

VA

**U.S. Department
of Veterans Affairs**

REPAIR BUILDING 50 BASEMENT KITCHEN

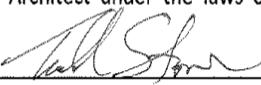
St. Cloud, MN

VA Project # 656-20-130

Project Specifications – Volume 3

Divisions 26 - 43

100% CONSTRUCTION DOCUMENTS – 09-30-2025


ST CLOUD VAMC
REPAIR BUILDING 50 BASEMENT KITCHEN
ST CLOUD, MN

VA PROJECT #656-20-130

September 30, 2025

Architect

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Architect under the laws of the state of Minnesota.

Signature:
Typed or Printed Name: TED STONE - AIA
Date: 8.18.25 License Number: 51525

ARCHITECT OF RECORD

Stone Group Architects, Inc.
700 East 7th Street
Sioux Falls, SD 57103
(605) 271-1144

I hereby certify that this plan, specification or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Name Jason R. Gottwalt, P.E.
2025.09.29.09:52:10-05:00

Date 09-30-2025 Reg. No. 41360

MECHANICAL/PLUMBING ENGINEER

Dunham Engineering
50 South Sixth Street, Suite 1100
Minneapolis, MN 55402
(612) 465-7550

I hereby certify that this plan, specification or report
was prepared by me or under my direct supervision
and that I am a duly Licensed Professional Engineer
under the laws of the State of Minnesota.

Name

Jay D. Rohkohl, P.E.

Date 09-30-2025 Reg. No. 23434

ELECTRICAL ENGINEER

Dunham Engineering
50 South Sixth Street, Suite 1100
Minneapolis, MN 55402
(612)465-7550

DEPARTMENT OF VETERANS AFFAIRS
VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS
Section 00 01 10

SECTION NO	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	11-21
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	11-21
01 33 23	Shop Drawings, Product Data, and Samples	02-23
01 35 26	Safety Requirements	10-22
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 29	Testing Laboratory Services	11-18
01 45 35	Special Inspections	06-21
01 57 19	Temporary Environmental Controls	01-21
01 58 16	Temporary Interior Signage	07-15
01 74 19	Construction Waste Management	04-22
01 81 13	Sustainable Construction Requirements	10-17
01 91 00	General Commissioning Requirements	04-22
	DIVISION 02 - EXISTING CONDITIONS	
02 21 13	Site Surveys	01-21
02 41 00	Demolition	08-17
02 82 11	Traditional Asbestos Abatement	01-21
02 82 13.13	Glovebag Asbestos Abatement	01-21
02 83 33.13	Lead-Based Paint Removal and Disposal	01-21
	DIVISION 03 - CONCRETE	
03 30 53	(Short-Form) Cast-in-Place Concrete	01-21
	DIVISION 04 - MASONRY	
	DIVISION 05 - METALS	
05 50 00	Metal Fabrications	08-18
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 21 13	Thermal Insulation	01-21

SECTION NO	DIVISION AND SECTION TITLES	DATE
07 28 00	Air/Vapor Barriers	
07 92 00	Joint Sealants	04-22
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-21
08 31 13	Access Doors and Frames	04-22
08 71 00	Door Hardware	05-22
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 30 13	Ceramic/Porcelain Tiling	01-21
09 51 00	Acoustical Ceilings	12-18
09 91 00	Painting	01-21
	DIVISION 10 - SPECIALTIES	
10 26 00	Wall and Door Protection	01-21
	DIVISION 11 - EQUIPMENT	
	DIVISION 12 - FURNISHINGS	
12 24 00	Window Shades	08-17
	DIVISION 13 - SPECIAL CONSTRUCTION	
	DIVISION 14- CONVEYING EQUIPEMENT	
	DIVISION 21- FIRE SUPPRESSION	
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	01-23
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	05-21
22 13 00	Facility Sanitary and Vent Piping	09-20
22 13 23	Sanitary Waste Interceptors	09-20
22 40 00	Plumbing Fixtures	12-22

SECTION NO	DIVISION AND SECTION TITLES	DATE
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	03-23
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	03-23
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	03-23
23 05 93	Testing, Adjusting, and Balancing for HVAC	03-23
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	03-23
23 09 23	Direct-Digital Control System for HVAC	03-23
23 21 13	Hydronic Piping	03-23
23 22 13	Steam and Condensate Heating Piping	08-23
23 31 00	HVAC Ducts and Casings	03-23
23 34 00	HVAC Fans	03-23
23 36 00	Air Terminal Units	03-23
23 37 00	Air Outlets and Inlets	03-23
23 38 13	Commercial-Kitchen Hoods	03-23
23 40 00	HVAC Air Cleaning Devices	03-23
23 74 13	Packaged, Outdoor, Central-Station Air-Handling Units	03-23
23 82 00	Convection Heating and Cooling Units	03-23
23 82 16	Air Coils	03-23
	DIVISION 25 - INTEGRATED AUTOMATION	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	11-22
26 05 19	Low-Voltage Electrical Power Conductors and Cables	11-22
26 05 26	Grounding and Bonding for Electrical Systems	11-22
26 05 33	Raceway and Boxes for Electrical Systems	11-22
26 09 23	Lighting Controls	11-22
26 24 16	Panelboards	11-22
26 27 26	Wiring Devices	11-22
26 51 00	Interior Lighting	11-22
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	09-19
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 26	Grounding and Bonding for Communications Systems	12-22
27 05 33	Conduits and Backboxes for Communications Systems	12-22
27 05 53	Identification for Communications Systems	12-22
27 10 00	Structured Cabling	12-22
27 10 00	Control, Communication and Signal Wiring	06-15
27 51 16	Public Address and Mass Notification Systems	11-22

SECTION NO	DIVISION AND SECTION TITLES	DATE
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	04-18
28 05 13	Conductors and Cables for Electronic Safety and Security	10-18
28 05 26	Grounding and Bonding for Electronic Safety and Security	09-11
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK	
31 20 11	Earthwork (Short Form)	10-12
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
32 05 23	Cement and Concrete for Exterior Improvements	08-16
	DIVISION 33 - UTILITIES	
33 30 00	Sanitary Sewer Utilities	06-13
	DIVISION 34 - TRANSPORTATION	
	DIVISION 48 - Electrical Power Generation	

SECTION 26 05 11
REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited. No conduit less than $\frac{3}{4}$ " allowed. (with the exception of $\frac{1}{2}$ " dia. Whips)
- E. Show all equipment code/manufacturer clearances on the plans (VAV, electrical panels, etc.)
- F. Distribution pathways shall be parallel and perpendicular to building grid lines. No angled lines shall be accepted in construction.
- G. Any Special Tools required for maintenance and/or operation of basis of design and installed product shall be included within the specifications.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.

3. Components shall be compatible with each other and with the total assembly for the intended service.
4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer and witnessed by the contractor. In addition, the following requirements shall be complied with:
 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

- A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold, freeze and rain.
 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean

equipment. Remove loose packing and flammable materials from inside equipment.

3. Damaged equipment shall be repaired or replaced, as determined by the COR.
4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, NFPA 780, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 1. Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical

Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.

4. Energized electrical work shall begin only after the Contractor has obtained written approval obtained from the Health Care System Director through the Facilities Management Service Line Director and the COR of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference and meet code required clearances.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces or working clearances shall comply with NEC's requirements, at a minimum.
- C. Inaccessible Equipment:
 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.

2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways. Maintenance clearances shall meet manufacturers requirements and coordinated with the VA.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system and obtain electric utility company approval for sizes and settings of these devices.
- E. Medium Voltage loop shall be concrete encased.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment. Panels are to have labeling for all circuits and identify where its fed from.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with bolts or rivets.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 1. Nominal system voltage.

2. Equipment/bus name, date prepared, and manufacturer name and address.
3. Arc flash boundary.
4. Available arc flash incident energy and the corresponding working distance.
5. Minimum arc rating of clothing.
6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 1. Mark the submittals, "SUBMITTED UNDER SECTION _____".
 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 3. Submit each section separately.
- E. The submittals shall include the following:
 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.

4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.

F. Maintenance and Operation Manuals:

1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.

G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

H. After approval and prior to installation, furnish the /COR with one sample of each of the following:

1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
2. Each type of conduit coupling, bushing, and termination fitting.
3. Conduit hangers, clamps, and supports.
4. Duct sealing compound.
5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

- A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

- - - END - - -

SECTION 26 05 19
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL**1.1 DESCRIPTION**

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.

B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.

C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.

b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.

B. American Society of Testing Material (ASTM) :

D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

D2304-18.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials

D3005-17.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape

C. National Electrical Manufacturers Association (NEMA) :

WC 70-21.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy

D. National Fire Protection Association (NFPA) :

70-23.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL) :

44-18.....Thermoset-Insulated Wires and Cables

83-17.....Thermoplastic-Insulated Wires and Cables

467-13.....Grounding and Bonding Equipment

486A-486B-18.....Wire Connectors

486C-18.....Splicing Wire Connectors

486D-15.....Sealed Wire Connector Systems

486E-15.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors

493-18.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.

B. Conductors shall be copper.

C. Single Conductor:

1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
2. No. 8 AWG and larger: Stranded.
3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

E. Conductor Color Code:

1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	A	Brown
Red	B	Orange
Blue	C	Yellow
White	Neutral	Gray *

* or white with colored (other than green) tracer.

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink= switch leg and purple= traveling wire) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.

2. The integral insulator shall have a skirt to completely cover the stripped conductors.

3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.

C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:

1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.

2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.

3. Splice and insulation shall be product of the same manufacturer.

4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.

D. Above Ground Splices for 250 kcmil and Larger:

1. Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.

2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.

3. Splice and insulation shall be product of the same manufacturer.

=

=

=

G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.

B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.

C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zinc-plated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG, or as required by the control wiring equipment manufacturer.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION**3.1 GENERAL**

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. For conductors installed in vertical raceways, provide conductor support (also known as cable support), to counter gravity pull on conductor weight. Conductor support shall be split-wedge conductor support type. Prior to installing the conductor support plug, remove all pulling compound from conductors where they pass through the conductor support body. After installing the conductor support plug, tap the conductor support plug firmly in the conductor support body.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic "zip" ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor Pulling:

1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
2. Use nonmetallic pull ropes.
3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
4. All conductors in a single conduit shall be pulled simultaneously.
5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

J. Number of conductors for branch circuits shall not exceed more than three branch circuits in any one conduit.

K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

- A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where markings are covered by tape, apply tags to conductors, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

- A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

- A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 1. Visual Inspection and Tests: Inspect physical condition.
 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits. Rotation test must be witnessed by a qualified representative of the VA for final approval.

---END---

SECTION 26 05 26
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES:
Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.

3. Certifications:

- a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
B1-13.....Standard Specification for Hard-Drawn Copper Wire
B3-13 (R2018).....Standard Specification for Soft or Annealed Copper Wire
B8-11 (R2017).....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
81-12.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
70-23.....National Electrical Code (NEC)
70E-21.....National Electrical Safety Code
99-21.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
44-18Thermoset-Insulated Wires and Cables
83-17Thermoplastic-Insulated Wires and Cables
467-13Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors

shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.3 CONCRETE ENCASED ELECTRODE

- A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

- A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

- A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide

mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

- A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

- A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.

C. Switchgear, Switchboards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:

1. Connect the equipment grounding conductors to the ground bus.
2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

D. Transformers:

1. Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the ground bar at the service equipment.

3.5 RACEWAY

A. Conduit Systems:

1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.

B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and all branch circuits.

C. Boxes, Cabinets, Enclosures, and Panelboards:

1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

1. Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).

E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.

F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.

G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.

I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT

A. Fences shall be grounded with a ground rod at each fixed gate post and at each corner post.

B. Drive ground rods until the top is 300 mm (12 inches) below grade. Attach a No. 4 AWG copper conductor by exothermic weld to the ground rods, and extend underground to the immediate vicinity of fence post. Lace the conductor vertically into 300 mm (12 inches) of fence mesh and fasten by two approved bronze compression fittings, one to bond the wire to post and the other to bond the wire to fence. Each gate section shall be bonded to its gatepost by a 3 mm x 25 mm (0.375-inch x 1 inch) flexible, braided copper strap and ground post clamps. Clamps shall be of the anti-electrolysis type.

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.9 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.10 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.12 GROUND RESISTANCE

A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.

B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.13 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressure-type ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.14 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

- - - END - - -

SECTION 26 05 33
RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- B. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- C. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- D. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.

- c. Layout of required conduit penetrations through structural elements.
- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI):
 - S100-16.....North American Specification for the Design of Cold-Formed Steel Structural Members
- C. National Electrical Manufacturers Association (NEMA):
 - C80.1-20.....Electrical Rigid Steel Conduit
 - C80.3-20.....Steel Electrical Metal Tubing
 - C80.6-18.....Electrical Intermediate Metal Conduit
 - FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
 - FB2.10-21.....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing)
 - FB2.20-21.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable

TC-2-20.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit

TC-3-21.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

D. National Fire Protection Association (NFPA):

70-23.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

5-16.....Surface Metal Raceway and Fittings

6-07.....Electrical Rigid Metal Conduit - Steel

50-15.....Enclosures for Electrical Equipment

360-13.....Liquid-Tight Flexible Steel Conduit

467-13.....Grounding and Bonding Equipment

514A-13.....Metallic Outlet Boxes

514B-12.....Conduit, Tubing, and Cable Fittings

514C-14.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings

651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit

797-07.....Electrical Metallic Tubing

1242-06.....Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS**2.1 MATERIAL**

A. Conduit Size: In accordance with the NEC, but not less than 19 mm (0.75-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

B. Conduit:

1. Size: In accordance with the NEC, but not less than 19 mm (0.75-inch).
2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
5. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.

6. Flexible Metal Conduit: Shall conform to UL 1. No flex conduit allowed. Use whips for lighting only(4' max)
7. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
8. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
9. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - g. No compression fittings.
3. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Set Screw Couplings and Connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in

wall of conduit for positive grounding. Connector shall have insulated throat.

- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.

4. Flexible Metal Conduit Fittings:

- a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
- b. Clamp-type, with insulated throat.

5. Liquid-tight Flexible Metal Conduit Fittings:

- a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
- b. Only steel or malleable iron materials are acceptable.
- c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.

6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.

7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.

8. Expansion and Deflection Couplings:

- a. Conform to UL 467 and UL 514B.
- b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
- c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.

2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Outlet, Junction, and Pull Boxes:

1. Comply with UL-50 and UL-514A.
2. Rustproof cast metal where required by the NEC or shown on drawings.
3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
4. Minimum size for all ceiling boxes for branch circuits is 4-11/16" x 2-1/8" deep.

F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

A. Cutting or Holes:

1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.

B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 5. Cut conduits square, ream, remove burrs, and draw up tight.
 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 10. Conduit installations under fume and vent hoods are prohibited.
 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 13. Conduit bodies shall only be used for changes in direction and shall not contain splices.

D. Conduit Bends:

1. Make bends with standard conduit bending machines.
2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
3. Bending of conduits with a pipe tee or vise is prohibited.
4. Maximum of 360 degrees of bends may be used between junction boxes or pullboxes.

E. Layout and Homeruns:

1. Install conduit with wiring, including homeruns, as shown on drawings.
2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

F. Depth for medium voltage concrete encased duct bank is 3 feet to top of envelope.

G. Access panels shall be finished painted to match the adjacent surface.

3.3 CONCEALED WORK INSTALLATION**A. In Concrete:**

1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
2. Align and run conduit in direct lines.
3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground

continuity through the conduits. Tightening setscrews with pliers is prohibited.

B. Above Furred or Suspended Ceilings and in Walls:

1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
2. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
3. Align and run conduit parallel or perpendicular to the building lines.
4. Connect recessed lighting fixtures to conduit runs with maximum 1.2 M (4 feet) of flexible metal conduit extending from a junction box to the fixture.
5. Tightening set screws with pliers is prohibited.
6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating.

Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquid-tight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.

C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. **Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.**
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "ELECTRICAL PB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 09 23
LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- G. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

3. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
 - B. National Electrical Manufacturer's Association (NEMA):
C136.10-17.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing
ICS-1-00 (R2015).....Standard for Industrial Control and Systems General Requirements
ICS-2-00 (R2020).....Standard for Industrial Control and Systems Controllers, Contractors, and Overload Relays Rated 600 Volts
ICS-6-93 (R2016).....Standard for Industrial Controls and Systems Enclosures
 - C. National Fire Protection Association (NFPA):
70-23.....National Electrical Code (NEC)
 - D. Underwriters Laboratories, Inc. (UL):
20-18.....Standard for General-Use Snap Switches
98-16.....Enclosed and Dead-Front Switches
773-16.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting
773A-16.....Nonindustrial Photoelectric Switches for Lighting Control
916-15.....Standard for Energy Management Equipment

917-06.....Clock Operated Switches

924-16.....Emergency Lighting and Power Equipment

PART 2 - PRODUCTS**2.7 INDOOR OCCUPANCY SENSORS**

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - 8. Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - 9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).

C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.8 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120-volt unit.
 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 5. Switch: Manual operation to turn lights on and override lights off.
 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

- - - E N D - - -

SECTION 26 24 16
PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

A. Section 09 91 00, PAINTING: Painting of panelboards.

D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
Requirements that apply to all sections of Division 26.

E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES:
Low-voltage conductors.

F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:
Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

G. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

I. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data

sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.

- 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):
IBC-21.....International Building Code
- C. National Electrical Manufacturers Association (NEMA) :
PB 1-11.....Panelboards
250-20.....Enclosures for Electrical Equipment (1,000V Maximum)
- D. National Fire Protection Association (NFPA) :
70-23.....National Electrical Code (NEC)
70E-21.....Standard for Electrical Safety in the Workplace
- E. Underwriters Laboratories, Inc. (UL) :
50-15.....Enclosures for Electrical Equipment
67-09.....Panelboards
489-16.....Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.

- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 200%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - 1. Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.

5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

1. Hinged "door-in-door" type.
2. Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
4. Inner and outer doors shall open left to right.
5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 1. 120/208 V Panelboard: 10,000 A symmetrical.
 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study.
- E. Circuit breaker features shall be as follows:
 1. A rugged, integral housing of molded insulating material.
 2. Silver alloy contacts.
 3. Arc quenchers and phase barriers for each pole.
 4. Quick-make, quick-break, operating mechanisms.
 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 6. Electrically and mechanically trip free.
 7. An operating handle which indicates closed, tripped, and open positions.

8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

PART 3 - EXECUTION**3.1 INSTALLATION**

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified. All electrical equipment, (i.e. main distribution boards, switchboards, panel boards, disconnect switches,) need to be labeled with the source of power they are fed from and the equipment/ devices served.B.

Locate panelboards so that the present and future conduits can be conveniently connected. If in a finished wall, stub up additional conduits for future use, coordinate with COR.
- D. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker.

Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards. Panel schedules are to be updated when adding or removing circuits.
- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches). If in a finished wall, stub up additional conduits for future use, coordinate with COR.
- F. Provide blank cover for each unused circuit breaker mounting space.
- G. For panelboards located in areas accessible to the public, paint the exposed surfaces of the trims with finishes to match surrounding surfaces after the panelboards have been installed. Do not paint nameplates.
- H. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior

components are installed. Provide new trim. Trim shall fit tight to the enclosure.

I. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:

1. Visual Inspection and Tests:

- a. Compare equipment nameplate data with specifications and approved shop drawings.
- b. Inspect physical, electrical, and mechanical condition.
- c. Verify appropriate anchorage and required area clearances.
- d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26
WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.

B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.

C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
WD 1-99(R2020) General Color Requirements for Wiring Devices
WD 6-16 Wiring Devices - Dimensional Specifications
- C. National Fire Protection Association (NFPA):
70-23 National Electrical Code (NEC)
99-21 Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
5-16 Surface Metal Raceways and Fittings
20-18 General-Use Snap Switches
231-16 Power Outlets
467-13 Grounding and Bonding Equipment
498-17 Attachment Plugs and Receptacles
943-16 Ground-Fault Circuit-Interrupters
1449-21 Surge Protective Devices
1472-15 Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles - Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 1. Bodies shall be ivory in color.
 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 millampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - 2) Screws exposed while the wall plates are in place shall be the tamperproof type.

- D. Receptacles - 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plaster ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be ivory in color unless otherwise specified.
- E. Dimming systems for LEDs will be 0-10 volt control.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel . Oversize plates are not acceptable.
- C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.

- D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- E. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with clear labels and black letters designating the panel and circuit number feeding the receptacle.
- F. All wall plates for lighting switches and branch circuit receptacles are to be labeled with the panel and branch circuit supplying the device.

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - 2. Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.

- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path,

defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.

