documenting implementation of IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
 - 5. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.
 - b. Product data for filtration media installed immediately prior to occupancy.

c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with COR/Resident Engineer and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005, and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, Emission Testing

- method for California Specification 01350 (CDPH Standard Method V1.1-2010).
- I. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - 1. Adhesives, sealants, and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Indoor carpet adhesives: 50 g/L.
 - 2) Wood Flooring Adhesive: 100 g/L.
 - 3) Rubber Floor Adhesives: 60 g/L.
 - 4) Subfloor Adhesives: 50 g/L.
 - 5) Ceramic Tile Adhesives and Grout: 65 g/L.
 - 6) Cove Base Adhesives: 50 g/L.
 - 7) Multipurpose Construction Adhesives: 70 g/L.
 - 8) Porous Material (Except Wood) Substrate: 50 g/L.
 - 9) Wood Substrate: 30 g/L.
 - 10) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 11) Architectural Porous Sealant Primer: 775 g/L.
 - 12) Other Sealant Primer: 750 g/L.
 - 13) Structural Wood Member Adhesive: 140 g/L.
 - 14) Sheet-Applied Rubber Lining Operations: 850 g/L.
 - 15) Top and Trim Adhesive: 250 g/L.
 - 16) Architectural Sealant: 250 g/L.
 - 17) Other Sealant: 420 g/L.
 - b. Non-Flooring Adhesives and Sealants:
 - 1) Drywall and Panel Adhesives: 50 g/L.
 - 2) Multipurpose Construction Adhesives: 70 g/L.
 - 3) Structural Glazing Adhesives: 100 g/L.
 - 4) Metal-to-Metal Substrate Adhesives: 30 g/L.

- 5) Plastic Foam Substrate Adhesive: 50 g/L.
- 6) Porous Material (Except Wood) Substrate Adhesive: 50 g/L.
- 7) Wood Substrate Adhesive: 30 g/L.
- 8) Fiberglass Substrate Adhesive: 80 g/L.
- 9) Architectural Non-Porous Sealant Primer: 250 g/L.
- 10) Architectural Porous Sealant Primer: 775 g/L.
- 11) Other Sealant Primer: 750 g/L.
- 12) PVC Welding Adhesives: 510 g/L.
- 13) CPVC Welding Adhesives: 490 g/L.
- 14) ABS Welding Adhesives: 325 g/L.
- 15) Plastic Cement Welding Adhesives: 250 g/L.
- 16) Adhesive Primer for Plastic: 550 g/L.
- 17) Contact Adhesive: 80 g/L.
- 18) Special Purpose Contact Adhesive: 250 g/L.
- 19) Structural Wood Member Adhesive: 140 g/L.
- 20) Sheet Applied Rubber Lining Operations: 850 g/L.
- 21) Top and Trim Adhesive: 250 g/L.
- 22) Architectural Sealants: 250 g/L.
- 23) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - a. Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.
- 3. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.
 - b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
 - c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAQMD Rule 1113.
 - d. Comply with the following VOC content limits:

- 1) Anti-Corrosive/ Antirust Paints: 250 g/L.
- 2) Clear Wood Finish, Lacquer: 550 g/L.
- 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
- 4) Clear Wood Finish, Varnish: 350 g/L.
- 5) Floor Coating: 100 g/L.
- 6) Interior Flat Paint, Coating or Primer: 50 g/L.
- 7) Interior Non-Flat Paint, Coating or Primer: 150 g/L.
- 8) Sealers and Undercoats: 200 g/L.
- 9) Shellac, Clear: 730 g/L.
- 10) Shellac, Pigmented: 550 g/L.
- 11) Stain: 250 g/L.
- 12) Clear Brushing Lacquer: 680 g/L.
- 13) Concrete Curing Compounds: 350 g/L.
- 14) Japan/Faux Finishing Coatings: 350 g/L.
- 15) Magnesite Cement Coatings: 450 g/L.
- 16) Pigmented Lacquer: 550 g/L.
- 17) Waterproofing Sealers: 250 g/L.
- 18) Wood Preservatives: 350 g/L.
- 19) Low-Solids Coatings: 120 g/L.
- 4. Carpet installed in building interior must comply with one of the following:
 - a. Meet testing and product requirements of the Carpet and Rug Institute Green Label Plus program.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at the 14-day time point.
- 5. Each non-carpet flooring element installed in building interior which is not inherently non-emitting (stone, ceramic, powder-coated metals, plated or anodized metal, glass, concrete, clay brick, and unfinished or untreated solid wood flooring) must comply with one of the following:
 - a. Meet requirements of the FloorScore standard as shown with testing by an independent third-party.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at 14-day time point.
- Composite wood and Agri-fiber products used within the weatherproofing membrane must contain no added urea-formaldehyde resins.

7. Laminating adhesives used to fabricate on-site and shop-applied composite wood and Agri-fiber assemblies must not contain added urea-formaldehyde.

C. Recycled Content:

- 1. Any products being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Building insulation.
 - b. Cement and concrete.
 - c. Consolidated and reprocessed latex paint.
 - d. Floor tiles.
 - e. Flowable fill.
 - f. Laminated paperboard.
 - g. Modular threshold ramps.
 - h. Non-pressure pipe.
 - i. Patio blocks.
 - j. Railroad grade crossing surfaces.
 - k. Roofing materials.
 - 1. Shower and restroom dividers/partitions.
 - m. Structural fiberboard.
 - n. Nylon carpet and nylon carpet backing.
 - o. Compost and fertilizer made from recovered organic materials.
 - p. Hydraulic mulch.
 - q. Lawn and garden edging.
 - r. Plastic lumber landscaping timbers and posts.
 - s. Park benches and picnic tables.
 - t. Plastic fencing.
 - u. Playground equipment.
 - v. Playground surfaces.
 - w. Bike racks.

D. Biobased Content:

- 1. Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:

- 1) Adhesive and Mastic Removers.
- 2) Carpets.
- 3) Cleaners.
- 4) Composite Panels.
- 5) Corrosion Preventatives.
- 6) Dust Suppressants.
- 7) Floor Cleaners and Protectors.
- 8) Floor Coverings (Non-Carpet).
- 9) Glass Cleaners.
- 10) Hydraulic Fluids.
- 11) Industrial Cleaners.
- 12) Interior Paints and Coatings.
- 13) Multipurpose Cleaners.
- 14) Multipurpose Lubricants.
- 15) Packaging Films.
- 16) Paint Removers.
- 17) Plastic Insulating Foam.
- 18) Pneumatic Equipment Lubricants.
- 19) Wastewater Systems Coatings.
- 20) Water Tank Coatings.
- 21) Wood and Concrete Sealers.
- 22) Wood and Concrete Stains.
- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.
 - 1. WaterSense categories include:
 - a. Bathroom Faucets
 - b. Commercial Toilets
 - c. Irrigation Controllers
 - d. Pre-Rinse Spray Valves
 - e. Residential Toilets
 - f. Showerheads
 - g. Spray Sprinkler Bodies
 - h. Urinals
- F. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - 1. Applicable Energy Star product categories as of 09/14/2017 include:

- a. Appliances:
 - 1) Air Purifiers and Cleaners.
 - 2) Clothes Dryers (Residential).
 - 3) Clothes Washers (Commercial & Residential).
 - 4) Dehumidifiers.
 - 5) Dishwashers (Residential).
 - 6) Freezers (Residential).
 - 7) Refrigerators (Residential).
- b. Electronics and Information Technology:
 - 1) Audio/Video Equipment.
 - 2) Computers.
 - 3) Data Center Storage.
 - 4) Digital Media Player.
 - 5) Enterprise Servers.
 - 6) Imaging Equipment.
 - 7) Monitors.
 - 8) Professional Displays.
 - 9) Set-Top and Cable Boxes.
 - 10) Telephones.
 - 11) Televisions.
 - 12) Uninterruptible Power Supplies.
 - 13) Voice over Internet Protocol (VoIP) Phones.
- c. Food Service Equipment (Commercial):
 - 1) Dishwashers.
 - 2) Fryers.
 - 3) Griddles.
 - 4) Hot Food Holding Cabinets.
 - 5) Ice Makers.
 - 6) Ovens.
 - 7) Refrigerators and Freezers.
 - 8) Steam Cookers.
 - 9) Vending Machines.
- d. Heating and Cooling Equipment:
 - 1) Air-Source Heat Pumps (Residential).
 - 2) Boilers.
 - 3) Ceiling Fans (Residential).
 - 4) Central Air Conditioners (Residential).
 - 5) Ductless Heating and Cooling (Residential).

- 6) Furnaces (Residential).
- 7) Water Heaters.
- 8) Geothermal Heat Pumps (Residential).
- 9) Light Commercial Heating and Cooling Equipment.
- 10) Room Air Conditioners (Residential).
- 11) Ventilation Fans (Residential).
- e. Other:
 - 1) Decorative Light Strings.
 - 2) Electric Vehicle Supply Equipment.
 - 3) Laboratory-Grade Refrigerators and Freezers.
 - 4) Light Bulbs.
 - 5) Light Fixtures.
 - 6) Pool Pumps.
 - 7) Roof Products.
 - 8) Water Coolers.
 - 9) Windows, Doors, and Skylights.
- G. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Boilers (Commercial).
 - 2. Dishwashers (Commercial).
 - 3. Electric Chillers, Air-Cooled (Commercial).
 - 4. Electric Chillers, Water-Cooled (Commercial).
 - 5. Exterior Lighting.
 - 6. Fluorescent Ballasts.
 - 7. Fluorescent Lamps, General Service.
 - 8. Ice Machines, Water-Cooled.
 - 9. Industrial Lighting (High/Low Bay).
 - 10. Light Emitting Diode (LED) Luminaires.
- H. Electronic products and equipment being installed which fall into any of the following categories shall be EPEAT registered. Electronic products and equipment covered by EPEAT program as of 09/14/2017 include:
 - 1. Computers.
 - 2. Displays.
 - 3. Imaging Equipment.
 - 4. Televisions.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Construction Indoor Air Quality Management:
 - 1. During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
 - 2. Protect stored on-site and installed absorptive materials from moisture damage.
 - 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.
 - 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy.

----END----

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures, and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- E. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.

- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to, ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - 1. No wall or part of wall shall be permitted to fall outwardly from structures.
 - 2. Wherever a cutting torch or other equipment that might cause a fire is used, provide, and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 3. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.
- H. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS and Section 01 35 26, SAFETY REQUIREMENTS.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals, and similar materials shall become property of the Contractor and shall be disposed of by him daily, off the Medical Center, to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state, or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state, or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the

drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer.

Clean-up shall include off the Medical Center, disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies wood blocking, framing, sheathing, furring, nailers, sub-flooring, rough hardware, and light wood construction.

1.2 RELATED WORK:

- A. Sustainable design requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals,
- C. Shop Drawings showing framing connection details, fasteners, connections and dimensions.
- D. Manufacturer's Literature and Data:
 - 1. Submit data for lumber, panels, hardware and adhesives.
 - 2. Submit data for wood-preservative treatment from chemical treatment manufacturer and certification from treating plants that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 3. Submit data for fire retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 4. For products receiving a waterborne treatment, submit statement that moisture content of treated materials was reduced to levels specified before shipment to project site.
- E. Manufacturer's certificate for unmarked lumber.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.

D. Locate stacks on well drained areas, supported at least 152 mm (6 inches) above grade and cover with well-ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 QUALITY ASSURANCE:

A. Installer: A firm with a minimum of three (3) years' experience in the type of work required by this section.

1.6 GRADING AND MARKINGS:

A. Any unmarked lumber or plywood panel for its grade and species will not be allowed on VA Construction sites for lumber and material not normally grade marked, provide manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material meet the specified the specified requirements.

1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA):

 NDS-15...........National Design Specification for Wood

 Construction

 WCD1-01......Details for Conventional Wood Frame

 Construction
- C. American Institute of Timber Construction (AITC):

 A190.1-07......Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME):

 B18.2.1-12(R2013)......Square and Hex Bolts and Screws

 B18.2.2-10......Square and Hex Nuts

 B18.6.1-81(R2008)......Wood Screws
- E. American Plywood Association (APA):
 E30-11.....Engineered Wood Construction Guide
- F. ASTM International (ASTM):
 - A653/A653M-13.....Steel Sheet Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot Dip Process
 - C954-11.....Steel Drill Screws for the Application of

 Gypsum Board or Metal Plaster Bases to Steel

 Studs from 0.033 inch (2.24 mm) to 0.112-inch

 (2.84 mm) in thickness

	C1002-14Steel Self-Piercing Tapping Screws for the
	Application of Gypsum Panel Products or Metal
	Plaster Bases to Wood Studs or Metal Studs
	D198-14Test Methods of Static Tests of Lumber in
	Structural Sizes
	D2344/D2344M-13Test Method for Short-Beam Strength of Polymer
	Matrix Composite Materials and Their Laminates
	D2559-12aAdhesives for Structural Laminated Wood
	Products for Use Under Exterior (Wet Use)
	Exposure Conditions
	D3498-03(R2011)Adhesives for Field-Gluing Plywood to Lumber
	Framing for Floor Systems
	D6108-13Test Method for Compressive Properties of
	Plastic Lumber and Shapes
	D6109-13 Test Methods for Flexural Properties of
	Unreinforced and Reinforced Plastic Lumber and
	Related Products
	D6111-13aTest Method for Bulk Density and Specific
	Gravity of Plastic Lumber and Shapes by
	Displacement
	D6112-13 Test Methods for Compressive and Flexural Creep
	and Creep-Rupture of Plastic Lumber and Shapes
	F844-07a(R2013)Washers, Steel, Plan (Flat) Unhardened for
	General Use
	F1667-13Nails, Spikes, and Staples
G.	American Wood Protection Association (AWPA):
	AWPA Book of Standards
Н.	Commercial Item Description (CID):
	A-A-55615Shield, Expansion (Wood Screw and Lag Bolt Self
	Threading Anchors)
I.	Forest Stewardship Council (FSC):
	FSC-STD-01-001(Ver. 4-0)FSC Principles and Criteria for Forest
	Stewardship
J.	Military Specification (Mil. Spec.):
	MIL-L-19140ELumber and Plywood, Fire-Retardant Treated
К.	Environmental Protection Agency (EPA):
	40 CFR 59(2014)National Volatile Organic Compound Emission
	Standards for Consumer and Commercial Products

L. Truss Plate Institute (TPI):
 TPI-85............Metal Plate Connected Wood Trusses
M. U.S. Department of Commerce Product Standard (PS)
 PS 1-95..............Construction and Industrial Plywood
 PS 20-10...........American Softwood Lumber Standard
N. ICC Evaluation Service (ICC ES):
 AC09............Quality Control of Wood Shakes and Shingles
 AC174............Deck Board Span Ratings and Guardrail Systems
 (Guards and Handrails)

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber must bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks are to be in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review,
 American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA NDS having design stresses as shown.
- C. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - 2. Framing lumber: Minimum extreme fiber stress in bending of 7584 kPa (1100 PSI).
 - 3. Furring, blocking, nailers and similar items 101 mm (4 inches) and narrower Standard Grade; and, members 152 mm (6 inches) and wider, Number 2 Grade.
 - 4. Board Sub-flooring: Shiplap edge, 25 mm (1 inch) thick, not less than 203 mm (8 inches) wide.

D. Sizes:

1. Conforming to PS 20.

2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.

E. Moisture Content:

- 1. Maximum moisture content of wood products is to be as follows at the time of delivery to site.
 - a. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - b. Lumber over 50 mm (2 inches) thick: 25 percent or less.

F. Fire Retardant Treatment:

- 1. Comply with Mil Spec. MIL-L-19140.
- 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.

G. Preservative Treatment:

- 1. Do not treat Heart Redwood and Western Red Cedar.
- 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 610 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members provided in connection with roofing and flashing materials.
- 3. Treat other members specified as preservative treated (PT).
- 4. Preservative treat by the pressure method complying with AWPA Book use category system standards U1 and T1, except any process involving the use of Chromated Copper Arsenate (CCA) or other agents classified as carcinogenic for pressure treating wood is not permitted.

2.2 PLASTIC LUMBER: - NOT USED

2.3 PLYWOOD:

- A. Comply with PS 1.
- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which identifies compliance by veneer grade, group number, span rating where applicable, and glue type.
- C. Sheathing:
 - 1. APA rated Exposure 1 or Exterior; panel grade CD or better.
 - 2. Wall sheathing:

- a. Minimum 9 mm (11/32 inch) thick with supports 406 mm (16 inches) on center and 12 mm (15/32 inch) thick with supports 610 mm (24 inches) on center unless specified otherwise.
- b. Minimum 1200 mm (48 inches) wide at corners without corner bracing of framing.
- 3. Roof sheathing: not used

D. Subflooring:

- 1. Under finish wood flooring or underlayment:
 - a. APA Rated sheathing, Exposure 1. panel grade CD.
 - b. Minimum 15 mm (19/32 inch) thick with span rating 32/16 or greater for supports at 406 mm (16 inches) on center and 18.25 mm (23/32 inch) thick with span rating 48/24 for supports at 610 mm (24 inches) on center.
- 2. Combination subflooring-underlayment under resilient flooring or carpet:
 - a. APA Rated Stud-I-Floor Exterior or Exposure 1, T and G.
 - b. Minimum 15 mm (19/32 inch) thick or greater, span rating 16, for supports at 406 mm (16 inches) on center; 18 mm (23/32 inch) thick or greater, span rating 24, for supports at 610 mm (24 inches) on center.

E. Underlayment:

- 1. APA rated Exposure 1 or Exterior, panel grade C-C Plugged.
- 2. Minimum 6 mm (1/4 inch) thick or greater over plywood subflooring.

2.4 STRUCTURAL-USE PANELS:

- A. Comply with APA E30.
- B. Bearing the mark of a recognized association or independent agency that maintains continuing control over quality of panel which identifies compliance by end use, Span Rating, and exposure durability classification.
- C. Wall and Roof Sheathing:
 - APA Rated sheathing panels, durability classification of Exposure 1 or Exterior Span Rating of 16/0 or greater for supports 406 mm (16 inches) on center and 24/0 or greater for supports 610 mm (24 inches) on center.

D. Subflooring:

- 1. Under finish wood flooring or underlayment:
 - a. APA rated sheathing panels, durability classification of Exposure 1 or Exterior.

- b. Span Rating of 24/16 or greater for supports 406 mm (16 inches).
- 2. Under resilient floor or carpet.
 - a. APA rated combination subfloor-underlayment grade panels, durability classification of Exposure 1 or Exterior T and G.
 - b. Span Rating of 16 or greater for supports 406 mm (16 inches) on center and 24 or greater for supports 610 mm (24 inches) on center.

E. Underlayment:

- 1. APA rated Exposure 1.
- 2. Minimum 6 mm (1/4 inch) thick or greater over subfloor.

F. Wood "I" Beam Members:

- 1. Size and Shape as indicated in contract documents.
- 2. Cambered and marked "TOP UP".
- 3. Plywood webs: PS-1, minimum 9 mm (3/8 inch) thick, unless shown otherwise.
- 4. Flanges: Kiln dried stress rated dense lumber minimum 38 mm (1-1/2 inch) thick, width as indicated on contract documents.
- 5. Plywood web fitted into flanges and joined with ASTM D2559 adhesive to form "I" beam section unless shown otherwise.
- G. Laminated Veneer Lumber (LVL):
 - 1. Bonded jointed wood veneers with ASTM D2559 adhesive.
 - 2. Scarf jointed wood veneers with grain of wood parallel.
 - 3. Size as indicated on contract documents.

2.5 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ASME B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - 2. Extend at least 203 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Provide 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers
 - 1. ASTM F844.
 - 2. Provide zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ASME B18.6.1 or ASTM C1002.

2. Wood to Steel: ASTM C954, or ASTM C1002.

E. Nails:

- Size and type best suited for purpose unless noted otherwise.
 Provide aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
- 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Provide special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.

F. Framing and Timber Connectors:

- Fabricate of ASTM A653/A653M, Grade A; steel sheet not less than
 1.3 mm (0.052 inch) thick unless specified otherwise. Apply standard plating to steel timber connectors after punching, forming and assembly of parts.
- Framing Angles: Angle designed with bendable legs to provide three (3) way anchors.
- 3. Straps:
 - a. Designed to provide wind and seismic ties with sizes as shown or specified.
 - b. Strap ties not less than 32 mm (1-1/4 inches) wide.
 - c. Punched for fastener.
- 4. Metal Bridging:
- 5. Joist Hangers:
 - a. Fabricated of 1.6 mm (0.063 inch) minimum thick sheet, U design unless shown otherwise.
 - b. Heavy duty hangers fabricated of minimum 2.7 mm (0.108 inch) thick sheet, U design with bent top flange to lap over beam.
- 6. Timber Connectors: Fabricated of steel to shapes indicated on contract drawings.
- 7. Joist Ties: Mild steel flats, 5 mm by 32 mm (3/16 inch by 1-1/4 inch) size with ends bent about 30 degrees from

horizontal, and extending at least 406 mm (16 inches) onto framing. Punch each end for three (3) spikes.

- 8. Wall Anchors for Joists and Rafters:
 - a. Mild steel strap, 5 mm by 32 mm (3/16 inch by 1-1/4 inch) with wall ends bent 50 mm (2 inches), or provide 9 mm by 130 mm (3/8 inch by 5 inch) pin through strap end built into masonry.
 - b. Strap long enough to extend onto three joists or rafters, and punched for spiking at each bearing.
 - c. Strap not less than 101 mm (4 inches) embedded end.
- 9. Joint Plates:
 - a. Steel plate punched for nails.
 - b. Steel plates formed with teeth or prongs for mechanically clamping plates to wood.
 - c. Size for axial eccentricity, and fastener loads.

G. Adhesives:

- 1. For field-gluing plywood to lumber framing floor or roof systems: ASTM D3498.
- 2. For structural laminated Wood: ASTM D2559.
- 3. Adhesives to have a VOC content of 70 g/L or less when calculated according to 40 CFR 59, (EPA Method 24).

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA NDS for timber connectors.
 - 2. AITC A190.1 Timber Construction Manual for heavy timber construction.
 - 3. AFPA WCD1 for nailing and framing unless specified otherwise.
 - 4. APA for installation of plywood or structural use panels.
 - 5. TPI for metal plate connected wood trusses.

B. Fasteners:

- 1. Nails.
 - a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA WCD1 where detailed nailing requirements are not specified in nailing schedule. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.
 - b. Use special nails with framing connectors.

- c. For sheathing and subflooring, select length of nails sufficient to extend 25 mm (1 inch) into supports.
- d. Use 8d or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
- e. Use 16d or larger nails for nailing through 50 mm (2 inch) thick lumber.
- f. Select the size and number of nails in accordance with the Nailing Schedule except for special nails with framing anchors.
- g. Nailing Schedule; Using Common Nails:
 - 1) Joist bearing on sill or girder, toe nail three (3) 8d nails or framing anchor.
 - 2) Bridging to joist, toe nail each end two (2) 8d nails.
 - 3) Ledger strip to beam or girder three (3) 16d nails under each joint.
 - 4) Subflooring or Sheathing:
 - a) 152 mm (6 inch) wide or less to each joist face nail two (2) 8d nails.
 - b) Subflooring, more than 152 mm (6 inches) wide, to each stud or joint, face nail three (3) 8d nails.
 - c) Plywood or structural use panel to each stud or joist face nail 8d, at supported edges 152 mm (6 inches) on center and at intermediate supports 254 mm (10 inches) on center. When gluing plywood to joint framing increase nail spacing to 305 mm (12 inches) at supported edges and 508 mm (20 inches) o.c. at intermediate supports.
 - 5) Sole plate to joist or blocking, through sub floor face nail 20d nails, 406 mm (16 inches) on center.
 - 6) Top plate to stud, end nail two (2) 16d nails.
 - 7) Stud to sole plate, toe nail or framing anchor. Four (4) 8d nails.
 - 8) Doubled studs, face nail 16d at 610 mm (24 inches) on center.
 - 9) Built-up corner studs 16d at 610 mm (24 inches) (24 inches) on center.
 - 10) Doubled top plates, face nails 16d at 406 mm (16 inches) on center.
 - 11) Top plates, laps, and intersections, face nail two (2) 16d.
 - 12) Continuous header, two pieces 16d at 406 mm (16 inches) on center along each edge.

- 13) Ceiling joists to plate, toenail three (3) 8d or framing anchor.
- 14) Continuous header to stud, four (4) 16d.
- 15) Ceiling joists, laps over partitions, face nail three (3) 16d or framing anchor.
- 16) Ceiling joists, to parallel rafters, face nail three (3) 16d.
- 17) Rafter to plate, toe nail three (3) 8d or framing anchor.

 Brace 25 mm (1 inch) thick board to each stud and plate, face nail three (3) 8d.
- 18) Built-up girders and beams 20d at 812 mm (32 inches) on center along each edge.

2. Bolts:

- a. Fit bolt heads and nuts bearing on wood with washers.
- b. Countersink bolt heads flush with the surface of nailers.
- c. Embed in concrete and solid masonry or provide expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
- d. Provide toggle bolts to hollow masonry or sheet metal.
- e. Provide bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 610 mm (24 inch) intervals between end bolts. Provide clips to beam flanges.
- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be provided where practical to anchor to solid masonry, concrete, or steel.
- Do not anchor to wood plugs or nailing blocks in masonry or concrete. Provide metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- 7. Installation of Timber Connectors:
 - a. Conform to applicable requirements of the AFPA NDS.

- b. Fit wood to connectors and drill holes for fasteners so wood is not split.
- C. Set sills or plates level in full bed of mortar on masonry or concrete walls.
 - 1. Space anchor bolts 1219 mm (4 feet) on centers between ends and within 152 mm (6 inches) of end. Stagger bolts from side to side on plates over 178 mm (7 inches) in width.
 - 2. Provide shims of slate, tile or similar approved material to level wood members resting on concrete or masonry. Do not use wood shims or wedges.
 - 3. Closely fit, and set to required lines.
- D. Cut notch, or bore in accordance with AFPA WCD1 passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Provide longest lengths practicable.
 - 3. Provide fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 610 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 127 mm (5 inches) in width.
- F. Floor and Ceiling Framing:
 - 1. Set with crown edge up.
 - 2. Keep framing at least 50 mm (2 inches) away from chimneys.
 - 3. Bear on not less than 101 mm (4 inches) on concrete and masonry, and 38 mm (1-1/2 inches) on wood and metal unless shown otherwise.
 - 4. Support joist, trimmer joists, headers, and beams framing into carrying members at same relative levels on joist hangers unless shown otherwise.
 - 5. Lap and spike wood joists together at bearing, or butt end-to-end with scab ties at joint and spike to plates. Scab tie lengths not less than 203 mm (8 inches) lap on joist ends. Install wood I beam joists as indicated in contract documents.
 - 6. Frame openings with headers and trimmer joist. Double headers carrying more than two tail joists and trimmer joists supporting

- headers carrying more than one tail joist unless otherwise indicated in contract documents.
- 7. Drive nails through headers into joists using two (2) nails for 50 mm by 152 mm (2 inch by 6 inch); three (3) nails for 50 mm by 203 mm (2 inch by 8 inch) and four (4) nails for 50 mm by 254 mm (2 inch by 10 inch) and over in size.
- 8. Install nearest joist to double headers and spike joist to both header members before trimmer joist is installed and secured together.
- 9. Doubled joists under partitions parallel with floor joists. Fire cut joists built into masonry or concrete.
- 10. Where joists run perpendicular to masonry or concrete, anchor every third joist to masonry or concrete with one (1) metal wall anchor. Securely spike anchors with three (3) nails to side of joist near its bottom.
- 11. Anchor joists running parallel with masonry or concrete walls to walls with steel flats spaced not over 1828 mm (6 feet) apart.