- d. Test GFCI receptacles.
2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

**SECTION 26 51 00
INTERIOR LIGHTING**

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
Requirements that apply to all sections of Division 26.
- F. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES:
Low-voltage conductors.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:
Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- H. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

3. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
C635/C635M-22.....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings
- C. Environmental Protection Agency (EPA):
40 CFR 261-21.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC):
CFR Title 47, Part 15...Radio Frequency Devices
CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA):
LM-79-19.....Electrical and Photometric Measurements of Solid-State Lighting Products
LM-80-21.....Measuring Lumen Maintenance of LED Light Sources

LM-82-19.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature

F. Institute of Electrical and Electronic Engineers (IEEE):
C62.41-91 (R1995).....Surge Voltages in Low Voltage AC Power Circuits

G. International Code Council (ICC):
IBC-21.....International Building Code

H. National Electrical Manufacturer's Association (NEMA):
C78.376-14 (R2021).....Chromaticity of Fluorescent Lamps
SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or Systems

I. National Fire Protection Association (NFPA):
70-23.....National Electrical Code (NEC)
101-21.....Life Safety Code

J. Underwriters Laboratories, Inc. (UL):
496-17.....Lampholders
844-12.....Luminaires for Use in Hazardous (Classified) Locations
924-16.....Emergency Lighting and Power Equipment
1574-04.....Standard for Safety Track Lighting Systems
1598-21.....Standard for Safety Luminaires
2108-15.....Standard for Safety Low-Voltage Lighting Systems
8750-15.....Standard for Safety Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.

B. Sheet Metal:

1. Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
2. Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.

3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- G. Metal Finishes:
 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 2. Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- J. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.

2.4 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch.
 1. Enclosure: Shall be impact-resistant thermoplastic. Enclosure shall be suitable for the environmental conditions in which installed.

2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
3. Lamps: Shall be sealed-beam MR-16 halogen, rated not less than 12 watts at the specified DC voltage.
4. Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be minimum of 10 years.
5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.
6. Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.9 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 1. Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 - 277V).

2.10 LED LIGHT FIXTURES**A. General:**

1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
2. LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 - 277V ($\pm 10\%$) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: ≥ 0.95 .
 - f. Total Harmonic Distortion: $\leq 20\%$.
 - g. Comply with FCC 47 CFR Part 15.
4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI: 80 or higher. Minimum Color Fidelity Index (IES Rf): 80 or higher.
 - c. Color temperature between 3500° - 5000°K and as specified in the drawings' LIGHTING FIXTURE SCHEDULE.
 - d. Minimum Rated Life: 50,000 hours per IES L70.
 - e. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.

B. LED Downlights:

1. Housing, LED driver, and LED module shall be products of the same manufacturer.

C. LED Troffers:

1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION**3.1 INSTALLATION**

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.

- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - 1. Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
- 6. Hardware for recessed lighting fixtures:
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - 1) Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.

- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
7. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - 1) Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - 2) The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - 3) The outlet box is supported vertically from the building structure.
 - d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
8. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
9. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved

devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.

- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
 - b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 05 11
REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL**1.1 DESCRIPTION**

- A. This section includes common requirements to communications installations and applies to all sections of Division 27.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - 1. Refer to <http://www.cfm.va.gov/til/sdetail.asp> for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD
CBOPC	Community Based Out Patient Clinic
CBC	Coupled Bonding Conductor

CBOC	Community Based Out Patient Clinic (refer to CBOPC, OPC, VAMC)
CCS	TIP's Cross Connection System (refer to VCCS and HCCS)
CFE	Contractor Furnished Equipment
CFM	US Department of Veterans Affairs Office of Construction and Facilities Management
CFR	Consolidated Federal Regulations
CIO	Communication Information Officer (Facility, VISN or Region)
cm	Centimeters
CO	Central Office
COR	Contracting Officer Representative
CPU	Central Processing Unit
CSU	Customer Service Unit
CUP	Conditional Use Permit(s) - Federal/GSA for VA
dB	Decibel
dBm	Decibel Measured
dBmV	Decibel per milli-Volt
DC	Direct Current
DEA	United States Drug Enforcement Administration
DSU	Data Service Unit
EBC	Equipment Bonding Conductor
ECC	Engineering Control Center (refer to DCR, EMCR)
EDGE	Enhanced Data (Rates) for GSM Evolution
EDM	Electrical Design Manual
EMCR	Emergency Management Control Room (refer to DCR, ECC)
EMI	Electromagnetic Interference (refer to RFI)
EMS	Emergency Medical Service
EMT	Electrical Metallic Tubing or thin wall conduit
ENTR	Utilities Entrance Location (refer to DEMARC, POTS, LEC)
EPBX	Electronic Digital Private Branch Exchange

ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to CCS & VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-Definition Digital Television
HEC	Head End Cabinets (refer to HEIC, PA)
HEIC	Head End Interface Cabinets (refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
Hz	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
IDF	Intermediate Distribution Frame
ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information Resources Management
ISDN	Integrated Services Digital Network

ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data Communications Technology
M	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megahertz (10^6 Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National Telecommunications and Information Administration
OEM	Original Equipment Manufacturer
OI&T	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational Safety and Health

OSHA	United States Department of Labor Occupational Safety and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be designated SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC, PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets (refer to HEC, HEIC, PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security (COMSEC)

SFO	Solicitation for Offers
SME	Subject Matter Experts (refer to AHJ)
SMR	Specialized Mobile Radio
SMS	Security Management System
SNMP	Simple Network Management Protocol
SPCC	Security Police Control Center (refer to PCR, SMS)
STP	Shielded Balanced Twisted Pair (refer to UTP)
STR	Stacked Telecommunications Room
TAC	VA's Technology Acquisition Center, Austin, Texas
TCO	Telecommunications Outlet
TER	Telephone Equipment Room
TGB	Telecommunications Grounding Busbar (also Secondary Bonding Busbar (SBB))
TIP	Telecommunications Infrastructure Plant
TMGB	Telecommunications Main Grounding Busbar (also Primary Bonding Busbar (PBB))
TMS	Traffic Management System
TOR	Telephone Operators Room
TP	Balanced Twisted Pair (refer to STP and UTP)
TR	Telecommunications Room (refer to STR)
TWP	Twisted Pair
UHF	Ultra High Frequency (Radio)
UMTS	Universal Mobile Telecommunications System
UPCS	Unlicensed Personal Communications Service (refer to PCS)
UPS	Uninterruptible Power Supply
USC	United States Code
UTP	Unshielded Balanced Twisted Pair (refer to TP and STP)
UV	Ultraviolet
V	Volts
VAAR	Veterans Affairs Acquisition Regulation
VACO	Veterans Affairs Central Office

VAMC	VA Medical Center (refer to CBOC, OPC, VACO)
VCCS	TIP's Vertical Cross Connection System (refer to CCS and HCCS)
VHF	Very High Frequency (Radio)
VISN	Veterans Integrated Services Network (refers to geographical region)
VSWR	Voltage Standing Wave Radio
W	Watts
WEB	World Electronic Broadcast
WiMAX	Worldwide Interoperability (for MW Access)
WI-FI	Wireless Fidelity
WMTS	Wireless Medical Telemetry Service
WSP	Wireless Service Providers

B. Definitions:

1. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
2. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
3. Bundled Microducts: All forms of jacketed microducts.
4. Conduit: Includes all raceway types specified.
5. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
6. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
7. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.

8. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
9. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
10. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions.
11. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
12. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
13. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
14. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
15. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
16. Microducts: All forms of air blown fiber pathways.
17. Ohm: A unit of resistive measurement.
18. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.

19. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
20. Sound (SND): Changing air pressure to audible signals over given time span.
21. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
22. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm² [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
23. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
24. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to <http://www.cfm.va.gov/TIL/cPro.asp>:

1. Federal Communications Commission, (FCC) CFR, Title 47:

Part 15	Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions and Equipment Locations
Part 47	Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment
Part 58	Television Broadcast Service
Part 73	Radio and Television Broadcast Rules
Part 90	Rules and Regulations, Appendix C
Form 854	Antenna Structure Registration
Chapter XXIII	National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book' - Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction:

RUS Bull 1751F-630	Design of Aerial Cable Plants
RUS Bull 1751F-640	Design of Buried Cable Plant, Physical Considerations
RUS Bull 1751F-643	Underground Plant Design
RUS Bull 1751F-815	Electrical Protection of Outside Plants,
RUS Bull 1753F-201	Acceptance Tests of Telecommunications Plants (PC-4)
RUS Bull 1753F-401	Splicing Copper and Fiber Optic Cables (PC-2)
RUS Bull 345-50	Trunk Carrier Systems (PE-60)
RUS Bull 345-65	Shield Bonding Connectors (PE-65)
RUS Bull 345-72	Filled Splice Closures (PE-74)
RUS Bull 345-83	Gas Tube Surge Arrestors (PE-80)
3. US Department of Commerce/National Institute of Standards Technology, (NIST):

FIPS PUB 1-1	Telecommunications Information Exchange
FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE) Circuit Terminating Equipment for operation

	with Packet Switched Networks, or Between Two DTEs, by Dedicated Circuit
FIPS PUB 140/2	Telecommunications Information Security Algorithms
FIPS PUB 143	General Purpose 37 Position Interface between DTE and Data Circuit Terminating Equipment
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area Network Security
FIPS 197	Advanced Encryption Standard (AES)
FIPS 199	Standards for Security Categorization of Federal Information and Information Systems
4. US Department of Defense, (DoD):	
MIL-STD-188-110	Interoperability and Performance Standards for Data Modems
MIL-STD-188-114	Electrical Characteristics of Digital Interface Circuits
MIL-STD-188-115	Communications Timing and Synchronizations Subsystems
MIL-C-28883	Advanced Narrowband Digital Voice Terminals
MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial, Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2)
5. US Department of Health and Human Services:	
	The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules
6. US Department of Justice:	
	2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
7. US Department of Labor, (DoL) - Public Law 426-62 - CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards):	
Subpart 7	Approved NRTLs; obtain a copy at <u>https://www.osha.gov/dts/otpca/nrtl/nrtllist.html</u>
Subpart 35	Compliance with NFPA 101, Life Safety Code

Subpart 36	Design and Construction Requirements for Exit Routes
Subpart 268	Telecommunications
Subpart 305	Wiring Methods, Components, and Equipment for General Use
Subpart 508	Americans with Disabilities Act Accessibility Guidelines; technical requirement for accessibility to buildings and facilities by individuals with disabilities

8. US Department of Transportation, (DoT):

- a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C - Federal Aviation Administration (FAA): AC 110/460-ID & AC 707 / 460-2E - Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.

9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:

- a. CoG, "Continuance of Government" communications guidelines and compliance.
- b. COMSEC, "VA wide coordination and control of security classified communication assets."
- c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 - Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design,

Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.

- h. VHA's National Center for Patient Safety - Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.

C. NRTL Standards: Refer to <https://www.osha.gov/laws-regulations/standardnumber/1926>

- 1. Canadian Standards Association (CSA); same tests as presented by UL
- 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
- 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
- 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems

486E-2009	Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications Circuits/Data Communications and Fire Alarm Circuits/coaxial circuits/voltage protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency, Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire Protection and Smoke-Release Test for Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways

2024-2014 Standard for Cable Routing Assemblies and Communications Raceways

2196-2001 Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014 Information Technology Equipment Safety

D. Industry Standards:

1. Advanced Television Systems Committee (ATSC):

A/53 Part 1: 2013 ATSC Digital Television Standard, Part 1,
Digital Television System

A/53 Part 2: 2011 ATSC Digital Television Standard, Part 2,
RF/Transmission System Characteristics

A/53 Part 3: 2013 ATSC Digital Television Standard, Part 3,
Service Multiplex and Transport System
Characteristics

A/53 Part 4: 2009 ATSC Digital Television Standard, Part 4, MPEG-2 Video System Characteristics

A/53 Part 6: 2014 ATSC digital Television Standard, Part 6,
Enhanced AC-3 Audio System Characteristics

2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities.

3. American Society of Mechanical Engineers (ASME) :

A17.1 (2013) Safety Code for Elevators and Escalators
Includes Requirements for Elevators,
Escalators, Dumbwaiters, Moving Walks, Material
Lifts, and Dumbwaiters with Automatic Transfer
Devices

17.3 (2011) Safety Code for Existing Elevators and
Escalators

17.4 (2009) Guide for Emergency Personnel

17.5 (2011) Elevator and Escalator Electrical Equipment

4. American Society for Testing and Materials (ASTM):

B1 (2001) Standard Specification for Hard-Drawn Copper Wire

B8 (2004) Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort
56,000 ft-lbf/ft³ (2,700 kN·m/m³)

D2301 (2004) Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape

B258-02 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors

D709-01 (2007) Standard Specification for Laminated Thermosetting Materials

D4566 (2008) Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable

5. American Telephone and Telegraph Corporation (AT&T) - Obtain following AT&T Publications at <https://ebiznet.sbc.com/sbcnebs/>

ATT-TP-76200 (2013) Network Equipment and Power Grounding, Environmental, and Physical Design Requirements

ATT-TP-76300 (2012) Merged AT&T Affiliate Companies Installation Requirements

ATT-TP-76305 (2013) Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways

ATT-TP-76306 (2009) Electrostatic Discharge Control

ATT-TP-76400 (2012) Detail Engineering Requirements

ATT-TP-76402 (2013) AT&T Raised Access Floor Engineering and Installation Requirements

ATT-TP-76405 (2011) Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments

ATT-TP-76416 (2011) Grounding and Bonding Requirements for Network Facilities

ATT-TP-76440 (2005) Ethernet Specification

ATT-TP-76450 (2013) Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces

ATT-TP-76461 (2008) Fiber Optic Cleaning

ATT-TP-76900 (2010) AT&T Installation Testing Requirement

ATT-TP-76911 (1999) AT&T LEC Technical Publication Notice

6. British Standards Institution (BSI):

BS EN 50109-2	Hand Crimping Tools - Tools for The Crimp Termination of Electric Cables and Wires for Low Frequency and Radio Frequency Applications - All Parts & Sections. October 1997
7. Building Industry Consulting Service International (BICSI):	
ANSI/BICSI 002-2011	Data Center Design and Implementation Best Practices
ANSI/BICSI 004-2012	Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities
ANSI/NECA/BICSI 568-2006	Standard for Installing Commercial Building Telecommunications Cabling
NECA/BICSI 607-2011	Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings
ANSI/BICSI 005-2013	Electronic Safety and Security (ESS) System Design and Implementation Best Practices
8. Electronic Components Assemblies and Materials Association, (ECA).	
ECA EIA/RS-270 (1973)	Tools, Crimping, Solderless Wiring Devices - Recommended Procedures for User Certification
EIA/ECA 310-E (2005)	Cabinets, and Associated Equipment
9. Facility Guidelines Institute:	2010 Guidelines for Design and Construction of Health Care Facilities.
10. Insulated Cable Engineers Association (ICEA):	
ANSI/ICEA S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems
ANSI/ICEA S-84-608-2010	Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640 (2011) Optical Fiber Outside Plant Communications Cable
ANSI/ICEA S-90-661-2012	Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems

S-98-688 (2012)	Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors
S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin Insulated, Copper Conductors
ICEA S-102-700 (2004)	Category 6 Individually Unshielded Twisted Pair Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements
11. Institute of Electrical and Electronics Engineers (IEEE):	
ISSN 0739-5175	March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue:2) Medical Grade-Mission Critical-Wireless Networks
IEEE C2-2012	National Electrical Safety Code (NESC)
C62.41.2-2002/	
Cor 1-2012 IEEE	Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4)
C62.45-2002	IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits
81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System
100-1992	IEEE the New IEEE Standards Dictionary of Electrical and Electronics Terms
602-2007	IEEE Recommended Practice for Electric Systems in Health Care Facilities
1100-2005	IEEE Recommended Practice for Powering and Grounding Electronic Equipment
12. International Code Council:	
AC193 (2014)	Mechanical Anchors in Concrete Elements
13. International Organization for Standardization (ISO):	
ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities - Recommendations for Electromagnetic Compatibility (Management of Unintentional

Electromagnetic Interference) with Medical Devices

14. National Electrical Manufacturers Association (NEMA):

NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum)
ANSI C62.61 (1993) American National Standard for Gas Tube Surge Arresters on Wire Line Telephone Circuits
ANSI/NEMA FB 1 (2012) Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable
ANSI/NEMA OS 1 (2009) Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports
NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems
TC 3 (2004) Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing
NEMA VE 2 (2006) Cable Tray Installation Guidelines

15. National Fire Protection Association (NFPA):

70E-2015 Standard for Electrical Safety in the Workplace
70-2014 National Electrical Code (NEC)
72-2013 National Fire Alarm Code
75-2013 Standard for the Fire Protection of Information Technological Equipment
76-2012 Recommended Practice for the Fire Protection of Telecommunications Facilities
77-2014 Recommended Practice on Static Electricity
90A-2015 Standard for the Installation of Air Conditioning and Ventilating Systems
99-2015 Health Care Facilities Code
101-2015 Life Safety Code
241 Safeguarding construction, alteration and Demolition Operations
255-2006 Standard Method of Test of Surface Burning Characteristics of Building Materials
262 - 2011 Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air- Handling Spaces
780-2014 Standard for the Installation of Lightning Protection Systems

1221-2013	Standard for the Installation, Maintenance, and Use of Emergency Services Communications Systems
5000-2015	Building Construction and Safety Code
16. Society for Protective Coatings (SSPC):	
SSPC SP 6/NACE No.3 (2007)	Commercial Blast Cleaning
17. Society of Cable Telecommunications Engineers (SCTE):	
ANSI/SCTE 15 2006	Specification for Trunk, Feeder and Distribution Coaxial Cable
18. Telecommunications Industry Association (TIA):	
TIA-120 Series	Telecommunications Land Mobile communications (APCO/Project 25) (January 2014)
TIA TSB-140	Additional Guidelines for Field-Testing Length, Loss and Polarity of Optical Fiber Cabling Systems (2004)
TIA-155	Guidelines for the Assessment and Mitigation of Installed Category 6 Cabling to Support 10GBASE-T (2010)
TIA TSB-162-A	Telecommunications Cabling Guidelines for Wireless Access Points (2013)
TIA-222-G	Structural Standard for Antenna Supporting Structures and Antennas (2014)
TIA/EIA-423-B	Electrical Characteristics of Unbalanced Voltage Digital Interface Circuits (2012)
TIA-455-C	General Requirements for Standard Test Procedures for Optical Fibers, Cables, Transducers, Sensors, Connecting and Terminating Devices, and other Fiber Optic Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution Measurements for Multimode Graded-Index Optical Fibers in Fiber Assemblies (Long Length) (September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside Plant Use (July 2007)

ANSI/TIA-492-B	62.5- μ Core Diameter/125- μ m Cladding Diameter Class 1a Graded-Index Multimode Optical Fibers (November 2009)
ANSI/TIA-492AAAB-A	50- μ m Core Diameter/125- μ m Cladding Diameter Class IA Graded-Index Multimode Optically Optimized American Standard Fibers (November 2009)
TIA-492CAAA	Detail Specification for Class IVa Dispersion- Unshifted Single-Mode Optical Fibers (September 2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero- Dispersion Single-Mode Optical Fibers for the 1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant - OFSTP-7 (December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant - SFSTP-14 (August 1998)
TIA-568	Revision/Edition: C Commercial Building Telecommunications Cabling Standard Set: (TIA- 568-C.0-2 Generic Telecommunications Cabling for Customer Premises (2012), TIA-568-C.1-1 Commercial Building Telecommunications Cabling Standard Part 1: General Requirements (2012), TIA-568-C.2 Commercial Building Telecommunications Cabling Standard-Part 2: Balanced Twisted Pair Cabling Components (2009), TIA-568-C.3-1 Optical Fiber Cabling Components Standard, (2011) AND TIA-568-C.4 Broadband Coaxial Cabling and Components Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data Terminal equipment and Data Circuit Terminating Equipment Employing Serial Binary Interchange (May 2003)

TIA/EIA-590-A	Standard for Physical Location and Protection of Below Ground Fiber Optic Cable Plant (July 2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Interchangeability Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and Grounding (Earthing) For Customer Premises (January 2013)
TIA-613	High Speed Serial Interface for Data Terminal Equipment and Data Circuit Terminal Equipment (September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000 Mb/s (1000BASE-TX) Operating over Category 6 Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard (April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and Measurements for Balanced Twisted Pair Cabling (September 2009)
TIA-1179	Healthcare Facility Telecommunications Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.

1. Field Cutting and Patching: Section 09 91 00, PAINTING.
2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
6. General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
8. Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
9. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
13. Wiring devices: Section 26 27 26, WIRING DEVICES.
14. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
15. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
16. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.

17. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
18. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
19. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
20. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.
21. Emergency Call telephones, intercom systems, with blue strobe light and equipment: Section 28 52 31, SECURITY EMERGENCY CALL/DURESS ALARM/COMMUNICATIONS SYSTEM AND EQUIPMENT.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 1. Use of premises is restricted at times directed by COR.
 2. Movement of materials: Unload materials and equipment delivered to site.
 3. Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Plan for large equipment requiring positioning prior to closing in building.
 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (005OP2H3) (202) 461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications

review, equipment and system approval and coordination with other VA personnel.

D. Communications Project Manager Responsibilities:

1. Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
2. Coordinate with related work indicated on drawings or specified.
3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 1. Installation location and name.
 2. Owner's name and contact information including, address, telephone and email.
 3. Date of project start and date of final acceptance.
 4. System project number.

5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 1. Supply test equipment of accuracy better than parameters to be tested.
 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IV twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.
 3. Supply only test equipment with a calibration tag from Government-accepted calibration service dated not more than 12 months prior to test.
 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 1. Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
 2. Logical Drawings: Provide logical riser or schematic drawings for all systems.

- a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - 6. Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.

- f. Safety precautions.
- g. Diagrams and illustrations.
- h. Test Results and testing methods.
- i. Performance data.
- j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
- k. Warranty documentation indicating end date and equipment protected under warranty.
- l. Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

C. Record Wiring Diagrams:

- 1. Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
- 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.

- f. Wiring diagram.
- g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five calendar days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg or .rvt formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.

D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - 2. One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.

- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - 4. Identify factory wiring on equipment being furnished and on wiring diagrams.

G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.

- 1. When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

- a. Store and protect equipment in a manner that precludes damage or loss, including theft.
- b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
- c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.

C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- A. Comply with FAR clause 52.246-21

PART 2 - PRODUCTS**2.1 PERFORMANCE AND DESIGN CRITERIA**

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

- A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

- A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arc-proof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES

- A. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound.
- B. Provide closure of adequate strength to protect splice and maintain cable shield electrical continuity in buried environment.
- C. Provide re-enterable encapsulating compound maintaining chemical stability of closure.
- D. Provide filled splice cases in accordance with RUS Bull 345-72.
- E. Provide gel filled cable meeting requirements of ICEA S-99-689 and RUS 1755.390 and RUS 1755.890.
- F. In Vault or Manhole:
 1. Provide underground closure suitable to house a straight, butt, and branch splice in a protective housing into which can be poured an encapsulating compound
 2. Closure must be suitable thermoplastic, thermo-set, or stainless steel material supplying structural strength to pass mechanical and electrical requirements in a vault or maintenance hole (manhole) environment.
- G. Re-Enterable Encapsulating Compound: Product maintaining chemical stability of closure.
- H. Provide gel-filled splice cases in accordance with RUS Bull 345-72.

2.7 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION**3.1 PREPARATION**

- A. Penetrations and Sleeves:
 1. Lay out penetration and sleeve openings in advance, to permit provision in work.
 2. Set sleeves in forms before concrete is poured.
 3. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 5. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 6. Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 7. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
 8. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.

9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
10. Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
12. Do not support piping risers or conduit on sleeves.
13. Identify unused sleeves and slots for future installation.
14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.

B. Core Drilling:

1. Avoid core drilling whenever possible.
2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
3. Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
4. Protect areas from damage.

C. Verification of In-Place Conditions:

1. Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.

- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.

- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 1. Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 1. Remove samples of installed work as specified for testing.
 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 3. Remove and replace defective work.
 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Protect adjacent installations during cutting and patching operations.

D. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

E. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.

B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.

C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.

1. Protect facility, equipment, and wiring from damage.

D. Submit written notice that:

1. Project has been inspected for compliance with documents.

2. Work has been completed in accordance with documents.

E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.

F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.

1. COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.

2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.

G. Tests:

1. Interim inspection is required at approximately 50 percent of installation.
2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B and T568A pin assignments and cabling connections are in compliance with TIA standards.
6. Visually confirm minimum Category 6A cable marking at TCOs, CCSs locations, patch cords and origination locations.
7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
8. Review cable tray, conduit and path/wire way installation practice.
9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
11. Provide results of interim inspections to COR.

12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.

- a. Additional inspections are scheduled at direction of COR.
- b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
- c. The interim inspection cannot affect the system's completion date unless directed by COR.

13. Facility COR will ensure test documents become a part of system's official documentation package.

H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.

1. Pretesting Procedure:

- a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
- b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.

2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:

- a. Utility provider entrance.
- b. Buried conduit duct locations.
- c. Maintenance Holes (Manholes) and hand holes.
- d. ENTR or DEMARC.
- e. PBX interconnections.
- f. MCR interconnections.
- g. MCOR interconnections.
- h. TER interconnections.
- i. TOR interconnections.
- j. Control room interconnections.
- k. TR interconnections.

1. System interfaces in locations listed herein.
- m. HE interconnections.
- n. Antenna (outside and inside) interconnections.
- o. System and lightning ground interconnections.
- p. Communications circulating ground system.
- q. UPS areas.
- r. Emergency generator interconnections.
- s. Each general floor areas.
- t. Others as required by AHJ (SMCS 005OP2H3).
3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

1. Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 005OP2H3, (202) 461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - 3) Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sheriff, City, County or State representatives.
4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.

- a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - 4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.

J. Acceptance Test Procedure:

1. Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
2. A system inventory including available spare parts must be taken at this time.
3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
5. Inventory system diagrams, record drawings, equipment manuals, pretest results.
6. Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.

K. Operational Test:

1. Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
2. Government's Condition of Acceptance of System Language:

- a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
- b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.

L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.

M. Proof of Performance Certification:

1. If system is declared acceptable, AHJ (SMCS 005OP2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.

- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - 1. Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - 2. Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - 3. Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26
GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies grounding and bonding requirements of communications installations based on the requirements of ANSI/TIA-607-D, Telecommunications Bonding and Grounding (Earthing) for Customer Premises. Work covered by this Section shall consist of furnishing supplies, labor, materials, equipment, labeling, and tools. Testing is required unless otherwise specified. An operable grounding and bonding infrastructure is required as described on the Drawings and/or required by these specifications. All materials shall be listed by a nationally recognized testing laboratory (NRTL).

1.2 SUMMARY

Section Includes:

- A. Required Bonding Busbars.
- B. Supplemental Bonding Networks.
- C. Telecommunications Bonding Conductors.
- D. Joining Requirements.
- E. Overvoltage Surge Protectors.

1.3 REFERENCES

- A. VA Infrastructure Standard for Telecommunications Spaces.
- B. ANSI/TIA-607-D, Telecommunications Bonding and Grounding (Earthing) for Customer Premises.
- C. NFPA 70, National Electrical Code (NEC).
- D. International Annealed Copper Standard (IACS).
- E. BICSI Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- F. UL 497 & UL 497A, UL Standards for Primary & Secondary Safety Protectors for Paired-Conductor Communications Circuits.

1.4 RELATED WORK

- A. Facility grounding and bonding requirements: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

1.5 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

- B. Provide riser diagram indicating location of communications grounding system connections indicating routing of grounding conductors.
- C. Closeout Submittals: Provide test reports of ground resistance to each primary or secondary bonding busbar (PBB/SBB) located in each telecommunications space impacted by the work.

PART 2 - PRODUCTS**2.1 BONDING BUSBARS.**

Bonding busbars are located in each telecommunications space and in each network rack/cabinet. Bonding busbars provide common locations in the telecommunications space for the connection of the telecommunications bonding conductors.

- A. Common Requirements.
 - 1. Provided with holes for use with correctly-matched UL Listed two-hole lugs and hardware.
 - 2. Constructed of copper or copper alloy with a minimum of 95% conductivity when annealed.
 - 3. Annealed as specified by the International Annealed Copper Standard (IACS).
 - 4. Installation resulting in a maximum 4.0Ω to ground resistance measured from any point in the system.
 - 5. Installation is insulated from the mounting surface through the use of appropriate insulators.
 - 6. UL Listed.
- B. Primary Bonding Busbar (PBB). The PBB is a dedicated extension of the building grounding electrode system for the telecommunications infrastructure. The PBB also serves as the central attachment point for Secondary Bonding Busbars (SBB) via Telecommunications Bonding Backbone (TBB).
 - 1. Pre-drilled copper with holes to accommodate lug mounting holes.
 - 2. Sized for current applications and future growth.
 - 3. Insulated from its supports.
 - 4. Electro-tin plated is acceptable.
 - 5. Maintain a 2" min clearance between busbar and finished wall.
 - 6. Size must be 0.25" thick by 4" wide by 16" length.

C. Secondary Bonding Busbar (SBB). The SBB is a common point of connection for telecommunications system and equipment bonding to a ground located in each Telecommunications Room.

1. Pre-drilled holes to accommodate dual-lug mounting holes.
2. 0.25" thick x 2" wide with varying length to be sized for current applications and future growth.
3. Maintain a 2" min clearance between the finished wall and busbar.
4. Copper or tin annealed copper.

D. Rack Bonding Busbar (RBB). The RBB is a busbar located in a cabinet, rack, or frame.

1. Mounting. Horizontal mounting to an EIA-310-D 19" equipment rack is specified.
2. Capacity: 10 Double-hole lugs.
3. Size & material 0.75" wide x 19" length x 0.25" thick - Copper or tin annealed copper.

2.2 SUPPLEMENTAL BONDING NETWORKS.

Also known as Signal Reference Grids (SRGs), Mesh Bonding Networks (Mesh-BN), or Isolated Bonding Networks (IBNs), the requirements for supplemental bonding networks are not specified in this document. Supplemental bonding networks may not be used to replace a standards-compliant bonding infrastructure.

2.3 TELECOMMUNICATIONS BONDING BACKBONE (TBB) .

The TBB bonds the facility Primary Bonding Busbar (PBB) to telecommunications space Secondary Bonding Busbars (SBBs) .

- A. Material. Stranded copper wire with a green jacket (or per NEC depending on size), run as a continuous conductor.
- B. Size. The TBB shall be sized to meet the requirements of ANSI/TIA-607-D and will be as straight as practicable avoiding bends.
- C. Bonding the TBB to the PBB and each SBB will require a UL Listed irreversible compression (crimp) dual-lug connector.

2.4 BONDING CONDUCTORS .

A. Telecommunications Equipment Bonding Conductor (TEBC) . The TEBC connects the cabinets and racks in the telecommunications space to the space's bonding busbar (PBB or SBB) .

1. Material. Stranded copper wire with a green jacket (or per NEC depending on size), run as a continuous conductor.
2. Size. The TBB shall be sized to meet the requirements of ANSI/TIA-607-D. The minimum size for the TEBC shall be AWG 6.

3. Bonding. Bonded to the telecommunications space bonding busbar (PBB or SBB) via a UL Listed two-hole compression lug. Rack Bonding Conductors (RBCs) are connected to the TEBC using UL Listed irreversible compression (crimp) connectors.
- B. Rack Bonding Conductor (RBC). The RBC is a bonding conductor from the cabinet or Rack Bonding Busbar (RBB) to the Telecommunications Equipment Bonding Conductor (TEBC).
 1. Material. Stranded copper wire with a green jacket run as a continuous conductor.
 2. Size. The minimum size for the RBC shall be AWG 6.
 3. Bonding. Bonded to the Telecommunications Equipment Bonding Conductor (TEBC) using UL Listed irreversible compression (crimp) connectors.
 - a. Where connected to a server cabinet, the RBC extends to the bottom of the server cabinet allowing Equipment Bonding Conductors to be attached at any point in the cabinet.
 - b. Where connected to a network rack/cabinet, the Rack Bonding Conductor (RBC) is bonded to the Rack Bonding Busbar (RBB) via a UL Listed two-hole compression lug.
- C. Equipment/Unit Bonding Conductor (EBC/UBC). The Equipment/Unit Bonding Conductor connects individual equipment in a cabinet or rack to the Rack Bonding Conductor (RBC) or Rack Bonding Busbar (RBB). Equipment Bonding conductors are also used as cable tray bonding conductors to bond cable tray sections to the Telecommunications Equipment Bonding Conductor (TEBC).
 1. Material. Stranded copper wire with a green jacket run as a continuous conductor.
 2. Size. The minimum size for the RBC shall be AWG 6.
 3. Bonding.
 - a. Where used in a server cabinet, bonded to the Rack Bonding Connector (RBC) using UL Listed irreversible compression (crimp) connectors and to IT equipment via a UL Listed two-hole compression lug. (Some IT equipment may require one-hole lugs.)
 - b. Where used in a network cabinet/rack, bonded to the Rack Bonding Busbar (RBB) via a UL Listed two-hole compression lug and to IT equipment via a UL Listed two-hole compression lug. (Some IT equipment may require one-hole lugs.)

- c. Where used as a cable tray bonding conductor connecting cable tray sections, bonded to each adjoining section of the cable tray using UL Listed two-hole compression lugs.
- d. Where used as a cable tray bonding conductor connecting cable tray sections to the Telecommunications Equipment Bonding Conductor (TEBC), bonded to the TEBC using UL Listed irreversible compression (crimp) connectors and to the cable tray via a UL Listed two-hole compression lug.
- 4. Contractor shall furnish a minimum of ten (10) EBCs for each RBB. Five (5) EBCs shall be outfitted as described here and shall be six (6) feet in length. Five (5) EBCs shall be outfitted as decried here and shall be nine (9) feet in length. Contractor shall use field measurements to determine EBC cable length when directed by VA project managers.

2.5 OVERVOLTAGE SURGE PROTECTORS.

- A. Protectors are voltage-limiting devices intended to protect equipment, wiring, and personnel against the effects of excessive potentials and currents in communications lines caused by lightning, contacts with power conductors, power induction, and rises in ground potential.
 - 1. Compliance. Protectors shall be compliant with UL 497 and/or UL 497A, as applicable.
 - 2. Performance. Protectors shall be rated to support copper UTP performance Category 5e at 100MHz.
 - 3. Protection. Voltage suppression shall be via low capacitance solid state protectors only, rated at 18V for copper backbone applications or 65V for VOIP or PoE applications.
 - 4. Construction. Provide protection for each pair.
 - 5. Termination shall be insulation-displacement contact.
 - 6. Mounting. Protectors shall be wall-mounted.

PART 3 - EXECUTION

3.1 IMPLEMENTATION

- A. Components of the telecommunications bonding system will be installed and connected using materials and techniques required by ANSI/TIA-607-D. The use of antioxidant joint compound is required for all connections excluding protector 110 block connections.
- B. Testing.

1. Perform tests per BICSI Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
2. Perform two-point bond test using trained installers qualified to use test equipment.
3. Conduct continuity tests to verify that metallic pathways in telecommunications spaces are bonded to PBB or SBB.
4. Conduct electrical continuity test to verify that PBB is effectively bonded to the facility grounding electrode conductor.
5. Perform resistance tests to ensure rack and cabinet bonding connection resistance measures less than 4Ω to PBB or SBB.

- - - E N D - - -

SECTION 27 05 33
CONDUITS AND BACKBOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies conduit, fittings, and boxes to form raceway systems for communications cabling.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- C. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 1. Size and location of cabinets, splice boxes, and pull boxes.
 2. Layout of required conduit penetrations through structural elements.
 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. All cat cable shall be VA EHRM compliant per current OI&T publications. All cat 6 or newer cables shall be installed in 1" or larger blue conduit.
- B. Conduit:
 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.

3. Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
5. Flexible Galvanized Steel Conduit: Conform to UL 1.
6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
8. Surface Metal Raceway: Conform to UL 5.

C. Conduit Fittings:

1. Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - 2) Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground.
 - g. Provide OEM approved fittings.
2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or

cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.

- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.

3. Electrical Metallic Tubing Fittings:

- a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
- b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - 2) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
- c. Indent type connectors or couplings are not permitted.
- d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
- e. Provide OEM approved fittings.

4. Flexible Steel Conduit Fittings:

- a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
- b. Provide clamp type, with insulated throat.
- c. Provide OEM approved fittings.

5. Liquid-tight Flexible Metal Conduit Fittings:

- a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
- b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
- c. Provide connectors with insulated throats to prevent damage to cable jacket.
- d. Provide OEM approved fittings.

6. Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.

7. Expansion and Deflection Couplings:

- a. Conform to UL 467 and UL 514B.

- b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30-degree angular deflections.
- c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

8. Rigid Aluminum Fittings:

- a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
- f. Provide OEM approved fittings.

D. Conduit Supports:

- 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
- 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Outlet, Splice, and Pull Boxes:

- 1. Conform to UL-50 and UL-514A.
- 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
- 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
- 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.

5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- G. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway.
 2. Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitability, and toxicity requirements of environmental air space.
 5. Size: Metric Designator 53 (trade size 2) or smaller.
 6. Outside Plant: Plenum-rated where each innerduct is 75 mm (3 inches) and larger.
 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous.
 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- H. Outlet Boxes:
 1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.

I. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

PART 3 - EXECUTION**3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS****A. Penetrations:****1. Cutting or Holes:**

a. Locate holes in advance of installation. Where proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.

b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.

c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

- 1) Fill and seal clearances between raceways and openings with fire stop material.
- 2) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.

d. Waterproofing at Floor, Exterior Wall, and Roof Conduit Penetrations: Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS

B. Conduit Installation:

1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
2. Install insulated bushings on all conduit ends.
3. Install pull boxes after every 180 degrees of bends (two 90-degree bends) or every 100ft. Size boxes per TIA 569.

4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
5. Terminate conduit runs to and from a backboard in a TR or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
7. Seal empty conduits located in telecommunications rooms or on backboards to prevent entrance of moisture and gases and to meet fire resistance requirements.
8. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
9. Complete each entire conduit run installation before pulling in cables.
10. Flattened, dented, or deformed conduit is not permitted.
11. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
12. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
13. Install conduit mechanically continuous.
14. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
15. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
16. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
17. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
18. Do not use aluminum conduits in wet locations.
19. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
20. Conduit Bends:

- a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
- b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
- c. Bending of conduits with a pipe tee or vise is not permitted.
- d. Minimum radius of communication conduit bends:

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

21. Layout and Homeruns - Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.

C. Concealed Work Installation:

- 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - 2) As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - 1) Conduit outside diameter larger than 1/3 of slab thickness is prohibited.

2) Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.

3) Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.

e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.

D. Furred or Suspended Ceilings and in Walls:

1. Rigid steel, IMC or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.

2. Align and run conduit parallel or perpendicular to building lines.

3. Tightening set screws with pliers is not permitted.

E. Exposed Work Installation:

1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.

a. Provide rigid steel, IMC or rigid aluminum.

b. Different type of conduits mixed indiscriminately in system is not permitted.

2. Align and run conduit parallel or perpendicular to building lines.

3. Install horizontal runs close to ceiling or beams and secure with conduit straps.

4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.

5. Painting:

a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.

b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.

c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

F. Expansion Joints:

1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.

2. Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.

3. Install expansion and deflection couplings where shown.

G. Conduit Supports, Installation:

1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.

2. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.

3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.

4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.

5. Fastenings and Supports in Solid Masonry and Concrete:

a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.

b. Existing Construction:

1) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.

2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).

3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.

6. Fastening to Hollow Masonry: Toggle bolts are permitted.

7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.

8. Bolts supported only by plaster or gypsum wallboard are not acceptable.

9. **Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.**

10. Do not support conduit from chain, wire, or perforated strap.

11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.

12. Vertical Supports:

- a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
- b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

H. Box Installation:

1. Boxes for Concealed Conduits:

- a. Flush mounted.
- b. Provide raised covers for boxes to suit wall or ceiling, construction and finish. In spaces not controlled by VA (i.e., common hallways) covers must be lockable.

2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.

3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.

4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.

I. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:

1. Install Innerduct in cable tray. Innerduct may not be free-hung.
2. Install only in accessible spaces not subject to physical damage or corrosive influences.
3. Make bends manually to assure internal diameter of tubing is not effectively reduced.
4. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

A. Examine fittings and locknuts for secureness.

B. Test RMC, IMC and EMT systems for electrical continuity and resistance to ground.

- - - E N D - - -

SECTION 27 05 53
IDENTIFICATION FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies labeling and identification requirements for information technology (IT) equipment cabinets, racks, and cabling.

1.2 SUMMARY

Section Includes:

- A. Equipment and component labels.
- B. Labeling implementation requirements.

1.3 REFERENCES

- A. VA Infrastructure Standard for Telecommunications Spaces.

1.4 RELATED WORK:

- A. Server cabinets and network racks: Section 27 05 33, CONDUITS AND BACKBOXES FOR COMMUNICAITONS SYSTEMS.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND COMPONENT LABELS.

- A. Materials. Materials used for labeling equipment, components, and telecommunications cabling shall be appropriate for the installation environment, durable and permanent, and heat-resistant if necessary for labeling in high-temperature environments.

PART 3 - EXECUTION

3.1 IMPLEMENTATION:

- A. Governing Standard. Labeling and identification of equipment, components, and telecommunications cabling shall be based on ANSI/TIA-606-C, Administration Standard for Telecommunications Infrastructure, and NFPA 70, National Electrical Code, as modified by guidance in the VA Infrastructure Standard for Telecommunications Spaces.
- B. All passive infrastructure equipment, components, and telecommunications cabling installed shall be labeled at the time of installation.

- C. Telecommunications cable labeling shall include delivery of complete and accurate connection documentation (where each cable terminates at each end) matching the installed labels.
- D. Label locations shall be as specified in the VA Infrastructure Standard for Telecommunications Spaces.