 Extend steel flats over at least three (3) joists and into masonry 101 mm (4 inches) with ends turned 50 mm (2 inches); bolt to concrete. Set top of flats flush with top of joists, and securely nail steel flats to each joist.
- 12. Hook ties at steel framing over top flange of steel members.
- 13. Nonbearing partitions running parallel with ceiling joists, install solid 50 mm (2 inch) thick bridging same depth as ceiling joists cut to fit snug between joists for securing top plate of partitions.

 Securely spike bridging to joists. Space 1219 mm (4 feet) on center.

G. Bridging:

- 1. Provide 25 mm by 75 mm (1 inch by 3 inch) lumber with ends beveled for slope.
- Install one (1) row of bridging for joist spans over 2438 mm
 (8 feet), but less than 4877 mm (16 feet) long; install two (2) rows for spans over 4877 mm (16 feet) long.
- 3. Install an extra row of bridging between trimmer and next two (2) joists if header is more than 610 mm (2 feet) from end of trimmer or from regular row of bridging.
- 4. Secure with two (2) nails at ends.
- 5. Leave bottom ends loose until after subflooring or roof sheathing is installed.

6. Install single row of bridging at centerline of span and two (2) rows at the third points of span unless otherwise shown.

H. Roof Framing:

I. Framing of Dormers:

- 1. Frame as indicated in contract documents, with top edge of ridge beveled to pitch of roof header.
- 2. Set studs on doubled trimmer rafters.
- 3. Double studs at corners of dormers.
- 4. Double plate on studs and notch rafters over plate and bear at least $75\ \mathrm{mm}$ (3 inches) on plates.
- 5. Frame opening to receive window frame or louver frame.

J. Partition and Wall Framing:

- 1. Provide 50 mm by 101 mm (2 inch by 4 inch) studs spaced 406 mm (16 inches) on centers; unless otherwise indicated on contract documents.
- 2. Install double studs at openings and triple studs at corners.
- 3. Installation of sole plate:
 - a. Anchor plates of walls or partitions resting on concrete floors in place with expansion bolts, one (1) near ends of piece and at intermediate intervals of not more than 1219 mm (4 feet) or with power actuated drive pins with threaded ends of suitable type and size, spaced 610 mm (2 feet) on center unless shown otherwise.
 - b. Nail plates to wood framing through subfloor as specified in nailing schedule.

4. Headers or Lintels:

- a. Make headers for openings of two (2) pieces of 50 mm (2 inch) thick lumber of size shown with plywood filler to finish flush with face of studs or solid lumber of equivalent size.
- b. Support ends of headers on top of stud cut for height of opening. Spike cut stud to adjacent stud. Spike adjacent stud to header.
- 5. Provide double top plates, with members lapped at least 610 mm (2-feet) spiked together.
- 6. Install intermediate cut studs over headers and under sills to maintain uniformity of stud spacing.
- 7. Provide single sill plates at bottom of opening unless otherwise indicated in contract documents. Toe nail to end stud, face nail to intermediate studs.

- 8. Install 50 mm (2 inch) blocking for firestopping so that maximum dimension of any concealed space is not over 2438 mm (8 feet) in accordance with AFPA WCD1.
- 9. Install corner bracing when plywood or structured use panel sheathing is not used.
 - a. Let corner bracing into exterior surfaces of studs at an angle of approximately 45 degrees, extended completely over walls plates, and secured at bearing with two (2) nails.
 - b. Provide 25 mm by 101 mm (1 inch by 4 inch) corner bracing.

K. Rough Bucks:

- Install rough wood bucks at opening in masonry or concrete where wood frames or trim occur.
- 2. Brace and maintain bucks plumb and true until masonry has been built around them or concrete cast in place.
- 3. Cut rough bucks from 50 mm (2 inch) thick stock, of same width as partitions in which they occur and of width shown in exterior walls.
- 4. Extend bucks full height of openings and across head of openings; fasten securely with anchors specified.

L. Subflooring:

- 1. Subflooring may be either boards, structural-use panels, or plywood.
- 2. Lay board subflooring diagonally, with close joints. Stagger end joints and make joints over supports. Bear each board on at least three supports.
- 3. Provide a clearance of approximately 13 mm (1/2 inch) at masonry or concrete at walls.
- 4. Apply plywood and structural-use panel subflooring with face grain or long dimension at right angles to the supports, with edges 6 mm (1/4 inch) apart at side joints, and 3 mm (1/8 inch) apart at end joints.
- 5. Combination subfloor-underlayment:
 - a. Space edges 3 mm (1/8 inch) apart.
 - b. Provide a clearance of 6 mm (1/4 inch) at masonry on concrete at walls.
- 6. Stagger panel end joints and make over support.

M. Underlayment:

1. Where finish flooring of different thickness is used in adjoining areas, provide underlayment of thickness required to bring finish-flooring surfaces into same plane.

- 2. Apply to dry, level, securely nailed, clean, wood subfloor without any projections.
- 3. Plywood and particle underlayment are to be glue-nailed to subfloor.
- 4. Butt underlayment panels to a light contact with a 1 mm (1/32 inch) space between plywood or hardboard underlayment panels and walls, and approximately 9 mm (3/8 inch) between particleboard underlayment panels and walls.
- 5. Stagger underlayment panel end joints with respect to each other and offset joints with respect to joints in the subfloor at least 50 mm (2 inches).
- 6. After installation, avoid traffic on underlayment and damage to the finish surface.

N. Sheathing:

- 1. Provide plywood or structural-use panels for sheathing.
- 2. Lay panels with joints staggered, with edge and ends 3 mm (1/8 inch) apart and nailed over bearings as specified.
- 3. Set nails not less than 9 mm (3/8 inch) from edges.
- 4. Install 50 mm by 101 mm (2 inch by 4 inch) blocking spiked between joists, rafters and studs to support edge or end joints of panels.

- - - E N D - - -

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for wall and roof flashing, copings, roof edge metal, fasciae, drainage specialties, and formed expansion joint covers are specified in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Joint Sealants.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Color of factory coated exterior architectural metal and anodized aluminum items.
- C. Section 09 91 00, PAINTING: Paint materials and application.
- D. Division 23 HVAC: Integral flashing components of manufactured roof specialties and accessories or equipment.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. Aluminum Association (AA):
 - AA-C22A41......Aluminum Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick
 - AA-C22A42......Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick
 - AA-C22A44......Chemically etched medium matte with
 electrolytically deposited metallic compound,
 integrally colored coating Class I
 Architectural, 0.7-mil thick finish
- C. American National Standards Institute/ Single-Ply Roofing
 Institute/Factory Mutual (ANSI/SPRI/FM):
 - 4435/ES-1-11......Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems
- D. American Architectural Manufacturers Association (AAMA):
 - AAMA 620-02......Voluntary Specification for High Performance
 Organic Coatings on Coil Coated Architectural
 Aluminum

AAMA 621-02.....Voluntary Specification for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) and Zinc-Aluminum Coated Steel Substrates E. ASTM International (ASTM): A240/A240M-20......Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications. A653/A653M-20......Steel Sheet Zinc-Coated (Galvanized) or Zinc Alloy Coated (Galvanized) by the Hot- Dip Process B32-08(2014).....Solder Metal B209-14......Aluminum and Aluminum-Alloy Sheet and Plate B370-12(2019).....Copper Sheet and Strip for Building Construction D173/D173M-03(2018).....Bitumen-Saturated Cotton Fabrics Used in Roofing and Waterproofing D412-16......Vulcanized Rubber and Thermoplastic Elastomers-Tension D1187/D1187M-97(2018)...Asphalt Base Emulsions for Use as Protective Coatings for Metal Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds D3656/D3656M-13......Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns D4586/D4586M-07(2018)...Asphalt Roof Cement, Asbestos Free F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual. G. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual H. Federal Specification (Fed. Spec): A-A-1925A..... Shield, Expansion; (Nail Anchors) UU-B-790A.....Building Paper, Vegetable Fiber

I. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

- A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:
 - 1. Wind Zone 1: 0.48 to 0.96 kPa (10- to 20-pound force/ square foot): 1.92-kPa (40-pound force/ square foot) perimeter uplift force, 2.87kPa (60-pound force/ square foot pound force/ square foot) corner uplift force, and 0.96-kPa (20- pound force/ square foot) outward force.
 - 2. Wind Zone 1: 1.00 to 1.44 kPa (21- to 30-pound force/ square foot): 2.87-kPa (60-pound force/ square foot) perimeter uplift force, 4.31kPa (90-pound force/ square foot) corner uplift force, and 1.44-kPa (30-pound force/ square foot) outward force.
 - 3. Wind Zone 2: 1.48 to 2.15 kPa (31- to 45-pound force/ square foot): 4.31-kPa (90-pound force/ square foot) perimeter uplift force, 5.74-kPa (120-pound force/ square foot) corner uplift force, and 2.15-kPa (45-pound force/ square foot) outward force.
 - 4. Wind Zone 3: 2.20 to 4.98 kPa (46- to 104-pound force/ square foot): 9.96-kPa (208-pound force/ square foot) perimeter uplift force, 14.94-kPa (312-pound force/ square foot) corner uplift force, and 4.98-kPa (104-pound force/ square foot) outward force.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: For all specified items, including:
 - 1. Two-piece counterflashing
 - 2. Thru wall flashing
 - 3. Expansion joint cover, each type
 - 4. Nonreinforced, elastomeric sheeting
 - 5. Copper clad stainless steel
 - 6. Polyethylene coated copper
 - 7. Bituminous coated copper
 - 8. Copper covered paper
 - 9. Fascia-cant
- C. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Copper ASTM B370, cold-rolled temper.
- C. Bituminous Coated Copper: Minimum copper ASTM B370, weight not less than $1-kg/m^2$ (3-oz/sf). Bituminous coating shall weigh not less than 2-kg/m² (6-oz/sf); or copper sheets may be bonded between two layers of coarsely woven bitumen-saturated cotton fabric ASTM D173. Exposed fabric surface shall be crimped.
- D. Copper Covered Paper: Fabricated of electro-deposit pure copper sheets ASTM B 370, bonded with special asphalt compound to both sides of creped, reinforced building paper, UU-B-790, Type I, style 5, or to a three-ply sheet of asphalt impregnated crepe paper. Grooves running along the width of sheet.
- E. Polyethylene Coated Copper: Copper sheet ASTM B370, weighing $1-Kg/m^2$ (3-oz/sf) bonded between two layers of (2-mil) thick polyethylene sheets.
- F. Aluminum Sheet: ASTM B209, alloy 3003-H14.
- G. Galvanized Sheet: ASTM, A653.
- H. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056-inch) thick. Sheeting shall have not less than 7-MPa (1,000psi) tensile strength and not more than seven percent tension-set at 50% elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1mm (1/32-inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of -30°C (-20°F).

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosin-sized sheathing paper, weighing approximately 3 Kg/10m² (6-pounds/ 100-square feet).
- C. Bituminous Paint: ASTM D1187, Type I.
- D. Fasteners:
 - 1. Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for

stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.

2. Nails:

- a. Minimum diameter for copper nails: 3mm (0.109-inch).
- b. Minimum diameter for aluminum nails 3mm (0.105-inch).
- c. Minimum diameter for stainless steel nails: 2mm (0.095-inch) and annular threaded.
- d. Length to provide not less than 22mm (7/8-inch) penetration into anchorage.
- 3. Rivets: Not less than 3mm (1/8-inch) diameter.
- 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
- G. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 1. Copper: 30g (10oz) minimum 0.33mm (0.013-inch thick).
 - 2. Stainless steel: 0.25mm (0.010-inch) thick.
 - 3. Copper clad stainless steel: 0.25mm (0.010-inch) thick.
 - 4. Galvanized steel: 0.5mm (0.021-inch) thick.
- C. Exposed Locations:
 - 1. Copper: 0.4Kg (16oz).
 - 2. Stainless steel: 0.4mm (0.015-inch).
 - 3. Copper clad stainless steel: 0.4mm (0.015-inch).
- D. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - In general, copper, stainless steel, and copper clad stainless-steel joints, except expansion and contraction joints, shall be locked and soldered.
 - Jointing of copper over 0.5Kg (20oz) weight or stainless steel over 0.45mm (0.018-inch) thick shall be done by lapping, riveting, and soldering.
 - 3. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19mm (3/4-inch) wide.

- b. Lap joints subject to stress shall finish not less than 25mm (1-inch) wide and shall be soldered and riveted.
- c. Unsoldered lap joints shall finish not less than 100mm (4-inches) wide.
- 4. Flat and lap joints shall be made in direction of flow.
- 5. Edges of bituminous coated copper, copper covered paper, nonreinforced elastomeric sheeting and polyethylene coated copper shall be joined by lapping not less than 100mm (4-inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.

6. Soldering:

- a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1½-inches) of uncoated copper, stainless steel, and copper clad stainless steel.
- b. Wire brush to produce a bright surface before soldering lead coated copper.
- c. Treat in accordance with metal producers' recommendations other sheet metal required to be soldered.
- d. Completely remove acid and flux after soldering is completed.

B. Expansion and Contraction Joints:

- Fabricate in accordance with the Architectural Sheet Metal Manual recommendations for expansion and contraction of sheet metal work in continuous runs.
- 2. Space joints as shown or as specified.
- Space expansion and contraction joints for copper, stainless steel, and copper clad stainless steel at intervals not exceeding 7200mm (24-feet).
- 4. Space expansion and contraction joints for aluminum at intervals not exceeding 5400mm (18-feet), except do not exceed 3000mm (10-feet) for gravel stops and fascia-cant systems.
- 5. Fabricate slip-type or loose locked joints and fill with sealant unless otherwise specified.
- 6. Fabricate joint covers of same thickness material as sheet metal served.

C. Cleats:

1. Fabricate cleats to secure flashings and sheet metal work over 300mm (12-inches) wide and where specified.

- 2. Provide cleats for maximum spacing of 300-mm (12-inch) centers unless specified otherwise.
- 3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
- 4. Fabricate cleats from 50mm (2-inch) wide strip. Form end with not less than 19mm (3/4-inch) wide loose lock to item for anchorage. Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.

D. Edge Strips or Continuous Cleats:

- 1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
- 2. Except as otherwise specified, fabricate edge strips or minimum 1.25mm (0.050-inch) thick aluminum.
- 3. Use material compatible with sheet metal to be secured by the edge strip.
- 4. Fabricate in 3000mm (10-feet) maximum lengths with not less than 19mm (3/4-inch) loose lock into metal secured by edge strip.
- 5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19mm (3/4-inch).
- 6. Fabricate anchor edge maximum width of 75mm (3-inches) or of sufficient width to provide adequate bearing area to insure a rigid installation using 1.6mm (0.0625-inch) thick aluminum.

E. Drips:

- 1. Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascia's, gravel stops, wall copings, by folding edge back 13mm (1/2-inch) and bending out 45-degrees from vertical to carry water away from the wall.
- 2. Form drip to provide hook to engage cleat or edge strip for fastening for not less than $19 \, \text{mm}$ (3/4-inch) loose lock where shown.

F. Edges:

- 1. Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6mm (1/4-inch) to form dam, unless otherwise specified or shown otherwise.
- 2. Finish exposed edges of flashing with a 6mm (1/4-inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6mm (1/4-inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.

3. All metal roof edges shall meet requirements of IBC, current edition.

G. Metal Options:

- 1. Where options are permitted for different metals use only one metal throughout.
- 2. Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.
- 3. Where copper gravel stops, copings and flashings will carry water onto cast stone, stone, or architectural concrete, or stainless steel.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Copper: Mill finish.
 - 2. Stainless Steel: Finish No. 2B or 2D.
 - 3. Aluminum:
 - a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class 1 Architectural, 18mm (0.7-mils) thick.
 - b. Colored Finish: AA-C22A42 (anodized) or AA-C22A44 (electrolytically deposited metallic compound) medium matte, integrally colored coating, Class 1 Architectural, 18mm (0.7-mils) thick. Dyes will not be accepted.
 - c. Fluorocarbon Finish: AAMA 620, high performance organic coating.
 - d. Mill finish.
 - 4. Steel and Galvanized Steel:
 - a. Finish painted under Section 09 91 00, PAINTING unless specified as prefinished item.
 - b. Manufacturer's finish:
 - 1) Baked on prime coat over a phosphate coating.
 - 2) Baked-on prime and finish coat over a phosphate coating.
 - 3) Fluorocarbon Finish: AAMA 621, high performance organic coating.

2.6 THROUGH-WALL FLASHINGS

- A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2mm (1/16-inch) deep transverse channels spaced four to every 25mm (1-inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 - 1. Fabricate in not less than 2400mm (8-feet) lengths; 3000mm (10-feet) maximum lengths.
 - 2. Fabricate so keying nests at overlaps.
- B. For Masonry Work When Concealed Except for Drip:
 - 1. Either copper, stainless steel, or copper clad stainless steel.
 - 2. Form an integral dam at least 5mm (3/16-inch) high at back edge.
 - 3. Form exposed portions of flashing with drip, approximately 6mm (1/4-inch) projection beyond wall face.
- C. For Masonry Work When Exposed Edge Forms a Receiver for Counter Flashing:
 - 1. Use same metal and thickness as counter flashing.
 - 2. Form an integral dam at least 5mm (3/16-inch) high at back edge.
 - 3. Form exposed portion as snap lock receiver for counter flashing upper edge.
- D. For Flashing at Architectural Precast Concrete Panels or Stone Panels.
 - 1. Use plan flat sheet of stainless steel.
 - 2. Form exposed portions with drip as specified or receiver.
- E. Windowsill Flashing and Lintel Flashing:
 - 1. Use either copper, stainless steel, copper clad stainless-steel plane flat sheet, or nonreinforced elastomeric sheeting, bituminous coated copper, copper covered paper, or polyethylene coated copper.
 - 2. Fabricate flashing at ends with folded corners to turn up 5mm (3/16-inch) in first vertical masonry joint beyond masonry opening.
 - 3. Turn up back edge as shown.
 - 4. Form exposed portion with drip as specified or receiver.
- F. Door Sill Flashing:
 - 1. Where concealed, use either 0.5Kg (20-ounce) copper, 0.5mm (0.018-inch) thick stainless steel, or 0.5mm (0.018-inch) thick copper clad stainless steel.
 - 2. Where shown on drawings as combined counter flashing under threshold, sill plate, door sill, or where subject to foot traffic,

- use either 0.6Kg (24-ounce) copper, 0.6mm (0.024-inch) stainless steel, or 0.6mm (0.024-inch) thick stainless steel.
- 3. Fabricate flashing at ends to turn up 5mm (3/16-inch) in first vertical masonry joint beyond masonry opening with folded corners.

2.7 BASE FLASHING

- A. Use metal base flashing at vertical surfaces intersecting built-up roofing without cant strips or where shown.
 - 1. Use either copper, or stainless steel, thickness specified unless specified otherwise.
 - 2. When flashing is over 250mm (10-inches) in vertical height or horizontal width use either 0.5Kg (20-oz) copper or 0.5mm (0.018-inch) stainless steel.
 - 3. Use stainless steel at aluminum roof curbs where flashing contacts the aluminum.
 - 4. Use either copper, or stainless steel at pipe flashings.
- B. Fabricate metal base flashing up vertical surfaces not less than 200mm (8-inch) nor more than 400mm (16-inch).
- C. Fabricate roof flange not less than 100mm (4-inches) wide unless shown otherwise. When base flashing length exceeds 2400mm (8-feet) form flange edge with 13mm (1/2-inch) hem to receive cleats.
- D. Form base flashing bent from strip except pipe flashing. Fabricate ends for riveted soldered lap seam joints. Fabricate expansion joint ends as specified.
- E. Pipe Flashing: (Other than engine exhaust or flue stack)
 - 1. Fabricate roof flange not less than 100mm (4-inches) beyond sleeve on all sides.
 - 2. Extend sleeve up and around pipe and flange out at bottom not less than 13mm (1/2-inch) and solder to flange and sleeve seam to make watertight.
 - 3. At low pipes 200mm (8-inch) to 450mm (18-inch) above roof:
 - a. Form top of sleeve to turn down into the pipe at least 25mm (1-inch).
 - b. Allow for loose fit around and into the pipe.
 - 4. At high pipes and pipes with goosenecks or other obstructions which would prevent turning the flashing down into the pipe:
 - a. Extend sleeve up not less than 300mm (12-inch) above roofing.
 - b. Allow for loose fit around pipe.

- 2.8 COUNTERFLASHING (CAP FLASHING OR HOODS) NOT USED
- 2.9 GRAVEL STOPS NOT USED
- 2.10 BITUMEN STOPS NOT USED
- 2.11 HANGING GUTTERS NOT USED
- 2.12 CONDUCTORS (DOWNSPOUTS) NOT USED
- 2.13 SPLASHPANS NOT USED
- 2.14 REGLETS NOT USED
- 2.15 INSULATED EXPANSION JOINT COVERS NOT USED
- 2.16 ENGINE EXHAUST PIPE OR FLUE OR STACK FLASHING NOT USED
- 2.17 SCUPPERS NOT USED
- 2.18 GOOSENECK ROOF VENTILATORS NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
- 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
- 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
- 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6mm (1/4-inch) with sheet metal compatible with the roofing and flashing material used.
- 5. Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.
- 6. Apply a layer of 7Kg (15-pound) saturated felt followed by a layer of rosin paper to wood surfaces to be covered with copper. Lap each ply 50mm (2-inch) with the slope and nail with large headed copper nails.
- 7. Confine direct nailing of sheet metal to strips 300mm (12-inch) or less wide. Nail flashing along one edge only. Space nail not over 100mm (4-inches) on center unless specified otherwise.

- 8. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75mm (3-inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 9. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
- 10. Nail continuous cleats on 75mm (3-inch) on centers in two rows in a staggered position.
- 11. Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.
- 12. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a watertight installation.
- 13. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 14. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.
- 15. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 16. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.
- 17. Bitumen Stops:
 - a. Install bitumen stops for built-up roof opening penetrations through deck and at formed sheet metal gravel stops.
 - b. Nail leg of bitumen stop at 300mm (12-inch) intervals to nailing strip at roof edge before roofing material is installed.

3.2 THROUGH-WALL FLASHING

A. General:

- 1. Install continuous through-wall flashing between top of concrete foundation walls and bottom of masonry building walls; at top of concrete floors; under masonry, concrete, or stone copings and elsewhere as shown.
- 2. Where exposed portions are used as a counterflashing, lap base flashings at least 100mm (4-inches) and use thickness of metal as specified for exposed locations.
- 3. Exposed edge of flashing may be formed as a receiver for 2-piece counter flashing as specified.
- 4. Terminate exterior edge beyond face of wall approximately 6mm (1/4-inch) with drip edge where not part of counter flashing.
- 5. Turn back edge up 6mm (1/4-inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
- 6. Terminate interior raised edge in masonry backup unit approximately 38 mm (1½-inch) into unit unless shown otherwise.
- 7. Under copings terminate both edges beyond face of wall approximately 6mm (1/4-inch) with drip edge.
- 8. Lap end joints at least two corrugations, but not less than 100mm (4-inches). Seal laps with sealant.
- 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.
- 10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.
- 11. Where ends of flashing terminate turn ends up 25mm (1-inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.
- 12. Turn flashing up not less than 200mm (8-inch) between masonry or behind exterior veneer.
- 13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150mm (6-inch) on center.
- 14. Continue flashing around columns:
 - a. Where flashing cannot be inserted in column reglet hold flashing vertical leg against column.
 - b. Counter flash top edge with 75mm (3-inch) wide strip of saturated cotton unless shown otherwise. Secure cotton strip with roof

- cement to column. Lap base flashing with cotton strip $38\,\mathrm{mm}$ (1½-inch).
- A. Flashing at Top of Concrete Foundation Walls Where concrete is exposed.

 Turn up not less than 200mm (8-inch) high and into masonry backup

 mortar joint or reglet in concrete backup as specified.
- B. Flashing at Top of Concrete Floors (except where shelf angles occur):

 Place flashing in horizontal masonry joint not less than 200mm (8-inch)
 below floor slab and extend into backup masonry joint at floor slab
 38mm (1½-inch).
- C. Flashing at Cavity Wall Construction: Where flashing occurs in cavity walls turn vertical portion up against backup under waterproofing, if any, into mortar joint. Turn up over insulation, if any, and horizontally through insulation into mortar joint.
- D. Flashing at Veneer Walls:
 - 1. Install near line of finish floors over shelf angles or where shown.
 - 2. Turn up against sheathing.
 - 3. At stud framing, hem top edge 19mm (3/4-inch) and secure to each stud with stainless steel fasteners through sheathing.
 - 4. At concrete backing, extend flashing into reglet as specified.
 - 5. Coordinate with installation of waterproofing or asphalt felt for lap over top of flashing.
- E. Lintel Flashing when not part of shelf angle flashing:
 - 1. Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
 - 2. Turn ends up 25mm (1-inch) and fold corners to form dam and extend end to face of wall.
 - 3. Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.
- F. Windowsill Flashing: not used
 - 1. Install flashing to extend not less than 100mm (4-inch) beyond ends of sill into vertical joint of masonry or veneer.
 - 2. Turn back edge up to terminate under window frame.
 - 3. Turn ends up 25mm (1-inch) and fold corners to form dam and extend to face of wall.
- G. Door Sill Flashing:
 - Install flashing under bottom of plate sills of doors over curbs opening onto roofs. Extend flashing out to form counter flashing or receiver for counter flashing over base flashing. Set in sealant.

- 2. Extend sill flashing 200mm (8-inch) beyond jamb opening. Turn ends up one inch in vertical masonry joint, extend end to face of wall. Join to counter flashing for watertight joint.
- 3. Where doors thresholds cover over waterproof membranes install sill flashing over waterproof membrane under thresholds. Extend beyond opening to cover exposed portion of waterproof membrane and not less than 150mm (6-inch) beyond door jamb opening at ends. Turn up approximately 6mm (1/4-inch) under threshold.
- H. Flashing at Masonry, Stone, or Precast Concrete Copings:
 - 1. Install flashing with drips on both wall faces unless shown otherwise.
 - 2. Form penetration openings to fit tight against dowel or other item with edge turned up. Seal penetrations with sealant.
- 3.3 BASE FLASHING NOT USED
- 3.4 COUNTERFLASHING (CAP FLASHING OR HOODS) NOT USED
- 3.5 REGLETS NOT USED
- 3.6 GRAVEL STOPS NOT USED
- 3.7 COPINGS
 - A. General:
 - 1. On walls topped with a wood plank, install a continuous edge strip on the front edge of the plank. Lock the coping to the edge strip with a 19mm (3/4-inch) loose lock seam.
 - 2. Where shown turn down roof side of coping and extend down over base flashing as specified for counterflashing. Secure counterflashing to lock strip in coping at continuous cleat.
 - 3. Install ends adjoining existing construction so as to form space for installation of sealants. Sealant is specified in Section 07 92 00, JOINT SEALANTS.
 - B. Aluminum Coping:
 - 1. Install with 6mm (1/4-inch) joint between ends of coping sections.
 - 2. Install joint covers, centered at each joint, and securely lock in place.
 - C. Stainless steel or Copper Copings:
 - 1. Join ends of sheets by a 19mm (3/4-inch) locked and soldered seam, except at intervals of 9600mm (32-feet), provide a 38 mm (1½-inch) loose locked expansion joint filled with sealant or mastic.
 - 2. At straight runs between 7200mm (24-feet) and 19200mm (64-feet) locate expansion joint at center.

3. At straight runs that exceed 9600mm (32-feet) and form the leg of a corner locate the expansion joint not more than 4800mm (16-feet) from the corner.

3.8 EXPANSION JOINT COVERS, INSULATED

- A. Install insulated expansion joint covers at locations shown on curbs not less than 200mm (8-inch) high above roof surface.
- B. Install continuous edge strips of same metal as expansion joint flange, nailed at not less than 75mm (3-inch) centers.
- C. Install insulated expansion joint covers in accordance with manufacturer's directions locking edges to edge strips.
- 3.9 ENGINE EXHAUST PIPE OR STACK FLASHING NOT USED
- 3.10 HANGING GUTTERS NOT USED
- 3.11 CONDUCTORS (DOWNSPOUTS) NOT USED
- 3.12 SPLASH PANS NOT USED
- 3.13 GOOSENECK ROOF VENTILATORS NOT USED

---END---

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 07 92 00, JOINT SEALANTS: Sealants and application.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: Fire and smoke damper assemblies in ductwork.
- E. Section 23 37 00, AIR OUTLETS AND INLETS: Fire and smoke damper assemblies in ductwork.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Installer qualifications.
- D. Inspector qualifications.
- E. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- F. List of FM, UL, or WH classification number of systems installed.
- G. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- H. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE

A. Deliver materials in their original unopened containers with manufacturer's name and product identification.

B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

E84-20	.Surface Burning Characteristics of Building
	Materials
E699-16	.Standard Specification for Agencies Involved in
	Testing, Quality Assurance, and Evaluating of
	Manufactured Building Components
E814-13a (2017)	.Fire Tests of Penetration Firestop Systems
E2174-20a	.Standard Practice for On-Site Inspection of
	Installed Firestop Systems
E2393-20	.Standard Practice for On-Site Inspection of
	Installed Fire Resistive Joint Systems and

Perimeter Fire Barriers

C. FM Global (FM):

Annual Issue Approval Guide Building Materials
4991-13......Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):
Annual Issue Building Materials Directory

- E. Annual Issue Fire Resistance Directory
 - 723-Edition 11(2018)....Standard for Test for Surface Burning
 Characteristics of Building Materials
 - 1479-04(2015).....Fire Tests of Penetration Firestops
- F. Intertek Testing Services Warnock Hersey (ITS-WH):
 Annual Issue Certification Listings
- G. Environmental Protection Agency (EPA):
 - 40 CFR 59(2014)......National Volatile Organic Compound Emission

 Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101mm (4-inches) nominal pipe or 0.01-square meter (16-square inches) in overall cross-sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
 - 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.

- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101mm (4-inches) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - For penetrations involving insulated piping, provide through penetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.

D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150mm (6-inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.

C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening, and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- C. Sound Rated Gypsum Partitions/ Sound Sealants: Section 09 29 00, GYPSUM BOARD.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of 3-years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - 3. Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness.
 - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Volatile organic compounds, per volume as specified in PART 2 PRODUCTS.
- C. Installer qualifications.
- D. Contractor certification.
- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
 - 1. Primers
 - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4°C (40°F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32°C (90°F) or less than 5°C (40°F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

C509-06......Elastomeric Cellular Preformed Gasket and

B. ASTM International (ASTM):

	Sealing Material
C612-14	.Mineral Fiber Block and Board Thermal
	Insulation
C717-14a	.Standard Terminology of Building Seals and
	Sealants
C734-06(R2012)	.Test Method for Low-Temperature Flexibility of
	Latex Sealants after Artificial Weathering
C794-10	.Test Method for Adhesion-in-Peel of Elastomeric
	Joint Sealants
C919-12	.Use of Sealants in Acoustical Applications.
C920-14a	.Elastomeric Joint Sealants.
C1021-08 (R2014)	.Laboratories Engaged in Testing of Building

C1193-13......Standard Guide for Use of Joint Sealants.

Sealants

C1248-08 (R2012)	.Test Method for Staining of Porous Substrate by
	Joint Sealants
C1330-02 (R2013)	.Cylindrical Sealant Backing for Use with Cold
	Liquid Applied Sealants
C1521-13	.Standard Practice for Evaluating Adhesion of
	Installed Weatherproofing Sealant Joints
D217-10	.Test Methods for Cone Penetration of
	Lubricating Grease
D1056-14	.Specification for Flexible Cellular Materials-
	Sponge or Expanded Rubber
E84-09	.Surface Burning Characteristics of Building
	Materials

- C. Sealant, Waterproofing and Restoration Institute (SWRI).
 The Professionals' Guide
- D. Environmental Protection Agency (EPA):

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. Exterior Sealants:
 - 1. Provide location(s) of exterior sealant as follows:
 - a. Joints formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Provide sealant at exterior surfaces of exterior wall penetrations.
 - b. Metal to metal.
 - c. Masonry to masonry or stone.
 - d. Stone to stone.
 - e. Cast stone to cast stone.
 - f. Masonry expansion and control joints.
 - g. Wood to masonry.
 - h. Masonry joints where shelf angles occur.
 - i. Voids where items penetrate exterior walls.
 - j. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.
- B. Floor Joint Sealant:
 - 1. ASTM C920, Type S or M, Grade P, Class 25,
 - 2. Provide location(s) of floor joint sealant as follows.

- a. Seats of metal thresholds exterior doors.
- b. Control and expansion joints in floors, slabs, ceramic tile, and walkways.

C. Interior Sealants:

- 1. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250g/L.
 - b. Sealant Primers for Nonporous Substrates: 250g/L.
 - c. Sealant Primers for Porous Substrates: 775g/L.
- 2. Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25.
- 3. Food Service: Use a Vinyl Acetate Homopolymer, or other low VOC, non-toxic sealant approved for use in food preparation areas.
- 4. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6mm, (1/4-inch) or less at walls and adjacent components.
 - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces.
 - c. Interior surfaces of exterior wall penetrations.
 - d. Joints at masonry walls and columns, piers, concrete walls, or exterior walls.
 - e. Perimeter of lead faced control windows and plaster or gypsum wallboard walls.
 - f. Exposed isolation joints at top of full height walls.
 - g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet.
 - h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.
 - i. Behind escutcheon plates at valve pipe penetrations and showerheads in showers.

D. Acoustical Sealant:

1. Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealants have a consistency of 250 to 310 when

tested in accordance with ASTM D217; remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining.

- 2. Provide location(s) of acoustical sealant as follows:
 - a. Exposed acoustical joint at sound rated partitions.
 - b. Concealed acoustic joints at sound rated partitions.
 - c. Joints where item pass-through sound rated partitions.

2.2 COLOR:

- A. Sealants used with exposed masonry are to match color of mortar joints.
- B. Sealants used with unpainted concrete are to match color of adjacent concrete.
- C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to $-32\,^{\circ}\text{C}$ ($-26\,^{\circ}\text{F}$). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.4 WEEPS: - NOT USED

2.5 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.

C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS NON-POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant-backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and dimensions are within tolerance, established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean, porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of

interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:

- a. Metal.
- b. Glass.
- c. Porcelain enamel.
- d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

A. At widths up to 6mm (1/4-inch), sealant depth equal to width.

B. At widths over 6mm (1/4-inch), sealant depth 1/2 of width up to 13mm (1/2-inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

A. General:

- 1. Apply sealants and caulking only when ambient temperature is between 5°C and 38°C (40°F and 100°F).
- 2. Do not install polysulfide base sealants where sealants may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- 3. Do not install sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
- 8. Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.
- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
- 11. Replace sealant which is damaged during construction process.
- B. Weeps: not used
- C. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- D. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.

- 1. Apply a 6mm (1/4-inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
- 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
- 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
- 4. Openings: Apply a 6mm (1/4-inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes, and similar penetrations. To seal electrical boxes, seal sides and backs.
- 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

A. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

---END---

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

A. Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES—provide quadruplicate samples for color approval of materials and finishes specified in this section.

DESIGNER NOTE: See instructions.

1. DIGITAL COLOR PHOTOS-INTERIOR VIEWS:

Room Number and Name	Item/View to be Photographed

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)

6/1/2019......Architectural Painting Specification Manual

PART 2 - PRODUCTS

2.1 DIGITAL COLOR PHOTOS

- A. Size 24 x 35 mm.
- B. Labeled for:
 - 1. Building name and Number.
 - 2. Room Name and Number.

2.2 DIVISION 31 - EARTHWORK - NOT USED

Item	Style Name/No.	Finish	Manufacture	Mfg. Color Name/No.
Benches				
Game Tables				
Planters				
Tree Grates				
Trash Receptacles				
Ash Receptacles				

- 2.3 DIVISION 03 CONCRETE NOT USED
- 2.4 DIVISON 04 MASONRY NOT USED
- 2.5 DIVISION 05 METALS NOT USED
- 2.6 DIVISION 06 WOOD, PLASTICS, AND COMPOSITES
 - A. SECTION 06 10 00, ROUGH CARPENTRY

Item Finish Color

2.7 DIVISION 07 - THERMAL AND MOISTURE PROTECTION

A. SECTION 07 60 00, FLASHING AND SHEET METAL

Item	Material	Finish
	Copper	
Copings	Stainless steel	
	Aluminum	
Hanging Gutters and Downspouts	Copper	
	Stainless steel	
	Aluminum	
Roof Insulated Expansion Joint Covers	Vinyl sheet	
Gravel Stops	Aluminum mill	
	Aluminum	
	Copper	
	Stainless steel	
Scuppers		

B. SECTION 07 92 00, JOINT SEALANTS

Location	Color	Manufacturer	Manufacturer Color
Masonry Expansion Joints			
CMU Control Joints			
Precast Concrete Panels			
New to Existing Walls			
Building Expansion Joints			
Masonry Sealed Joints			

|--|

2.8 DIVISION 08 - OPENINGS - NOT USED

2.9 DIVISION 09 - FINISHES

A. SECTION 09 51 00, ACOUSTICAL CEILINGS

Finish Code	Component	Color Pattern	Manufacturer	Mfg. Name/ No.
	Exposed Suspension System			
	Type III			
	Type III A			
	Type V			
	Type VI			
	Type VII			
	Type XX A			
	Type XX B			

B. SECTION 09 65 13, RESILIENT BASE AND ACCESSORIES

Finish Code	Item	Height	Manufacturer	Mfg. Name/ No.
	Rubber Base (RB)			
	Vinyl Base (VB)			
	Resilient Stair Treads (RST)			
	Sheet Rubber Flooring (SRF)			

C. SECTION 09 91 00, PAINTING

1. MPI Gloss and Sheen Standards

	Gloss @60	Sheen @85
Gloss Level 1 a traditional matte finish-flat	max 5 units, and	max 10 units
Gloss Level 2 a high side sheen flat "a velvet-like"	max 10 units, and	
finish		10-35 units
Gloss Level 3 a traditional "egg-shell like" finish	10-25 units, and	10-35 units
Gloss Level 4	a "satin-like" finish	20-35 units, and
min. 35 units		
Gloss Level 5 a traditional semi-gloss	35-70 units	
Gloss Level 6a traditional gloss	70-85 units	
Gloss level 7	a high gloss more than	85 units

2. Paint code	Gloss	Manufacturer	Mfg. Color Name/ No.
Р			
Р			
Р			
Р			
Р			
Р			
Р			
Р			
Р			
Р			
Р			
P			

Р			
P			
P			
Р			
P			
P			
P			
P			
3. Stain Code(S)	Gloss and Transparency	Manufacturer	Mfg. Color Name/ No.
	Semi		
S			
S			
S			
S			
S	Opaque		
S			
S			
S			
S			
4. Clear coatings Code (CC)	Gloss	Manufacturer	Mfg. Color Name/ No.
CC			
CC			

- 2.10 DIVISION 10 SPECIALTIES NOT USED
- 2.11 DIVISION 11 EQUIPMENT NOT USED
- 2.12 DIVISION 12 FURNISHINGS NOT USED
- 2.13 DIVISION 13 SPECIAL CONSTRUCTION NOT USED
- 2.14 DIVISION 14 CONVEYING EQUIPMENT NOT USED
- 2.15 DIVISION 22 PLUMBING NOT USED
- 2.16 DIVISION 26 ELECTRICAL

PART 3 - EXECUTION

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANEOUS ABBREVIATIONS			
Term	Abbreviation		
Access Flooring	AF		
Accordion Folding	AFP		
Partition			
Acoustical Ceiling	AT		
Acoustical Ceiling,	AT (SP)		
Special Faced			
Acoustical Metal Pan	AMP		
Ceiling			
Acoustical Wall Panel	AWP		
Acoustical Wall	AWT		
Treatment			
Acoustical Wallcovering	AWF		
Anodized Aluminum	AAC		

Colored	
Anodized Aluminum	AA
Natural Finish	
Baked On Enamel	BE
Brick Face	BR
Brick Flooring	BF
Brick Paving	BP
Carpet	CP
Carpet Athletic Flooring	CAF
Carpet Module Tile	CPT
Ceramic Glazed Facing	CGFB
Brick	
Ceramic Mosaic Tile	FTCT
Concrete	С
Concrete Masonry Unit	CMU
Divider Strips Marble	DS MB
Epoxy Coating	EC
Epoxy Resin Flooring	ERF

Existing	Е
Exposed Divider Strips	EXP
Exterior	EXT
Exterior Finish System	EFS
Exterior Paint	EXT-P
Exterior Stain	EXT-ST
Fabric Wallcovering	WF
Facing Tile	SCT
Feature Strips	FS
Floor Mats & Frames	FM
Floor Tile, Mosaic	FT
Fluorocarbon	FC
Folding Panel Partition	FP
Foot Grille	FG
Glass Masonry Unit	GUMU
Glazed Face CMU	GCMU
Glazed Structural Facing	SFTU
Tile	
Granite	GT
Gypsum Wallboard	GWB
High Glazed Coating	SC
Latex Mastic Flooring	LM
Linear Metal Ceiling	LMC
Linear Wood Ceiling	LWC
Marble	MB
Material	MAT

Mortar	М
Multi-Color Coating	MC
Natural Finish	NF
Paint	P
Paver Tile	PVT
Perforated Metal Facing	PMF
(Tile or Panels)	
Plaster	PL
Plaster High Strength	HSPL
Plaster Keene Cement	KC
Plastic Laminate	HPDL
Polypropylene Fabric	PFW
Wallcovering	
Porcelain Paver Tile	PPT
Quarry Tile	QT
Radiant Ceiling Panel	RCP
System	
Resilient Stair Tread	RST
Rubber Base	RB
Rubber Tile Flooring	RT
Spandrel Glass	SLG
Stain	ST
Stone Flooring	SF
Structural Clay	SC
Suspension Decorative	SDG
Grids	

Grids	
Terrazzo Portland Cement	PCT
Terrazzo Tile	TT
Terrazzo, Thin Set	
Textured Gypsum Ceiling	TGC
Panel	
Textured Metal Ceiling	TMC
Panel	
Thin set Terrazzo	TST
Veneer Plaster	VP

Vinyl Base	VB
Vinyl Coated Fabric	W
Wallcovering	
Vinyl Composition Tile	VCT
Vinyl Sheet Flooring	VSF
Vinyl Sheet Flooring	WSF
(Welded Seams)	
Wall Border	WB
Wood	WD

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition

- ** Same finish as adjoining walls
- No color required
- E Existing
- XX To match existing
- EFTR Existing finish to remain
- RM Remove

3.3 ROOM FINISH SCHEDULE

- A. Match adjoining or existing similar surfaces colors, textures, or patterns where disturbed or damaged by alterations or new work when not scheduled.
- B. ROOM FINISH SCHEDULE

Room No.		FLOOR			BAS	BASE WALL		LL	WAINSCOT		CEILING		REMARKS
	E	MAT	FC		MAT	FCC	MAT	FCC	MAT	FC	MAT	FCC	
	X			N									
	S			E									
	Т			S									
				M									
				С									
				N									
	N			E									

E W C C C C C C C C C C C C C C C C C C	
E N X E I S T W	
E	
X I S W W W W W W W W W W W W W W W W W W	
X I S W W W W W W W W W W W W W W W W W W	
S W W	
N N	
N E G	
C C	
E N .	
N E.	

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

A. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS Section 09 29 00, GYPSUM BOARD.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.

C. Shop Drawings:

- 1. Typical ceiling suspension system.
- 2. Typical metal stud and furring construction system including details around openings and corner details.
- 3. Typical shaft wall assembly
- 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.

D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society For Testing And Materials (ASTM)

 A641-09......Zinc-Coated (Galvanized) Carbon Steel Wire

 A653/653M-11.....Specification for Steel Sheet, Zinc Coated

 (Galvanized) or Zinc-Iron Alloy-Coated

 (Galvannealed) by Hot-Dip Process.
 - C11-10.....Terminology Relating to Gypsum and Related

 Building Materials and Systems
 - C635-07......Manufacture, Performance, and Testing of Metal
 Suspension System for Acoustical Tile and
 Lay-in Panel Ceilings

 - C754-11.....Installation of Steel Framing Members to

 Receive Screw-Attached Gypsum Panel Products
 - C841-03(R2008)......Installation of Interior Lathing and Furring
 C954-10......Steel Drill Screws for the Application of

Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033in. (0.84mm) to 0.112in.

(2.84mm) in Thickness

E580-11......Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G40 or equivalent.

2.2 STEEL STUDS AND RUNNERS (TRACK)

A. ASTM C645, modified for thickness specified and sizes as shown.

- 1. Use C 645 steel, 0.75mm (0.0296-inch) minimum base-metal (30-mil).
- 2. Runners same thickness as studs.
- 3. Exception: Members that can show certified third party testing with gypsum board in accordance with ICC ES AC86 (Approved May 2012) need not meet the minimum thickness limitation or minimum section properties set forth in ASTM C 645. The submission of an evaluation report is acceptable to show conformance to this requirement. Use C 645 steel, 0.48mm (0.019-inch) minimum base-metal (19-mil).
- B. Provide not less than two cutouts in web of each stud, approximately 300mm (12-inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600mm (12-feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.
 - 2. C-H Studs or C-T Studs.
 - 3. E Studs.
 - 4. J Runners.
 - 5. Steel Jamb-Strut.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than $0.45 \, \text{mm}$ (0.0179 inch) thick bare metal.
 - 2. Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. "Z" Furring Channels:
 - 1. Not less than 0.45mm (0.0179-inch) thick base metal, with 32mm $(1\frac{1}{4}-inch)$ and 19mm (3/4-inch) flanges.
 - 2. Web furring depth to suit thickness of insulation.
- D. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.

- C. Fasteners for steel studs thicker than 0.84mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items.

 Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
- Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
- 2. For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
- H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION)

- A. Conform to ASTM C635, heavy duty, with not less than 35 mm (1-3/8 inch) wide knurled capped flange face designed for screw attachment of gypsum board.
- B. Wall track channel with 35mm (1 3/8-inch) wide flange.

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.

- B. Space studs not more than 610mm (24-inches) on center.
- C. Cut studs 6mm to 9mm (1/4- to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated partitions.

G. Openings:

- 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
- 2. Fasten back-to-back studs together with 9mm (3/8-inch) long Type S pan head screws at not less than 600mm (2-feet) on center, staggered along webs.
- 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75mm (2- by 3-inches) screwed to each stud with two screws in each stud. Locate splice plates at 600mm (24-inches) on center between runner tracks.

H. Fastening Studs:

- 1. Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
- 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.

I. Chase Wall Partitions:

- 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
- 2. Use studs or runners as cross bracing not less than 63mm ($2\frac{1}{2}$ -inches wide).
- J. Form building seismic or expansion joints with double studs back-to-back spaced 75mm (3-inches) apart plus the width of the seismic or expansion joint.
- K. Form control joint, with double study spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - 1. Framed with 63 mm (2½-inch) or narrower studs, 600mm (24-inches) on center.

- 2. Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish.
- 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
 - 1. Install rigid (hat section) furring channels at 600mm (24-inches) on center, horizontally or vertically.
 - 2. Install "Z" furring channels vertically spaced not more than 600mm (24-inches) on center.
 - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - 4. Ends of spliced furring channels shall be nested not less than 200mm (8-inches).
 - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
 - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100mm (4-inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400mm (16-inches) on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

- A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
- B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.5 INSTALLING SHAFT WALL SYSTEM

- A. Conform to UL Design No. U438 for two-hour fire rating.
- B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports

- with power driven fasteners at both ends and $600\,\mathrm{mm}$ (24-inches) on center.
- C. After liner panels have been erected, cut C-H studs and E studs, from 9mm (3/8-inch) to not more than 13mm (1/2-inch) less than floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.
- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:
 - Provide necessary liner fillers and shims to conform to label frame requirements.
 - 2. Frame openings cut within a liner panel with E studs around perimeter.
 - 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.

F. Elevator Shafts:

- 1. Frame elevator door frames with 0.87mm (0.0341-inch) thick J strut or J stud jambs having 75mm (3-inch) long legs on the shaft side.
- 2. Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3mm (1/8-inch) are not permitted unless shown.
- 3. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - 1. Space framing at 400mm (16-inch) centers for metal lath anchorage.
 - 2. Space framing at 600mm (24-inch) centers for gypsum board anchorage.
- B. New exposed concrete slabs:
 - 1. Use metal inserts required for attachment and support of hangers or hanger wires with tied wire loops for embedding in concrete.
 - 2. Furnish for installation under Division 3, CONCRETE.
 - 3. Suspended ceilings under concrete rib construction shall have runner channels at right angles to ribs and be supported from ribs with hangers at ends and at 1200mm (48-inch) maximum intervals along channels. Stagger hangers at alternate channels.

- C. Concrete slabs on steel decking composite construction:
 - 1. Use pull-down tabs when available.
 - 2. Use power activated fasteners when attachment to structural framing cannot be accomplished.
- D. Where bar joists or beams are more than 1200mm (48-inches) apart, provide intermediate hangers so that spacing between supports does not exceed 1200mm (48-inches). Use clips, bolts, or wire ties for direct attachment to steel framing.
- E. Steel decking without concrete topping:
 - 1. Do not fasten to steel decking 0.76mm (0.0299-inch) or thinner.
 - 2. Toggle bolt to decking 0.9mm (0.0359-inch) or thicker only where anchorage to steel framing is not possible.
- F. Installing suspended ceiling system for gypsum board (ASTM C635 Option):
 - 1. Install only for ceilings to receive screw attached gypsum board.
 - 2. Install in accordance with ASTM C636.
 - a. Install main runners spaced 1200mm (48-inches) on center.
 - b. Install 1200mm (4-feet) tees not over 600mm (24-inches) on center; locate for edge support of gypsum board.
 - c. Install wall track channel at perimeter.
- H. Installing Ceiling Bracing System:
 - 1. Construct bracing of 38mm (1½-inch) channels for lengths up to 2400mm (8-feet) and 50mm (2-inch) channels for lengths over 2400mm (8-feet) with ends bent to form surfaces for anchorage to carrying channels and overhead construction. Lap channels not less than 600mm (2-feet) at midpoint back-to-back. Screw or bolt lap together with two fasteners.
 - 2. Install bracing at an approximate 45° angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.

3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3mm (1/8-inch.)
- C. Level or align ceilings within 3mm (1/8-inch.)

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Lay in gypsum board ceiling panels: Section 09 51 00, ACOUSTICAL CEILING.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.

C. Shop Drawings:

- 1. Typical gypsum board installation, showing corner details, edge trim details and the like.
- 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
- 3. Typical shaft wall assembly.
- 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.

D. Samples:

1. Cornerbead.

- 2. Edge trim.
- 3. Control joints.

E. Test Results:

- 1. Fire rating test, each fire rating required for each assembly.
- 2. Sound rating test.
- F. Certificates: Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos material.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

C1396-14......Gypsum Board

In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM): C11-15..... Terminology Relating to Gypsum and Related Building Materials and Systems C475-15.....Joint Compound and Joint Tape for Finishing Gypsum Board C840-13......Application and Finishing of Gypsum Board C919-12.....Sealants in Acoustical Applications C954-15......Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033in. (0.84mm) to 0.112in. (2.84mm) in thickness C1002-14.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-14.....Accessories for Gypsum Wallboard and Gypsum Veneer Base C1177-13.....Glass Mat Gypsum Substrate for Use as Sheathing C1178/C1178M-18.....Specification for Coated Glass Mat Water Resistant Backing Panel C1658-13......Glass Mat Gypsum Panels

- C. Underwriters Laboratories Inc. (UL):
 - Latest Edition.....Fire Resistance Directory
- D. Inchcape Testing Services (ITS):
 - Latest Editions.....Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16mm (5/8-inch) thick unless shown otherwise.
- B. Core board or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.
 - 2. ASTM C1658: Glass Mat Gypsum Panels,
 - 3. Core board for shaft walls 300, 400, 600mm (12, 16, or 24 inches) wide by required lengths 25mm (1-inch) thick with paper faces treated to resist moisture.
- C. Water Resistant Gypsum Backing Board: ASTM C1178, Type X, 16mm (5/8-inch) thick.
- D. Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 GYPSUM SHEATHING BOARD

- A. ASTM C1396, Type X, water-resistant core, 16mm (5/8-inch) thick.
- B. ASTM C1177, Type X.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39mm (0.015-inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22mm (7/8-inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04mm (0.33-inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of $50~\rm{g/l}$.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
 - 3. Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in

- locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):
 - 1. When gypsum board is installed parallel to framing members, space fasteners 300mm (12-inches) on center in field of the board, and 200mm (8-inches) on center along edges.
 - 2. When gypsum board is installed perpendicular to framing members, space fasteners 300mm (12-inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
 - 7. No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.