- - - E N D - - -

**SECTION 27 10 00
STRUCTURED CABLING**

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies requirements for telecommunications structured cabling systems.

1.2 SUMMARY

Section Includes:

- A. Computer Room Backbone Structured Cabling.
- B. Computer Room Horizontal Structured Cabling.
- C. Facility Backbone Structured Cabling.
- D. Facility Horizontal Structured Cabling.

1.3 REFERENCES

- A. VA Infrastructure Standard for Telecommunications Spaces.

1.4 RELATED WORK:

- A. Cabling labeling and identification: Section 27 05 53, IDENTIFICATION FOR COMMUNICATIONS SYSTEMS.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

PART 2 - PRODUCTS

2.2 COMPUTER ROOM HORIZONTAL STRUCTURED CABLING.

Horizontal structured cabling in the computer room environment connects the Equipment Distributors (EDs) in the server cabinets to each supported Horizontal Distribution Area (HDA).

- A. Install horizontal structured cabling in overhead cable tray and fiber raceway systems following diverse path routing.
- B. All cabling used shall be pre-terminated and procured to the specific length required by the design (horizontal and vertical paths) with no more than 1 meter of excess length on each end.
- C. In the server cabinets, terminate horizontal structured cabling in EDs located in the top 5U of each cabinet, with patch panel equipment mounted on the rear rails.
 - 1. Install fiber optic distribution cabinet(s) starting in RU45 and populate with fiber optic distribution cassettes to support the requirement.

2. Install a blanking panel in the RU below the last fiber cabinet.
3. Install copper UTP patch panel(s) below the blanking panel.

D. In the HDAs, terminate horizontal structured cabling in the RU positions immediately below the first level backbone structured cabling equipment of each network rack, working downward, with patch panel equipment mounted on the front rails.

1. Install fiber optic distribution cabinet(s) and populate with fiber optic distribution cassettes to support each server cabinet.
2. Install a blanking panel in the RU below the fiber optic distribution cabinet(s).

E. Install 12- or 24-strand multimode fiber optic cables between the server cabinet ED and both HDAs.

F. Install UTP cables between the server cabinet ED and both HDAs.

2.4 FACILITY HORIZONTAL STRUCTURED CABLING.

Facility horizontal structured cabling (horizontal distribution) connects the Telecommunications Room (TR) to each end-user Work Area Outlet (WAO).

- A. Interior to each TR, install horizontal distribution structured cabling in overhead cable tray systems.
- B. All horizontal distribution structured cabling shall have a minimum of 2 cables per WAO.
- C. Horizontal distribution structured cabling may be field-terminated.

D. In each TR install sufficient UTP patch panels to support the quantity of WAOs in the TR's serving zone.

1. Plan network racks such that patch panels and horizontal cable managers are located in the top 1/3 (RU31-45), switching equipment in the middle 1/3 (RU16-30), and power distribution and other services in the bottom 1/3 (RU1-15).

E. Install a minimum of 2 UTP cables between the TR UTP patch panels and each work area faceplate.

F. Each typical end-user receptacle shall be constructed of a single-gang workbox with one connector chassis, a minimum of two non-proprietary Category 6A 8P8C media interface connectors (RJ-45), and a four-position keystone faceplate.

1. Modular plug terminated links (MPTL) are permitted to service wireless access points (WAPs), cameras, and other Power over Ethernet (PoE) devices where mating will be very infrequent.

PART 3 - EXECUTION**3.1 IMPLEMENTATION:**

- A. 100% construction drawing sets shall include drawings detailing the computer room and facility/campus structured cabling systems, including:
 - 1. Cable media performance categories for each type of run.
 - 2. Cabling and equipment quantities.
 - 3. Elevation drawings showing equipment placement in individual enclosures.
 - 4. Full interconnection diagram for all structured cabling.
 - 5. Port map and cable label matrices.
- B. All cabling and equipment shall be labeled per the requirements of the VA Infrastructure Standard for Telecommunications Spaces.

- - - E N D - - -

SECTION 27 51 16
PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, training and services for, and incidental to, the complete installation of new and fully operating National Fire Protection Association (NFPA) - Life Safety Code 101.3-2 (a) Labeled and (b) Listed Emergency Service Public Address System (PAS) and associated equipment (here-in-after referred to as the System) in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting PAS communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 005OP3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; **THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE.**
HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS, SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's PM, RE and TVE-005OP3B. **The VA PM is the only approving authority** for other amendments to this document that may be granted, on a case by case basis, in writing with technical concurrences by VA's RE, TVE-005OP3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure that all management, sales, engineering and installation personnel have read and understand the requirements of this specification before the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement attesting this requirement as a part of the technical submittal that includes each name and certification, including the OEMs.

1.2 RELATED SECTIONS

- A. 01 33 23 - Shop Drawings, Product Data and Samples.
- B. 07 84 00 - Firestopping.
- C. 26 05 21 - Low - Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- D. 26 41 00 - Facility Lightning Protection.
- E. 27 05 11 - Requirements for Communications Installations.
- F. 27 05 26 - Grounding and Bonding for Communications Systems.
- G. 27 05 33 - Raceways and Boxes for Communications Systems.
- H. 27 10 00 - Control, Communication and Signal Wiring.
- I. 27 11 00 - Communications Cabling Interface and Equipment Rooms Fittings.
- J. 27 15 00 - Horizontal and Vertical Communications Cabling Equipment and Systems.

1.3 DEFINITIONS

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.
- D. Headquarters Technical Review, for National and VA communications and security, codes, frequency licensing, standards, guidelines compliance:
 - Office of Telecommunications
 - Special Communications Team (005OP2B)
 - 1335 East West Highway - 3rd Floor
 - Silver Spring, Maryland 20910
 - (O) 301-734-0350, (F) 301-734-0360

H. Contractor:you; successful bidder

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of systems of comparable size and complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.
- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's PA equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.

C. The Contractor shall display all applicable national, state and local licenses and permits.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS

- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.
- D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floor plans shall be marked in pen to include the following:
 - 1. All device locations with UL labels affixed.
 - 2. Conduit locations.
 - 3. Head-end equipment and specific location.
 - 4. Each interface and equipment specific location.
 - 5. Facility Entrance (aka DEMARC) Room(s) interface equipment and location(s).
 - 6. Telephone Equipment Room (TER) interface equipment and specific location.
 - 7. Main Computer Room (MCR) interface equipment and specific location.
 - 8. Police Control Room (PCR) interface equipment and specific location.
 - 9. Engineering Control Room (ECR) interface equipment and specific location
- 10. Telecommunication Outlet (s -TCO) equipment and specific location
- 11. TIP Wiring diagram(s).
- 12. Warranty certificate.
- 13. System test results.
- 14. System Completion Document(s) or MOU.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to guarantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 1. Warranty certificate.
 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 3. Project record documents.
 4. Instruction manuals and software that is a part of the system.
- C. Contractor shall submit written notice that:
 1. Contract Documents have been reviewed.
 2. Project has been inspected for compliance with contract.
 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS**2.0 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS**

- A. Furnish and install a complete and fully functional and operable Nurse Call System for each location shown on the contract drawings and TCOs **WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 11 00.**
- B. 70 Volt speakers with Bldg. amplifiers in each Bldg. (Lowell Dual Coil Speakers from the EST3X Fire Alarm system for PA announcements where already installed.)
- D. Expansion Capability: The PA equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.

- E. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz.
- F. Meet all FCC requirements regarding low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- G. Weather/Water Proof Equipment: Listed and labeled by an OSHA certified National Recognized Testing Laboratory (NRTL - i.e. UL) for duty outdoors or in damp locations.
- H. Deliver a fully functioning and operable PA in the specific locations shown on the drawings.

2.1 SYSTEM PRFORMANCE:

- A. At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's PA system voice and data service as follows:
 1. Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface, interconnection and terminating locations in the TERs.
 2. Audio Input: The signal level of each audio input channel at each input point shall be a MINIMUM of zero decibels measured (dBm), +0.10 dBm across 150 Ohms, balanced.
 3. Audio Output: The audio signal level at each speaker shall be a MINIMUM of +0.25 Watt (W) and a maximum of +20 W, 600 Ohms balanced impedance, on a 70.7 V audio distribution line Contractor to determine and set each speaker's proper audio signal level (top) based on speaker location and the ambient noise level in speaker coverage area.
 4. The system shall meet the following MINIMUM parameters at each speaker:
 - a. Cross Modulation: -46 dB
 - b. Hum Modulation: -55 dB
 - c. Isolation (outlet-outlet): 24 dB
 - d. Impedance:
 - 1) Distribution: 600 Ohm balanced @ 70.7 V audio line level.
 - 2) Speaker: Selectable, as required.

- e. Audio Gain: 10 dB minimum @ mid-range measured with a sound pressure level meter (SPL)
- f. Signal to noise (S/N) ratio: 35 dB, minimum

B. Audio Level Processing: The head-end equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each zone or sub-zone in the system and distribute them into the system's distribution trunks. It is acceptable to use identified telephone system cable pairs designated for PA use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor.

- 1. THE USE OF TELEPHONE CABLE TO DISTRIBUTE PA SIGNALS CARRYING AC OR DC VOLTAGE IS NOT ACCEPTABLE AND WILL NOT BE APPROVED.
- 2. Additionally, each remote location shall be provided with the equipment required to ensure the system supervision and designed audio channel capacity at each speaker identified on the contract drawings.

2.2 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,
 - 2. Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
 - 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid (IFB).
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - 1. The System has been defined herein as connected to systems identified as an Emergency performing Public Safety Support

Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Public and Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.

2. All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory (NRTL) where such standards have been established for the supplies, materials or equipment.
3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.3 PRODUCTS

- A. General.
 1. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
 2. Each cabinet shall be provided with internal and external items to maintain a neat and orderly system of equipment, wire, cable and conduit connections and routing.
 3. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.

B. ENT (aka DEMARC) Room(s):

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

C. TER, TR Rooms and Equipment:

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

1. Interface Equipment:

a. TER:

1) Paging adaptor:

- a) The Contractor shall coordinate the installation of the paging adapter(s) designed for use with the Facility's telephone system with the Facility Telephone Contractor or local telephone company.
- b) The Contractor shall provide and install a paging adapter(s) for each zone and sub zone. The paging adapter(s) shall be accessible by dialing a telephone number provided by the Facility's Telephone Contractor.

The Paging Adapter shall:

- 1) Monitor each audio input and output on the unit.
- 2) Be provided with an electrical supervision panel to provide both audio and visual trouble alarms.
- 3) Be provided as part of the head end equipment and shall be located in the Telephone Switch Room
- 4) Be provided with Executive (aka emergency) Paging Override of all routine paging calls in progress or being accessed to allow system "all call" (aka global) and radio paging calls designated as (Code One Blue) functions.
- 5) Be capable of internal time out capability.
- 6) Function completely with the interface module.
- 7) Provide one spare adapter.

c) Time Out Device: A time out device/capability shall be provided to prevent system "hang-up" due to an off-hook telephone. The device shall be able to be preset from 30

seconds to two (2) minutes. Its function shall not interfere with or override the required "all call" (aka global) operational capability.

- 1) Central Processor Module:
- 2) Controls system operations and holds all programmed parameters.
- 3) Data link connection to additional CPU modules.
- d) Power Module: Provides 12V DC @ 800mA to Central Processor Module.
- 4) Head-End Equipment
 - a) Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system listed herein. Head-end components may be rack mounted or wall mounted in a metal enclosure.
 - b) Provide the head end equipment in the closed telecommunications closet where the PA system is installed to include the minimum equipment listed herein.
 - c) Provide minimum of 30 minute battery back-up to system components.
- 5) Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions
 - a) Vertical Equipment Rack, Wall Mounted (to be included inside of the Equipment Cabinet):
 - b) 74" (48RU) rack space, Welded Steel construction, Minimum 20" usable depth, Adjustable front mounting rails.
 - 1) Install the following products in rack provided by same manufacturer or as specified:
 - 2) Security screws w/ nylon isolation bushings.
 - 3) Textured blank panels.
 - 4) Custom mounts for components without rack mount kits.
 - 5) Security covers.
 - 6) Copper Bus Bar.
 - 7) Power Sequencer rack mounted power conditioner and (provide as needed) delayed sequencer(s) with two (2)

inswitched outlets each and contact closure control inputs.

8) Rack mounting: Provide rack mount kit.

6) Amplifier Equipment:

a) Paging (aka zone):

1) Inputs for 600-ohm balanced telephone line, LO-Z balanced microphone, and background music.

2) Input Sensitivity: Compatible with master stations and central equipment so amplifier delivers full rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on master stations speaker microphones, or handset transmitters

3) Automatic Level Control (ALC) for pages, adjustable background music muting level during page, wall or rack mountable.

4) 16-ohm, 25V, 25V center tapped (CT), and 70V outputs. Amplifier quantity and size (output power) as needed. Continuous amplifier power rating shall exceed loudspeaker load on amplifier by at least 25%.

5) Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus an allowance for future stations.

6) Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to quantity of stations connected in all-call mode of operation.

7) Minimum Signal-to-Noise Ratio: 45 dB, at rated output.

8) Frequency Response: Within plus or minus 3 dB from 70 to 12,000 Hz.

b) Output Regulation: Maintains output level within 2 dB from full to no load.

c) Amplifier Protection: Prevents damage from shorted or open output.

d) Be provided with electronic supervision function(s).

D. TIP DISTRIBUTION SYSTEM:

1. System Speakers:

a. Ceiling Cone-Type:

1) Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.

- 2) Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
- 3) Minimum Dispersion Angle: 100 degrees.
- 4) Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
- 5) Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch steel and whole assembly rust proofed and factory primed; complete with mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.
- 6) Baffle: For flush speakers, minimum thickness of 0.032-inch aluminum with textured white finish. Completely fill the baffle with fiberglass.
- 7) Vandal-Proof, High-Strength Baffle: For flush-mounted speakers, self-aging cast aluminum with tensile strength of 44,000 psi, 0.025-inch minimum thickness; countersunk heat-treated alloy mounting screws; and textured white epoxy finish.
- 8) Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
- 9) Have a minimum of two (2) safety wires installed to a solid surface or use a flexible conduit from ceiling / wall back box to the speaker back box.
- 10) The speakers and mounting shall be self contained and wall mounted with flush back box at a minimum of 10 meter intervals and shall match (or contrast with, at the direction of the RE) the color of the adjacent surfaces.
- 11) Provide one spare speaker, mount, and back box for each 50 speakers or portion thereof.

b. Wall Mounted Horne-Type:

- 1) Each horn speaker shall be provided with a means of adjusting the output level over the rated horn speaker range to an appropriate audio level in the area installed.
- 2) Provide horn speakers in equipment rooms, mechanical room, supply warehouse areas, loading dock, entrance and exit areas, and at other areas as indicated on the drawings.

- 3) Speakers shall be all-metal, weatherproof construction; complete with universal mounting brackets.
- 4) Frequency Response: Within plus or minus 3 dB from 275 to 14,000 Hz.
- 5) Minimum Power Rating of Driver: 15 W, continuous.
- 6) Minimum Dispersion Angle: 110 degrees.
- 7) Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
- 8) Provide one spare speaker, mount, and back box for each 20 speakers or portion thereof.

c. System Cables: TIP Horizontal and Vertical Communications Cabling, provide the following additional TIP installation and testing requirements, provide the following minimum System TIP cables & interconnections:

- 1) Line Level Audio and Microphone Cable:
 - a) Line level audio and microphone cable for inside racks and conduit.
 - b) Shielded, twisted pair Minimum 22 American Wire Gauge (AWG), stranded conductors and 24 AWG drain wire with overall jacket.
- 2) Speaker Level (Audio 70.7Volt [V]) Cable, Riser Rated:
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
 - c) UL-1333 listed.
- 3) Speaker Level Audio Cable, Plenum Rated (70.7V):
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
- 4) All cabling shall be riser **plenum** rated.
- 5) Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.

2. Raceways, Back Boxes and conduit:

a. Raceways:

- 1) In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:

- 2) Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
- 3) Intercommunication System cable infrastructure: EMT above accessible ceilings, 24 inches on center.
- 4) Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
- 5) Flexible metal conduit is prohibited unless specifically approved by 005OP3B.

b. System Conduit:

- 1) The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.
- 2) The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (005OP3B).

3) Conduit Sleeves:

- a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
- b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nurse-call cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.

3. Device Back Boxes:

- a. Furnish to the electrical contractor all back boxes required for the PA system devices.

- b. The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
4. Telecommunication Outlets (TCO): Populate each TCO that is required to perform system operations in the locations that were provided and cabled as a part project. Provide additional TCO equipment, interfaces and connections as required by System design. Provide secured pathway(s) and TCOs as required.
5. UPS:
 - a. Provide a backup battery or a UPS for the System to allow normal operation and function (as if there was no AC power failure) in the event of an AC power failure or during input power fluctuations for a minimum of four (4) hours.
 - b. As an alternate solution, the telephone system UPS may be utilized to meet this requirement at the headend location, as long as this function is specifically approved by the Telephone Contractor and the RE.
 - c. The PA Contractor shall not make any attachments or connection to the telephone system until specifically directed to do so, in writing, by the RE.
 - d. Provide UPS for all active system components including but not limited to:
 - 1) System Amplifiers.
 - 2) Microphone Consoles.
 - 3) Telephone Interface Units.
 - 4) TER, TR & Headend Equipment Rack(s).

E. Patient Bedside Prefabricated Units (PBU):

1. Where PBU's exist in the Facility; the Contractor shall identify the "gang box" location on the PBU designated for installation of the telephone jack. This location shall here-in-after be identified as the unit's TCO. The Contractor shall be responsible for obtaining written approval and specific instructions from the PBU OEM regarding the necessary disassembly and reassembly of each PBU to the extent necessary to pull wire from above the TIP ceiling junction box to the PBU's reserved gang box for the unit's TCO. A Contractor provided stainless steel cover plate approved for use by the PBU OEM and Facility IRM Chief shall finish out the jack installation.

2. Under no circumstances shall the Contractor proceed with the PBPU installations without the written approval of the PBPU OEM and the specific instructions regarding the attachment to or modifying of the PBPU. The RE shall be available to assist the Contractor in obtaining approvals and instructions in a timely manner as related to the project's time constraints.
3. It is the responsibility of the Contractor to maintain the UL integrity of each PBPU. If the Contractor violates that integrity, it shall be the responsibility of the Contractor to obtain on site UL re-certification of the violated PBPU at the direction of the RE and at the Contractor's expense.

F. Installation Kit:

1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:

2. System Grounding:

- a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
- b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields.
 - 2) Control Cable Shields.
 - 3) Data Cable Shields.
 - 4) Equipment Racks.
 - 5) Equipment Cabinets.
 - 6) Conduits.
 - 7) Duct.
 - 8) Cable Trays.

- 9) Power Panels.
- 10) Connector Panels.
- 11) Grounding Blocks.

3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION**3.1 PROJECT MANAGEMENT**

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.

C. Contact the Office of Telecommunications, Special Communications Team (005OP3B) at (301) 734-0350 to have a VA Certified Telecommunications COTR assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

A. Coordinate with the cabling contractor the location of the PA system faceplate and the faceplate opening for the PA system back boxes.

3.4 INSTALLATION

A. General

1. Execute work in accordance with National, State and local codes, regulations and ordinances.
2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
3. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
4. Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.
 - a. All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
 - b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
 - d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
5. Locate overhead ceiling-mounted loudspeakers as shown on drawings, with minor changes not to exceed 12" in any direction.
 - a. Mount transformers securely to speaker brackets or enclosures using screws. Adjust torsion springs as needed to securely support speaker assembly.

- b. Speaker back boxes shall be completely filled with fiberglass insulation.
- c. Seal cone speakers to their enclosures to prevent air passing from one side of the speaker to the other.

6. Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and 005OP3B.

7. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.

8. Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.

9. Color code all distribution wiring to conform to the PA Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.

10. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.

11. Product Delivery, Storage and Handling:

- a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
- b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.

12. Where TCOs are installed adjacent to each other, install one outlet for each instrument.

13. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.

B. Equipment Racks:

1. Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks.
2. Provide security covers for all devices not requiring routine operator control.
3. Provide vent panels and cooling fans as required for the operation of equipment within the OEM's specified temperature limits. Provide adequate ventilation space between equipment for cooling. Follow manufacturer's recommendations regarding ventilation space between amplifiers.
4. Provide insulated connections of the electrical raceway to equipment racks.
5. Provide continuous raceway/conduit with no more than 40% fill between wire troughs and equipment racks for all non-plenum-rated cable. Ensure each system is mechanically separated from each other in the wireway.
6. Ensure a minimum of 36 inches around each cabinet and/or rack to comply with OSHA Safety Standards. Cabinets and/or Racks installed side by side - the 36" rule applies to around the entire assembly

C. Distribution Frames.

1. A new stand-alone (i.e., self supporting, free standing) PA rack/frame may be provided in each TR to interconnect the PA, TER, TCR, PCR, SCC, STRs & ECRs. Rack/frames shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The PA riser cable shall be sized to satisfy all voice/digital requirements plus not less than 50% spare (growth) capacity in each TR which includes a fiber optic backbone.
2. The frames/racks shall be connected to the TER/MCR system ground.