- 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.
 - b. Fasten face layer with screw, of sufficient length to secure to framing, spaced 300 mm (12 inches) on center around perimeter, and 400 mm (16 inches) on center in the field.
- 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000mm (30-feet).
 - c. Extend control joints the full height of the wall or length of soffit/ ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - 1. Cut gypsum board for a space approximately 3mm to 6mm (1/8- to 1/4- inch) wide around partition perimeter.
 - 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.

- b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.

3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9mm (3/8-inch) from ends and edges of sheathing and 200mm (8-inches) on center. Space screws a maximum of 200mm (8-inches) on center on intermediate framing members.
- D. Apply 600mm by 2400mm (2' \times 8') sheathing boards horizontally with tongue edge up.
- E. Apply 1200mm by 2400mm or 2700mm (4' \times 8' or 9-foot) gypsum sheathing boards vertically with edges over framing.

3.4 CAVITY SHAFT WALL

- A. Coordinate assembly with Section 09 22 16, NON-STRUCTURAL METAL FRAMING, for erection of framing and gypsum board.
- B. Conform to UL Design No. U438 or FM WALL CONSTRUCTION 12-2/HR (Nonbearing for two-hour fire rating.
- C. Cut core-board (liner) panels 25mm (1-inch) less than floor-to-ceiling height and erect vertically between J-runners on shaft side.
 - 1. Where shaft walls exceed 4300mm (14-feet) in height, position panel end joints within upper and lower third points of wall.
 - 2. Stagger joints top and bottom in adjacent panels.
 - 3. After erection of J-struts of opening frames, fasten panels to J-struts with screws of sufficient length to secure to framing staggered from those in base, spaced 300mm (12-inches) on center.

D. Gypsum Board:

- 1. Two hour wall:
 - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 600mm (24-inches) on center.
 - b. Use laminating adhesive between plies in accordance with UL or FM if required by fire test.

- c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of sufficient length to secure to framing staggered from those in base, spaced 300mm (12-inches) on center.
- 2. One hour wall with one layer on finish side of wall: Apply face layer of gypsum board vertically. Attach to studs with screws of sufficient length to secure to framing, spaced 300mm (12-inches) on center in field and along edges.
- 3. Where core-board is covered with face layer of gypsum board, stagger joints of face layer from those in the core-board base.
- E. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.

F. Elevator Shafts:

- 1. Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3mm (1/8-inch) are not permitted unless shown.
- 2. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non-decorated fire rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the fire rated construction. Sanding is not required of non-decorated surfaces.

3.6 REPAIRS

A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.

- B. Patch holes or openings 13mm (1/2-inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13mm (1/2-inch) diameter, or equivalent size, with 16mm (5/8-inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded, or damaged finish surfaces including cracks and joints in non-decorated surface to provide fire protection equivalent to the fire rated construction.

3.7 UNACCESSIBLE CEILINGS

At Mental Health and Behavioral Nursing Units, areas accessible to patients and not continuously observable by staff (e.g., patient bedrooms, day rooms), ceilings should be a solid material such as gypsum board. This will limit patient access. Access doors are needed to access electrical and mechanical equipment above the ceiling. These doors should be locked to prevent unauthorized access and secured to ceiling using tamper resistant fasteners.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Acoustical units.
 - 2. Metal ceiling suspension system for acoustical ceilings.
 - 3. Adhesive application.

1.2 RELATED REQUIREMENTS

- A. Adhesive VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Ceiling Suspension System: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- D. Lay in gypsum board ceiling panels: Section 09 29 00, GYPSUM BOARD.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. A641/A641M-09a (2014) Zinc-coated (Galvanized) Carbon Steel Wire.
 - 2. A653/A653M-15e1 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process.
 - 3. C423-09a Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.
 - 4. C634-13 Terminology Relating to Environmental Acoustics.
 - 5. C635/C635M-13a Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings.
 - 6. C636/C636M-13 Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels.
 - 7. D1779-98 (2011) Adhesive for Acoustical Materials.
 - 8. E84-15b Surface Burning Characteristics of Building Materials.
 - 9. E119-16 Fire Tests of Building Construction and Materials.
 - 10. E413-16 Classification for Rating Sound Insulation.
 - 11. E580/E580M-14 Installation of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Subject to Earthquake Ground Motions.
 - 12. E1264-14 Classification for Acoustical Ceiling Products.

- C. International Organization for Standardization (ISO):
 - 1. ISO 14644-1 Classification of Air Cleanliness.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting a minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Contractor.
 - c. Installer.
 - d. Other installers responsible for adjacent and intersecting work, including sprinkler, HVAC, and installers.
 - 2. Meeting Agenda: Distribute agenda to participants minimum 3-days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Ceiling suspension system indicating manufacturer recommendation for each application.
 - 3. Installation instructions.
 - 4. Warranty.
- D. Samples:

- 1. Acoustical units, 150mm (6-inches) in size, each type, including units specified to match existing.
 - a. Submit quantity required to show full color and texture range.
- 2. Suspension system, trim and molding, 300mm (12-inches) long.
- 3. Colored markers for access service.
- 4. Approved samples may be incorporated into work.
- E. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Biobased Content:
 - a. Show type and quantity for each product.
 - b. Show volatile organic compound types and quantities.
- F. Certificates: Certify products comply with specifications.
 - 1. Acoustical units, each type.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Manufacturer
- H. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.6 OUALITY ASSURANCE

- A. Manufacturer Oualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.

1.7 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Environment:
 - 1. Product Temperature: Minimum 21°C (70°F) for minimum 48 hours before installation.

- Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions continuously, beginning 48 hours before installation until Government occupancy.
- 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Ceiling System: Acoustical ceilings units on exposed grid suspension systems.

2.2 SYSTEM PERFORMANCE

- A. Design product complying with specified performance:
 - 1. Maximum Deflection: 1/360 of span, maximum.
- B. Fire Resistance: ASTM E119, as component of 2-hour rated floor-ceiling assembly.
- C. Surface Burning Characteristics: When tested according to ASTM E84.
 - 1. Flame Spread Rating: 25 max.
 - 2. Smoke Developed Rating: 450 max.

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide acoustical units from one manufacturer.
 - 1. Provide each product exposed to view from one production run.
- C. Provide suspension system from same manufacturer.
- D. Sustainable Construction Requirements:
 - 1. Mineral Base Recycled Content: 65 percent.
 - 2. Steel Recycled Content: 30 percent total recycled content, minimum.
 - Aluminum Recycled Content: 50 percent total recycled content, minimum.
 - 4. Biobased Content: 37 percent by weight biobased material, minimum.
 - 5. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-flooring adhesives and sealants.

2.4 ACOUSTICAL UNITS

A. General:

- 1. Ceiling Panel and Tile: ASTM E1264, bio-based content according to USDA Bio-Preferred Product requirements.
 - a. Mineral Fiber: 3.6 kg/sq. m (3/4 psf.) weight, minimum.
- 2. Classification: Provide type and form as follows:
 - a. Type III Units Mineral base with water-based painted finish maximum 10g/l VOC; Form 2 - Water felted, minimum 16mm (5/8inch) thick.
 - b. Type IV Units Mineral base with membrane-faced overlay, Form 2
 Water felted, minimum 16mm (5/8-inch) thick. Apply poly
 (vinyl) chloride over paint coat.
 - c. Type V Units Perforated steel facing (pan) with mineral or glass fiber base backing.
 - 1) Steel: Galvanized steel, ASTM A653, with G30 coating. minimum $0.38 \, \text{mm} \, (0.015 \text{inch})$ thick.
 - 2) Bonderize both sides. Apply two coats of baked-on enamel finish on surfaces exposed to view and one coat on concealed surfaces.
 - d. Type VI Units Perforated stainless steel facing (pan) with mineral or glass fiber base backing.
 - e. Type VII Units Perforated aluminum facing (pan) with mineral or glass fiber base backing.
 - 1) Aluminum sheets, minimum 0.635mm (0.025-inch) thick.
 - Apply two coats of baked-on enamel finish, free from gloss or sheen, on face and flanges.
 - f. NRC (Noise Reduction Coefficient): ASTM C423, minimum 0.55 unless specified otherwise.
 - g. CAC (Ceiling Attenuation Class): ASTM E413, 40-44 range unless specified otherwise.
 - h. LR (Light Reflectance): Minimum 0.75.
- 3. Lay-in panels: Sizes as indicated on Drawings, with reveal edges.
 - a. Sizes:
 - 1) Concealed Grid Upward Access System: $300 \, \text{mm} \times 300 \, \text{mm}$ (12 by 12).
 - 2) Cross Score: $300mm \times 600mm (12" \times 24")$ tile to simulate $300mm \times 300mm (12" \times 12")$ tile edges.

- 3) Edge and Joint Detail: Beveled edges and joints as required to suit suspension and access system.
- 4. Perforated Metal Facing (Pan):
 - a. Tiles Size: 300 by 300 (12 by 12).
 - 1) Cross Score Units: Larger than 300mm by 300mm (12 by 12 inches) to simulate 300mm by 300mm (12 by 12 inch) units.
 - 2) Edge and Joint Detail: Beveled edge, joints for snap-in attachment to suspension system.
 - b. Panels: Sizes as indicated on Drawings with recessed reveal edges to finish exposed grid suspension system.
 - c. Sound Absorbent Element: Non-sifting mineral wool or glass fiber (formaldehyde-free). Density and thickness to provide specified noise reduction coefficient. Enclose sound absorbent elements within plastic envelopes.
 - d. Support sound absorbent elements on wire spacer nominal 6mm (1/4-inch) high. Fit sound absorbent element and the spacer into the unit.
- 5. Adhesive Applied Tile:
 - a. Size: 300mm x 300mm (12" x 12") size.
 - b. Edges: Beveled.

2.5 METAL SUSPENSION SYSTEM

- A. General: ASTM C635, intermediate-duty, except as otherwise specified.
 - 1. Suspension System: Provide the following:
 - a. Galvanized cold-rolled steel, bonderized.
 - 2. Main and Cross Runner: Use same construction Do not use lighter-duty sections for cross runners.
- B. Exposed Grid Suspension System: Support of lay-in panels.
 - 1. Grid Width: 22mm (7/8-inch) minimum with 8mm (5/16-inch) minimum panel bearing surface.
 - 2. Molding: Fabricate from the same material with same exposed width and finish.
 - 3. Finish: Baked-on enamel flat texture finish.
 - a. Color: To match adjacent acoustical units unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Concealed Grid Suspension System: Mineral base acoustical tile support.
 - 1. Concealed grid upward access suspension system initial opening, $300\text{mm} \times 600\text{mm} \ (12\text{"} \times 24\text{"})$.
 - 2. Flange Width: 22mm (7/8-inch) minimum except:

- a. Access Hook and Angle: 11mm (7/16-inch) minimum.
- D. Suspension System Support of Metal Type V, VI, and VII Tiles: Concealed grid type with runners for snap-in attachment of metal tile (pans).
- E. Carrying Channels Secondary Framing: Cold-rolled or hot-rolled steel, black asphaltic paint finish, rust free.
 - 1. Weight per 300m (per thousand linear feet), minimum:

Size		Cold-rolled		Hot-rolled	
mm	inches	kg	pound	kg	pound
38	1-1/2	215.4	475	508	1120
50	2	267.6	590	571.5	1260

- F. Anchors and Inserts: Provide anchors or inserts to support twice the loads imposed by hangers.
 - 1. Hanger Inserts: Steel, zinc-coated (galvanized after fabrication).
 - a. Nailing type option for wood forms:
 - 1) Upper portion designed for anchorage in concrete and positioning lower portion below surface of concrete approximately 25mm (1-inch).
 - 2) Lower portion provided with minimum 8 mm (5/16-inch) hole to permit attachment of hangers.
 - b. Flush ceiling insert type:
 - Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
 - 2) Insert opening inside shell approximately 16 mm (5/8 inch) wide by 9mm (3/8-inch) high over top of wire.
 - 3) Wire 5mm (3/16-inch) diameter with length to provide positive hooked anchorage in concrete.
- G. Clips: Galvanized steel, designed to secure framing member in place.
- H. Tile Splines: ASTM C635.
- I. Wire: ASTM A641.
 - 1. Size:
 - a. Wire Hangers: Minimum diameter 2.68mm (0.1055-inch).
 - b. Bracing Wires: Minimum diameter 3.43mm (0.1350-inch).

2.6 ACCESSORIES

A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.

- B. Perimeter Seal: Vinyl, polyethylene or polyurethane open cell sponge material, density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
 - 1. Thickness: As required to fill voids between back of wall molding and finish wall.
 - 2. Size: Minimum 9mm (3/8-inch) wide strip.
- C. Access Identification Markers: Colored markers with pressure sensitive adhesive on one side, paper or plastic, 6mm to 9mm (1/4" to 3/8") diameter.
 - Color Code: Provide the following color markers for service identification:

Color	Service
Red	Sprinkler System: Valves and Controls
Green	Domestic Water: Valves and Controls
Yellow	Chilled Water and Heating Water
Orange	Ductwork: Fire Dampers
Blue	Ductwork: Dampers and Controls
Black	Gas: Laboratory, Medical, Air and Vacuum

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing acoustical panels/ suspension system to permit new installation.
 - 1. Retain existing acoustical panels/ suspension system for reuse.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Applications:
 - 1. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.

- B. Layout acoustical unit with minimum number of joints.
- C. Installation:
 - Install acoustic tiles after wet finishes have been installed and solvents have cured.
 - 2. Install lay-in acoustic panels in exposed grid with minimum 6mm (1/4-inch) bearing at edges on supports.
 - a. Install tile to lay level and in full contact with exposed grid.
 - b. Replace cracked, broken, stained, dirty, or tile.
 - 3. Tile in concealed grid upward access suspension system:
 - a. Install acoustical tile with joints close, straight and true to line, and with exposed surfaces level and flush at joints.
 - b. Make corners and arises full, and without worn or broken places.
 - c. Locate acoustical units providing access to service systems.
 - 4. Adhesive applied tile:
 - a. Condition of surface according to ASTM D1779, Note 1, Cleanliness of Surface, and Note 4, Rigidity of Base Surface.
 - b. Size or seal surface as recommended by manufacturer of adhesive and allow to dry before installing units.

5. Markers:

- a. Install color coded markers to identify the various concealed piping, mechanical, and plumbing systems.
- b. Attach colored markers to exposed grid on opposite sides of the units providing access.
- c. Attach marker on exposed ceiling surface of upward access acoustical unit.
- D. Touch up damaged factory finishes.
 - 1. Repair painted surfaces with touch up primer.

3.4 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General: Install according to ASTM C636.
 - 1. Use direct or indirect hung suspension system or combination of both.
 - 2. Support a maximum area of 1.48sqm. (16sf) of ceiling per hanger.
 - 3. Prevent deflection in excess of 1/360 of span of cross runner and main runner.
 - 4. Provide additional hangers located at each corner of support components.
 - 5. Provide minimum 100mm (4-inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit,

- secondary suspension channels, concrete beams, or joists; and steel beam or bar joist unless furred system is shown.
- 6. Provide main runners minimum 1200mm (48-inches) in length.
- 7. Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Direct Hung Suspension System: ASTM C635.
 - 1. Support main runners by hanger wires attached directly to the structure overhead.
 - 2. Maximum spacing of hangers, 1200mm (4-feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.

C. Anchorage to Structure:

1. Concrete:

- a. Install hanger inserts and wire loops required for support of hanger and bracing wire. Install hanger wires with looped ends through steel deck when steel deck does not have attachment device.
- b. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger and bracing wire. Install in sides of concrete beams or joists at mid height.

2. Steel:

- a. Install carrying channels for attachment of hanger wires.
 - 1) Size and space carrying channels to support load within performance limit.
 - 2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.
- b. Attach carrying channels to the bottom flange of steel beams spaced not 1200mm (4-feet) on center before fireproofing is installed. Weld or use steel clips for beam attachment.
- c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.
- D. Indirect Hung Suspension System: ASTM C635.

- 1. Space carrying channels for indirect hung suspension system maximum 1200mm (4-feet) on center. Space hangers for carrying channels maximum 2400mm (8-feet) on center or for carrying channels less than 1200mm (4-feet) or center so as to insure that specified requirements are not exceeded.
- 2. Support main runners by specially designed clips attached to carrying channels.

3.5 CEILING TREATMENT

A. Moldings:

- 1. Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
- 2. Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.

B. Perimeter Seal:

- 1. Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
- 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.

C. Existing ceiling:

- 1. Where extension of existing ceilings occurs, match existing.
- 2. Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space which results in contrast between old and new acoustic units.
- 3. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Resilient base (RB) adhered to interior walls and partitions.
 - 2. Resilient stair treads (RST) adhered to interior stair treads.
 - 3. Sheet rubber flooring (SRF) adhered to interior stair landings.

1.2 RELATED REQUIREMENTS - NOT USED

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

F1861-16......Resilient Wall Base.

D4259-18......Preparation of Concrete by Abrasion Prior to Coating Application.

C. Federal Specifications (Fed. Spec.):

RR-T-650E (1994).....Treads, Metallic and Non-Metallic, Skid-Resistant.

D. International Concrete Repair Institute (ICRI):

310.2R-2013......Selecting and Specifying Concrete Surface
Preparation for Sealers, Coatings, Polymer
Overlays, and Concrete Repair.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Adhesives and primers indicating manufacturer's recommendation for each application.
 - 3. Installation instructions.
- C. Samples:
 - 1. Resilient Base: 150mm (6-inches) long, each type and color.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials:
 - a. Show volatile organic compound types and quantities.

- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage when handling and during construction operations.

1.7 FIELD CONDITIONS

- A. Environment:
 - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
 - 2. Work Area Ambient Temperature Range: 21° to 27°C (70° to 80°F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run.
- C. Provide resilient stair treads and sheet rubber flooring from same manufacturer.
- D. Sustainable Construction Requirements:
 - 1. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Flooring Adhesives and Sealants.

2.2 RESILIENT BASE

- A. Resilient Base: 3mm (1/8-inch) thick, 100mm (4-inches) high.
 - 1. Type: Rubber or vinyl; use one type throughout.

- 2. ASTM F1861, Type TP thermoplastic rubber or Type TV thermoplastic vinyl, Group 2 layered.
- B. Applications:
 - 1. Carpet Flooring Locations: Style A Straight.
 - 2. Other Locations: Style B Cove.
- 2.3 RESILIENT STAIR TREADS NOT USED
- 2.4 SHEET RUBBER FLOORING NOT USED
- 2.5 PRIMER (FOR CONCRETE FLOORS) NOT USED
- 2.6 LEVELING COMPOUND (FOR CONCRETE FLOORS) NOT USED

2.7 ADHESIVES

A. Adhesives: Low pollutant-emitting, water-based type recommended by adhered product manufacturer for each application.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing base to permit new installation.
 - 1. Dispose of removed materials.
- D. Correct substrate deficiencies.
 - 1. Fill cracks, pits, and depressions with leveling compound.
 - 2. Remove protrusions; grind high spots.
 - 3. Apply leveling compound to achieve 3mm (1/8-inch) in 3m (10-feet) maximum surface variation.
- E. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
 - 2. Surface Profile: ICRI Guideline No. 310.2R.
- F. Allow substrate to dry and cure.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.

3.2 INSTALLATION GENERAL

- A. Install products according to manufacturer's instructions.
 - 1. When instructions deviate from specifications, submit proposed resolution for Contracting Officer consideration.

3.3 RESILIENT BASE INSTALLATION

- A. Applications:
 - 1. Install resilient base in rooms scheduled on Drawings.

- 2. Install resilient base on casework, and other curb supported fixed equipment.
- 3. Extend resilient base into closets, alcoves, and cabinet knee spaces, and around columns within scheduled room.
- B. Lay out resilient base with minimum number of joints.
 - 1. Length: 600mm (24-inches) minimum, each piece.
 - 2. Locate joints 150mm (6-inches) minimum from corners and intersection of adjacent materials.

C. Installation:

- 1. Apply adhesive uniformly for full contact between resilient base and substrate.
- 2. Set resilient base with hairline butted joints aligned along top edge.
- D. Field form corners and end stops.
 - 1. V-groove back of outside corner.
 - 2. V-groove face of inside corner and notch cove for miter joint.
- E. Roll resilient base ensuring complete adhesion.

3.4 RESILIENT STAIR TREAD INSTALLATION - NOT USED

3.5 SHEET RUBBER FLOORING INSTALLATION - NOT USED

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed resilient base, and surfaces. Remove contaminants and stains.
 - 1. Clean with mild detergent. Leave surfaces free of detergent residue.
- C. Polish exposed resilient base to gloss sheen.

3.7 PROTECTION

- A. Protect products from construction traffic and operations.
 - 1. Maintain protection until directed by Contracting Officer's Representative.
- B. Replace damaged products and re-clean.
 - Damaged Products include cut, gouged, scraped, torn, and unbonded products.

- - E N D - -

SECTION 09 91 00 PAINTING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the painting and finishing as shown on the construction documents and/or specified herein, including, but not limited to, the following:
 - 1. Prime coats which may be applied in shop under other sections.
 - 2. Prime painting unprimed surfaces to be painted under this Section.
 - 3. Painting items furnished with a prime coat of paint, including touching up of or repairing of abraded, damaged, or rusted prime coats applied by others.
 - 4. Painting ferrous metal (except stainless steel) exposed to view.
 - 5. Painting galvanized ferrous metals exposed to view.
 - 6. Painting interior concrete block exposed to view.
 - 7. Painting gypsum drywall exposed to view.
 - 8. Painting of wood exposed to view, except items which are specified to be painted or finished under other Sections of these specifications.

 Back painting of all wood in contact with concrete, masonry, or other moisture areas.
 - 9. Painting pipes, pipe coverings, conduit, ducts, insulation, hangers, supports and other mechanical and electrical items and equipment exposed to view.
 - 10. Painting surfaces above, behind or below grilles, gratings, diffusers, louvers lighting fixtures, and the like, which are exposed to view through these items.
 - 11. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.
 - 12. Incidental painting and touching up as required to produce proper finish for painted surfaces, including touching up of factory finished items.
 - 13. Painting of any surface not specifically mentioned to be painted herein or on construction documents, but for which painting is obviously necessary to complete the job, or work which comes within the intent of these specifications, is to be included as though specified.

1.2 RELATED WORK:

- A. Section 01 35 26, SAFETY REQUIREMENTS: Activity Hazard Analysis.
- B. Section 01 81 13, SUSTAINABLE CONSTUCTION REQUIREMENTS: Sustainable Design Requirements.
- C. Section 09 06 00, SCHEDULE FOR FINISHES: Type of Finish, Color, and Gloss Level of Finish Coat.
- D. Division 23 HEATING; VENTILATION AND AIR-CONDITIONING: Shop prime painting of steel and ferrous metals.
- E. Division 26 ELECTRICAL: Shop prime painting of steel and ferrous metals.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA,
- B. Sustainable Design Submittals as described below:
 - 1. Volatile organic compounds per volume as specified in PART 2 PRODUCTS.
- C. Painter qualifications.
- D. Manufacturer's Literature and Data:
 - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature and technical data, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one (1) list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

E. Sample Panels:

- After painters' materials have been approved and before work is started, submit sample panels showing each type of finish and color specified.
- 2. Panels to Show Color: Composition board, 100mm \times 250mm (4" \times 10").
- 3. Panel to Show Transparent Finishes: Wood of same species and grain pattern as wood approved for use, 100mm x 250mm (4" x 10" face) minimum, and where both flat and edge grain will be exposed, 250mm (10") long by sufficient size, 50mm x 50mm (2" x 2") minimum or actual wood member to show complete finish.

- 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.
 - d. Name of project.
- 5. Strips showing not less than $50 \, \text{mm}$ (2-inch) wide strips of undercoats and $100 \, \text{mm}$ (4-inch) wide strip of finish coat.
- F. Sample of identity markers if used.
- G. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire-retardant paint.
 - 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE:

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. Specify Coat Types: Prime; body; finish; etc.
- C. Maintain space for storage, and handling of painting materials and equipment in a ventilated, neat, and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 7° and 30°C (45° and 85°F).

1.5 QUALITY ASSURANCE:

- A. Qualification of Painters: Use only qualified journeyman painters for the mixing and application of paint on exposed surfaces. Submit evidence that key personnel have successfully performed surface preparation and application of coating on a minimum of three (3) similar projects within the past three (3) years.
- B. Paint Coordination: Provide finish coats which are compatible with the prime paints used. Review other Sections of these specifications in which prime paints are to be provided to ensure compatibility of the total coatings system for the various substrates. Upon request from other subcontractors, furnish information on the characteristics of the finish materials proposed to be used, to ensure that compatible prime coats are used. Provide barrier coats over incompatible primers or remove and reprime as required. Notify the Contracting Officer Representative (COR) in writing of any anticipated problems using the coating systems as specified with substrates primed by others.

1.6 MOCK-UP PANEL - NOT USED

1.7 REGULATORY REQUIREMENTS:

- A. Paint materials are to conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - 1. Volatile Organic Compounds (VOC) Emissions Requirements: Field-applied paints and coatings that are inside the waterproofing system to not exceed limits of authorities having jurisdiction.

2. Lead-Based Paint:

- a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
- b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
- c. Do not use coatings having a lead content over 0.06 percent by weight of non-volatile content.
- 3. Asbestos: Provide materials that do not contain asbestos.
- 4. Chromate, Cadmium, Mercury, and Silica: Provide materials that do not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.

- 5. Human Carcinogens: Provide materials that do not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints.

1.8 SAFETY AND HEALTH:

- A. Apply paint materials using safety methods and equipment in accordance with the following:
 - 1. Comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis (AHA) as specified in Section 01 35 26, SAFETY REQUIREMENTS. The AHA is to include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.
- B. Safety Methods Used During Paint Application: Comply with the requirements of SSPC PA Guide 10.
- C. Toxic Materials: To protect personnel from overexposure to toxic materials, conform to the most stringent quidance of:
 - 1. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
 - 2. 29 CFR 1910.1000.
 - 3. ACHIH-BKLT and ACGHI-DOC, threshold limit values.

1.9 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

 ACGIH TLV-BKLT-2012.....Threshold Limit Values (TLV) for Chemical

 Substances and Physical Agents and Biological

 Exposure Indices (BEIs)
 - ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)
- C. ASME International (ASME):
 - A13.1-07 (R2013)......Scheme for the Identification of Piping Systems
- D. Code of Federal Regulation (CFR):
 - 40 CFR 59..... Determination of Volatile Matter Content, Water

 Content, Density Volume Solids, and Weight Solids

 of Surface Coating
- ${\tt E.}$ Commercial Item Description (CID):
 - A-A-1272A......Plaster Gypsum (Spackling Compound)

```
F. Federal Specifications (Fed Spec):
 TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For
                Waterproofing Concrete and Masonry Walls) (CEP)
G. Master Painters Institute (MPI):
 1.....Aluminum Paint
 4..... Interior/ Exterior Latex Block Filler
 5..... Exterior Alkyd Wood Primer
 6..... Exterior, Latex for Exterior Wood Primer
 7.....Exterior Oil Wood Primer
 8..... Exterior Alkyd, Flat MPI Gloss Level 1
 9................Exterior Alkyd Enamel MPI Gloss Level 6
 10..... Exterior Latex, Flat
 11..... Exterior Latex, Semi-Gloss
 15...... Exterior Latex, Low Sheen (MPI Gloss Level 3-4)
 17..... Primer, Bonding, Water-based
 18.....Organic Zinc Rich Primer
 22......Aluminum Paint, High Heat (up to 590% - 1100F)
 23..... Primer, Metal, Surface Tolerant
 27..................Exterior/ Interior Alkyd Floor Enamel, Gloss
 36.....Knot Sealer
 39..... for Interior Wood
 40..... Exterior, Latex High Build
 42..... Textured Coating, Latex, Flat
 43......Interior Satin Latex, MPI Gloss Level 4
 45.....Interior Primer Sealer
 46.....Interior Enamel Undercoat
 47......Interior Alkyd, Semi-Gloss, MPI Gloss Level 5
 48......Interior Alkyd, Gloss, MPI Gloss Level 6
 50.....Interior Latex Primer Sealer
 52......Interior Latex, MPI Gloss Level 3
 53......Interior Latex, Flat, MPI Gloss Level 1
```

59	.Interior/ Exterior Alkyd Porch & Floor Enamel, Low
	Gloss
60	.Interior/ Exterior Latex Porch & Floor Paint, Low
	Gloss
66	.Interior Alkyd Fire Retardant, Clear Topcoat (ULC
	Approved)
67	.Interior Latex Fire Retardant, Top-Coat (ULC
	Approved)
68	.Interior/ Exterior Latex Porch & Floor Paint,
	Gloss
71	.Polyurethane, Moisture Cured, Clear, Flat
77	.Epoxy Cold Cured, Gloss
79	.Marine Alkyd Metal Primer
90	.Interior Wood Stain, Semi-Transparent
91	.Wood Filler Paste
94	.Exterior Alkyd, Semi-Gloss
95	.Fast Drying Metal Primer
98	.High Build Epoxy Coating
99	.Sealer, Water-based, for Concrete Floors
101	.Epoxy Anti-Corrosive Metal Primer
107	.Primer, Rust-Inhibitive, Water-based
108	.High Build Epoxy Coating, Low Gloss
113	.Elastomeric, Pigmented, Exterior, Water-based,
	Flat
114	.Interior Latex, Gloss
115	.Epoxy-Modified Latex, Interior Gloss (MPI gloss
	level 6)
118	.Dry Fall, Latex Flat
119	.Exterior Latex, High Gloss (acrylic)
134	.Galvanized Water Based Primer
135	.Non-Cementitious Galvanized Primer
138	.Interior High-Performance Latex, MPI Gloss Level 2
139	.Interior High-Performance Latex, MPI Gloss Level 3
140	.Interior High-Performance Latex, MPI Gloss Level 4
141	.Interior High-Performance Latex (SG) MPI Gloss
	Level 5
144	.Latex, Interior, Institutional Low Odor/ VOC, (MPI
	Gloss Level 2)

	145Latex, Interior, Institutional Low Odor/ VOC, (MPI
	Gloss Level 3)
	146Latex, Interior, Institutional Low Odor/ VOC, (MPI
	Gloss Level 4)
	151 Light Industrial Coating, Interior, Water-based,
	(MPI Gloss Level 3)
	153 Light Industrial Coating, Interior, Water-based,
	(MPI Gloss Level 4)
	163Exterior Water Based Semi-Gloss Light Industrial
	Coating, MPI Gloss Level 5
	164 Exterior, Water Based, Gloss, Light Industrial
	Coating, MPI Gloss Level 6
Н.	Society for Protective Coatings (SSPC):
	SSPC SP 1-82(R2004)Solvent Cleaning
	SSPC SP 2-82(R2004)Hand Tool Cleaning
	SSPC SP 3-28(R2004)Power Tool Cleaning
	SSPC SP 10/NACE No.2Near-White Blast Cleaning
	SSPC PA Guide 10Guide to Safety and Health Requirements
I.	Maple Flooring Manufacturer's Association (MFMA):
J.	U.S. National Archives and Records Administration (NARA):
	29 CFR 1910.1000Air Contaminants
К.	Underwriter's Laboratory (UL)

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents.

2.2 PAINT PROPERTIES:

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.
- C. Provide undercoat paint produced by the same manufacturer as the finish coats. Use only thinners approved by the paint manufacturer and use only to recommended limits.

- D. VOC Content: For field applications that are inside the weatherproofing system, paints, and coating to comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Flat Paints and Coatings: 50 gram/ liter.
 - 2. Non-flat Paints and Coatings: 150 gram/ liter.
 - 3. Dry-Fog Coatings: 400 gram/ liter.
 - 4. Primers, Sealers, and Undercoats: 200 gram/ liter.
 - 5. Anticorrosive and Antirust Paints applied to Ferrous Metals: 250 gram/liter.
 - 6. Zinc-Rich Industrial Maintenance Primers: 340 gram/ liter.
 - 7. Pretreatment Wash Primers: 420 gram/ liter.
 - 8. Shellacs, Clear: 730 gram/ liter.
 - 9. Shellacs, Pigmented: 550 gram/ liter.
- E. VOC test method for paints and coatings is to be in accordance with 40 CFR 59 (EPA Method 24). Part 60, Appendix A with the exempt compounds' content determined by Method 303 (Determination of Exempt Compounds) in the South Coast Air Quality Management District's (SCAQMD) "Laboratory Methods of Analysis for Enforcement Samples" manual.

2.3 PLASTIC TAPE:

- A. Pigmented vinyl plastic film in colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES or specified.
- B. Pressure sensitive adhesive back.
- C. Widths as shown on construction documents.

2.4 BIOBASED CONTENT:

A. Paint products shall comply with following bio-based standards for biobased materials:

Material Type	Percent by Weight
Interior Paint	20 percent biobased material
Interior Paint- Oil Based and Solvent Alkyd	67 percent biobased material
Exterior Paint	20 percent biobased material
Wood & Concrete Stain	39 percent biobased content
Polyurethane Coatings	25 percent biobased content
Water Tank Coatings	59 percent biobased content
Wood & Concrete Sealer- Membrane Concrete Sealers	11 percent biobased content
Wood & Concrete Sealer-	79 percent biobased content

Penetrating Liquid	

B. The minimum-content standards are based on the weight (not the volume) of the material.

PART 3 - EXECUTION

3.1 JOB CONDITIONS:

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling, and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - 2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3°C (5°F) above dew point.
 - b. Below 10°C (50°F) or over 35°C (95°F), unless specifically preapproved by the COR and the product manufacturer. Under no circumstances are application conditions to exceed manufacturer recommendations.
 - c. When the relative humidity exceeds 85 percent; or to damp or wet surfaces, unless otherwise permitted by the paint manufacturer's printed instructions.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will warm.
 - 5. Apply only on clean, dry, and frost-free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces only when allowed by manufacturer's printed instructions.
 - b. Concrete and masonry when permitted by manufacturer's recommendations, dampen surfaces to which water thinned acrylic and cementitious paints are applied with a fine mist of water on hot dry days to prevent excessive suction and to cool surface.
 - 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.

c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 **INSPECTION**:

A. Examine the areas and conditions where painting and finishing are to be applied and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.3 GENERAL WORKMANSHIP REQUIREMENTS:

- A. Application may be by brush or roller. Spray application only upon acceptance from the COR in writing.
- B. Furnish to the COR a painting schedule indicating when the respective coats of paint for the various areas and surfaces will be completed. This schedule is to be kept current as the job progresses.
- C. Protect work at all times. Protect all adjacent work and materials by suitable covering or other method during progress of work. Upon completion of the work, remove all paint and varnish spots from floors, glass, and other surfaces. Remove from the premises all rubbish and accumulated materials of whatever nature not caused by others and leave work in a clean condition.
- D. Remove and protect hardware, accessories, device plates, lighting fixtures, and factory finished work, and similar items, or provide in place protection. Upon completion of each space, carefully replace all removed items by workmen skilled in the trades involved.
- E. When indicated to be painted, remove electrical panel box covers and doors before painting walls. Paint separately and re-install after all paint is dry.
- F. Materials are to be applied under adequate illumination, evenly spread, and flowed on smoothly to avoid runs, sags, holidays, brush marks, air bubbles and excessive roller stipple.
- G. Apply materials with a coverage to hide substrate completely. When color, stain, dirt, or undercoats show through final coat of paint, the surface is to be covered by additional coats until the paint film is of uniform finish, color, appearance, and coverage, at no additional cost to the Government.
- H. All coats are to be dry to manufacturer's recommendations before applying succeeding coats.
- I. All suction spots or "hot spots" in plaster after the application of the first coat are to be touched up before applying the second coat.

J. Do not apply paint behind frameless mirrors that use mastic for adhering to wall surface.

3.4 SURFACE PREPARATION:

A. General:

- 1. The Contractor shall be held wholly responsible for the finished appearance and satisfactory completion of painting work. Properly prepare all surfaces to receive paint, which includes cleaning, sanding, and touching-up of all prime coats applied under other Sections of the work. Broom-clean all spaces before painting starts. All surfaces to be painted or finished are to be completely dry, clean, and smooth.
- 2. See other sections of specifications for specified surface conditions and prime coat.
- 3. Perform preparation and cleaning procedures in strict accordance with the paint manufacturer's instructions and as herein specified, for each particular substrate condition.
- 4. Clean surfaces before applying paint or surface treatments with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall in wet, newly painted surfaces.
- 5. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - a. Concrete: 12 percent.
 - b. Fiber-Cement Board: 12 percent.
 - c. Masonry (Clay and CMU's): 12 percent.
 - d. Wood: 15 percent.
 - e. Gypsum Board: 12 percent.
 - f. Plaster: 12 percent.

B. Ferrous Metals:

- Remove oil, grease, soil, drawing and cutting compounds, flux, and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning).

- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blowholes). Finish flush with adjacent surfaces.
 - a. Fill flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.

C. Surfaces Specified Painted:

- 1. Clean surfaces to remove grease, oil, and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer) depending on finish coat compatibility.
- D. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - 2. Use emulsion type cleaning agents to remove oil, grease, paint, and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
 - 4. Do not fill weep holes. Finish to match adjacent surfaces.
 - 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4Kg (3-pounds) of zinc sulfate crystals to 3.8L (1-gallon) of water, allow to dry three (3) days and brush thoroughly free of crystals.
 - 6. Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in Division 03, CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.

E. Gypsum Plaster and Gypsum Board:

 Remove efflorescence, loose and chalking plaster or finishing materials.

- 2. Remove dust, dirt, and other deterrents to paint adhesion.
- 3. Fill holes, cracks, and other depressions with CID-A-A-1272A finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.5 PAINT PREPARATION:

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two (2) component and two (2) part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.6 APPLICATION:

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three (3) coats; prime, body, and finish. When two (2) coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Apply by brush or roller. Spray application for new or existing occupied spaces only upon approval by acceptance from COR in writing.
 - Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In new construction and in existing occupied spaces, where paint is applied by spray, mask or enclose with polyethylene, or similar airtight material with edges and seams continuously sealed including items specified in "Building and Structural Work Field Painting"; "Work not Painted"; motors, controls, telephone, and electrical equipment,

- fronts of sterilizes and other recessed equipment and similar prefinished items.
- F. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.7 PRIME PAINTING:

- A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rabbets for stop and face glazing of wood, and for face glazing of steel.
- E. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: Finish is specified.
 - 2. Zinc-coated steel and iron:
 - 3. Copper and copper alloys scheduled to be painted: MPI 95 (Fast Drying Metal Primer).
 - 4. Machinery not factory finished: MPI 9 (Exterior Alkyd Enamel).
 - 5. Asphalt coated metal: MPI 1 (Aluminum Paint).
 - 6. Metal over 94°C (201°F), Boilers, Incinerator Stacks, and Engine Exhaust Pipes: MPI 22 (High Heat Resistant Coating).

F. Gypsum Board:

- Primer: MPI 50 (Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer), MPI 46 (Interior Enamel Undercoat) in shower and bathrooms.
- 2. Surfaces scheduled to receive vinyl coated fabric wall covering:
 - a. Use MPI 45 (Interior Primer Sealer), or MPI 46 (Interior Enamel Undercoat).
 - b. Use MPI 101 (Cold Curing Epoxy Primer) for surfaces scheduled to receive MPI 77 (Epoxy Cold Cured, Gloss) finish.
- G. Gypsum Plaster and Veneer Plaster:
 - 1. Surfaces scheduled to receive vinyl coated fabric wall covering: Use MPI 45 (Interior Primer Sealer).
 - 2. MPI 45 (Interior Primer Sealer), except use MPI 50 (Interior Latex Primer Sealer) when an alkyd flat finish is specified.

- H. Concrete Masonry Units except glazed or integrally colored and decorative units:
 - 1. MPI 4 (Block Filler) on interior surfaces.
 - 2. Prime exterior surface as specified for exterior finishes.

3.8 EXTERIOR FINISHES: - NOT USED

3.9 **INTERIOR FINISHES:**

A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.

B. Metal Work:

- 1. Apply to exposed surfaces.
- 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
- 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) unless specified otherwise.
 - b. Two (2) coats of MPI 48 (Interior Alkyd Gloss), MPI 51 (Interior Alkyd, Eggshell).
 - c. One (1) coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss) on exposed interior surfaces of alkyd-amine enamel prime finished windows.
 - d. Steel is to be blast cleaned to SSPC 10/NACE No. 2.
 - e. Machinery: One (1) coat MPI 9 (Exterior Alkyd Enamel).
 - f. Asphalt Coated Metal: One (1) coat MPI 1 (Aluminum Paint).
 - g. Ferrous Metal over 94°K (290°F): Boilers, Incinerator Stacks, and Engine Exhaust Pipes: One (1) coat MPI 22 (High Heat Resistant Coating.

C. Gypsum Board:

- 1. One (1) coat of MPI 45 (Interior Primer Sealer), plus one (1) coat of MPI 139 (Interior High-Performance Latex, MPI Gloss level 3).
- 2. Two (2) coats of MPI 138 (Interior High-Performance Latex, MPI Gloss Level 2).
- 3. One (1) coat of MPI 45 (Interior Primer Sealer) plus one (1) coat of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5) or MPI 114 (Interior Latex, Gloss).

D. Plaster:

- 1. One (1) coat of MPI 45 (Interior Primer Sealer), plus one (1) coat of MPI 139 (Interior High-Performance Latex, MPI Gloss level 3).
- 2. Two (2) coats of MPI 51 (Interior Alkyd, Eggshell).

- 3. One (1) coat of MPI 45 (Interior Primer Sealer) or MPI 50 (Interior Latex Primer Sealer) plus one (1) coat of 139 (Interior High-Performance Latex, MPI Gloss level 3).
- 4. One (1) coat MPI 101 (Cold Curing Epoxy Prime).

3.10 REFINISHING EXISTING PAINTED SURFACES:

- A. Clean, patch and repair existing surfaces as specified under "Surface Preparation". No "telegraphing" of lines, ridges, flakes, etc., through new surfacing is permitted. Where this occurs, sand smooth and re-finish until surface meets with COR's approval.
- B. Remove and reinstall items as specified under "General Workmanship Requirements".
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. In existing rooms and areas where alterations occur, clean existing stained and natural finished wood retouch abraded surfaces and then give entire surface one (1) coat of MPI 31 (Polyurethane, Moisture Cured, Clear Gloss).
- G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- H. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- I. Sand or dull glossy surfaces prior to painting.
- J. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.11 PAINT COLOR:

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, "REFINISHING EXISTING PAINTED SURFACE" and "MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE".
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.

- 2. Color of body coat: Lighter than finish coat.
- 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.12 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE:

- A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished.
- B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified below.
- C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY.
- D. Paint after tests have been completed.
- E. Omit prime coat from factory prime-coated items.
- F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more.
- G. Omit field painting of items specified in "BUILDING AND STRUCTURAL WORK FIELD PAINTING"; "Building and Structural Work not Painted".

H. Color:

- 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces.
- 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following:
 - a. White: Exterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drumheads, oil heaters, condensate tanks and condensate piping.

- b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
- c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps, and miscellaneous iron work in contact with pipe).
- d. Federal Safety Red: Exposed fire protection piping, hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
- e. Federal Safety Orange: Entire lengths of electrical conduits containing feeders 600 volts or more.
- f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house.
- I. Apply paint systems on properly prepared and primed surface as follows:
 - 1. Exterior Locations:
 - a. Apply two (2) coats of MPI 94 (Exterior Alkyd, Semi-gloss) to the following ferrous metal items:
 - Vent and exhaust pipes with temperatures under 94°C (201°F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping, and similar items.
 - b. Apply two (2) coats of MPI 11 (Exterior Latex, Semi-Gloss) to galvanized and zinc-copper alloy metal.
 - c. Apply one (1) coat of MPI 22 (High Heat Resistant Coating), $650 \text{ degrees C } (1200\,^{\circ}\text{F})$ to incinerator stacks, boiler stacks, and engine generator exhaust.

2. Interior Locations:

- a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) to following items:
 - Metal under $94\,^{\circ}\text{C}$ ($201\,^{\circ}\text{F}$) of items such as bare piping, fittings, hangers and supports.
 - Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits, and panel boards.
 - Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.

b. Paint electrical conduits containing cables rated 600 volts or more using two (2) coats of MPI 94 (Exterior Alkyd, Semi-gloss) in the Federal Safety Orange color in exposed and concealed spaces full length of conduit.

3.13 BUILDING AND STRUCTURAL WORK FIELD PAINTING:

- A. Painting and finishing of interior and exterior work except as specified here-in-after.
 - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Painting of disturbed, damaged, and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.
 - 4. Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space (except shingles).
 - 5. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
 - 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
 - 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.

b. Tracks for overhead or coiling doors, shutters, and grilles.

5. Labels:

- a. Code required label, such as Underwriters Laboratories Inc.,

 Intertek Testing Service or Factory Mutual Research Corporation.
- b. Identification plates, instruction plates, performance rating, and nomenclature.

6. Galvanized metal:

- a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
- b. Gas Storage Racks.
- c. Except where specifically specified to be painted.
- 7. Metal safety treads and nosing.
- 8. Gaskets.
- 9. Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.
- 10. Face brick.
- 11. Structural steel encased in concrete, masonry, or other enclosure.
- 12. Structural steel to receive sprayed-on fire proofing.
- 13. Ceilings, walls, columns in interstitial spaces.
- 14. Ceilings, walls, and columns in pipe basements.
- 15. Wood Shingles.

3.14 IDENTITY PAINTING SCHEDULE:

- A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing.
 - 1. Legend may be identified using snap on coil plastic markers or by paint stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers, and cleanouts a minimum of 12.2M (40-feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
 - 3. Locate Legends clearly visible from operating position.
 - 4. Use arrow to indicate direction of flow using black stencil paint.
 - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert

working pressure shown on construction documents where asterisk appears for High, Medium, and Low-Pressure designations as follows:

- a. High Pressure 414 kPa (60 psig.) and above.
- b. Medium Pressure 104 to 413 kPa (15 to 59 psig.).
- c. Low Pressure 103 kPa (14 psig.) and below.
- d. Add Fuel oil grade numbers.
- 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	ABBREVIATIONS
Blow-off		Green	White	Blow-off
Boiler Feedwater		Green	White	Blr Feed
A/C Condenser Wate	er			
Supply		Green	White	A/C Cond Wtr Sup
A/C Condenser Wate	er			
Return		Green	White	A/C Cond Wtr Ret
Chilled Water Supp	ply	Green	White	Ch. Wtr Sup
Chilled Water Ret	urn	Green	White	Ch. Wtr Ret
Shop Compressed A	ir	Blue	White	Shop Air
Air-Instrument Con	ntrols	Green	White	Air-Inst Cont
Drain Line		Green	White	Drain
Emergency Shower		Green	White	Emg Shower
High Pressure Steam		Green	White	H.P*
High Pressure Cond	densate			
Return		Green	White	H.P. Ret*
Medium Pressure Steam		Green	White	M. P. Stm*
Medium Pressure Co	ondensate			
Return		Green	White	M.P. Ret*
Low Pressure Steam	m	Green	White	L.P. Stm*
Low Pressure Conde	ensate			
Return		Green	White	L.P. Ret*
High Temperature Water				
Supply		Green	White	H. Temp Wtr Sup
High Temperature N	Water			
Return		Green	White	H. Temp Wtr Ret
Hot Water Heating	Supply	Green	White	H. W. Htg Sup
Hot Water Heating Return		Green	White	H. W. Htg Ret
Gravity Condensate Return		Green	White	Gravity Cond Ret
Pumped Condensate Return		Green	White	Pumped Cond Ret
Vacuum Condensate Return		Green	White	Vac Cond Ret
Continuous Blow-Down		Green	White	Cont. B D
Pumped Condensate		Green	White	Pump Cond
Pump Recirculating	g	Green	White	Pump-Recirc.

Vent Line		Green	White	Vent
Alkali		Orange	Black	Alk
Bleach		Orange	Black	Bleach
Detergent		Yellow	Black	Det
Liquid Supply		Yellow	Black	Liq Sup
Reuse Water		Yellow	Black	Reuse Wtr
Cold Water (Domestic)	White	Green	White	C.W. Dom
Hot Water (Domestic)				
Supply	White	Yellow	Black	H.W. Dom
Return	White	Yellow	Black	H.W. Dom Ret
Tempered Water	White	Yellow	Black	Temp. Wtr
Ice Water				
Supply	White	Green	White	Ice Wtr
Return	White	Green	White	Ice Wtr Ret
Reagent Grade Water		Green	White	RG
Reverse Osmosis		Green	White	RO
Sanitary Waste		Green	White	San Waste
Sanitary Vent		Green	White	San Vent
Storm Drainage		Green	White	St Drain
Pump Drainage		Green	White	Pump Disch
Chemical Resistant Pipe				
Waste		Orange	Black	Acid Waste
Vent		Orange	Black	Acid Vent
Atmospheric Vent		Green	White	ATV
Silver Recovery		Green	White	Silver Rec
Oral Evacuation		Green	White	Oral Evac
Fuel Gas		Yellow	Black	Gas
Fire Protection Water				
Sprinkler	Red	Red	White	Auto Spr
Standpipe	Red	Red	White	Stand
Sprinkler	Red	Red	White	Drain

- 7. Electrical Conduits containing feeders over 600 volts, paint legends using 50mm (2-inch) high black numbers and letters, showing the voltage class rating. Provide legends where conduits pass through walls and floors and at maximum 6096mm (20-foot) intervals in between. Use labels with yellow background with black border and words Danger High Voltage Class, 5000/ 15000/ 25000.
- 8. See Sections for methods of identification, legends, and abbreviations of the following:
 - a. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

B. Fire and Smoke Partitions:

- 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64mm ($2\frac{1}{2}$ -inches) high.
- 2. Stenciled message: "SMOKE BARRIER" or "FIRE BARRIER" as applicable.
- 3. Locate not more than 6096mm (20-feet) on center on corridor sides of partitions, and with a least one (1) message per room-on-room side of partition.
- 4. Use semi-gloss paint of color that contrasts with color of substrate.
- C. Identify columns in pipe basements and interstitial space:
 - 1. Apply stenciled number and letters to correspond with grid numbering and lettering indicated on construction documents.
 - 2. Paint numbers and letters 101mm (4-inches) high, locate 45mm (18-inches) below overhead structural slab.
 - 3. Apply on four (4) sides of interior columns and on inside face only of exterior wall columns.
 - 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.15 PROTECTION CLEAN UP, AND TOUCH-UP:

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

---END---

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/ Acronyms:
 - 1. ac: Alternating Current
 - 2. AC: Air Conditioning
 - 3. ACU: Air Conditioning Unit
 - 4. ACR: Air Conditioning and Refrigeration
 - 5. AI: Analog Input
 - 6. AISI: American Iron and Steel Institute
 - 7. AO: Analog Output
 - 8. ASJ: All Service Jacket
 - 9. AWG: American Wire Gauge
 - 10. BACnet: Building Automation and Control Networking Protocol
 - 11. BAg: Silver-Copper-Zinc Brazing Alloy
 - 12. BAS: Building Automation System
 - 13. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 14. bhp: Brake Horsepower
 - 15. Btu: British Thermal Unit
 - 16. Btu/h: British Thermal Unit Per Hour
 - 17. CDA: Copper Development Association
 - 18. C: Celsius
 - 19. CD: Compact Disk
 - 20. CFM: Cubic Foot Per Minute
 - 21. CH: Chilled Water Supply
 - 22. CHR: Chilled Water Return
 - 23. CLR: Color
 - 24. CO: Carbon Monoxide
 - 25. COR: Contracting Officer's Representative
 - 26. CPD: Condensate Pump Discharge
 - 27. CPM: Cycles Per Minute

- 28. CPVC: Chlorinated Polyvinyl Chloride
- 29. CRS: Corrosion Resistant Steel
- 30. CTPD: Condensate Transfer Pump Discharge
- 31. CTPS: Condensate Transfer Pump Suction
- 32. CW: Cold Water
- 33. CWP: Cold Working Pressure
- 34. CxA: Commissioning Agent
- 35. dB: Decibels
- 36. dB(A): Decibels (A weighted)
- 37. DDC: Direct Digital Control
- 38. DI: Digital Input
- 39. DO: Digital Output
- 40. DVD: Digital Video Disc
- 41. DN: Diameter Nominal
- 42. DWV: Drainage, Waste and Vent
- 43. EPDM: Ethylene Propylene Diene Monomer
- 44. EPT: Ethylene Propylene Terpolymer
- 45. ETO: Ethylene Oxide
- 46. F: Fahrenheit
- 47. FAR: Federal Acquisition Regulations
- 48. FD: Floor Drain
- 49. FED: Federal
- 50. FG: Fiberglass
- 51. FGR: Flue Gas Recirculation
- 52. FOS: Fuel Oil Supply
- 53. FOR: Fuel Oil Return
- 54. FSK: Foil-Scrim-Kraft facing
- 55. FWPD: Feedwater Pump Discharge
- 56. FWPS: Feedwater Pump Suction
- 57. GC: Chilled Glycol Water Supply
- 58. GCR: Chilled Glycol Water Return
- 59. GH: Hot Glycol Water Heating Supply
- 60. GHR: Hot Glycol Water Heating Return
- 61. gpm: Gallons Per Minute
- 62. HDPE: High Density Polyethylene
- 63. Hg: Mercury
- 64. HOA: Hands-Off-Automatic
- 65. hp: Horsepower