D. Wiring Practice - in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered to:

1. Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."

2. Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
3. Wiring shall be classified according to the following low voltage signal types:
 - a. Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.
5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
6. Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
7. Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
8. Use wire pulling lubricants and pulling tensions as recommended by the OEM.
9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
10. Do not use tape-based or glue-based cable anchors.
11. Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
12. Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.

- b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
- d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.

13. Use only balanced audio circuits unless noted otherwise

14. Make all connections as follows:

- a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
- b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
- c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
- d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.

15. Make all connections as follows:

- a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
- b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
- c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
- d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.

16. Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.

17. Wires or cables **previously approved** to be installed outside of conduit, cable trays, wireways, cable duct, etc:

- a. Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.

- b. Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
- c. Closer wire or cable fastening intervals may be required to prevent sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
- d. Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- e. Completely test all of the cables after installation and replace any defective cables.
- f. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.

E. Cable Installation - In addition to the **MANDATORY** infrastructure requirements outlined in VA Construction Specifications 27 10 00 - Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered to:

- 1. Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable trays. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
- 2. Run cables parallel to walls.

3. Install maximum of 10 cables in a single row. Provide necessary rows as required by the number of cables.
4. Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
6. Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
8. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
10. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
12. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
13. Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.
14. Serve all cables as follows:

- a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
- b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing $\frac{1}{4}$ " past the end of unused wires, fold back over jacket and secure with cable tie.
- c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.

F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for PA circuits shall be stenciled using laser printers .

1. Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
2. Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.
4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."

5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heat-shrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
7. Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
8. Ensure each OEM supplied item of equipment has appropriate UL Labels. SYSTEM EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.

3.5 PROTECTION OF NETWORK DEVICES

Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The

Contractor shall not unreasonably withhold from the Owner or a separate Contractor the Contractor's consent to cutting or otherwise altering the Work.

E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

- A. Where PA wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.
- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.
- F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground PA cable shields and equipment to eliminate shock hazard and to minimize ground loops, commonmode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26 - Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is

connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.

- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use "3rd or 4th" wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.
- H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

PART 4 – TESTING / GUARANTY / TRAINING

4.0 SYSTEM LISTING

The PA System is NFPA listed as an "Emergency / Public Safety" Communications system. Where Code Blue signals are transmitted, that listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and OEM.

4.1 PROOF OF PERFORMANCE TESTING

A. Pretesting:

1. Upon completing installation of the PA System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.

2. Pretesting Procedure:

- a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
- b. The Contractor shall pretest and verify that all PA System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) Central Control Cabinets.
 - 2) Local Control Stations.
 - 3) Zone Equipment/Systems.

- 4) Sub-Zone Equipment/Systems.
- 5) Remote Control Panels.
 - a.) TCR.
 - b.) PCR/SCC.
 - c.) ECR.
- 6) All Networked locations.
- 7) System interface locations (i.e. TELCO, two way radio, etc.).
- 8) System trouble reporting.
- 9) System Electrical Supervision.
- 10) UPS operation.
- 11) STRs.
- 12) NSS
- 13) TCOs.

3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.

C. Acceptance Test:

1. After the PA System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 day's written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of TVE 005OP3B and an OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Emergency / Public Safety compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System.

Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable. Retesting of the entire System shall be rescheduled at the convenience of the Government.

3. Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.

D. Acceptance Test Procedure:

1. Physical and Mechanical Inspection:

- a. The TVE 005OP3B Representative will tour all areas where the PA system and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
- b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
- c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.

2. Operational Test:

- a. After the Physical and Mechanical Inspection, the system head end equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
- b. Following the head end equipment test, each speaker (or on board speaker) shall be inspected to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
- c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last speaker in each leg to verify the PA distribution system meets all system performance standards.
- d. If the RED system is a part of the system, each volume stepper switches shall be checked to insure proper operation of the pillow speaker, the volume stepper and the RED system (if installed).

- e. Additionally, each installed head end equipment, microphone console; amplifier, mixer, distributed speaker/amplifier, monitor speaker, telephone interface, power supply and remote amplifiers shall be checked insuring they meet the requirements of this specification.
- f. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: "all call," three sub-zoned, minimum of 15 minutes of UPS operation, electrical supervision, trouble panel, corridor speakers and audio paging.
- h. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.

3. Test Conclusion:

- a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
- b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.

E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:

- 1. Spectrum Analyzer.
- 2. Signal Level Meter.
- 3. Volt-Ohm Meter.
- 4. Sound Pressure Level (SPL) Meter.
- 5. Oscilloscope.
- 6. Random Noise Generator.
- 7. Audio Amplifier with External Speaker.

4.2 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:

B. Contractor's Responsibility:

1. The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of two (2) years from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building), that certifies each item of equipment installed conforms to OEM published specifications.
2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time During the **Two Year** Guaranty Period:
 - 1) The RE (or Facility Contracting Officer if the system has been turned over to the Facility) is the Contractor's ONLY OFFICIAL reporting and contact official for nurse call system trouble calls, during the guaranty period.
 - 2) A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the RE (or Facility Contracting Officer), Monday through Friday exclusive of Federal Holidays.
 - 3) The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which causes a power supply; one (1) master System control station, microphone console or amplifier to be inoperable.
 - b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call.

The RE (or Facility Contracting Officer) shall notify the Contractor of this type of trouble call.

- c) An emergency trouble call within four (4) hours of its report. An emergency trouble is considered a trouble which causes a sub-zone, zone, distribution point, terminal cabinet, or all call system to be inoperable at anytime.
- 4) If a PA System component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate System equipment. The alternate equipment/system shall be operational within a maximum of 12 hours after the four (4) hour trouble shooting time and restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or sub-system to full operational capability, as described herein, until repairs are complete.

b. Required On-Site Visits During the **Two Year** Guaranty Period

- 1) The Contractor shall visit, on-site, for a minimum of eight (8) hours, once every 12 weeks, during the guaranty period, to perform system preventive maintenance, equipment cleaning, and operational adjustments to maintain the System according the descriptions identified in this document.
- 2) The Contractor shall arrange all Facility visits with the RE (or Facility Contracting Officer) prior to performing the required maintenance visits.
- 3) Preventive maintenance procedure(s) shall be performed by the Contractor in accordance with the OEM's recommended practice and service intervals during non-busy time agreed to by the RE (or Facility Contracting Officer) and Contractor.
- 4) The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE (or Facility Contracting Officer).
- 5) The Contractor shall provide the RE (or Facility Contracting Officer) a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall

provide the RE with sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:

- a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to RE (or Facility Contracting Officer) by the fifth (5th) working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.
- b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The RE (or Facility Contracting Officer) shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE (or Facility Contracting Officer) shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.

C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor, contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render an official opinion in writing concerning the supplied information.

4.3 TRAINING

- A. Provide thorough training of all biomed engineering and electronic technical staff assigned to those nursing units receiving new networked

nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.

B. Provide the following minimum training times and durations:

1. **48** hours prior to opening for BME / Electronic Staff (in 8-hour increments) - split evenly over 3 weeks and day and night shifts. Coordinate schedule with Owner.

- - - E N D - - -

SECTION 28 05 00
COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, intrusion detection, duress alarms, elevator control interface, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, dedicated photo badging system and associated live camera, report printer, photo badge printer, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The

Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.

F. Section Includes:

1. Description of Work for Electronic Security Systems,
2. Electronic security equipment coordination with relating Divisions,
3. Submittal Requirements for Electronic Security,
4. Miscellaneous Supporting equipment and materials for Electronic Security,
5. Electronic security installation requirements.

G. Justifications / Sole Source / Equipment:

1. Ademco- Must be compatible with out Ademco 685 Receiver @ the Monitoring station.
2. American Dynamics - Intelex system with DVD/CD burner and at least a 500GB hard drive.
3. UTC - M2000 Controller 4/2 door with Wiegand WIU-4 for each door controlled.
4. Sclange- MT15-485 PIV readers for Low/Med Security doors; MTK15-486 PIV readers for High Security Doors.
5. Johnson Controls for building automation system.

6. Access panels shall be finished painted to match the adjacent surface.

1.2 RELATED WORK

- A. Section 01 00 00 - GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 - FIRESTOPPING. Requirements for firestopping application and use.
- G. Section 08 71 00 - DOOR HARDWARE. Requirements for door installation.
- H. Section 10 14 00 - SIGNAGE. Requirements for labeling and signs.
- K. Section 26 05 11 - REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
Requirements for connection of high voltage.
- L. Section 26 05 21 - LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- M. Section 26 05 33 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
Requirements for infrastructure.
- P. Section 28 05 13 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- Q. Section 28 05 26 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- R. Section 28 05 28.33 - CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- Z. Section 32 31 13 - CHAIN LINK FENCES AND GATES. Requirements for fences.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.

- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel - component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.

Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

AA. M-JPEG: Motion - Joint Photographic Experts Group.

BB. MPEG: Moving picture experts group.

CC. NEC: National Electric Code

DD. NEMA: National Electrical Manufacturers Association

EE. NFPA: National Fire Protection Association

FF. NTSC: National Television System Committee.

GG. NRTL: Nationally Recognized Testing Laboratory.

HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).

II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space

JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.

KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).

LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.

MM. RCDD: Registered Communications Distribution Designer.

NN. RFI: Radio-frequency interference.

OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.

PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.

QQ. RS-485: An TIA/EIA standard for multipoint communications.

RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.

SS. SMS: Security Management System - A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.

TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.

UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

VV. UPS: Uninterruptible Power Supply

WW. UTP: Unshielded Twisted Pair

XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.

B. Product Qualification:

1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Contractor Qualification:

1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of

satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.

D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARRANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components,

materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 1. Mark the submittals, "SUBMITTED UNDER SECTION _____".
 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 3. Submit each section separately.
- D. The submittals shall include the following:
 1. Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.

E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breadth or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:

1. The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
2. The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently

deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.

6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.

a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.

1) Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Cross-referencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.

2) Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.

b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.

c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.

d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20-pound white bond paper.

e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.

1) Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.

2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a typewritten page indicating the

drawing title, description of contents and drawing location at the appropriate location of the manual.

- 3) Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1) Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply,

recommended spare parts, and name of servicing organization.

j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.

g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.

h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.

i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.

j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.

k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.

1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.

7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return non-conforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.

8. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under

procedures specified for initial submittals. Identify all changes made since previous submittal.

9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.

K. FIPS 201 Compliance Certificates

1. Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:

- b. Card Readers
- c. Facial Image Capturing Camera
- d. PIV Middelware

L. Approvals will be based on complete submission of manuals together with shop drawings.

M. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:

- 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
- 2. Each type of conduit and pathway coupling, bushing and termination fitting.
- 3. Conduit hangers, clamps and supports.
- 4. Duct sealing compound.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):
 - A117.1.....Standard on Accessible and Usable Buildings and Facilities

C. American National Standards Institute (ANSI) / Security Industry Association (SIA):

AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards

CP-01-00.....Control Panel Standard-Features for False Alarm Reduction

PIR-01-00.....Passive Infrared Motion Detector Standard - Features for Enhancing False Alarm Immunity

TVAC-01.....CCTV to Access Control Standard - Message Set for System Integration

D. American National Standards Institute (ANSI) / Electronic Industries Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV Cameras

375A-76.....Electrical Performance Standards for CCTV Monitors

E. American National Standards Institute (ANSI):

ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems

F. American Society for Testing and Materials (ASTM)

B1-07.....Standard Specification for Hard-Drawn Copper Wire

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors

D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape

G. Architectural Barriers Act (ABA), 1968

H. Department of Justice: American Disability Act (ADA)
28 CFR Part 36-2010 ADA Standards for Accessible Design

I. Department of Veterans Affairs:

VHA National CAD Standard Application Guide, 2006

VA BIM Guide, V1.0 10

J. Federal Communications Commission (FCC):
(47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems

K. Federal Information Processing Standards (FIPS):
FIPS-201-1.....Personal Identity Verification (PIV) of Federal Employees and Contractors

L. Federal Specifications (Fed. Spec.):
A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation)

M. Government Accountability Office (GAO):
GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities

N. Homeland Security Presidential Directive (HSPD):
HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors

O. Institute of Electrical and Electronics Engineers (IEEE):
81-1983.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
802.3af-08.....Power over Ethernet Standard
802.3at-09Power over Ethernet (PoE) Plus Standard
C2-07.....National Electrical Safety Code
C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits
C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields

P. International Organization for Standardization (ISO):
7810.....Identification cards - Physical characteristics
7811.....Physical Characteristics for Magnetic Stripe Cards
7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics
7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts

7816-3.....Identification cards - Integrated circuit cards
- Part 3: Cards with contacts - Electrical
interface and transmission protocols

7816-4.....Identification cards - Integrated circuit cards
- Part 11: Personal verification through
biometric methods

7816-10.....Identification cards - Integrated circuit cards
- Part 4: Organization, security and commands
for interchange

14443.....Identification cards - Contactless integrated
circuit cards; Contactless Proximity Cards
Operating at 13.56 MHz in up to 5 inches
distance

15693.....Identification cards -- Contactless integrated
circuit cards - Vicinity cards; Contactless
Vicinity Cards Operating at 13.56 MHz in up to
50 inches distance

19794.....Information technology - Biometric data
interchange formats

Q. National Electrical Contractors Association

303-2005.....Installing Closed Circuit Television (CCTV)
Systems

R. National Electrical Manufacturers Association (NEMA):

250-08.....Enclosures for Electrical Equipment (1000 Volts
Maximum)

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and
Tubing

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies
for Conduit, Electrical Metallic Tubing and
Cable

S. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

731-08.....Standards for the Installation of Electric
Premises Security Systems

99-2005.....Health Care Facilities

T. National Institute of Justice (NIJ)

0601.02-03.....Standards for Walk-Through Metal Detectors for
use in Weapons Detection

0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection

U. National Institute of Standards and Technology (NIST):

IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS)

Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems

Special Pub 800-63.....Electronic Authentication Guideline

Special Pub 800-73-3....Interfaces for Personal Identity Verification
(4 Parts)

.....Pt. 1- End Point PIV Card Application Namespace, Data Model & Representation

.....Pt. 2- PIV Card Application Card Command Interface

.....Pt. 3- PIV Client Application Programming Interface

.....Pt. 4- The PIV Transitional Interfaces & Data Model Specification

Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification

Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification

Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers

Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines

Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance)

Special Pub 800-96.....PIV Card Reader Interoperability Guidelines

Special Pub 800-104A....Scheme for PIV Visual Card Topography

V. Occupational and Safety Health Administration (OSHA):

29 CFR 1910.97.....Nonionizing radiation

W. Section 508 of the Rehabilitation Act of 1973

X. Security Industry Association (SIA):

AG-01Security CAD Symbols Standards

Y. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

5-04.....Surface Metal Raceway and Fittings

6-07.....Rigid Metal Conduit

44-05.....	Thermoset-Insulated Wires and Cables
50-07.....	Enclosures for Electrical Equipment
83-08.....	Thermoplastic-Insulated Wires and Cables
294-99.....	The Standard of Safety for Access Control System Units
305-08.....	Standard for Panic Hardware
360-09.....	Liquid-Tight Flexible Steel Conduit
444-08.....	Safety Communications Cables
464-09.....	Audible Signal Appliances
467-07.....	Electrical Grounding and Bonding Equipment
486A-03.....	Wire Connectors and Soldering Lugs for Use with Copper Conductors
486C-04.....	Splicing Wire Connectors
486D-05.....	Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations
486E-00.....	Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
493-07.....	Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable
514A-04.....	Metallic Outlet Boxes
514B-04.....	Fittings for Cable and Conduit
51-05.....	Schedule 40 and 80 Rigid PVC Conduit
609-96.....	Local Burglar Alarm Units and Systems
634-07.....	Standards for Connectors with Burglar-Alarm Systems
636-01.....	Standard for Holdup Alarm Units and Systems
639-97.....	Standard for Intrusion-Detection Units
651-05.....	Schedule 40 and 80 Rigid PVC Conduit
651A-07.....	Type EB and A Rigid PVC Conduit and HDPE Conduit
752-05.....	Standard for Bullet-Resisting Equipment
797-07.....	Electrical Metallic Tubing
827-08.....	Central Station Alarm Services
1037-09.....	Standard for Anti-theft Alarms and Devices
1635-10.....	Digital Alarm Communicator System Units
1076-95.....	Standards for Proprietary Burglar Alarm Units and Systems
1242-06.....	Intermediate Metal Conduit

1479-03.....Fire Tests of Through-Penetration Fire Stops
1981-03.....Central Station Automation System
2058-05.....High Security Electronic Locks
60950.....Safety of Information Technology Equipment
60950-1.....Information Technology Equipment - Safety -
Part 1: General Requirements

Z. Uniform Federal Accessibility Standards (UFAS) 1984

AA. United States Department of Commerce:

Special Pub 500-101Care and Handling of Computer Magnetic Storage
Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

A. General Requirements

1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled

adjustments or other non-scheduled work. See also General Project Requirements.

B. Description of Work

1. The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.

C. Personnel

1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.

D. Schedule of Work

1. The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.

E. System Inspections

1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - 1) Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics

and correct all problems; and resolve any previous outstanding problems.

F. Emergency Service

1. The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and non-catastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

G. Operation

1. Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.

H. Records & Logs

1. The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.

I. Work Request

1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the

amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

J. System Modifications

1. The Contractor shall make any recommendations for system modification in writing to the Resident Engineer. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the Resident Engineer. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

K. Software

1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

1. During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
2. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

B. Central Station, Workstations, and Controllers:

1. Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
2. Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
2. Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to

122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 4X enclosures.

3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.

4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.

5. Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.

B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.

C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.

C. Equipment Assemblies and Components:

1. Components of an assembled unit need not be products of the same manufacturer.
2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
3. Components shall be compatible with each other and with the total assembly for the intended service.

4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 1. The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

- A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the

application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.

1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.

B. Grounding and Surge Suppression

1. The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
2. Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
4. Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
6. AC power receptacles are not to be used as a ground reference point.
7. Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufacturers installation instructions.
8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

A. Construction of Enclosures

1. Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component

housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.

2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
3. Doors and covers shall be flanged. Enclosures shall not have pre-punched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).

B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.

1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
 - b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
 - c. d. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
2. Console racks:

- a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
- b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.

C. Tamper Provisions and Tamper Switches:

1. Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover-operated, corrosion-resistant tamper switches.
2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sight to any internal component before the switch activates.
3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible

or accessing with common tools to bypass when the enclosure is in the secured mode.

4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
8. All security screws shall be Torx-Post Security Screws.
9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

- A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and current-carrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The Resident Engineer shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the Resident Engineer stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:

1. Identity of the material or devices specified for which there is a proposed substitution.
2. Description of the segment of the specification where the material or devices are referenced.
3. Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-by-feature, between specification requirements and the material or devices called for in the specification; and Price differential.

C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the Resident Engineer shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The Resident Engineer shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.

D. Response to Specification: The Contractor shall submit a point-by-point statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying

with the specification. Any submission that does not include a point-by-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

- A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer. All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

- A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COTR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contractor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater

than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 1. Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate

any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.

3. Controlling devices shall be utilized to interface the SMS with all field devices.
4. The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Security Access Detection Monitoring Equipment
 - g. EPPS Monitoring and Controlling Equipment
 - h. Main Panels for all Security Systems
 - i. Power Supply Units (PSU) for all field devices
 - j. Life safety and power monitoring equipment
 - k. All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.
 - l. Police two-way radio control consoles/units.
- B. Security Console Bays - shall be EIA 310D compliant and:
 1. Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 2. Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-the-shelf) security console equipment shall be used in place of customized designed consoles.

4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with day-to-day operations, are labeled for quick identification, and so that high voltage power cables do not cause signal interference with low voltage and data carrying cables.
5. Shall be mounted on lockable casters.
6. Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.
11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.
12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearing be identified as such.
13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than 84 in. (210 cm)	No greater than 72 in. (150 cm)	No greater than 96 in. (240 cm)
Bench board Slope	21 in. (52.5 cm)	25 in. (62.5 cm)	N/A

Bench board Angle	15 degrees	15 degrees	N/A
Depth of Console	24 in. (60 cm)	24 in. (60 cm)	N/A
Leg and Feet Clearance	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front
Distance Between Console Rows	96 in. (240 cm)	96 in. (240 cm)	96 in. (240 cm)
Distance Between Console and Wall	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack

C. Security Console Configuration:

1. The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.
2. Shall meet the following minimum spacing requirements to ensure that a Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:
 - a. 500 square feet for a large Access Control System and Database Management.
 - b. 300 square feet for a small Access Control System and Database Management.
 - c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
3. Shall be located in an area within, at a minimum, the first level/line of security defense defined by the VA. If the Access Control System and Database Management is to be located outside the first level of security, then the area shall be constructed or

retrofit to meet or exceed those requirements outlined in associated VA Master Specifications.