- 66. HPS: High Pressure Steam (414 kPa (60 psig) and above)
- 67. HPR: High Pressure Steam Condensate Return
- 68. HW: Hot Water
- 69. HWH: Hot Water Heating Supply
- 70. HWHR: Hot Water Heating Return
- 71. Hz: Hertz
- 72. ID: Inside Diameter
- 73. IPS: Iron Pipe Size
- 74. kg: Kilogram
- 75. klb: 1000 lb
- 76. kPa: Kilopascal
- 77. lb: Pound
- 78. lb/hr: Pounds Per Hour
- 79. L/s: Liters Per Second
- 80. L/min: Liters Per Minute
- 81. LPS: Low Pressure Steam (103 kPa (15 psig) and below)
- 82. LPR: Low Pressure Steam Condensate Gravity Return
- 83. MAWP: Maximum Allowable Working Pressure
- 84. MAX: Maximum
- 85. MBtu/h: 1000 Btu/h
- 86. MBtu: 1000 Btu
- 87. MED: Medical
- 88. m: Meter
- 89. MFG: Manufacturer
- 90. mg: Milligram
- 91. mg/L: Milligrams Per Liter
- 92. MIN: Minimum
- 93. MJ: Megajoules
- 94. ml: Milliliter
- 95. mm: Millimeter
- 96. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig))
- 97. MPR: Medium Pressure Steam Condensate Return
- 98. MW: Megawatt
- 99. NC: Normally Closed
- 100. NF: Oil Free Dry (Nitrogen)
- 101. Nm: Newton Meter
- 102. NO: Normally Open

- 103. NOx: Nitrous Oxide
- 104. NPT: National Pipe Thread
- 105. NPS: Nominal Pipe Size
- 106. OD: Outside Diameter
- 107. OSD: Open Sight Drain
- 108. OS&Y: Outside Stem and Yoke
- 109. PC: Pumped Condensate
- 110. PID: Proportional-Integral-Differential
- 111. PLC: Programmable Logic Controllers
- 112. PP: Polypropylene
- 113. PPE: Personal Protection Equipment
- 114. ppb: Parts Per Billion
- 115. ppm: Parts Per Million
- 116. PRV: Pressure Reducing Valve \
- 117. PSIA: Pounds Per Square Inch Absolute
- 118. psig: Pounds Per Square Inch Gauge
- 119. PTFE: Polytetrafluoroethylene
- 120. PVC: Polyvinyl Chloride
- 121. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White
- 122. PVDF: Polyvinylidene Fluoride
- 123. rad: Radians
- 124. RH: Relative Humidity
- 125. RO: Reverse Osmosis
- 126. rms: Root Mean Square
- 127. RPM: Revolutions Per Minute
- 128. RS: Refrigerant Suction
- 129. RTD: Resistance Temperature Detectors
- 130. RTRF: Reinforced Thermosetting Resin Fittings
- 131. RTRP: Reinforced Thermosetting Resin Pipe
- 132. SCFM: Standard Cubic Feet Per Minute
- 133. SPEC: Specification
- 134. SPS: Sterile Processing Services
- 135. STD: Standard
- 136. SDR: Standard Dimension Ratio
- 137. SUS: Saybolt Universal Second
- 138. SW: Soft water
- 139. SWP: Steam Working Pressure
- 140. TAB: Testing, Adjusting, and Balancing

- 141. TDH: Total Dynamic Head
- 142. TEFC: Totally Enclosed Fan-Cooled
- 143. TFE: Tetrafluoroethylene
- 144. THERM: 100,000 Btu
- 145. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 146. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 147. T/P: Temperature and Pressure
- 148. USDA: U.S. Department of Agriculture
- 149. V: Volt
- 150. VAC: Vacuum
- 151. VA: Veterans Administration
- 152. VAC: Voltage in Alternating Current
- 153. VA CFM: VA Construction & Facilities Management
- 154. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 155. VAMC: Veterans Administration Medical Center
- 156. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 157. VR: Vacuum condensate return
- 158. WCB: Wrought Carbon Steel, Grade B
- 159. WG: Water Gauge or Water Column
- 160. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING.
- H. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- I. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- J. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Section 23 36 00, AIR TERMINAL UNITS.
- M. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- N. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA):
 410-//1996//............Recommended Safety Practices for Users and
 Installers of Industrial and Commercial Fans
- C. American Society of Mechanical Engineers (ASME):

B31.1-//2018//.....Power Piping

B31.9-//2014//.....Building Services Piping

ASME Boiler and Pressure Vessel Code:

BPVC Section IX-//2019// Welding, Brazing, and Fusing Qualifications

- D. American Society for Testing and Materials (ASTM):
 - A36/A36M-//2014//.....Standard Specification for Carbon Structural Steel
 - A575-//1996(R2018)//....Standard Specification for Steel Bars, Carbon,

 Merchant Quality, M-Grades
- E. Association for Rubber Products Manufacturers (ARPM):

 - IP-24-//2016//.....Specifications for Drives Using Synchronous Belts
 - IP-27-//2015//.....Specifications for Drives Using Curvilinear
 Toothed Synchronous Belts
- F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.:
 - SP-58-//2018//......Pipe Hangers and Supports-Materials, Design,

 Manufacture, Selection, Application, and

 Installation
 - SP-127-//2014a//.....Bracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application
- G. Military Specifications (MIL):
 - MIL-P-21035B-//2013//...Paint High Zinc Dust Content, Galvanizing Repair (Metric)

- H. National Fire Protection Association (NFPA):
 70-//2017//...........National Electrical Code (NEC)
 101-//2018//......Life Safety Code
- I. Department of Veterans Affairs (VA):
 PG-18-10-//2016//......Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- D. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents and have jointly coordinated and

- properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together.

 Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- G. Coordination/ Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to 1-foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/ tagout points for all energy/ hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- H. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.

- 3. Equipment and materials identification.
- 4. Fire-stopping materials.
- 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
- 6. Wall, floor, and ceiling plates.
- I. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- J. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the TAB and Subcontractor.

1.5 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.

- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3-years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 23 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are

- required, they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed,

 Contractor shall submit a certificate certifying that welders comply
 with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals.

Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.

- H. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
 - 3. Complete coordination/ shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
 - 4. Workmanship/ craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
 - 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
 - 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
 - 4. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
 - 6. Protect plastic piping and tanks from ultraviolet light (sunlight).
- B. Cleanliness of Piping and Equipment Systems:
 - 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. The as-built drawings shall indicate the location and type of all lockout/ tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/ tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/ certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration

data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with the plan, 5 days prior to the shutdown or it will need to be rescheduled.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18°C (65°F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/ devices.
- E. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made, and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave.

 Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25m/s (5000fpm).

- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5kW (10-horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2kW (3-horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25m/s (5000fpm).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.

- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed, and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts. 25mm (1-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.

E. Access for Speed Measurement: 25mm (1-inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished, and installation methods shall conform to the requirements of Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents, and shown in the maintenance manuals.

 Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Control Items: Label all instrumentation, temperature and humidity sensors, controllers, and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - 1. HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40mm (1½-inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic-coated card(s), sized 215mm (8½-inches) by 275mm (11-inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.

E. Ceiling Grid Labels:

- 1. 50mm (2-inch) long by 15mm (1/2-inch) wide by 0.025mm (1-mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
- 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping

and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3mm (18-gauge), with integral baseplate, continuous welded corner seams, factory installed 50mm x 100mm (2" x 4") treated wood nailers, 1.3mm (18-gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275mm (11-inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - 2. Pipe/ duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100mm (4-inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100mm (4-inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F. Attachment to existing structure: Support from existing floor/ roof frame.

- G. Attachment to Wood Construction: Wood screws or lag bolts.
- H. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40mm (1½-inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41mm (1-5/8-inches by 1-5/8-inches), 2.7mm (12-gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200-pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15mm (1/2-inch) galvanized steel bands, or pre-insulated calcium silicate shield for insulated piping at each hanger.

J. Supports for Piping Systems:

- 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or pre-insulated calcium silicate shields. Provide Type 40 insulation shield or pre-insulated calcium silicate shield at all other types of supports and hangers including those for pre-insulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
- a. Standard clevis hanger: Type 1; provide locknut.
- b. Riser clamps: Type 8.
- c. Wall brackets: Types 31, 32 or 33.
- d. Roller supports: Type 41, 43, 44 and 46.
- e. Saddle support: Type 36, 37 or 38.
- f. Turnbuckle: Types 13 or 15. Pre-insulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - 1) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint,

- plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
- 2) For vertical runs use epoxy painted or plastic-coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
- a. Provide eye rod or Type 17 eye nut near the upper attachment.
- b. Piping 50mm (2-inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25mm (1-inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide $40\,\mathrm{mm}$ (1-1/2-inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide $40\,\mathrm{mm}$ (1-1/2-inch) angle ring or square set-in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe

- watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450mm (18-inches) high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/ Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.

- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95L (1-quart) of oil, and 0.45kg (1-pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64mm (0.025-inch) for up to 80mm (3-inch pipe), 0.89mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/ shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/ shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items,

- valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

- Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
- 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

H. Protection and Cleaning:

1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- J. Install steam piping expansion joints as per manufacturer's recommendations.
- K. Work in Existing Building:
 - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- L. Work in Animal Research Areas: Seal all pipe and duct penetrations with silicone sealant to prevent entrance of insects.
- M. Switchgear/ Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/ telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8m (6-feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).
- N. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed, and

- reinstalled or remedial action performed as directed at no additional cost or time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.

- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150mm (6-inch pipe), 9m (30-feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

- The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.

3. Tubing and capillary systems shall be supported in channel troughs.

G. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50mm (2-inch) excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 150mm (6-inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation.

 Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant.

- Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.

- h. Valve stems and rotating shafts.
- i. Pressure gauges and thermometers.
- j. Glass.
- k. Nameplates.
- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
- a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
- b. Steam: $52^{\circ}C$ ($125^{\circ}F$) on insulation jacket surface and $190^{\circ}C$ ($374^{\circ}F$) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95liter (1-quart) of oil and 0.45kg (1-pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

C. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.

3.13 COMMISSIONING - NOT USED

3.14 DEMONSTRATION AND TRAINING - NOT USED

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures, and vibration control techniques to boiler plant rotating equipment and parts including chillers, cooling towers, boilers, pumps, fans, compressors, motors, and steam turbines.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Audio Speech Pathology	25
Audio Suites	25
Auditoriums, Theaters	35-40
Bathrooms and Toilet Rooms	40
Chapels	35
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors (Public)	40
Dining Rooms, Food Services/ Serving	40
Examination Rooms	35
Gymnasiums	50
Kitchens	50
Laboratories (With Fume Hoods)	45 to 55

Laundries	50
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Operating Rooms	40
Patient Rooms	35
Phono/ Cardiology	25
Recreation Rooms	40-45
Shops	50
SPD (Decontamination and Clean Preparation)	45
Therapeutic Pools	45
Treatment Rooms	35
Warehouse	50
X-Ray and General Work Rooms	40

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal, and

axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning
 Engineers, Inc. (ASHRAE):
 - Handbook 2017......Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM):
 - A123/A123M-2017......Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
 - A307-2016......Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength
 - D2240-05 (2010).....Standard Test Method for Rubber Property
 Durometer Hardness
- D. Manufacturers Standardization (MSS):
 - SP-58-2018......Pipe Hangers and Supports-Materials, Design and Manufacture
- ${\tt E.}$ Occupational Safety and Health Administration (OSHA):
 - 29 CFR 1960.95.....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):

- ASCE 7-2017......Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute/ Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA):

001-2008......Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.

H. International Code Council (ICC):

IBC 2018.....International Building Code.

I. Department of Veterans Affairs (VA):

H-18-8 2016......Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastomeric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition, provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.

C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all-directional neoprene cushion collar around the equipment bolt.
 - 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
 - 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).

- 6. Seismic Pad (Type DS): Pads shall be natural rubber/ neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15-degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15-degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50mm (2-inches) and larger shall have a pointer and scale deflection indicator.
 - 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed 4' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four all-directional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6mm (1/4-inch). Air gap between hard and resilient material shall be not less than 3mm (1/8-inch) nor more

- than 6mm (1/4-inch). Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6mm (1/4-inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100mm (4-inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100mm (4-inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating pre-located equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150mm (6-inches). Form shall include 13mm (1/2-inch) reinforcing bars welded in place on minimum of 203mm (8-inch) centers running both ways in a layer 40 mm (1½-inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 2mm (1/16-inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action.

 Provide resilient snubbers with 6mm (1/4-inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type

weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

2.6 ACOUSTICAL ENCLOSURES IN MECHANICAL ROOMS - NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - 4. Provide heat shields where elastomers are subject to temperatures over 38°C (100°F).
 - 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.

- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 6mm (1/4-inch) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING - NOT USED

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	ON GRADE 20FT		20FT FLOOR SPAN		30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN					
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
AIR HANDLING UNIT PACKAGES															
SUSPENDED:															
UP THRU 5 HP					Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0
FLOOR MOUNTED:		•			•	•								•	
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
HEAT PUMPS															
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA
CONDENSING UNITS															
ALL		SS	0.25		SS	0.75		SS	1.5	СВ	SS	1.5			NA

EQUIPMENT	ON GRADE		20FT FLOOR SPAN		30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN					
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
IN-LINE CENTRIFUGAL AND VANE AXIAL FANS, FLOOR MOUNTED: (APR 9)															
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:															
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100mm (4-inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
 - 9. Document critical paths of flow on reports.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. TABB: Testing Adjusting and Balancing Bureau
- 6. SMACNA: Sheet Metal Contractors National Association
- 7. Hydronic Systems:
- 8. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 9. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- D. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.

- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS.
- G. Section 23 36 00, AIR TERMINAL UNITS.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the

- TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/ calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. TAB Criteria:

- 1. One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019

HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed, if necessary, shall be at least 100% of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air handling unit and all other fans, cubic meters/ min (cubic feet per minute): Minus 0% to plus 10%.
- b. Air terminal units (maximum values): Minus 2% to plus 10%.
- c. Exhaust hoods/ cabinets: 0% to plus 10%.
- d. Minimum outside air: 0% to plus 10%.
- e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5% to plus 10% except if the air to a space is 100CFM or less the tolerance would be minus 5% to plus 5%.
- f. Heating hot water pumps and hot water coils: Minus 5% to plus 5%.
- g. Chilled water and condenser water pumps: Minus 0% to plus 5%.
- h. Chilled water coils: Minus 0% to plus 5%.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and critical path results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of which shall be a critical path) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC, NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:

- 1. Design Review Report within 60 days for design-build projects and after the system layout on air and water side is completed by the Contractor.
- 2. Systems inspection report on equipment and installation for conformance with design.
- 3. Duct Air Leakage Test Report.
- 4. Systems Readiness Report.
- 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
- 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- 7. Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - Handbook 2019.......HVAC Applications ASHRAE Handbook, Chapter 39,
 Testing, Adjusting, and Balancing and Chapter
 49, Sound and Vibration Control
- C. Associated Air Balance Council (AABC):
 - 7^{th} Edition 2016AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 9th Edition 2019Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration
 - $2^{\rm nd}$ Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing TABB- TAB Procedural Guide, Current Edition.

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report are to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50% of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20% of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid, and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
 - 1. At least one trunk damper shall be 100% open.
 - 2. At least one branch damper shall be 100% open per trunk.
 - 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration

- shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre-construction air and water flow rate. Return existing areas outside the work area to pre constructed conditions.
- D. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/ outlets/ inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
 - 2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under all operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.

- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers, and condensers:
 - 1. Coordinate water chiller flow balancing with Section 23 64 00, PACKAGED WATER CHILLERS.
 - 2. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373watts (1/2-horsepower) and larger, including centrifugal/ screw compressors, cooling towers, pumps, fans, and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 1. Take readings in rooms. The Resident Engineer may designate the specific rooms to be tested.

- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC, TABB or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2019 ASHRAE Handbook, "HVAC Applications", Chapter 49, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified
 equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
- 3. Where sound pressure levels are specified in terms of dB(A), Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.

F. Test readings for sound testing could go higher than 15% if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

- 3.12 PHASING NOT USED
- 3.13 COMMISSIONING NOT USED

3.14 CRITICAL FLOW PATH

A. Provide a documented critical path for all fluid flows. There shall be at least one terminal device that can be traced back to the fan or pump where there is no damper or valves that are less than 100% open.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air-conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16° C (60° F); HVAC equipment or piping handling media above 41° C (105° F).
- 8. Density: kg/m^3 kilograms per cubic meter (Pcf. pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25mm (1-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103kPa [15psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.
- 41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Section 07 84 00, FIRESTOPPING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in 4.3.3.1.1 or 4.3.3.1.2, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
 - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
 - 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
 - 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
 - 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a

- fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5m (5-ft.) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5m (5-ft.) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a $25.4 \mathrm{mm}$ (1-in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24°C (75°F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Refer to applicable specification paragraph numbers for coordination.

C. Samples:

- Each type of insulation: Minimum size 100mm (4-inches) square for board/ block/ blanket; 150mm (6-inches) long, full diameter for round types.
- Each type of facing and jacket: Minimum size 100mm (4-inches square).
- 3. Each accessory material: Minimum 120ML (4-ounce) liquid container or 120gram (4-ounce) dry weight for adhesives/ cement/ mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

Vinyl Acetate), Rigid.

- - MIL-C-19565C (1) 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier
 - MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread,
 Glass and Wire-Reinforced Glass
- $\ensuremath{\text{D.}}$ American Society for Testing and Materials (ASTM):
 - A167-99 2014......Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet, and Strip
 - B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 - C411-2019.....Standard test method for Hot-Surface

 Performance of High-Temperature Thermal

 Insulation
 - C449-2019......Standard Specification for Mineral Fiber

 Hydraulic-Setting Thermal Insulating and

 Finishing Cement
 - C533-2017.....Standard Specification for Calcium Silicate

 Block and Pipe Thermal Insulation
 - C534-2017......Standard Specification for Preformed Flexible

 Elastomeric Cellular Thermal Insulation in

 Sheet and Tubular Form
 - C547-2017.....Standard Specification for Mineral Fiber pipe
 Insulation
 - C552-07Standard Specification for Cellular Glass

 Thermal Insulation

	C553-2015	Standard Specification for Mineral Fiber
	0333 2013	Blanket Thermal Insulation for Commercial and
	GEOF 2016	Industrial Applications
	C383-2016	Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-2014	Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-2019	Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-2017	Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a 2017	Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-2014	Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-2007	Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-2019	Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750°C (1380°F)
Ε.	National Fire Protection	on Association (NFPA):
	90A-2018	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-2018	Standards for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-2018	
		Standard methods of Tests of Fire Endurance of
		Building Construction Materials
	255-2006	Standard Method of tests of Surface Burning
		Characteristics of Building Materials
F	Underwriters Laborator	
٠.		UL Standard for Safety Test for Surface Burning
	,20 2010	Characteristics of Building Materials with
		Revision of 09/08
~	Manufacture de Charle	
Ġ.	Manuracturer's Standard	dization Society of the Valve and Fitting

Industry (MSS):

SP58-2018......Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density $48 \, \text{kg/m}^3$ (3-pcf), k = 0.037 (0.26) at 24°C (75°F), external insulation for temperatures up to 204°C (400°F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density $16 \, \text{kg/m}^3$ (1-pcf), k = 0.045 (0.31); Class B-5, Density $32 \, \text{kg/m}^3$ (2-pcf), k = 0.04 (0.27) at 24°C (75°F), for use at temperatures up to 204°C (400°F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24°C (75°F), for use at temperatures up to 230°C (450°F) with an all-service vapor retarder jacket with polyvinyl chloride pre-molded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450°C (850°F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k=0.021~(0.15) at $10^{\circ}C~(50^{\circ}F)$, for use at temperatures up to $121^{\circ}C~(250^{\circ}F)$ with all service vapor retarder jacket with polyvinyl chloride pre-molded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15) at 10°C (50°F), for use at temperatures up to 121°C (250°F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density $120\,\mathrm{kg/m^3}$ (7.5-pcf) nominal, k=0.033 (0.29) at $24\,^\circ\mathrm{C}$ (75 $^\circ\mathrm{F}$).
- B. Pipe insulation for use at temperatures up to 200°C (400°F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027 (0.19) at 24°C (75°F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149°C (300°F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride pre-molded fitting covers.

B. Equipment and duct insulation, ASTM C 591, type IV, K=0.027 (0.19) at 24°C (75°F), for use at temperatures up to 149°C (300°F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24°C (75°F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4°C (40°F) to 93°C (200°F). No jacket required.

2.7 DUCT WRAP FOR KITCHEN HOOD GREASE DUCTS - NOT USED

2.8 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Pre-molded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics								
ITEMS	TYPE I	TYPE II						
Temperature, maximum degrees C (degrees F)	649 (1200)	927 (1700)						
Density (dry), Kg/m³ (lb./ ft3)	232 (14.5)	288 (18)						
Thermal conductivity:								
Min W/ m K (Btu in/h ft^2 degrees F)@	0.059	0.078						
mean temperature of 93°C (200°F)	(0.41)	(0.540)						
Surface burning characteristics:								
Flame spread Index, Maximum	0	0						
Smoke Density index, Maximum	0	0						

2.9 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

 Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025mm (1-mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive

- closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40mm (1½-inch) lap on longitudinal joints and minimum 75mm (3-inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Pre-sized, minimum 0.18kg per square meter (7.8 ounces per square yard), 2000kPa (300-psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be pre-molded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7mm (0.03-inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6mm (0.023-inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6mm (0.024-inch) minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless-steel bands shall be installed on all circumferential joints. Bands shall be 13mm (0.5-inch) wide on 450mm (18-inch) centers. System shall be weatherproof if utilized for outside service.

2.10 REMOVABLE INSULATION JACKETS - NOT USED

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Pre-molded pipe insulation 180° (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48kg/m³ (3.0-pcf.).

Nominal Pipe Size and Accessories Material (Insert Blocks)						
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)					
Up through 125 (5)	150 (6) long					
150 (6)	150 (6) long					
200 (8), 250 (10), 300 (12)	225 (9) long					
350 (14), 400 (16)	300 (12) long					
450 through 600 (18 through 24)	350 (14) long					

B. Warm or hot pipe supports: Pre-molded pipe insulation (180° half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149°C [300°F), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48kg/m³ (3.0-pcf.).

2.12 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3mm thick (18-gage) soft annealed galvanized or 1.9mm (14-gage) copper clad steel or nickel copper alloy.
- D. Bands: 13mm (0.5-inch) nominal width, brass, galvanized steel, aluminum, or stainless steel.

2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25mm (1-inch) mesh, 0.85mm thick (22-gage) galvanized steel.
- E. Corner beads: 50mm (2-inch) by 50mm (2-inch), 0.55mm thick (26-gage) galvanized steel; or 25mm (1-inch) by 25mm (1-inch), 0.47mm thick (28-gage) aluminum angle adhered to 50mm (2-inch) by 50mm (2-inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4°C (40°F) to 121°C (250°F). Below 4°C (40°F) and above 121°C (250°F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for

- application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.

 Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full-length section will fit.
- C. Insulation materials shall be installed in a first-class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16°C (60°F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150mm (6-inch).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps, and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20-gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/ split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Expansion tanks, flash tanks, hot water pumps.

- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic, and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges, and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane sprayfoam to fill a PVC elbow jacket is prohibited on cold applications.
- K. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- L. Freeze protection of above grade outdoor piping (overheat tracing tape): 26mm (10-inch) thick insulation, for all pipe sizes 75mm (3-inches) and smaller and 25mm (1-inch) thick insulation for larger pipes. Provide metal jackets for all pipes.
- M. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids exposed to outdoor air (i.e., in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity areas.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800mm (6-feet) of the floor, which connects to sterilizers, kitchen, and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50mm (2-inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 300mm (12-inches) on center each way, and not less than 75mm (3-inches) from each edge of board. In addition to pins, apply insulation bonding

adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

- a. Insulation shall be scored, beveled, or mitered to provide tight joints and be secured to equipment with bands spaced 225mm (9-inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For hot equipment: Stretch 25mm (1-inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6mm (1/4-inch) thick, trowel led to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- d. Chilled water pumps: Insulate with removable and replaceable 1mm thick (20-gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/ flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 50mm (2-inch) thick insulation faced with ASJ (white all service jacket): Supply air duct unlined air handling units and after filter housing.
 - b. 50mm (2-inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 25mm (1-inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50mm (2-inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer

- vapor barrier with a maximum water vapor permeability of $0.001 \mathrm{perms}$.
- 4. Supply air duct in the warehouse and in the laundry: 25mm (1-inch) thick insulation faced with ASJ.
- 5. Cold equipment: 40mm (1½-inch) thick insulation faced with ASJ.
 - a. Chilled water pumps, water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- 6. Hot equipment: 40mm (1½-inch) thick insulation faced with ASJ.
 - a. Convertors, air separators, steam condensate pump receivers.
 - b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
 - c. Domestic water heaters and hot water storage tanks (not factory insulated).
 - d. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- 7. Laundry: Hot exhaust ducts from dryers and from ironers, where duct is exposed in the laundry.

B. Flexible Mineral Fiber Blanket:

- 1. Adhere insulation to metal with 75mm (3-inch) wide strips of insulation bonding adhesive at 200mm (8-inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600mm (24-inches) in width with pins welded or adhered on 450mm (18-inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation, insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50mm (2-inch) thick insulation faced with FSK.

- b. Above ceilings for other than roof level: 40mm (1½-inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - a. In attics (where not subject to damage) and where exposed to outdoor weather: 50mmm (2-inch)thick insulation faced with FSK,
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40mm (1½-inch) thick, insulation faced with FSK.
 - c. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40mm ($1\frac{1}{2}$ -inch) thick insulation faced with FSK.
- 6. Exhaust air branch duct from autopsy refrigerator to main duct: 40mm (1½-inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100mm (4-inches) operating at surface temperature of $16\,^{\circ}\text{C}$ ($61\,^{\circ}\text{F}$) or more.
 - b. Factory pre-molded, one-piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4°C (40°F), or above 121°C (250°F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16°C (60°F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2mm (1/16-inch) coats of vapor barrier mastic.

- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least $50\,\mathrm{mm}$ (2-inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

D. Rigid Cellular Phenolic Foam:

- 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork, and equipment for temperatures up to 121°C (250°F).
- 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50mm (2-inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00perms.
- 9. Condensation control insulation: Minimum 25mm (1-inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.

E. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Cold equipment: 50mm (2-inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purges.
- 3. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50mm (2-inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00perms.

F. Polyisocyanurate Closed-Cell Rigid Insulation:

1. Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment, and ductwork for temperature up to 149°C (300°F).

- 2. Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/ contraction joint design and spacing and vapor barrier integrity.
- 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications).
- 4. If insulation thickness exceeds 63mm (2.5-inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
- 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
- 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
- 7. For cold applications, the vapor barrier on elbows/ fittings shall be either mastic-fabric-mastic or 2-mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Underground piping: Follow instructions for above ground piping but the vapor retarder jacketing shall be 6mil thick PVDC or minimum 30 mil thick rubberized bituminous membrane. Sand bed and backfill shall be a minimum of 150mm (6-inches) all around insulated pipe.
- 10. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50mm (2-inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00perms.

- 11. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 12. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100% adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
 - 5. Minimum 20mm (0.75-inch) thick insulation for pneumatic control lines for a minimum distance of 6m (20-feet) from discharge side of the refrigerated dryer.
 - 6. Use Class S (Sheet), 20mm (3/4-inch) thick for the following:
 - a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.

- d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50mm (2-inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00perms.
- H. Duct Wrap for Kitchen Hood Grease Ducts:
 - The insulation thickness, layers and installation method shall be as per recommendations of the manufacturer to maintain the fire integrity and performance rating.
 - 2. Provide stainless steel jacket for all exterior and exposed interior ductwork.
- I. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.
 - 2. Engine Exhaust Insulation for Emergency Generator and Diesel Driven Fire Pump: Type II, Class D, 65mm (2½-inch) nominal thickness. Cover exhaust completely from engine through roof or wall construction, including muffler. Secure with 16AWG galvanized annealed wire or 0.38mm x 12mm (0.015" x ½") wide galvanized bands on 300mm (12-inch) maximum centers. Anchor wire and bands to welded pins, clips, or angles. Apply 25mm (1-inch) hex galvanized wire over insulation. Fill voids with 6mm (1/4-inch) insulating cement.
 - 3. ETO Exhaust (High Temperature): Type II, class D, 65mm (2.5-inches) nominal thickness. Cover duct for entire length. Provide sheet aluminum jacket for all exterior ductwork.
 - 4. MRI Quench Vent Insulation: Type I, class D, 150mm (6-inch) nominal thickness.
- 3.3 APPLICATION BOILER PLANT, PIPE, VALVES, FITTINGS: NOT USED
- 3.4 APPLICATION-BOILER FLUE GAS SYSTEMS NOT USED
- 3.5 APPLICATION-BOILER DEAERATING FEEDWATER HEATER, TANKS NOT USED
- 3.7 COMMISSIONING NOT USED
- 3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Wall Thick	ness Millimeters (Inches)
	Nominal Pipe Size Millimeters (Inches)

Operating Temperature Range/ Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Above
	Insulation Wall Thickness Millimeters (Inches)				
122-177°C (251- 350°F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
93-260°C (200-500°F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)
100-121°C (212- 250°F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121°C (212- 250°F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94°C (100-200°F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99°C (100-211°F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
39-99°C (100-211°F) (LPR, PC, HWH, HWHR, GH and GHR)	Poly iso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94°C (100-200°F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16°C (40-60°F)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16°C (40-60°F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
4-16°C (40-60°F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16°C (40-60°F) (CH, CHR, GC and GCR (where underground)	Poly iso- cyanurate Closed-Cell Rigid	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16°C (40-60°F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Poly iso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60°F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. General Contractor shall provide direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, configuration/ setup hardware and software, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, all configuration and setup software and hardware devices, and an Engineering Control Center. Provide a remote user using JCI Building Controllers to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. All new building controllers shall be native BACnet. All new BACNet workstations, controllers, devices, and components shall be listed by BACnet Testing Laboratories. All new BACNet workstations, controllers, devices and components shall be accessible using a HTML5 Web browser interface. Browsers shall not require the use of an extension or add on software in order to access aforementioned workstations, controllers, devices, and components.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and any other items required for a complete and fully functional Controls System.
 - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The A/E shall designate what each "mechanical systems" is composed of. The contractor administered by this Section of the technical specifications shall

- provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate 1 Engineering Control Center(s) and the control system shall accommodate 10 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors' formal acknowledgements in writing prior to submission the procurement of the products. These products include but are not limited to the following:
 - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. These products include but are not limited to the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - 4. Terminal units' velocity sensors
 - 7. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- E. Responsibility Table:

Work/ Item/ System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16

Work/ Item/ System	Furnish	Install	Low Voltage Wiring	Line Power
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with chiller/ boiler controls	23 09 23	23 09 23	23 09 23	26
Chiller/ boiler controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/ Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Chiller/ starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
Boiler interlock wiring	23	23	23	26
Boiler Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23	26	23 09 23	26
Refrigerant monitors	23	23 09 23	23 09 23	26
Laboratory Environmental Controls	23 09 23	23 09 23	23 09 23	26
Fume hood controls	23 09 23	23 09 23	23 09 23	26

Medical gas panels Laboratory Air Valves Computer Room A/C Unit field-mounted controls Control system interface with CRU A/C controls CRU A/C unit controls	23 23 23 23 09 23 23	23 23 23 23 09 23 23 09 23	26 23 09 23 26 23 09 23 23 09 23	26 N/A 26
Computer Room A/C Unit field-mounted controls Control system interface with CRU A/C controls	23 09 23	23 09 23	26	26
field-mounted controls Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	
with CRU A/C controls				26
CRU A/C unit controls	23	23 09 23	23 09 23	
interface with control system				26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Fan Coil Unit controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Cooling Tower Vibration Switches	23	23	23 09 23	23 09 23
Cooling Tower Level Control Devices	23	23	23 09 23	23 09 23
Cooling Tower makeup water control devices	23	23	23 09 23	23 09 23
Starters, HOA switches	23	23	N/A	26

- F. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.
 - 1. Provide a new BACnet ECC, communications network, and controllers. Provide a programmable internetworking gateway allowing for real-

time communication between the existing direct-digital control system and the new BACnet control system. Real-time communication shall provide all object properties and read/ write services shown on VA-approved interoperability schedules. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and site-specific programming to execute the interoperability schedules.

- a. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including: monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface, and custom reporting as specified.
- 4. Leave existing direct-digital control system intact and in place.

 Provide a new ASHRAE Standard 135 BACnet-compliant ECC in the same room as the existing system's ECC and provide a new standalone BACnet-compliant control system serving the work in this project.

 No interoperability is required.
- G. Unitary standalone systems including Unit Heaters, Cabinet Unit
 Heaters, Fan Coil Units, Base Board Heaters, thermal comfort
 ventilation fans, and similar units for control of room environment
 conditions may be equipped with integral controls furnished and
 installed by the equipment manufacturer or field mounted. Refer to
 equipment specifications and as indicated in project documents.
 Application of standalone unitary controls is limited to at least those
 systems wherein remote monitoring, alarm and start-up are not
 necessary. Examples of such systems include:
 - 1. Light-switch-operated toilet exhaust
 - 2. Vestibule heater
 - 3. Exterior stair heater
 - 4. Attic heating and ventilation
 - 5. Mechanical or electrical room heating and ventilation.
- H. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of

pneumatics as motive force is specifically granted in writing by the VA.

1.2 RELATED WORK

- A. Section 23 31 00, HVAC Ducts and Casings.
- B. Section 23 36 00, Air Terminal Units.
- C. Section 26 05 11, Requirements for Electrical Installations.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks -as defined by ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data and services over a network.
- D. BACnet/ IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/ IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may use different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/ IP devices and other BBMDs connected to the same BACnet/ IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.

- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Dead-band: A temperature range over which no heating or cooling is supplied, i.e., 22-25°C (72-78°F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device.

 Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/ Digital conversion and program logic. A control loop or

- subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.

- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc., whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- NN. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- OO. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.

- PP. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- QQ. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- RR. Operating system (OS): Software, which controls the execution of computer application programs.
- SS. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- TT. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- UU. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- VV. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- WW. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- XX. Repeater: A network component that connects two or more physical segments at the physical layer.
- YY. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- ZZ. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AAA. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:

 Single Source Responsibility of subcontractor: Either the DDC Contractor or the System Integrator shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The Integration subcontractor shall be responsible for the complete design, installation, integration, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.

- 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative could observe the control systems in full operation.
- 4. The controls subcontractor shall have an in-place facility within 100 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years of experience in design and installation of building automation systems similar in performance to those specified in this Section.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:

- 1. All work shall conform to the applicable Codes and Standards.
- 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

A. The system shall conform to the following:

- 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
- 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
- 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]

Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Carbon Dioxide (CO ₂)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	MRI, SPS, PHARMACY
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.

- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet to monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with online support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including but not limited to the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.

- 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
- 6. Sequence of operations for each system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit(CCU) and all control panels.
- 12. Plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but it is the responsibility of the contractor administered by this Section of the technical specifications to provide sufficient quantities for a complete and working system.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.

- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems, ECC, and portable OWS and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/ off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/ replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including

- programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 2. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20° to 35°C (65° to 90°F) at a relative humidity of 20% to 80% non-condensing.
- B. The Controllers used outdoors shall be mounted in NEMA 4 waterproof enclosures and shall be rated for operation at -40° to 65° C (-40° to 150° F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):
 - 135-2017......BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):
 - B16.18-2018......Cast Copper Alloy Solder Joint Pressure Fittings.
 - B16.22-2018......Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2014 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-2018............Information Technology-Telecommunications and
Information Exchange between Systems-Local and
Metropolitan Area Networks- Specific
Requirements-Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD)
Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-2017......National Electric Code
90A-2018.....Standard for Installation of Air-Conditioning
and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

PART 2 - PRODUCS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least **five** years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.

- 2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards, and to meet all requirements of the Contract Documents.

C. Network Architecture

- 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100Mbs.
- The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances, and regulations.
- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

E. Servers:

1. Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.

- 2. Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135,
 - 1. The Data link/ physical layer protocol between the ECC and all BBC's (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/ IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet)

- Data Link/ Physical layer protocol and BACnet/ IP addressing as specified in ASHRAE/ANSI 135, BACnet Annex J.
- C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - ECC shall be based on commercially available server grade hardware.
 Computers based on desktop architectures shall not be permitted. ECC shall have remote management capabilities.

2. Processor(s):

- a. Processors shall be either Intel Xeon or AMD EPYC chips sets designed specifically for server use. Desktop processors will not be allowed.
- b. Minimum core count shall be 16 cores. Each Core shall be capable of executing 2 threads simultaneously.

Minimum base clock speed shall be 3.0 GHz

3. Memory:

- a. Engineering Control Center shall be equipped with a minimum of 32G of DDR4 Error Correcting Code (ECC) memory. After installation of required 32G of RAM, the motherboard must still have a minimum of 2 DIMM slots open for expansion. Motherboard shall be capable of minimum of 64GB of ECC memory.
- b. Minimum speed shall be 2133MHz for memory

4. Storage:

- a. ECC shall be equipped with a RAID capable drive controller capable of handling at least 8 internal, hot swappable drives.
- b. All installed drives shall be "Enterprise Class" drives designed specifically for server use.
- c. Minimum configuration shall consist of 6 drives in 2 separate RAID arrays:
 - 1) The operating system shall be stored on a RAID 1 array compromising of 2 drives with each drive having a minimum capacity of 1TB each.
 - 2 The B-AWS software and all its related databases shall be stored in RAID 5 array consisting of 4 drives with each drive have a minimum of 4TB capacity for a minimum storage capacity of 12TB's.
 - 3) An alternative configuration for the 2 RAID arrays described above is 8 drives arrayed in a RAID 10 configuration. In this case the OS RAID array would consist of 4 drives of 1TB

minimum each, and the B-AWS RAID array consisting of 4 drives of 16TB minimum each. This configuration would provide faster write times and much quicker rebuild times in the event of a drive failure.

d. ECC will include an 16X DVD R/W drive

5. Case:

- a. Case shall have space for a minimum of 8 hot swap 3.5" hard drives and one internal optical drive
- b. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - 2) Time Keeping Format:24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - 4) Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
- c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.
- d. Parallel port: Enhanced.
- e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.
- f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.
- g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- h. Mouse: Standard, compatible with installed software.
- i. Removable disk storage: Include the following, each with appropriate controller:
 - 1) Minimum 1 TB removable hard disk, maximum average access time of 10ms.
- j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- 6. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.

7. Audible Alarm: Manufacturer's standard.

10. Printers:

- a. Provide a dedicated, minimum resolution 600dpi, color laser printer, connected to the ECC through a USB interface.
 - 1) If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - 2) RAM: 512 MB, minimum.
 - 3) Printing Speed: Minimum twenty-six pages per minute (color); minimum 30 pages per minute (black/ white).
 - 4) Paper Handling: Automatic sheet feeder with 250-sheet \times 8.5 inch \times 11 inch paper cassette and with automatic feed.
- b. Provide a dedicated black/ white tractor-feed dot matrix printer for status/ alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.
 - 1) Paper: One box of 2000 sheets of 8-1/2x11 multi-fold type printer paper.
- 11. Self-contained uninterruptible power supply (UPS):
 - a. Size: Provide a minimum of six hours of operation of ECC equipment.
 - b. Batteries: Sealed, valve regulated, recombinant, lead calcium.
 - c. Accessories:
 - 1) Transient voltage suppression.
 - 2) Input-harmonics reduction.
 - 3) Rectifier/ charger.
 - 4) Battery disconnect device.
 - 5) Static bypass transfer switch.
 - 6) Internal maintenance bypass/ isolation switch.
 - 7) External maintenance bypass/ isolation switch.
 - 8) Output isolation transformer.
 - 9) Remote UPS monitoring.
 - 10) Battery monitoring.
 - 11) Remote battery monitoring.

D. ECC Software:

1. Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This

- database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
- 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
- 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
- 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows Server 2019, Linux, and UNIX.
- 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.
- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps,

- coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
- 9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.
- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext.
- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be

downloaded from the hard disk. The software shall provide the following functionality as a minimum:

- a. Point database editing, storage and downloading of controller databases.
- b. Scheduling and override of building environmental control systems.
- c. Collection and analysis of historical data.
- d. Alarm reporting, routing, messaging, and acknowledgement.
- e. Definition and construction of dynamic color graphic displays.
- f. Real-time graphical viewing and control of environment.
- g. Scheduling trend reports.
- h. Program editing.
- i. Operating activity log and system security.
- j. Transfer data to third party software.
- 14. Provide functionality such that using the least number of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a username and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.

15. Graphic Displays:

- a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text-based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
- b. System Graphics shall be project specific and schematically correct for each system. (i.e., coils, fans, dampers located per

- equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/ tab to a display of the applicable sequence of operation.
- c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
- d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
- e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
- f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
- g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.
- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.

- g. List of weekly schedules.
- h. List of holiday programming.
- i. List of limits and dead bands.
- j. Custom reports.
- k. System diagnostic reports, including, list of digital controllers on the network.
- 1. List of programs.
- 17. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE Standard 147. At a minimum, this report shall include:
 - a. Chilled water (or other secondary coolant) inlet and outlet temperature
 - b. Chilled water (or other secondary coolant) flow
 - c. Chilled water (or other secondary coolant) inlet and outlet pressures
 - d. Evaporator refrigerant pressure and temperature
 - e. Condenser refrigerant pressure and liquid temperature
 - f. Condenser water inlet and outlet temperatures
 - g. Condenser water flow
 - h. Refrigerant levels
 - i. Oil pressure and temperature
 - j. Oil level
 - k. Compressor refrigerant discharge temperature
 - 1. Compressor refrigerant suction temperature
 - m. Addition of refrigerant
 - n. Addition of oil
 - o. Vibration levels or observation that vibration is not excessive
 - p. Motor amperes per phase
 - q. Motor volts per phase
 - r. PPM refrigerant monitor level
 - s. Purge exhaust time or discharge count
 - t. Ambient temperature (dry-bulb and wet-bulb)
 - u. Date and time logged
- 18. Electrical, Gas, and Weather Reports
 - a. Electrical Meter Report: Provide a monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each building meter.

- b. Provide an annual (12-month) summary report showing the monthly electrical consumption and peak demand with time and date stamp for each meter.
- c. Gas Meter Report: Provide a monthly report showing the daily natural gas consumption for each meter. Provide an annual (12month) report that shows the monthly consumption for each meter.
- d. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.

19. Scheduling and Override:

- a. Provide override access through menu selection from the graphical interface and through a function key.
- b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.

20. Collection and Analysis of Historical Data:

- a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period. Points may be trended automatically on time-based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
- b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word

- processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
- c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
- d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed, and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.

21. Alarm Management:

- a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
- b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.
- c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
- d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
- e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- 22. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator

workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.

23. System Configuration:

- a. Network control strategies shall not be restricted to a single digital controller but shall be able to include data from all other network devices to allow the development of global control strategies.
- b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

2.5 PORTABLE OPERATOR'S TERMINAL (POT) - NOT USED

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables, and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

A. Network Numbers

- 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
- 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building

B. Device Instances

- 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and

- b. DD = 00-99, this allows up to 100 devices per network.
- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/ facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.

C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

A. All BACnet Devices - controllers, gateways, routers, actuators, Operator Displays, and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) - Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available for the Devices through links in the BTL website.

- 1. BACnet Building Controllers, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
- 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
- 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile and shall be BTL-Listed as conforming to the B-SS Device Profile.

 The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL listed B-BC building controllers, BTL listed B-AAC, BTL listed B-ASC, BTL listed B-SA, and BTL listed B-SS's to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. Communication.
 - a. Each B-BC controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/ Physical layer protocol for its communications.
 - b. Each B-BC controller shall provide a service communication port using BACnet Data Link/ Physical layer protocol for connection to a portable operator's terminal. If this port is not available built into the controller, contractor is to install a 4 port unmanaged switch inside the B-BC control cabinet.
 - 2. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.

- 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 4. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 5. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 120Hz and from keyed radios up to 5W at 1m (3ft).
- 6. Transformer. Power supply for the ASC must be rated at a minimum of 125% of B-ASC power consumption and shall be of the fused or current limiting type.
- A. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/ Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/ Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4.Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.

- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5W at 1m (3ft).

C. Direct Digital Controller Software

- The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Microsoft Windows.
- 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
- 3. All control functions shall execute within the stand-alone control units. All new controllers installed will also include all software and/or hardware required to program, commission, or alter the sequence of operation of said controller(s). Controllers requiring software or hardware that is not commercially available will not be allowed. Installation of software and/or hardware for controller configuration will be the responsibility of the DDC contractor. COR will direct to install said hardware and/or software on either the B-AWS or portable operator terminal. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters without requiring the services of a DDC contractor.
- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of three (3)or a maximum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Night Setback/ Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
 - b. Optimum Start/ Stop (OSS): Optimum start/ stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be

- possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied.

 Modification of assigned occupancy start/ stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/ delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators

defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.10 SPECIAL CONTROLLERS

- A. Laboratory rooms and the fume hoods in those rooms shall be controlled to allow for a variable flow of conditioned air into the room, general exhaust from the room, and exhaust through the fume hood while maintaining a safe face velocity at the hood sash opening and proper space pressurization.
- B. Fume Hood Exhaust Air Controller: The air flow through the open face of the hood, regardless of sash position, shall be controlled at a face velocity between 30 to 36 meter per minute (100fpm and 120fpm). A velocity sensor controller located in a sampling tube in the side wall of the hood shall control a damper in the hood discharge to maintain the face velocity.
- C. Room Differential Pressure Controller: The differential pressure in laboratory rooms, operating rooms, in the SPS area, Chemo compounding rooms, and isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space and display the value on its monitor. The sensor-controller shall meet the following as a minimum:
 - 1. Operating range: -0.25 to +0.25 inches of water column
 - 2. Resolution: 5 percent of reading
 - 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
 - 4. Analog output: 4-20 ma
 - 5. Operating temperature range: 32°F-120°F

2.11 SENSORS (AIR, WATER AND STEAM)

A. Sensors' measurements shall be read back to the DDC system and shall be visible by the ECC.

- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 mA output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0-to-0.25-inch wg for Building static pressure range.

D. Flow switches:

- 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed,
 SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self-powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

A. General:

- 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts,

- cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid or stranded, with thermoplastic insulated conductors.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket.
 - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. All MS/TP communications cables for devices utilizing the EIA-485 standard must be listed for use on EIA-485 networks by the manufacturer of the cable. This requirement overrides any cable recommendation by the controller manufacturer. The use of EIA-485 communication cables shall not affect the warranty from the installing DDC contractor. Cables shall have the following characteristic:
 - 1. Nominal Impedance: 100-130 Ohms
 - 2. Twisted/ shielded construction of 1, 1.5, or 2 pairs depending on controller requirements.
 - 3. Be plenum rated when required
 - 4. Cables designated for use by the cable manufacturer for use in PA or Speaker systems shall not be allowed, regardless of recommendations by the controller manufacturer.
- E. Optical digital communication fiber, if used, shall be Multi-mode or Single-mode fiber, 62.5/ 125-micron for multimode or 10/ 125-micron for single-mode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating null or dead band cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall match current VA thermostats finish, setpoint range and temperature display and external adjustment:
 - 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freeze stats shall have a minimum of 300mm (1 linear foot) of sensing element for each 0.093 square meter (1sf) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freeze stats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/ dry or high/ low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.

- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Maximum leakage in closed position shall not exceed 7L/S
 (15-CFMs) differential pressure for outside air and exhaust dampers
 and 200L/S square meter (40-CFM/sf) at 50mm (2-inches) differential
 pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 200mm (8-inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000-fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/ Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - 1. Valves shall be rated for a minimum of 150% of system operating pressure at the valve location but not less than 900kPa (125-psig).
 - 2. Valves 50mm (2-inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60mm ($2\frac{1}{2}$ -inches) and larger shall be bronze or iron body with flanged connections.
 - 4. Brass or bronze seats except for valves controlling media above 100°C (210°F), which shall have stainless steel seats.
 - 5. Flow characteristics:

- a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
- b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
- c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Two position steam control: 20% of inlet gauge pressure.
 - b. Modulating Steam Control: 80% of inlet gauge pressure (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10-feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. For dampers a linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct, externally in the duct, externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motor(s) shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of

35-inch pounds minimum with full torque applied at close off to attain minimum leakage.

4. See and coordinate drawings for required control operation.

2.15 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
- B. Air Flow Measuring Station Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct or fan inlet and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.

2. Electronics Panel:

a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.

- b. Electronics Panel shall be A/C powered 120 VAC and shall have the capability to transmit signals of 4-20ma type or PWM type for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM, and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal shall be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100FPM 10,000FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P./S.I. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The required probe sensor density shall be as follows:

Probe Sensor Density	
Area (sf.)	Qty. Sensors
<=1	2
>1 to <4	4
4 to <8	6
8 to <12	8
12 to <16	12
>=16	16

a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.

- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25Pascal (0.1-inch) W.G. of the required input pressure:
 - 1. Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major or main trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and Control Unit (CU) shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal or static/ differential pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2Pascal (0.008-inch) velocity pressure as measured by the flow station.
- F. Airflow Synchronization:

- 1. Systems shall consist of an air flow measuring station for each main supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
- 2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

2.16 SAFETY

A. Provide hard-wired interlocked connections for such all safety devices, such as freeze stats, smoke detectors, smoke dampers, and refrigerant leak detection devices. All safety devises shall be provided with additional dry contacts and shall be connected to the DDC system for monitoring and sequencing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
- 2. Install equipment, piping, wiring/ conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.

- 7. Install equipment level and plumb.
- B. Electrical Wiring Installation:
 - 1. All wiring and cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - 2. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 3. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
 - 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.

- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.

C. Install Sensors and Controls:

1. Temperature Sensors:

- a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
- b. Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5m (5-feet) above the finished floor unless otherwise noted on the plans or drawings.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- q. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Pressure Sensors:

a. Install duct static pressure sensor tips facing directly downstream of airflow.

- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- c. Install snubbers and isolation valves on steam pressure sensing devices.

3. Actuators:

- a. Mount and link damper and valve actuators according to manufacturer's written instructions.
- b. Check operation of damper/ actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/ actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

4. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 600mm (2-feet), from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.

D. Installation of network:

1. Ethernet:

- a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.

E. Installation of digital controllers and programming:

 Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor

- humidity, or space temperature could be located on any of the remote control units.
- 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- 3. System point names shall be human readable, permitting easy operator interface without the use of a written point index.
- 4. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Validation

- 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

- 1. System operation and calibration to be demonstrated by the installer in the presence of the COR. Should sampling indicate improper work, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. PG-18-10 Safety DM.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/ unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within five (5) minutes. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

3.4 COMMISSIONING - NOT USED

3.5 DEMONSTRATION AND TRAINING - NOT USED

3.6 CONSTRUCTION WASTE MANAGEMENT

- A. General: Comply with Contractor's Waste Management Plan and Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- B. To the greatest extent possible, separate reusable and recyclable products from contaminated waste and debris in accordance with the Contractor's Waste Management Plan. Place recyclable and reusable products in designated containers and protect from moisture and contamination.

---- END ----

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
 - 2. Exhaust duct with HEPA filters for Negative Pressure Isolation Room.
 - Exhaust duct for chemical fume hoods, kitchen hood exhaust (grease) and "wet exhaust" ducts.

B. Definitions:

- 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
- Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
- 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
- 4. Exposed Duct: Exposed to view in a finished room

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- E. Section 23 07 11, HVAC, and BOILER PLANT INSULATION: Duct Insulation.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- G. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.
- H. Section 23 36 00, AIR TERMINAL UNITS: Air Flow Control Valves and Terminal Units.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - 7. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.
 - 10 Details and design analysis of alternate or optional duct systems.
 - 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE):

 ASCE7-2017......Minimum Design Loads for Buildings and Other
- Structures

 C. American Society for Testing and Materials (ASTM):

 A167-2009.......Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet, and Strip

 A653-2019....Standard Specification for Steel Sheet,
 Zinc-Coated (Galvanized) or Zinc-Iron Alloy
 coated (Galvannealed) by the Hot-Dip process

 A1011-2018....Standard Specification for Steel, Sheet and
 Strip, Hot rolled, Carbon, structural, HighStrength Low-Alloy, High Strength Low-Alloy
 with Improved Formability, and Ultra-High
 Strength
 - Aluminum-Alloy Sheet and Plate
 C1071-2019.....Standard Specification for Fibrous Glass Duct
 Lining Insulation (Thermal and Sound Absorbing
 Material)
 - E84-2014......Standard Test Method for Surface Burning Characteristics of Building Materials
- D. National Fire Protection Association (NFPA):
 - 90A-2018......Standard for the Installation of Air
 Conditioning and Ventilating Systems
 96-2018.....Standard for Ventilation Control and Fire
 Protection of Commercial Cooking Operations
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition -2006......HVAC Duct Construction Standards, Metal and Flexible
 - 2nd Edition -2012......HVAC Air Duct Leakage Test Manual

- 6th Edition -2016......Fibrous Glass Duct Construction Standards
- F. Underwriters Laboratories, Inc. (UL):

181-2013......Factory-Made Air Ducts and Air Connectors
555-2006Standard for Fire Dampers
555S-2014.....Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - 1. Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown on the drawings will have to be converted to equivalent round size.
- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50mm (2-inch)
 - > 50mm to 75mm (2-inch to 3-inch)
 - > 75mm to 100mm (3-inch to 4-inch)

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Operating Room/ Cystoscopy Room Supply Air: All supply air ductwork on the downstream side of the terminal final HEPA filter serving an operating room or cystoscopy room shall be fabricated from welded stainless steel, including all components of the air distribution system up to and including the supply air outlet.
- E. Wet Air Exhaust Ducts and Accessories: Ducts for dishwashers, scullery hood, cart washers, manual cart washers, cage washers, steam sterilizer hoods and orthotics hoods shall be 1.3mm (18-gage) stainless steel made liquid tight with continuous external weld for all seams and joints. Provide neoprene gaskets at flanged connections. Where ducts are not self draining back to the equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access door in side of duct at drain pockets.
- F. Kitchen and Grill Hood (Ventilator) Exhaust Ducts: Comply with NFPA 96.
 - 1. Material: 1.6mm (16-gage) steel sheet (black iron), ASTM A1011, or 1.3mm (18-gage) stainless steel. Use stainless steel for exposed duct in occupied areas. See Optional Duct Materials.
 - 2. Construction: Liquid tight with continuous external weld for all seams and joints. Where ducts are not self draining back to the equipment, provide low point drain pocket with copper drain pipe to sanitary sewer. Provide access doors or panels for duct cleaning inside of horizontal duct at drain pockets, at 6m (20-feet) intervals, and at each change of direction.
 - 3. Access doors or panels shall be of the same material and thickness of the duct with gaskets and sealants that are rated $815^{\circ}C$ ($1500^{\circ}F$) and shall be grease-tight.
 - 4. Grease Duct: Double-wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified

materials for kitchen and grill hood exhaust. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown in the drawings will have to be converted to equivalent round size.