4. Shall not be located within or near an area with little to no blast mitigation standoff space protection, adjacent to an outside wall exposed to vehicle parking and traffic, within a basement or potential flood zone area, in close approximately to major utility areas, or near an exposed air intake(s).
5. Access shall meet UFAS and ADA accessibility requirements.
6. Construction shall be slab to slab and free of windows, with the exception of a service window. All penetrations into the room shall be sealed with fire stopping materials. This material shall apply in accordance with Section 07 84 00, FIRESTOPPING.
7. A service window shall be installed in the wall next to the main entrance of the Access Control System and Database Management or where it best can be monitored and accessed by the security console operator. The window shall meet all requirements set forth in UL 752, to include at a minimum, Class III ballistic level protection. The windows shall be set in a minimum or four (4) inches (100 mm) solid concrete units to ceiling height with either masonry or gypsum wall board to the underside of the slab above. It shall also contain a service tray constructed in a manner that only objects no larger than 3 inches (7.5 cm) in width may pass through it.
8. The walls making up or surrounding the Access Control System and Database Management shall be made of materials that at a minimum offer Class III ballistic level protection for the security console operator(s).
9. There will be a main power cut-off button/switch located inside the Access Control System and Database Management in the event of an electrical fire or related event occurs.
10. Shall have a fire alarm detection unit that is tied into the main building fire alarm system and have at least two fire extinguishers located within it.
11. Shall utilize a fire suppression system similar to that used by the VA's computer and telecommunications room operating areas.
12. The floor shall be raised a minimum of 4 inches (10 cm) from the concrete floor base. Wire ways shall be utilized under the raised floor for separation of signal and power wires and cables.

13. Access shall be monitored and controlled by the PACS via card reader and fixed camera that utilizes a wide angle lens. A 1 in. (2.5 cm) deadbolt shall be utilized as a mechanical override for the door in the event of electrical failure of the PACS, card reader, or locking mechanism.
14. There shall only be one point of ingress and egress to and from the Security Control Room. The door shall be made of metal or better. If a window is required for the door, then the window shall be ballistic resistant with a Millar covering.
15. A two-way intercom shall be placed at the point of entry into the Security Control Room for access-communication control purposes.
16. A remote push-button door unlocking device shall not be installed for the electronic PACS locking mechanism providing access control into the Security Control Room.
17. All controlling equipment and power supplies that must be wall mounted shall be mounted in a manner that maximizes usability of the Security Control Room wall space. All equipment shall be mounted to three quarter inch fire retardant plywood. The plywood shall be fastened to the wall from slab to slab and fixed to the existing walls supports.

D. Security Control Room Ventilation

1. Shall meet or exceed all requirements laid out in VA Master Specification listed in Division 23, HEATING, VENTILATION, AND AIR CONDITIONING.
2. Controls shall be via a separate air handling system that provides an isolated supply and return system. The Security Control Room shall have a dedicated thermostat control unit and cut-off switch to be able to shut off ventilation to the control room in the event of a chemical, biological, or radiological (CBR) event or other related emergency.
3. There shall be a louver installed in the control room door to assist with ventilation of the room. The louver shall be exactly 12 x 12 inches (30 x 30 cm) and closeable.

E. Security Control Room and Security Console Lighting:

1. The following factors shall be taken into consideration for lighting of the Security Control Room and console area:
 - a. Shadows: To reduce eye strain and fatigue, shadows shall be avoided.

b. Glare: The readability of all display panels, labels, and equipment shall not be interfered with or create visibility problems.

2. The following table shall provide guidance on the amount of footcandles required per work area and type of task performed:

Work Area/Type of Task		Footcandles
Main Operating Panels		50
Secondary Display Panels		50
Seated Workstations		100
Reading	Handwriting	100
	Typed Documents	50
	Visual Display Units	10
Logbook Recording		100
Maintenance Area		50
Emergency/Back-up Lighting		10

F. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:

1. The secondary stations shall the requirements outlined in Sections 2.2.A-G.
2. Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
3. Secondary stations shall not have priority over a primary Security Control Console.
4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.

G. Wires and Cables:

1. Shall meet or exceed the manufactures recommendation for power and signals.
2. Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.

4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
5. Conduit fills shall not exceed 50 percent unless otherwise documented.
6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less than 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 FIBER OPTIC EQUIPMENT

- A. 8 Channel Fiber Optic Transcievers (Video&PTZ Control)
 1. The field-located and central-located fiber optic transceivers shall utilize wave division multiplexing to transmit and receive video and data pan-tilt-zoom control signals over two standard 62.5/125 multimode fibers.
 2. The units shall be capable of operating over a range of 2 km.
 3. The units shall be NTSC color compatible.
 4. The units shall support data rates up to 64 Kbps.
 5. The units shall be surface or rack mountable.
 6. The units shall be UL listed.
 7. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input/Output: 1 volt pk-pk (75 ohms)
 - 2) Input/Output Channels: 8
 - 3) Bandwidth: 10 Hz - 6.5 MHZ per channel
 - 4) Differential Gain: <2%

- 5) Differential Phase: <0.7°
- 6) Tilt: <1%
- 7) Signal to Noise Ratio: 60 dB
- b. Data (Control)
 - 1) Data Channels: 2
 - 2) Data Format: RS-232, RS-422, 2 wire or 4 wire RS-485 with Tri-State Manchester Bi-Phase and Sensornet
 - 3) Data Rate: DC - 100 kbps (NRZ)
 - 4) Bit Error Rate: < 1 in 10-9 @ Maximum Optical Loss Budget
 - 5) Operating Mode: Simplex or Full-Duplex
 - 6) Wavelength: 1310/1550 nm, Multimode or Singlemode
 - 7) Optical Emitter: Laser Diode
 - 8) Number of Fibers: 1
- c. Connectors
 - 1) Optical: ST
 - 2) Power and Data: Terminal Block with Screw Clamps
 - 3) Video: BNC (Gold Plated Center-Pin)
- d. Electrical and Mechanical
 - 1) Power: 12 VDC @ 500 mA (stand-alone)
 - 3) Current Protection: Automatic Resettable Solid-State Current Limiters
- e. Environmental
 - 1) MTBF: > 100,000 hours
 - 2) Operating Temp: -40 to 74 deg C (-40 to 165 deg F)
 - 3) Storage Temp: -40 to 85 deg C (-40 to 185 deg F)
 - 4) Relative Humidity: 0% to 95% (non-condensing)

B. Fiber Optic Transmitters: The central-located fiber optic transmitters shall utilize wave division multiplexing to transmit video and signals over standard 62.5/125 multimode fibers.

1. The units shall be capable of operating over a range of 4.8 km.
2. The units shall be NTSC color compatible.
3. The units shall support data rates up to 64 Kbps.
4. The units shall be surface or rack mountable.
5. The units shall be UL listed.
6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Input: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 - 10 MHZ

- 3) Differential Gain: <5%
- 4) Tilt: <1%
- 5) Signal-Noise: 60db
- 6) Wavelength: 850nm
- 7) Number of Fibers: 1
- 8) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
- 9) Connectors:
 - a) Power: Female plug with screw clamps
 - b) Video: BNC
 - c) Optical: ST
- 10) Power: 12 VDC

C. Fiber Optic Receivers: The field-located fiber optic receivers shall utilize wave division multiplexing to receive video signals over standard 62.5/125 multimode fiber.

1. The units shall be capable of operating over a range of 4.8 km.
2. The units shall be NTSC color compatible.
3. The units shall support data rates up to 64 Kbps.
4. The units shall be surface or rack mountable.
5. The units shall be UL listed.
6. The units shall meet or exceed the following specifications:
 - a. Video
 - 1) Output: 1 volt pk-pk (75 ohms)
 - 2) Bandwidth: 5H2 - 10 MHZ
 - 3) Differential Gain: <5%
 - 4) Tilt: <1%
 - 5) Signal-Noise: 60dB
 - 6) Wavelength: 850nm
 - 7) Number of Fibers: 1
 - 8) Surface Mount: 106.7 x 88.9 x 25.4 mm (4.2 x 3.5 x 1 in)
 - 9) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
 - 10) Connectors:
 - 11) Power: Female plug block with screw clamps
 - 12) Video: BNC
 - 13) Optical: ST
 - 14) Power: 12 VAC8 Channel Fiber Optic Transcievers (Video&PTZ Control)

D. Fiber Optic Sub Rack with Power Supply

1. The Card Cage Rack shall provide high-density racking for fiber-optic modules. The unit shall be designed to mount in standard 483 mm (19 in) instrument racks and to accommodate the equivalent of 15 1-inch modules.

a. Specifications

- 1) Card Orientation: Vertical
- 2) Construction: Aluminum
- 3) Current Consumption: 0.99 A
- 4) Humidity: 95.0 % RH
- 5) Input Power: 100-240 VAC, 60/50 Hz
- 6) Mounting: Mounts in standard 483 mm (19 in) rack using four (4) screws (optional wall brackets purchased separately)
- 7) Number of Outputs: 1.0
- 8) Number of Slots 15.0
- 9) Operating Temperature: -40 to +75 deg C (-40.0 to 167.0 deg F)
- 10) Output Voltage: 13.5 V
- 11) Output Current 6.0 A
- 12) Power Dissipation: 28.0 W
- 13) Power Factor: 48.0
- 14) Power Supply: (built-in)
- 15) Rack Units: 3RU
- 16) Redundant Capability: Yes
- 17) Weight: 2.43 kg (5.35 lb)
- 18) Width: 483 mm (19.0 in)

2.4 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESSION

A. Transient Voltage Surge Suppression

1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used

for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:

- a. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
- d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, non-condensing.

B. Physical Access Control Systems

1. Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 μ sec)
 - e. Maximum Continuous Current: 15 Amps
 - f. MCOV: 125 VAC
 - g. Service Voltage: 110-120 VAC
2. Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. UL 497B
 - b. Minimum Surge Current Capacity: 2,000 Amps per pair
 - c. Maximum Continuous Current: 5 Amps
 - d. MCOV: 33 Volts
 - e. Service Voltage: 24Volts
3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: 18VDC / 38VDC
 - c. Clamp level for Data/LED: 6.8VDC

- d. Service Voltage for Power: 12VDC/24VDC
- e. Service Voltage for Data/LED: <5VDC
- f. Clamp level - PoE Access Power: 72V
- g. Clamp level - PoE Access Data: 7.9V
- h. Service Voltage - PoE Access: 48VAC - 54VAC
- i. Service Voltage - PoE Data: <5VDC

C. Intercom Systems

- 1. Suppressors shall be installed on the AC power at the point of service and shall meet the following criteria:
 - a. UL 1449 Listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Diagnostic Indicator Light(s)
 - d. Integrated ground terminating post (where case/chassis ground exists)
 - e. Minimum Surge Current Capacity of 13,000 Amps (8 x 20 μ Sec)
- 2. Suppressors shall be installed on incoming central office lines and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Auto-reset current protection not to exceed 2 Amps per pair
 - d. Minimum Surge Current of 500 Amps per pair (8 x 20 μ Sec)
- 3. Suppressors shall be installed on all telephone/intercom circuits that enter or leave separate buildings and shall meet the following criteria:
 - a. UL 497A Listed (where applicable)
 - b. UL 497B Listed (horns, strobes, speakers or communication circuits over 300 feet)
 - c. Multi Stage protection design
 - d. Auto-reset over-current protection not to exceed 5 Amps per pair
 - e. Minimum Surge Current of 1000 Amps per pair (8 x 20 μ Sec)

D. Intrusion Detection Systems

- 1. Suppressors shall be installed on AC at the point of service and shall meet the following criteria:
 - a. UL 1449, 2nd Edition 2007, listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Lights
 - d. Center screw for terminating Class II transformers
 - e. Minimum Surge Current Capacity of 32,000 Amps (8 x 20 μ Sec)

2. Suppressors shall be installed on all Telephone Communication Interface circuits and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design
 - c. Surge Current Capacity: 9,000 Amps (8x20 μ Sec)
 - d. Clamp Voltage: 130Vrms
 - e. Auto reset current protection not to exceed 150 milliAmps
3. Suppressors shall be installed on all burglar alarm initiating and signaling loops and addressable circuits which enter or leave separate buildings. The following criteria shall be met:
 - a. UL 497B for data communications or annunciation (powered loops)
 - b. Fail-short/fail-safe mode.
 - c. Surge Current Capacity: 9,000 Amps (8x20 μ Sec)
 - d. Clamp Voltage: 15 Vrms
 - e. Joule Rating: 76 Joules per pair (10x1000 μ Sec)
 - f. Auto-reset current protection not to exceed 150 milliAmps for UL 497A devices.

E. Video Surveillance System

1. Protectors shall be installed on coaxial cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection for 12 and/or 24-volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). SPDs shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally a minimum 450VA battery back up shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:
 - a. Head-End Power
 - 1) UL 1778, cUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20 μ sec)
 - 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
 - 4) All modes protected (L-N, L-G, N-G)
 - 5) EMI/RFI Filtering
 - 6) Maximum Continuous Current: 12 Amps
 - b. Camera Power

1) Minimum Surge Current Capacity: 1,000 Amps (8X20 μ sec); 240 Amps for IP Video/PoE cameras

2) Screw Terminal Connection

3) All protection modes L-G (all Lines)

4) MCOV <40VAC

c. Video And Data

1) Surge Current Capacity 1,000 Amps per conductor

2) "BNC" Connection (Coax)

3) Protection modes: L-G (Data), Center Pin-G, Shield-G (Coax)

4) Band Pass 0-2GHz

5) Insertion Loss <0.3dB

F. Grounding and Surge Suppression

1. The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.

2. The Contractor shall engineer, provide, and install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.

3. Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.

4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.

5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.

6. AC power receptacles are not to be used as a ground reference point.

7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufacturers' installation instructions.

G. 120 VAC Surge Suppression

1. Continuous Current: Unlimited (parallel connection)

2. Max Surge Current: 13,500 Amps

3. Protection Modes: L - N, L - G, N - G

4. Warranty: Ten Year Limited Warranty

5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)

6. Weight: 2.88 g (0.18 lbs)

7. Housing: ABS

2.5 INSTALLATION KIT

A. General:

1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:

2. System Grounding:

a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.

b. This includes, but is not limited to:

- 1) Coaxial Cable Shields
- 2) Control Cable Shields
- 3) Data Cable Shields
- 4) Equipment Racks
- 5) Equipment Cabinets
- 6) Conduits
- 7) Cable Duct blocks
- 8) Cable Trays
- 9) Power Panels
- 10) Grounding
- 11) Connector Panels

3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.

4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION**3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION**

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install facilities to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

F. Equipment location shall be as close as practical to locations shown on the drawings.

G. Inaccessible Equipment:

1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.

2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

H. Access panels shall be finished painted to match the adjacent surface, reference previous statement regarding access panels.

I. Distribution pathways shall be parallel and perpendicular to building grid lines. No angled lines shall be accepted in construction.

J. Communication Systems/equip/devices with a key core: the keyed system shall be Best 7 pin.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.4 DEMONSTRATION AND TRAINING

A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

B. Training shall be provided for the particular equipment or system as required in each associated specification.

C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.

D. Provide services of manufacturer's technical representative for 4 hours to instruct VA personnel in operation and maintenance of units.

3.5 WORK PERFORMANCE

A. Job site safety and worker safety is the responsibility of the contractor.

- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the Resident Engineer on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires it. The Contractor shall not upload system programming until the Resident Engineer has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:

- a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with Resident Engineer for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss.
- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
2. The Contractor shall identify and request from the Resident Engineer, any additional data needed to provide a complete and operational system as described in the contract documents.
3. Contractor and Resident Engineer coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

Description of Tasks

Description of Systems	Develop System Loading Sheets	Coordination	Initial Set-up Configuration	Graphic Maps	System Programming	Final Checks	Level of Effort (Typical Tasks)
SMS Setup & Configuration	e.g., program monitoring stations, programming networks, interconnections between CCTV, intercoms, time synchronization	e.g., retrieve IP addresses, naming conventions, standard event descriptions, programming template s, coordinate special system needs	e.g., Load system Operating System and Application software, general system configurations	e.g., develop naming conventions, develop file folders, confirming accuracy of AutoCAD Floor Plans, convert file into jpeg file	e.g., program monitoring stations, programming networks, interconnections between CCTV, intercoms, time synchronization	e.g., check all system diagnostics (e.g., clients, panels)	Load and set-up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration

Electronic Entry Control Systems	e.g., confirming setup of device, door groups & schedule s, REX, Locks, link graphics	e.g., confirming device configurations, naming conventions, event descriptions, ion and narrative s	e.g., entering data from loading sheets; configur ations, naming conventions, components, link events, cameras, and graphics	e.g., setting up of device, door groups & sche dule s, REX, Locks, link graphics	e.g., performing entry door testing to confirmation correct set-up and configuration	e.g., creating a door, door configuration, adding request to exit, door monitors and relays, door timers, door related events (e.g., access, access denied, forced open, held open), linkages, controlled areas, advanced door monitoring, time zones, sequence of operations

Intrusion Detection Systems						e.g., setting up monitoring and control points (e.g., motion sensors, glassbreaks, vibration sensor, strobes, sounders)
	e.g., confirming	e.g., enter device	e.g., enter data from	e.g., enter door	e.g., enter door	e.g., creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
	enter door	device configur	data from loading	door grou	door grou	creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
	groups & schedule	configur ations, naming	sheets; configur	grou ps &	grou ps &	creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
	link devices	conventi ons, event	componen ts, link	sche dule	device	creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
	- REX, lock, & graphics	descript ion and narrativ es	events, cameras, and graphics	link devi ces	positi on, and maskin	time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
				-	REX, lock , & grap hics	time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
				g		time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
						time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,
						time zones, icon placements on graphic maps, clearance levels, events (e.g., armed, disarmed, zone violation, device alarm activations), LCD reader messages,

CCTV Systems	e.g., programming call-ups recording	e.g., confirming device configurations, naming conventions	e.g., enter data from loading sheets; camera naming convention, sequence s, configuration components		e.g., , programm ing call-ups recording	e.g., confirm area of coverage, recording call-up per event generated and recording rates	e.g., setting up cameras points, recording ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups
Intercoms Systems	e.g., programming events & call-ups	e.g., confirming device configurations, naming conventions, event description and narratives	e.g., enter data from loading sheets; configuration components, link events, cameras, and graphics		e.g., , programm ing events & call-ups	e.g., confirm operation, SMS event generation and camera call-up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps
Console Monitoring Components	N/A	per monitor	per monitor	per graphic map	N/A	per monitor	N/A
Note: Programming tasks are supported through the contractor's development of the Technical Data Package Submittals.							

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE**A. Performance Requirements****1. General:**

- a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the Resident Engineer at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
- b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the Resident Engineer before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the Resident Engineer at the conclusion of each phase of testing and prior to Resident Engineer approval of the test.

2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the Resident Engineer within seven (7) calendar days after completion of each test.

D. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the Resident Engineer (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.

E. Contractor's Field Testing (CFT)

1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date

is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to Resident Engineer approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the Resident Engineer's acceptance testing procedures. The Contractor shall provide the Resident Engineer with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the Resident Engineer stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractor's field test was successful.

F. Performance Verification Test (PVT)

1. Test team:

a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the Resident Engineer, then the Contractor shall schedule an acceptance test to date and give the Resident Engineer written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the Resident Engineer. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that

the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for out-of-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.

3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the Resident Engineer or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
4. Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the Resident Engineer prior to commencing the endurance test.
5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - 1) Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for Resident Engineers approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.

6. Partial PVT - At the discretion of Resident engineer, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.

H. Exclusions

1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13
CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 - GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 - FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 - CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings

sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

1. Manufacturer's Literature and Data: Showing each cable type and rating.
2. Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
6. Project planning documents as specified in Part 3.
7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM):
D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape
- C. Federal Specifications (Fed. Spec.):
A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation)
- D. National Fire Protection Association (NFPA):
70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):
44-05.....Thermoset-Insulated Wires and Cables
83-08.....Thermoplastic-Insulated Wires and Cables
467-07.....Electrical Grounding and Bonding Equipment
486A-03.....Wire Connectors and Soldering Lugs for Use with Copper Conductors
486C-04.....Splicing Wire Connectors
486D-05.....Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations
486E-00.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors
493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable
514B-04.....Fittings for Cable and Conduit
1479-03.....Fire Tests of Through-Penetration Fire Stops

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
 2. Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS**2.1 GENERAL**

A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.

A. Support of Open Cabling: NRTL labeled for support of Category 6A cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.

1. Support brackets with cable tie slots for fastening cable ties to brackets.
2. Lacing bars and spools.
3. Straps and other devices.

B. Cable Trays:

1. Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by [electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick] [hot-dip galvanizing, complying with ASTM A 123/A 123M Grade 0.55, not less than 0.002165 inch (0.055 mm) thick].
2. Basket Cable Trays: 6 inches (150 mm) wide and 2 inches (50 mm) deep. Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
3. Trough Cable Trays: Nominally 6 inches (150 mm) wide.
4. Ladder Cable Trays: Nominally 18 inches (455 mm) wide, and a rung spacing of [12 inches (305 mm)].
5. Channel Cable Trays: One-piece construction, nominally 4 inches (100 mm) wide. Slot spacing shall not exceed 4-1/2 inches (115 mm) o.c.
6. Solid-Bottom Cable Trays: One-piece construction, nominally 12 inches (305 mm) wide. Provide with solid covers.

C. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems. "Flexible metal conduit shall only be used in lengths less than 3 feet.

1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

- A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm).

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 3. Comply with TIA/EIA-568-B.2, Category 6A.
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG [; or MPP, CMP, MPR, CMR, MP, or MPG].
 - b. Communications, Plenum Rated: Type CMP [; or MPP], complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR [; or MPP, CMP, or MPR], complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX [; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG].
 - e. Multipurpose: Type MP or MPG [; or MPP or MPR].
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR [or MPP], complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.11 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.

2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1581.

B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.

1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with NFPA 262.

C. Paired Lock Cable: NFPA 70, Type CMG.

1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1581.

D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.

1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
2. Fluorinated ethylene propylene insulation.
3. Unshielded.
4. Plastic jacket.
5. Flame Resistance: NFPA 262, Flame Test.

2.13 FIRE ALARM WIRE AND CABLE

A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.

1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.

C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.

1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.

3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.14 IDENTIFICATION PRODUCTS

- A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.16 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.17 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION**3.1 INSTALLATION OF CONDUCTORS AND CABLES**

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/COTR.
 - e. Pull in multiple cables together in a single conduit.
 - C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.

1. Splices and terminations shall be mechanically and electrically secure.
2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.

E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.

F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.

G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.

H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.

I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.

J. UTP Cable Installation:

1. Comply with TIA/EIA-568-B.2.
2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.

K. Optical Fiber Cable Installation:

1. Comply with TIA/EIA-568-B.3.
2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.

L. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wire-way or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1525 mm) apart.

3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

M. Installation of Cable Routed Exposed under Raised Floors:

1. Install plenum-rated cable only.

2. Install cabling after the flooring system has been installed in raised floor areas.

3. Coil cable 72 inches (1830 mm) long shall be neatly coiled not less than 12 inches (300 mm) in diameter below each feed point.

MI. Outdoor Coaxial Cable Installation:

1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors to keep out moisture.

2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).

MII. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:

a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).

b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).

c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:

a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).

b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).

c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is not permitted.
 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all

connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.

H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:

1. Class 1 remote-control and signal circuits, No. 14 AWG.
2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.

B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.

C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.

D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.

E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 1. Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex,

complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Optical Fiber Cable Tests:

a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

b. Link End-to-End Attenuation Tests:

1) Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.

2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

5. Coaxial Cable Tests: Comply with requirements in Division 27 Section "Master Antenna Television System."

D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide or transfer the data from the instrument to the computer, save as text files, print, and submit.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 28 05 26
GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL**1.1 DESCRIPTION**

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 - GENERAL REQUIREMENTS. For General Requirements.
- C. Section 28 05 00 - REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- D. Section 28 05 13 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 1. Clearly present enough information to determine compliance with drawings and specifications.
 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 1. Certification that the materials and installation are in accordance with the drawings and specifications.
 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 - B1-07.....Standard Specification for Hard-Drawn Copper Wire
 - B3-07.....Standard Specification for Soft or Annealed Copper Wire
 - B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 - 81-1983.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
 - C2-07.....National Electrical Safety Code
- D. National Fire Protection Association (NFPA):
 - 70-11.....National Electrical Code (NEC)
 - 99-2005.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
 - 44-05Thermoset-Insulated Wires and Cables
 - 83-08Thermoplastic-Insulated Wires and Cables
 - 467-07Grounding and Bonding Equipment
 - 486A-486B-03Wire Connectors

PART 2 - PRODUCTS**2.1 GROUNDING AND BONDING CONDUCTORS**

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 GROUND RODS

- A. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- B. Quantity of rods shall be as required to obtain the specified ground resistance.

2.3 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).
2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 2. Connection to Building Steel: Exothermic-welded type connectors.
 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 6. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 EQUIPMENT RACK AND CABINET GROUND BARS

- A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide (3/8 inch x 3/4 inch).

2.5 GROUND TERMINAL BLOCKS

- A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.6 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

2.7 COMPUTER ROOM GROUND

A. Provide 50mm² (1/0 AWG) bare copper grounding conductors bolted at mesh intersections to form an equipotential grounding grid. The equipotential grounding grid shall form a 600mm (24 inch) mesh pattern. The grid shall be bonded to each of the access floor pedestals.

2.8 SECURITY CONTROL ROOM GROUND

A. Provide 50mm² (1/0 AWG) stranded copper grounding conductor(s) color coded with a green jacket, bolted at the Room's Communications System Grounding Electrode Cooper Plate and circulate to each equipment rack ground buss bar through the wire management system. Connect each equipment rack, wire management system's cable tray, ladder, etc. to the circulating ground wire with a minimum 25mm² (4AWG) stranded Cooper Wire, color coded with a green jacket.

1. Connect each equipment rack ground buss bar to the circulating ground wire as indicated in 2.9.A, and
2. Connect each additional room item to the circulating ground wire as indicated in 2.9.A.

PART 3 - EXECUTION**3.1 GENERAL**

A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.

B. System Grounding:

1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.

C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

- A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

- A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 1. Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 2. Bond at all intermediate metallic enclosures and across all joints using 16 mm² (6 AWG) bonding jumpers.

3.6 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 1. Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 2. Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.7 LIGHTNING PROTECTION SYSTEM

- A. Bond the lightning protection system to earth ground externally to the building. Under no condition shall the electrical system's third of

fourth ground electrode system, or the telecommunications system circulating ground system be connected to the lightning protection system. The Facility's structural steel may be used to connected the lightning protection system at the direction of the Resident Engineer certified by an independent certified grounding contractor.

3.8 EXTERIOR LIGHT/CAMERA POLES

- A. Provide 20 ft [6.1 M] of No. 4 bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.9 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the COR prior to backfilling. The contractor shall notify the COR 24 hours before the connections are ready for inspection.

3.10 GROUND ROD INSTALLATION

- A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth.
- B. Where permanently concealed ground connections are required, make the connections by the exothermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors.

C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

3.12 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer.
 1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.13 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 1. Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
 2. Manhole Grounds: 10 ohms.

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33
CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 - GENERAL REQUIREMENTS. For General Requirements.
- C. Section 07 84 00 - FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 - FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 - JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 - PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.

- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
 - B. Shop Drawings:
 1. Size and location of main feeders;
 2. Size and location of panels and pull boxes
 3. Layout of required conduit penetrations through structural elements.
 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
 - C. Certification: Prior to final inspection, deliver to the Resident Engineer/COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
 - E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
 - F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies
for Conduit, Electrical Metallic Tubing and
Cable

C. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit

5-04.....Surface Metal Raceway and Fittings

6-07.....Rigid Metal Conduit

50-07.....Enclosures for Electrical Equipment

360-09.....Liquid-Tight Flexible Steel Conduit

467-07.....Grounding and Bonding Equipment

514A-04.....Metallic Outlet Boxes

514B-04.....Fittings for Cable and Conduit

514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes
and Covers

651-05.....Schedule 40 and 80 Rigid PVC Conduit

651A-07.....Type EB and A Rigid PVC Conduit and HDPE
Conduit

797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2 CONDUIT

A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.

B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.

C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.

D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.

E. Flexible galvanized steel conduit: Shall Conform to UL 1.

F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3. WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4. CONDUIT FITTINGS

A. Rigid steel and IMC conduit fittings:

1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
2. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
4. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.

B. Rigid aluminum conduit fittings:

1. Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
3. Set screw fittings: Not permitted for use with aluminum conduit.

C. Electrical metallic tubing fittings:

1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
2. Only steel or malleable iron materials are acceptable.
3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for

conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.

4. Indent type connectors or couplings are prohibited.
5. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.

D. Flexible steel conduit fittings:

1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
2. Clamp type, with insulated throat.

E. Liquid-tight flexible metal conduit fittings:

1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
2. Only steel or malleable iron materials are acceptable.
3. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.

F. Direct burial plastic conduit fittings:

1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
2. As recommended by the conduit manufacturer.

G. Surface metal raceway fittings: As recommended by the raceway manufacturer.

H. Expansion and deflection couplings:

1. Conform to UL 467 and UL 514B.
2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.

- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

- A. Equip with hinged covers, except where removable covers are shown.

2.11 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.12 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: EPDM, NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Plastic, Carbon steel, Stainless steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating orStainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.13 GROUT

- A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION**3.1 PENETRATIONS**

- A. Cutting or Holes:
 1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.
 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

A. Install conduit as follows:

1. In complete runs before pulling in cables or wires.
2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
5. Mechanically continuous.
6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
9. Conduit installations under fume and vent hoods are prohibited.
10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
12. Do not use aluminum conduits in wet locations.
13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.

B. Conduit Bends:

1. Make bends with standard conduit bending machines.
2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
3. Bending of conduits with a pipe tee or vise is prohibited.

C. Layout and Homeruns:

1. Install conduit with wiring, including homeruns, as shown.
2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.

D. Fire Alarm:

1. Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
2. Align and run conduit in direct lines.
3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
4. Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.

B. Furred or Suspended Ceilings and in Walls:

1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.

- b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
3. Align and run conduit parallel or perpendicular to the building lines.
4. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes

with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.

C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. **Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.**
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.

- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.

- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit Trade Size	Radius of Conduit Bends
	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions) .

- - - E N D - - -

SECTION 28 31 00
FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation as an extension of the existing campus fire alarm network. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - 1.
 - 2. Buildings shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.
- E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.
- F. The existing EST FireWorks graphic command center, located in Building 7, shall be modified to include graphical displays of the new or

modified Building, using the FireWorks map view port capability. A graphical display of St. Cloud VA campus building layout shall be the default map viewport file. Additional map viewports for all levels of a remodeled or newly constructed building shall be programmed also. All alarm, supervisory and trouble device locations shall be mapped to both the campus building layout view and to the associated building floor plan on which the device is located.

1.2 SCOPE

- A. A new fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - 1. Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.

2. Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 - FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 08 71 00 - DOOR HARDWARE. For combination Closer-Holders.
- D. Section 21 13 13 - WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.
- E. Section 28 05 00 - COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- F. Section 28 05 13 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 - GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 - CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 05 13 - CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Drawings:

1. Prepare drawings using AutoCAD software (latest release) and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 2 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built

drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

C. Manuals:

1. Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.

- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.

2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.

D. Certifications:

1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

=

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of five (5) years from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COR or his authorized representative.
- G. Emergency Service:
 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the

warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COR or his authorized representative.

2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency call-back hours is based on actual time spent on site and does not include travel time.

H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):

NFPA 13 Standard for the Installation of Sprinkler Systems, 2010 edition

NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2010 edition

NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition

NFPA 70.....National Electrical Code (NEC), 2010 edition

NFPA 72.....National Fire Alarm Code, 2010 edition

NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory

D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011

E. American National Standards Institute (ANSI):

S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS**2.1 EQUIPMENT AND MATERIALS, GENERAL**

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:

1. All new conduits shall be installed in accordance with NFPA 70.
2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
3. All new conduits shall be 3/4 inch (19 mm) minimum.

B. Wire:

1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.

C. Terminal Boxes, Junction Boxes, and Cabinets:

1. Shall be galvanized steel in accordance with UL requirements.
2. All boxes shall be sized and installed in accordance with NFPA 70.
3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT**A. General:**

1. The existing fire fire alarm control unit shall be expanded to support new devices and shall operate as a supervised addressable fire alarm system.

2. Each power source shall be supervised from the other source for loss of power.
3. All circuits shall be monitored for integrity.
4. Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
5. Transmit digital alarm information to the main fire alarm control unit.

B. Enclosure:

1. The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
3. EST3X panels & Devices (Sole Source) (Edwards Signal Technology).

D. Power Supply:

1. The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
2. The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.

E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.

F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.

G. Trouble signals:

1. Arrange the trouble signals for automatic reset (non-latching).
2. System trouble switch off and on lamps shall be visible through the control unit door.

H. Function Switches: Provide the following switches in addition to any other switches required for the system:

1. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off"

position. A system trouble signal shall be energized when switch is in the off position.

2. Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
4. Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

I. Remote Transmissions:

1. Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit in Building 7. The existing EST FireWorks graphic command center shall be modified to include graphical display of the modified building. A graphical display of St. Cloud VA campus building layout shall be the default map viewport file. Additional map viewports for the remodeled level of Building 51 shall be programmed. All alarm, supervisory and trouble device locations shall be mapped to both the campus building layout view and to the associated building floor plan on which the device is located.

2. Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 4. Batteries shall be sealed, gel cell type.
 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries:
 1. Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
 3. Battery racks shall be steel with an alkali-resistant finish.
Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.

C. Battery Charger:

1. Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
2. Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
3. Shall have protection to prevent discharge through the charger.
4. Shall have protection for overloads and short circuits on both AC and DC sides.
5. A trouble condition shall actuate the fire alarm trouble signal.
6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION**A. Annunciator, Alphanumeric Type (System):**

1. Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
2. Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
3. The initial alarm received shall be indicated as such.
4. A selector switch shall be provided for viewing subsequent alarm messages.
5. The display shall be UL listed for fire alarm application.

B.

2.7 ALARM NOTIFICATION APPLIANCES**A.****B. Speakers:**

1. Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

C. Strobes:

1. Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
2. Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
4. Strobes may be combined with the audible notification appliances specified herein.

D. Fire Alarm Horns:

1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
3. Mount on removable adapter plates on conduit boxes.
4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.8 ALARM INITIATING DEVICES

A. Manual Fire Alarm Stations:

1. Shall be non-breakglass, address reporting type.
2. Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
3. Stations shall be of double action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
6. Stations identified as key operated only shall have a single standardized lock and key separate from the control equipment

B. Smoke Detectors:

1. Smoke detectors shall be UL listed for use with the fire alarm control unit being furnished.
2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
4. All spot type and duct type detectors installed shall be of the photoelectric type.
5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

C. Heat Detectors:

1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.

D. Water Flow and Pressure Switches:

1. Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 13 13, WET-

PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.

3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

E.

2.9 SUPERVISORY DEVICES

A. Duct Smoke Detectors:

1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.

B. Sprinkler and Standpipe System Supervisory Switches:

1. Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit

entrance and incorporate the necessary facilities for attachment to the valves.

5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 1. New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.
- E. Where combination holder-closer units are required to match existing, these devices are furnished and installed as per Section 08 71 00, DOOR HARDWARE. Connection and wiring shall be as herein specified.

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations - 1
 - 2. Key operated manual pull stations - 1
 - 3. Heat detectors - 1 of each type
 - 4. Fire alarm strobes - 2
 - 5. Smoke detectors - 5
 - 6. Duct smoke detectors with all appurtenances - 1
 - 14. Key operated manual pull station keys - 3
- B. Keys for key-operated manual pull stations shall be provided 30 days prior to actual installation.
- C. Spare and replacement parts shall be in original packaging and submitted to the COR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system on site. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION**3.1 INSTALLATION:**

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.

M. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 1. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Buildings.
 3. Release only the magnetic door holders in the smoke zone.
 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.
- C.
- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders in that smoke zone. Operation of a smoke detector at a shutter used for automatic closing shall also release only the shutters in that smoke zone.
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
 1. Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 1. Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 2. Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -

**SECTION 31 20 11
EARTHWORK (SHORT FORM)**

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

A. Unsuitable Materials:

1. Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.

B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.

C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698

D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

A.

B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.

C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.

D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Classified Excavation: Removal and disposal of all material not defined as rock.
- C. Rock Excavation:
 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 0.75 m³ (1 cubic yard) capacity, properly used, having adequate power and in good running condition.
 3. Boulders or other detached stones each having a volume of 0.4 m³ (1/2 cubic yard) or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

- A. Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will include authorized excavation of satisfactory subgrade soil, and the volume of loose, scattered rocks and boulders collected within the limits of the work; allowance will be made on the same basis for selected backfill ordered as replacement. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow pits, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevations.
- C. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- D. Furnish to Resident Engineer, soil samples, suitable for laboratory tests, of proposed off site or on site fill material.
- E. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Nursery and Landscape Association (ANLA):
2004.....American Standard for Nursery Stock
- C. American Association of State Highway and Transportation Officials (AASHTO):
T99-10.....Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop
T180-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg [10 lb] Rammer and a 457 mm (18 inch) Drop
- D. American Society for Testing and Materials (ASTM):
C33-03.....Concrete Aggregate

D698-e1.....Laboratory Compaction Characteristics of Soil
Using Standard Effort

D1140-00.....Amount of Material in Soils Finer than the No.
200 (75-micrometer) Sieve

D1556-00.....Standard Test Method for Density and Unit
Weight of Soil in Place by the Sand-Cone Method

D1557-09.....Laboratory Compaction Characteristics of Soil
Using Modified Effort

D2167-94 (2001).....Standard Test Method for Density and Unit
Weight of Soil in Place by the Rubber Balloon
Method

D2487-06.....Standard Classification of Soil for Engineering
Purposes (Unified Soil Classification System)

D6938-10.....Standard Test Methods for Density of Soil and
Soil-Aggregate in Place by Nuclear Methods
(Shallow Depth)

E. Standard Specifications of Minnesota State
Department of Transportation, latest revision.

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from on site and off-site sources having a minimum dry density of 1760 kg/m³ (110pcf), a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.
- B. Granular Fill:
 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, 75 micrometers (No. 200) sieve, and no more than 2 percent by weight passing the coarse aggregate Size 57, 67, or 77.
 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No. 4).
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.

D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.

E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends

F. Requirements For Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method 5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Material shall not be brought on site until tests have been approved by the Resident Engineer.

G. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3-inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red: Electric

Yellow: Gas, Oil, Dangerous Materials

Orange: Telephone and Other Communications

Blue: Water Systems

Green: Sewer Systems

H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.

I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastictape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.

J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION**3.1 SITE PREPARATION:**

A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.

B. Grubbing: Remove stumps and roots 75 mm (3 inches) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inches) diameter, and nonperishable solid objects which will be a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.

C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 4500 mm (15 feet) of new construction and 2250 mm (7'-6") of utility lines if such removal is approved in advance. Trees and shrubs, shown to be transplanted, shall be dug with a ball of earth and burlapped in accordance with the latest issue of the, "American Standard for Nursery Stock", of the American Association of Nurserymen, Inc. Transplant trees and shrubs to a permanent or temporary position within two hours after digging. Maintain trees and

shrubs held in temporary locations by watering as necessary and feeding semi-annually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus and 5 percent potash. Maintain plants moved to permanent positions as specified for plants in temporary locations until the conclusion of the contract. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.

D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 0.014 m³ (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.

2. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.

E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

A. Shoring, Sheeting and Bracing: Shore, brace, or slope to it's angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.

1. Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.

B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. When removed disturbed material is located where it is not possible to install and properly compact disturbed subgrade material with mechanically compacted sand or gravel, the Resident Engineer should be contacted to consider the use of flowable fill. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in

order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 2 m (6 feet) below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly. Measure and record performance of dewatering system at same time each day by use of observation wells or piezometers installed in conjunction with the dewatering system. Relieve hydrostatic head in pervious zones below subgrade elevation in layered soils to prevent uplift.

E. Trench Earthwork:

1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

- 1) Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.

2. Sanitary and storm sewer trenches:

- a. Trench width below a point 150 mm (6 inches) above top of the pipe shall be 600 mm (24 inches) for up to and including 300 mm (12 inches) diameter and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
- b. The bottom quadrant of the pipe shall be bedded on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - 1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.

- 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one-sixth of pipe diameter below the pipe of 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
- c. Place and compact as specified the remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - 1) Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional

significance such as coral, slag, cinders, crushed stone, and crushed shells.

- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.

F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. Testing of the soil shall be performed by the Contractors Testing Laboratory. When unsuitable material is encountered and removed, the contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on meters (yardage) in cut section only.

G. Finished elevation of subgrade shall be as follows:

1. Pavement Areas - bottom of the pavement or base course as applicable.
2. Planting and Lawn Areas - 100 mm (4 inches) below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by Resident Engineer.

B.

C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.

D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer until there is no evidence of further compaction to not less than 95 percent of the maximum density determined in accordance with the following test method ASTM D698. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.

E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas or from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.

F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be

excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 3048 mm (10 feet) at a minimum five percent (5%) slope.
- D. The finished grade shall be 150 mm (6 inches) below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that

the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.

- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 100 mm (4 inches). Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 100 mm (4 inches) of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.
- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 100 mm (4 inches) at a rate of 12 kg/100 m² (25 pounds per 1000 square feet).
- D. Seeding: Seed at a rate of 2 kg/100 m² (4 pounds per 1000 square feet) and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 225 kg/m (150 pounds per foot) of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.
- F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

SECTION 32 05 23
CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 1. Subbase for concrete pavements.
 2. Equipment Pads: Mechanical Equipment.