- H. Radioisotope H3, Hood Exhaust and Associated Ductwork: 1.3mm (18-gage) all welded stainless steel duct.
- I. Laboratory Hood, Exhaust and Associated Ductwork: 1.3mm (18-gage) all welded Stainless steel.
- J. Biological Safety Cabinet, H12, Hood Exhaust and Associated Ductwork:
 1.3mm (18-gage) all welded stainless steel.
- K. Perchloric Acid H14, Hood Exhaust: 1.3mm (18-gage) stainless steel, liquid tight welded construction. Provide water wash down system in the hood and all associated ductwork to the exhaust air outlet. Coordinate the wash down system requirements with the specified hood.
- L. Duct for Negative Pressure Up to 750Pa (3-inch W.G.): Provide for exhaust duct between HEPA filters and exhaust fan inlet including systems for Autopsy Suite exhaust.
 - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints.
 - 2. Rectangular Duct: Galvanized steel, minimum 1.0mm (20-gage), Pittsburgh lock seam, companion angle joints 32mm by 3.2mm (1-1/4- x 1/8-inch) minimum at not more than 2.4m (8-feet) spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles.
- M. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round, and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - 1. Elbows: Diameters 80 through 200mm (3- to 8-inches) shall be two sections die stamped, all others shall be gored construction, maximum 18° angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.

- 3. Ribbed Duct Option: Lighter gage round/ oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.

 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- N. VA Type A and B Canopy Hoods, Reagent Grade Water Treatment Room and Battery Charging Room Exhausts: Constructed of 1.3mm (18-gage) stainless steel.
- O. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500mm (20-inches) wide by 1200mm 1350mm (48- to 54-inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- P. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- Q. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS)

- A. Duct sizes shown on drawings for lined duct are clear opening inside lining.
- B. Duct liner is only permitted to be used for return, relief, and general exhaust ducts. Duct liner is not permitted for outside air ducts, supply air ducts or any other positive pressure ductwork (provide exterior insulation only).

- C. Rectangular Duct or Casing Liner: ASTM C1071, Type I (flexible), or Type II (board), 25mm (1-inch) minimum thickness, applied with mechanical fasteners and 100% coverage of adhesive in conformance with SMACNA, Duct Liner Application Standard.
- D. Round and Oval Duct Liner: Factory fabricated double-walled with 25mm (1-inch) thick sound insulation and inner perforated galvanized metal liner. Construction shall comply with flame and smoke rating required by NFPA 90A. Metal liner shall be 1.0 to 6.0mm (20 to 24 gage) having perforations not exceeding 2.4mm (3/32-inch) diameter and approximately 22% free area. Metal liner for fittings need not be perforated. Assemblies shall be complete with continuous sheet Mylar liner, 2-mil thickness, between the perforated liner and the insulation to prevent erosion of the insulation. Provide liner couplings/ spacer for metal liner. At the end of insulated sections, provide insulation end fittings to reduce outer shell to liner size. Provide liner spacing/ concentricity leaving airway unobstructed.

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

A. Galvanized steel, interlocking blade type, UL listing and label, 1½-hour rating, 70°C (160°F) fusible line, 100% free opening with no part of the blade stack or damper frame in the air stream.

- B. Fire dampers in wet air exhaust shall be of stainless-steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9mm (14-gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450m/min (1500-fpm). Maximum static pressure loss: 32Pa (0.13-inch W.G.).
- B. Maximum air leakage, closed damper: 0.32cm/min./square meter (4.0-CFM per square foot) at 750Pa (3-inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 300mm (12-inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - 7. Operation: Automatic open/ close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71°C (160°F) fusible link, 3-hour rating and approved for openings in Class A fire walls with rating up to 4-hours, 100% free opening with no part of the blade stack or damper frame in the air stream.

2.9 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5m (5-feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200mm (8-inches) in diameter shall be Class 1. Ducts 200mm (8-inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24°C (75°F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3dB per 300mm (12-inches) of straight duct, at 500Hz, based on 150mm (6-inch) duct, of 750m/min (2500-fpm).

D. Application Criteria:

- 1. Temperature range: -18°C to 93°C (0°F to 200°F) internal.
- 2. Maximum working velocity: 1200m/min (4000-fpm).
- 3. Minimum working pressure, inches of water gage: 2500Pa (10-inches) positive, 500Pa (2-inches) negative.
- E. Duct Clamps: 100% nylon strap, 80kg (175-pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822g (29-ounce) neoprene coated fiberglass fabric approximately 150mm (6-inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50mm (2-inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.11 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0mm (20-gage) galvanized sheet steel, or 1.3mm (18-gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6mm (24-gage) or heavier galvanized perforated sheet steel, or 0.85mm (22-gage) or heavier perforated aluminum. Perforations shall not exceed 4mm (5/32-inch) diameter, approximately 25% free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely airtight and free of vibration and buckling at internal static pressures up to 2000Pa (8-inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.12 PREFABRICATED ROOF CURBS - NOT USED

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.14 SEISMIC RESTRAINT FOR DUCTWORK - NOT USED

2.15 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7-inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2% of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3-inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.16 DUCT-MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.17 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50mm (2-inch) length for insulated duct, and a minimum 25mm (1-inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.18 AIR FLOW CONTROL VALVES (AFCV)

Refer to Section 23 36 00 AIR TERMINAL UNITS.

2.19 LEAD COVERED DUCT - NOT USED

2.20 ELECTROSTATIC SHIELDING

- A. At the point of penetration of shielded rooms ducts shall be made electrically discontinuous by means of a flexible, nonconductive connection outside shielded room.
- B. Metallic duct portion inside shielded room shall be electrically bonded to shielding.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:

- 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers, smoke dampers and combination fire/ smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/ smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings, and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5m (5-feet) long (NFPA 90A), as straight and short as feasible, adequately supported.

Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.

- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/ adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils, and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4% of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY - NOT USED

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261 and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - 1. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:

- 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
- 2. Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Tubular Centrifugal Fans.
 - c. Up-blast kitchen hood exhaust fans.
 - d. Industrial fans.
 - e. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
 - 5. Centrifugal ceiling fans.
 - 6. Propeller fans.
 - 7. Packaged hoods make-up air units.
 - 8. Vane axial fans.
 - 9. Tube-axial fans.
 - 10. Air curtain units.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.

- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-2016.....Standards Handbook 210-2016.....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-2017......Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually Fans C. American Society for Testing and Materials (ASTM): B117-2018......Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-2008.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-2017......Standard Test Methods for Measuring Adhesion by Tape Test G152-2013.....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-2013.....Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA): NFPA 96-2018.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. National Sanitation Foundation (NSF):
- 37-2017......Air Curtains for Entrance Ways in Food and Food
- F. Underwriters Laboratories, Inc. (UL):

 181-2013......Factory Made Air Ducts and Air Connectors

Service Establishments

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN) - NOT USED

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 1, 3, 9 or 10.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5mm (1/2-inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70% of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a BlO life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.

- 9. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/ motor combination requirements.
- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18-Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box.
- E. Tubular Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C2 thru 2.2.C9 provide:
 - 1. Housings: Hot rolled steel, one-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for un-ducted inlet and screen for un-ducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow.
- F. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static service. Construction specifications paragraphs A and C for centrifugal fans shall apply. Provide material handling flat blade type fan wheel.
- G. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300mm (12-inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300mm (12-inches) and housings may be cast iron.
- H. Spark Resistant/ Explosion Proof Fans: If flammable gas, vapor, or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), provide AMCA construction option: A, B or C as indicated. Drive set shall be comprised of non-static belts for use in an explosive atmosphere. Motor shall be explosion proof type if located in air stream.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.

- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self-acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream. For kitchen hood exhaust applications, provide grease trough on base and threaded drain. The mounting height of the kitchen up-blast exhaust fan shall follow NFPA 96. (Provide vented curb extension if required to maintain required clearances.)

2.4 POWER WALL VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades.
- C. Construction: Steel or aluminum, completely weatherproof, for wall mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self-acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.

2.5 PACKAGED HOOD MAKE-UP AIR UNITS

- A. Curb mounted air supply unit complete with centrifugal blower and filters.
 - 1. Housing: Galvanized steel with baffled air intake for weather protection and with duct adapter.
 - 2. Blower: Ball bearing utility type with vibration mounts to isolate blower, motor and drive.
 - 3. Prefabricated roof curb: As specified in paragraph 2.3 of this section.
 - 4. Filters: Provide four 2" MERV 8 disposable filters
- B. Provide easy access to motor and drive.

2.6 CENTRIFUGAL CEILING FANS (SMALL CABINET FAN)

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Steel housing, baked enamel finish, direct connected fan assembly, attached grille. Provide gravity back draft assembly, aluminum wall cap and bird or insect screen. Provide electric motor operated damper where indicated.
- C. Acoustical Lining: 12.5 mm (1/2-inch) thick mineral fiber, dark finish. Comply with UL 181 for erosion.
- D. Motor: Shaded pole or permanent split capacitor, sleeve bearings, supported by steel brackets in combination with rubber isolators.
- E. Ceiling Grille, (Where indicated): White plastic egg crate design, 80% free area.
- F. Control: Provide solid state speed control (located at unit) for final air balancing.

2.7 PROPELLER FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Belt-driven or direct-driven fans as indicated on drawings.
- C. Square steel panel, deep drawn venturi, arc welded to support arms and fan/ motor support brackets, baked enamel finish. Provide wall collar for thru-wall installations.
- D. Motor, Motor Base and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS. Motor shall be totally enclosed type.
- E. Wall Shutter: Fan manufacturer's standard, steel frame, aluminum blades, heavy duty stall type electric damper motor, spring closed.
- F. Wire Safety Guards: Provide on exposed inlet and outlet.

2.8 VANE AXIAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. The requirements for AMCA listing and seal are waived.
- B. Fan Housings: Hot rolled steel, 1-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for un-ducted inlet and screen for un-ducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow.

- C. Impeller: Heat treated cast aluminum alloy incorporating airfoil blades. Impellers shall be balanced statically and dynamically prior to installation on the shaft and as an integral unit prior to shipment.
- D. Variable Pitch Type: Pitch of all blades shall be continuously and simultaneously adjustable throughout the complete pitch range while the impeller is operating at full speed. Blade pitch adjustment shall be accomplished by a factory furnished, mounted, adjusted and tested pneumatic operator with positive positioner relay. Signal pressure shall be 100-kPa (15-psig) and operating pressure shall be 450kPa to 550kPa (65 80psig).
- E. Fan Drive: Direct drive or belt drive as scheduled, arrangement 4, with motor located inside fan housing on discharge side of impeller, NEMA C motor mounting, bearings B-10 with average operating life of 200,000 hours, motor wiring leads and bearing lubrication lines extended to outside of housing. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for motor specifications.

2.9 AIR CURTAIN UNITS

- A. Manufacturer's standard, high velocity, non-recirculating type with demonstrated performance in effectively preventing entry of dust and insects and effectively stopping inflow of air due to winds of 24km/h (15mph) velocity. AMCA seal is waived. Units for kitchens or food storage shall comply with NSF 37.
- B. Casing: Sheet metal or polycarbonate plastic. Provide internal or external vibration isolation to effectively prevent transmission of vibration and noise from units to building structure. Units shall completely house all parts and have manufacturer's standard finish coating.
- C. Fans: Ruggedly constructed, statically and dynamically balanced. Noise level shall not exceed 77dBA measured at 1.5m (5-feet) distance.
- D. Air Discharge Outlet Nozzle: Cover full width of door opening. Fan discharge ducts, plenum, flow control vanes and nozzles shall provide a uniform distribution of air over entire length of door. Provide adjustable volume and directional control.
- E. Controls: Provide on-off door operated switch. The "on-off" switch circuit shall close to start fan motors when door starts to open and open when the door reaches closed position. A local disconnect switch for each fan motor shall be provided and shall be mounted to be accessible without use of ladder.

F. Motors: Fan motors shall be of type suitable for service conditions, sealed ball bearings, resilient mounting, and automatic thermal overload switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
 - 2. Air flow control valves.
- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-2017......Performance Rating of Air Terminals
- C. National Fire Protection Association (NFPA):
 90A-2018..........Standard for the Installation of Air
 Conditioning and Ventilating Systems

- D. Underwriters Laboratories, Inc. (UL):
 - 181-2013......Standard for Factory-Made Air Ducts and Air Connectors
- E. American Society for Testing and Materials (ASTM):
 - C 665-2006......Standard Specification for Mineral-Fiber

 Blanket Thermal Insulation for Light Frame

 Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566-Liters/second (1,200CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250-Liters/second (3,000CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85mm (22-Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13mm (1/2-in.) thick non-porous foil faced rigid fiberglass insulation of 4-lb/cf., secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.
 - 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
 - 3. Total leakage from casing: Not to exceed 2% of the nominal capacity of the unit when subjected to a static pressure of 750Pa (3-inch WG), with all outlets sealed shut and inlets fully open.
 - 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterfly balancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.

- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - 1. Damper Leakage: Not greater than 2% of maximum rated capacity, when closed against inlet static pressure of 1kPa (4-inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.
- I. Fan powered terminal units:
 - 1. General: The fan will be in a series configuration inside the unit casing.
 - 2. Fan assembly: Forward curved centrifugal direct drive blower with adjustable speed controller.
 - a. Motor: Integral thermal overload protection.
 - 1) 115V single phase.
 208/240V single phase.
 277V single phase.
 - b. Motor assembly: Completely isolated from cabinet with rubber vibration mounts.
 - 3. Wiring: Factory mounted and wire controls. Mount electrical components NEMA-1 control box with removable cover. Incorporate single point electrical connection to power source. Provide terminal strip in control box for field wiring of power source. Provide factory wired non-fused disconnect switch on each terminal unit.
 - 4. Provide 1-inch thick throwaway filter in the return air inlet.

2.3 AIR FLOW CONTROL VALVE (AFCV)

- A. Airflow control device shall be a venturi valve type air flow control valve.
- B. Pressure independent over a 150Pa 750Pa (0.6-inch WG 3.0-inch WG) drop across valve.
- C. Volume control accurate to plus or minus 5% of airflow over an airflow turndown range of 16 to 1. No minimum entrance or exit duct diameters shall be required to ensure accuracy or pressure independence.

- D. Response time to change in command signal and duct static pressure within three seconds.
- E. 16-gauge spun aluminum valve body and control device with continuous welded seam and 316 stainless-steel shaft and shaft support brackets. Pressure independent springs shall be stainless-steel. Shaft bearing surfaces shall be Teflon or polyester.
- F. 316 stainless-steel continuous welded seam valve body, control device, shaft, shaft support bracket, pivot arm and internal mounting link.

 The control device shall have a baked-on corrosion resistant phenolic coating. The shaft shall have a Teflon coating and all shaft bearing surfaces shall be made of Teflon. The pressure independent springs shall be made of stainless steel.

G. Constant volume units:

- 1. Actuator to be factory mounted to the valve.
- 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
- 3. Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
- 4. The maximum and minimum airflows shall be as scheduled.

H. Variable volume units:

- 1. Actuator to be factory mounted to the valve.
- 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
- 3. Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.

I. Certification:

- 1. Control device: factory calibrated to airflows detailed on plans using NIST traceable air stations and instrumentation having a combined accuracy of plus or minus 1% of signal over the entire range of measurement.
- 2. Electronic airflow control devices: further calibrated and their accuracy verified to plus or minus 5% of signal at a minimum of eight different airflows across the full operating range of the device.
- 3. All airflow control devices: individually marked with device specific, factory calibration data to include:

- a. tag number, serial number, model number, eight-point characterization information (for electronic devices), and quality control inspection numbers.
- K. Airflow measuring devices and airflow control devices that are not venturi valves (e.g., Pitot tube, flow cross, air bar, orifice ring, vortex shedder, etc.) are acceptable, provided the following conditions are met:
 - 1. They meet the performance and construction characteristics stated throughout this section of the specification.
 - 2. Suppliers of airflow control devices or airflow measuring devices requiring minimum duct diameters: provide revised duct layouts showing the required straight duct runs upstream and downstream of these devices.
 - 3. Supplier of the airflow control system: submit coordination drawings reflecting these changes and include static pressure loss calculations as part of submittal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/ exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code:
 - 1062 GRD-2015......Certification, Rating, and Test Manual $4^{\rm th}$ Edition
- C. American Society of Civil Engineers (ASCE):
 - ASCE7-2017......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):
 - A167-99 2009......Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet and Strip

B209- 2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA):

90A-2018......Standard for the Installation of Air Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL):

181-2013...... UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/ EXHAUST VENTILATORS (ROOF MOUNTED) - NOT USED

2.2 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Steel or aluminum. Provide manufacturer's standard gasket.
 - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1-,2-, 3-, or 4-way directional pattern. Provide equalizing or control grid and opposed blade damper.
 - c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face

diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.

- d. Slot diffuser/ plenum:
 - 1) Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions.
 - 2) Galvanized steel boot lined with 13mm (1/2-inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, anti-microbial, and non-friable.
 - 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
 - 4) Maximum pressure-drop at design flow rate: 37Pa (0.15-inch W.G.)
- 2. Linear Bar Grilles and Diffusers: Extruded aluminum, manufacturer's standard finish, and positive holding concealed fasteners.
 - a. Margin Frame: Flat, 20mm (3/4-inch) wide.
 - b. Bars: Minimum 5mm (3/16-inch) wide by 20mm (3/4-inch) deep, zero deflection unless otherwise shown. Bar spacing shall be a minimum of 3mm (1/8-inch) on center. Reinforce bars on 450mm (18-inch) center for sidewall units and on 150 mm (6 inch) center for units installed in floor or sills.
 - c. Provide opposed blade damper and equalizing or control grid where
- 3. Drum Louvers: Aluminum construction, drum louver, with pivoted blades and rotating drum to adjust length of throw and direction.
 - a. Register shall have integral; face adjustable, opposed blade damper constructed of heavy gauge steel. Damper shall be operable from the face of the register. Units shall be nozzle type with adjustable discharge pattern.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.

- 1. Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting or shall be extruded aluminum with manufacturer's standard aluminum finish.
- 2. Standard Type: Fixed horizontal face bars set at 30° to 45° approximately 30mm (14-inch) margin.
- 3. Linear Type: To match supply units.
- E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.4 WIRE MESH GRILLE - NOT USED

2.5 FILTER RETURN/ EXHAUST GRILLE - NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.
- 3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY NOT USED
- 3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC.

 Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered

if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least 3 years.
- B. Product Qualification:
 - 1. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render

satisfactory service to this installation within 4 hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the

- COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.

- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/ correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/ her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/ her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
 - 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/ her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of

- the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements.

 Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.

- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12mm (1/2-inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/ bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system

or assembly as a whole. Partial submittals will not be considered for approval.

- 1. Mark the submittals, "SUBMITTED UNDER SECTION".
- 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- 3. Submit each section separately.
- E. The submittals shall include the following:
 - 1. Information that confirms compliance with contract requirements.

 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.

- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300mm (12-inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 POLYCHLORINATED BIPHENYL (PCB) EQUIPMENT - NOT USED

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the

- installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

- - - END - - -

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10	.Standard	Specification	for	Vinyl	Chloride
	Plastic	Pressure-Sensit	cive	Elect	rical
	Insulati	ng Tape			

2304-10Test Method for Thermal Endurance of Rigi	d
Electrical Insulating Materials	
3005-10Low-Temperature Resistant Vinyl Chloride	
Plastic Pressure-Sensitive Electrical	

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA):
 - WC 70-09......Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):

44-14	.Thermoset-Insulated	Wires	and	Cables

83-14......Thermoplastic-Insulated Wires and Cables

467-13.....Grounding and Bonding Equipment

486A-486B-13.....Wire Connectors

486C-13.....Splicing Wire Connectors

486D-15.....Sealed Wire Connector Systems

486E-15......Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-07.....Thermoplastic-Insulated Underground Feeder and

Branch Circuit Cables

514B-12......Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12-AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.

- 2. No. 8-AWG and larger: Stranded.
- 3. No. 10-AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
- 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- 1. No. 10-AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8-AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19mm (0.75-inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V		
Black	А	Brown		
Red	В	Orange		
Blue	С	Yellow		
White	Neutral	Gray *		
* or white with	colored (other	than green) tracer.		

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10-AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.

- 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8-AWG to No. 4/0-AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250kc/mil. and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold, and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14-AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pillboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120V and 277V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

B. Fireproofing:

 Install fireproofing on low-voltage conductors where the low-voltage conductors are installed in the same manholes with medium-voltage conductors.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8-AWG, apply tape in half-overlapping turns for a minimum of 75mm (3-inches) from terminal points, and in junction boxes, pull-boxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pull-box and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40mm (1½-inches) in diameter and 40mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

A. Install a permanent wire marker on each wire at each termination.

- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- ${\ensuremath{\text{C.}}}$ Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 DIRECT BURIAL CABLE INSTALLATION - NOT USED

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors' phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500V DC for 300V rated cable, and 1000V DC for 600V rated cable. Apply test for 1-minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25-megohms for 300V rated cable and 100-megohms for 600V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.

- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12......North American Specification for the Design of Cold-Formed Steel Structural Members C. National Electrical Manufacturers Association (NEMA): C80.1-15......Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05......Electrical Intermediate Metal Conduit FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13.....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing) FB2.20-14.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13..... Electrical Polyvinyl Chloride (PVC) Tubing and

Conduit

TC-3-13PVC Fittings for Use with Rigid PVC Conduit and
Tubing
D. National Fire Protection Association (NFPA):
70-17National Electrical Code (NEC)
E. Underwriters Laboratories, Inc. (UL):
1-05Flexible Metal Conduit
5-16Surface Metal Raceway and Fittings
6-07Electrical Rigid Metal Conduit - Steel
50-15Enclosures for Electrical Equipment
360-13Liquid-Tight Flexible Steel Conduit
467-13Grounding and Bonding Equipment
514A-13Metallic Outlet Boxes
514B-12Conduit, Tubing, and Cable Fittings
514C-14Nonmetallic Outlet Boxes, Flush-Device Boxes
and Covers
651-11Schedule 40 and 80 Rigid PVC Conduit and
Fittings
651A-11Type EB and A Rigid PVC Conduit and HDPE
Conduit
797-07Electrical Metallic Tubing
1242-14Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13mm (0.5-inch) flexible conduit may be used for tapping connections to recessed lighting fixtures.

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 13mm (0.5-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL6 and NEMA C80.1.
- 4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL1242 and NEMA C80.6.
- 5. Electrical Metallic Tubing (EMT): Shall conform to UL797 and NEMA C80.3. Maximum size not to exceed 105mm (4-inches) and shall be permitted only with cable rated 600V or less.
- 6. Flexible Metal Conduit: Shall conform to UL1.
- 7. Liquid-tight Flexible Metal Conduit: Shall conform to UL360.

- 8. Direct Burial Plastic Conduit: Shall conform to UL651 and UL651A, heavy wall PVC or high-density polyethylene (PE).
- 9. Surface Metal Raceway: Shall conform to UL5.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded, or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex-head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of case-hardened steel with hex-head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:

- a. Conform to UL514B. Only steel or malleable iron materials are acceptable.
- b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL467 and UL514B.
 - b. Accommodate a 19mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30° angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than $38mm \times 38mm$ (1.5- \times 1.5-inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:

- 1. Comply with UL-50 and UL-514A.
- 2. Rustproof cast metal where required by the NEC or shown on drawings.
- 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.

- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4M (8-feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- 8. Support within 300mm (12-inches) of changes of direction, and within 300mm (12-inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- 4. Installation of conduit in concrete that is less than 75mm (3-inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600V: Rigid steel or rigid aluminum.

 Mixing different types of conduits in the same system is prohibited.
 - 2. Conduit for Conductors 600V and Below: Rigid steel, IMC, rigid aluminum, or EMT. Mixing different types of conduits in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8M (6-feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457mm (18-inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600V: Rigid steel or rigid aluminum. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600V and Below: Rigid steel, IMC, rigid aluminum, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4M (8-feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50mm (2-inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6M (20-feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION - NOT USED

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS - NOT USED

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.

C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75mm (3-inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75mm (3-inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125mm (5-inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200lbs.). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6mm (0.25-inch) bolt size and not less than 28mm (1.125-inch) in embedment.
 - b. Power set fasteners not less than 6mm (0.25-inch) diameter with depth of penetration not less than 75mm (3-inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.

- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports, or fasteners are prohibited for all uses except horizontal and vertical supports/ fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of four 90° bends are necessary.
- C. Locate pull-boxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600mm (24-inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100mm (4-inches) square x 55mm (2.125-inches) deep, with device covers for the wall material and thickness involved.

- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.

- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-15.....International Building Code

C. National Electrical Manufacturers Association (NEMA):

FU 1-12.....Low Voltage Cartridge Fuses

KS 1-13......Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

98-16.....Enclosed and Dead-Front Switches

248 1-11....Low Voltage Fuses

489-13..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.

- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty ($\mbox{HD}\mbox{)}$.

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

A. Shall be in accordance with NEMA FU 1.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

A. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---