1.2 RELATED REQUIREMENTS

- A. Step Nosings and Railings: Section 05 50 00, METAL FABRICATIONS.
- B. Subgrade Preparation and Subbase Compaction: Section 31 20 00, EARTHWORK.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 1. M147-65-UL-04 - Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 2. M233-86 - Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 1. 305R-10 - Guide to Hot Weather Concreting.
 2. 306R-10 - Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 1. B101.3 - Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 1. A615/A615M-16 - Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.
 2. A996/A996M-15 - Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
 3. A1064/A1064M-16 - Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
 4. C33/C33M-16 - Concrete Aggregates.
 5. C94/C94M-16 - Ready Mixed Concrete.
 6. C143/C143M-15a - Slump of Hydraulic Cement Concrete.
 7. C150/C150M-16 - Portland Cement.

8. C171-16 - Sheet Materials for Curing Concrete.
9. C260/C260M-10a - Air Entraining Admixtures for Concrete.
10. C309-11 - Liquid Membrane Forming Compounds for Curing Concrete.
11. C494/C494M-15a - Chemical Admixtures for Concrete.
12. C618-15 - Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
13. C979/C979M-16 - Pigments for Integrally Colored Concrete.
14. C989/C989M-14 - Slag Cement for Use in Concrete and Mortars.
15. C1240-15 - Silica Fume Used in Cementitious Mixtures.
16. D1751-04(2013)e1 - Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
17. D5893/D5893M-10 - Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
18. D6690-15 - Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning work of this section.
 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect/Engineer.
 - c. Inspection and Testing Agency.
 - d. Contractor.
 - e. Installer.
 - f. Other installers responsible for adjacent and intersecting work, including excavation, plantings, traffic markings.
 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.

3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 1. Show size, configuration, and fabrication and installation details.
 2. Show reinforcing.
 3. Include jointing plan for concrete pavements, curbs and gutters.
- C. Manufacturer's Literature and Data:
 1. Description of each product.
 2. Installation instructions.
- D. Samples:
 1. Exposed Aggregate Concrete Panel: 0.4 sq. m by 50 mm (4 sq. ft. by 2 inches) thick, 2 required, each color and finish.
- E. Test reports: Certify products comply with specifications.
 1. Concrete materials.
 2. Select subbase materials.
 3. Field test reports.
- F. Certificates: Certify products comply with specifications.
 1. Expansion joint filler.
 2. Reinforcement.
 3. Curing materials.
 4. Concrete protective coating.
- G. Qualifications: Substantiate qualifications comply with specifications.
 1. Installer with project experience list.
 2. Land surveyor.
- H. Concrete mix design.
- I. Select subbase job-mix design.
- J. Proposed hot and cold weather concreting methods.
- K. Land surveyor's construction staking notes, before placing concrete.
 1. Identify discrepancies between field conditions and Drawings.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 1. Regularly installs specified products.
 2. Installed specified products with satisfactory service on five similar installations.

- a. Project Experience List: Provide contact names and addresses for completed projects.
- B. Land Surveyor: Professional land surveyor or engineer registered to provide land surveys in jurisdiction where project is located.
- C. Preconstruction Testing:
 - 1. Engage independent testing laboratory to perform tests and submit reports.
 - a. Deliver samples to laboratory in number and quantity required for testing.
 - 2. Concrete mix design.
 - 3. Select subbase job-mix design. Report the following:
 - a. Material sources.
 - b. Gradation.
 - c. Plasticity index.
 - d. Liquid limit.
 - e. Laboratory compaction curves indicating maximum density at optimum moisture content.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.
- C. Bulk Products: Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Hot Weather Concreting Procedures: ACI 305R.
- B. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - 2. Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS**2.1 CONCRETE MATERIALS**

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Slag: ASTM C989/C989M; Grade 80,.
 - 3. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33/C33M; size to suit application.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: ASTM C494/C494M.
- H. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M, Grade 420 (60); deformed.
- I. Welded Wire Fabric: ASTM A1064/A1064M, plain; Grade 450 (65); sized as indicated.
- J. Expansion Joint Filler: ASTM D1751.
- K. Sheet Materials for Curing Concrete: ASTM C171.
- L. Color Pigment: ASTM C979/C979M, colored and white powder pigments.

2.2 SELECT SUBBASE

- A. Subbase: AASHTO M147; Grade B.
 - 1. Select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials.

SUBBASE GRADING REQUIREMENTS							
Sieve Size		Percentage Passing by Mass					
		Grades					
(mm)	(in)	A	B	C	D	E	F
50	2	100	100				
25	1		75-95	100	100	100	100
9.5	3/8	30-65	40-75	50-85	60-100		
4.47	No. 4	25-55	30-60	35-65	50-85	55-100	70-100
2.00	No. 10	15-40	20-45	25-50	40-70	40-100	55-100
0.425	No. 40	8-20	15-30	15-30	25-45	20-50	30-70
0.075	No. 200	2-8	5-20	5-15	5-20	6-20	8-25

B. Other Acceptable Gradations: Materials within three to five percent, plus or minus, of specified gradation, or as recommended by the geotechnical engineer and approved by the Contracting Officer's Representative.

2.3 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - 1. Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood, minimum 50 mm (2 inches) thick, free from warp, twist, loose knots, splits, or other defects.
 - 3. Form Coating: As recommended by Architect/Engineer.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - 1. Do not use forms varying from straight line more than 3 mm in 3000 mm (1/8 inch in 10 feet), horizontally and vertically.
- C. Provide flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Burlap: Minimum 233 g/sq. m (7 ounces/sq. yd.) dry.
 - 2. Sheet Materials for Curing Concrete: ASTM C171.
 - 3. Curing Compound: ASTM C309, Type 1 clear; liquid membrane forming type, without paraffin or petroleum.

2.5 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Concrete Type: Air-entrained. See Table I.

TABLE I - CONCRETE TYPES					
Concrete Type	Minimum 28 Day Compressive Strength f'c MPa (psi)	Non-Air-Entrained		Air-Entrained	
		Min. Cement kg/cu. m (lbs./cu. yd.)	Max. Water Cement Ratio	Min. Cement kg/cu. m (lbs./cu. yd.)	Max. Water Cement Ratio
A	35 (5000)1,3	375 (630)	0.45	385 (650)	0.40
B	30 (4000)1,3	325 (550)	0.55	340 (570)	0.50

Footnotes:

1. If trial mixes are used, achieve compressive strength 8.3 MPa (1,200 psi) in excess of f'_c . For concrete strengths greater than 35 MPa (5,000 psi), achieve compressive strength 9.7 MPa (1,400 psi) in excess of f'_c .
2. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.
3. Laboratory Determined according to ACI 211.1 for normal weight concrete.

C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP	
APPLICATION	MAXIMUM SLUMP
Curb & Gutter	75 mm (3 inches)
Pedestrian Pavement	75 mm (3 inches)
Vehicular Pavement	50 mm (2 inches) Machine Finished 100 mm (4 inches) Hand Finished
Equipment Pad	75 to 100 mm (3 to 4 inches)

2.6 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.
- C. Sealants:
 1. Concrete Paving Expansion Joints: ASTM D5893/D5893M, Type SL, single component, self-leveling, silicone joint sealant.
 2. Concrete Paving Joints: ASTM D6690, Type IV, hot-applied, single component joint sealant.
- D. Concrete Protective Coating: AASHTO M233 linseed oil mixture.

PART 3 - EXECUTION**3.1 PREPARATION**

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Prepare, construct, and finish subgrade. See Section 31 20 00, EARTHWORK.
- D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

A. Placing:

1. Place subbase material on prepared subgrade in uniform layer to required contour and grades, and to maximum 200 mm (8 inches) loose depth.
2. When required compacted thickness exceeds 150 mm (6 inches), place subbase material in equal thickness layers.
3. When subbase elevation is 13 mm (1/2 inch) or more below required grade, excavate subbase minimum 75 mm (3 inches) deep. Place and compact subbase to required grade.

B. Compaction:

1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
2. Maintain subbase at optimum moisture content for compaction.
3. Compact each subbase layer to minimum 95 percent or 100 percent of maximum density as specified in Section 31 20 00, EARTHWORK.

C. Subbase Tolerances:

1. Variation from Indicated Grade: Maximum 9 mm (3/8 inch).
2. Variation from Indicated Thickness: Maximum 13 mm (1/2 inch).

D. Protection:

1. Protect subbase from damage until concrete is placed.
2. Reconstruct damaged subbase before placing concrete.

3.3 SETTING FORMS

A. Form Substrate:

1. Compact form substrate to uniformly support forms along entire length.
2. Correct substrate imperfections and variations by cutting, filling, and compacting.

B. Form Setting:

1. Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
2. Remove forms when removal will not damage concrete and when required for finishing.
3. Clean and oil forms before each use.
4. Correct forms, when required, immediately before placing concrete.

C. Land Surveyor: Establish control, alignment, and grade for forms.

1. Notify Contracting Officer's Representative immediately when discrepancies exist between field conditions and drawings.

2. Correct discrepancies greater than 25 mm (1 inch) before placing concrete.

D. Form Tolerances:

1. Variation from Indicated Line: Maximum 6 mm (1/4 inch).
2. Variation from Indicated Grade: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 1. Conform to details shown.
 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on approved submittal Drawings.
- B. Place transverse construction joints of type shown, where indicated, and whenever concrete placement is suspended for more than 30 minutes.

3.7 CONTRACTION JOINTS

- A. Tool or cut joints to width, depth, and radius edge shown on drawings using grooving tool, jointer, or saw.
- B. Construct joints in curbs and gutters by inserting 3 mm (1/8 inch) steel plates conforming to curb and gutter cross sections.
 1. Keep plates in place until concrete can hold its shape.
- C. Finish joint edges with edging tool.
- D. Score pedestrian pavement with grooving tool or jointer.

3.8 EXPANSION JOINTS

- A. Form expansion joints with expansion joint filler of thickness shown on drawings.
 1. Locate joints around perimeter of structures and features abutting site work concrete.

2. Create complete, uniform separation between structure and site work concrete.
- B. Extend expansion joint material full depth of concrete with top edge of joint filler below finished concrete surface where sealant is indicated on Drawings.
- C. Cut and shape material matching cross section.
- D. Anchor with approved devices to prevent displacing during placing and finishing operations.
- E. Round joint edges with edging tool.

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 1. Obtain Contracting Officer's Representative approval.
 2. Remove debris and other foreign material.
 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 1. Vibrate concrete against forms and along joints.
 2. Avoid excess vibration and handling causing segregation.
- D. Place concrete continuously between joints without bulkheads.
- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.

3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS

- A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.
- B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- C. Strike concrete surface to proper section ready for consolidation.
- D. Consolidate concrete by tamping and spading or with approved mechanical finishing equipment.
- E. Finish concrete surface with wood or metal float.
- F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 FORM REMOVAL

- A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.
- B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.12 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below, unless otherwise indicated on Drawings:
 1. Consolidating, floating, striking, troweling, texturing, and joint edging.
- B. Use edging tool with 6 mm (1/4 inch) radius, unless otherwise shown on Drawings.
- C. Keep finishing equipment and tools clean and suitable for use.

3.13 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, Wheelchair Curb Ramps,:
 1. Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 2. Finish slab edges and formed transverse joints with edger.
 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1.5 mm (1/16 inch) deep profile.
 4. Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 5. Paving Tolerances:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).
 - b. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
 6. Replace paving within joint boundary when paving exceeds specified tolerances.

3.14 CONCRETE FINISHING - EQUIPMENT PADS

- A. Strike pad surface to elevation shown on Drawings.
- B. Provide smooth, dense float finish, free from depressions or irregularities.
- C. Finish pad edges with edger.

D. After removing forms, rub pad edge faces with wood or concrete rubbing block, removing blemishes, form marks, and tool marks and providing uniform color.

E. Pad Tolerances:

1. Variation from Indicated Plane: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
2. Variation from Indicated Elevation: Maximum 6 mm (1/4 inch).
3. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).

F. Replace pads when pads exceed specified tolerances.

3.15 CONCRETE CURING

A. Concrete Protection:

1. Protect unhardened concrete from rain and flowing water.
2. Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
3. Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.
 - a. Replace pavement damaged by curing method allowing concrete cracking.
 - b. Employ another curing method as directed by Contracting Officer's Representative.

B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:

1. Burlap Mat: Provide minimum two layers kept saturated with water during curing period. Overlap Mats at least 150 mm (6 inches).

2. Sheet Materials:

- a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
- b. Overlap sheets minimum 300 mm (12 inches).
- c. Securely anchor sheet materials preventing displacement.

3. Curing Compound:

- a. Protect joints indicated to receive sealants preventing contamination from curing compound.
- b. Insert moistened paper or fiber rope into joint or cover joint with waterproof paper.
- c. Apply curing compound before concrete dries.
- d. Apply curing compound in two coats at right angles to each other.

- e. Application Rate: Maximum 5 sq. m/L (200 sq. ft./gallon), both coats.
- f. Immediately reapply curing compound to surfaces damaged during curing period.

3.16 CONCRETE PROTECTIVE COATING

- A. Apply protective coating of linseed oil mixture to exposed-to-view concrete surfaces, drainage structures, and features that project through, into, or against concrete exterior improvements to protect the concrete against deicing materials.
- B. Complete backfilling and curing operation before applying protective coating.
- C. Dry and thoroughly clean concrete before each application.
- D. Apply two coats, with maximum coverage of 11 sq. m/L (50 sq. yds./gal.); first coat, and maximum 16 sq. m/L (70 sq. yds./gal.); second coat, except apply commercially prepared mixture according to manufacturer's instructions.
- E. Protect coated surfaces from vehicular and pedestrian traffic until dry.
- F. Do not heat protective coating, and do not expose protective coating to open flame, sparks, or fire adjacent to open containers or applicators. Do not apply material at temperatures lower than 10 degrees C (50 degrees F).

3.17 FIELD QUALITY CONTROL

- A. Field Tests: Performed by contractor.
 - 1. Compaction.
 - a. Pavement subgrade.
 - b. Curb, gutter, and sidewalk.
 - 2. Concrete:
 - a. Delivery samples.
 - b. Field samples.
 - 3. Slip Resistance: Steps and pedestrian paving.

3.18 CLEANING

- A. After completing curing:
 - 1. Remove burlap and sheet curing materials.
 - 2. Sweep concrete clean, removing foreign matter from the joints.
 - 3. Seal joints as specified.

3.19 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - 1. Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.
 - 1. Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -

SECTION 32 31 13
CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 1. Chain link fence, gates and accessories.

1.2 RELATED REQUIREMENTS

- A. Temporary Construction Fence: Section 01 00 00, GENERAL REQUIREMENTS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 1. A121-13 - Metallic Coated Carbon Steel Barbed Wire.
 2. A392-11a - Zinc-Coated Steel Chain-Link Fence Fabric.
 3. A491-11 - Aluminum Coated Steel Chain Link Fence Fabric.
 4. A817-12 - Metal-Coated Steel Wire for Chain-Link Fence Fabric and Marcellled Tension Wire.
 5. B429 - Aluminum-Alloy Extruded Structural Pipe and Tube.
 6. F567-14a - Installation of Chain-Link Fence.
 7. F626-14 - Fence Fittings.
 8. F668-11 - Polyvinyl Chloride (PVC) and Other Organic Polymer-Coated Steel Chain Link Fence Fabric.
 9. F900-11 - Industrial and Commercial Swing Gates.
 10. F1184-16 - Industrial and Commercial Horizontal Slide Gates.
 11. F1664-08(2013) - Polyvinyl Chloride (PVC) and Other Conforming Organic Polymer Coated Steel Tension Wire used with Chain Link Fence.
 12. F1665-08(2013) - Polyvinyl Chloride (PVC) and Other Conforming Organic Polymer Coated Steel Barbed Wire used with Chain Link Fence.
 13. F2200-14 - Automated Vehicular Gate Construction.
 14. F1043-16 - Strength and Protective Coatings on Steel Industrial Fence Framework.
 15. F1083-16 - Pipe, Steel, Hot-Dipped Zinc-Coated (Galvanized) Welded, for Fence Structures.
- C. Chain Link Fence Manufacturing Institute (CLFMI):
 1. Product Manual.
- D. Federal Specifications (Fed. Spec.):
 1. FF-P-110J - Padlock, Changeable Combination.

E. Master Painters Institute (MPI):

1. No. 18 - Primer, Zinc Rich, Organic.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 1. Description of each product.
 2. Installation instructions.
- D. Certificates: Certify products comply with specifications.
 1. Fence alignment.
 2. Zinc-coating.
- E. Qualifications: Substantiate qualifications comply with specifications.
 1. Manufacturer with project experience list.
 2. Installer with project experience lis.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 1. Regularly manufactures specified products.
 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
- B. Installer Qualifications:
 1. Regularly installs specified products.
 2. Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
- C. Welders and Welding Procedures Qualifications: AWS D1.1/D1.1M

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Protect products from damage during handling and construction operations.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS**2.1 PRODUCTS - GENERAL**

- A. Basis of Design: See Drawings.
- B. Provide fences and gates from one manufacturer.

2.2 CHAIN-LINK FENCING AND GATES

- A. General: Conform to CLFMI Product Manual.
- B. Chain Link Fabric: 50 mm (2 inch) mesh, 3.76 mm(0.15 inches), 1.8 m (72 inches) high, top selvage and bottom selvage.
 - 1. Zinc-Coated Steel Fabric: ASTM A392, hot dipped galvanized before or after weaving.
 - a. Class 2 - 610 g/sq. m (2.0 oz/sq. ft.).
 - 2. Polymer Coated Steel Fabric: ASTM F668.
 - a. Class 2b fused and adhered.
 - b. Color: Black.
 - 3. Fabric Selvage: K&T, Knuckle finish at one end, twist at other.
 - a. Fabric less than 1.8 m (72 inches) width, knuckle finish top and bottom.
- C. Fence Framework:
 - 1. Round Steel Pipe and Rail: ASTM F1043, Group IA Heavy Industrial Fence Framework, ASTM F1083 schedule 40 galvanized pipe.
 - a. Line post: 60 mm (2.375 inch) diameter.
 - b. End, Corner, Pull post: 60 mm (2.375 inch) diameter.
 - c. Brace rails, top, bottom, and intermediate rails, 42 mm (1.660 inch) diameter, 3.38 kg/m (2.27 lb./ft.).
 - 2. Polymer Coated Framework: ASTM F668 PVC coating fused and adhered to the exterior zinc coating of the post or rail.
 - a. Coating Thickness (Minimum):
 - 1) PVC and Polyolefin: 0.25 mm (10 mils).
 - b. Color: Match fabric - black.

2.3 TENSION WIRE

- A. Polymer Coated Steel Tension Wire: ASTM F1664, Class 2b 4.5 mm (0.177 inches) wire. Wire gauge specified is the core wire gauge.

2.4 FITTINGS

- A. General: ASTM F626.
- B. Tension and Brace Bands: Galvanized pressed steel.
- C. Terminal Post Caps, Line Post Loop Tops, Rail and Brace Ends, Boulevard Clamps, Rail Sleeves: Pressed steel galvanized.
- D. Truss Rod Assembly: Steel truss rod with a pressed steel tightener.
- E. Tension Bars: Galvanized steel one-piece length 50 mm (2 inches) less than the fabric height.
- F. Polymer Coated Color Fittings: Polymer coating minimum thickness 0.15 mm (0.006 inches) fused and adhered to zinc coated fittings and match color to fence system.

2.5 GATES

- A. Swing Gates: ASTM F2200 double swing type.
 - 1. Galvanized steel:
 - a. Frame: ASTM F1043 and ASTM F1083 Group IA schedule 40 pipe / 48.3 mm (1.900 inches) OD. Apply galvanized repair paint on welded joints.
 - 1) Vertical and Horizontal Spacing: Maximum 2400 mm (8 ft.).
 - b. Hardware:
 - 1) Hinges: 180 degree gate hinges per leaf.
 - 2) Positive locking gate latch, 7.9 mm (5/16 inches) thick by 44 mm (1 3/4 inches).
 - 3) Padlocks: By VA .
 - 2. Polymer Coated Frames and Posts: Match fence. Field coat hardware with liquid polymer touch up.

2.6 CONCRETE

- A. Concrete: As specified in Section 03 30 00, Cast-in-Place Concrete.

2.7 FINISHES

- A. Steel Paint Finish:
 - 1. Powder-Coat Finish: Manufacturer's standard two-coat finish system as follows:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.

- d. Color: Black, match fencing.
- B. Finish exposed surfaces after fabrication.

2.8 ACCESSORIES

- A. Primers:
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Galvanizing Repair Paint: MPI No. 18.
- E. Touch-Up Paint: Match shop finish.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing fences and gates to permit new installation.
 - 1. Dispose of other removed materials.
- D. Apply barrier coating to steel surfaces in contact with dissimilar metals and cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION

- A. Layout fence and locate position of post.
- B. Installation:
 - 1. General: Comply with ASTM F567.
 - 2. Framework:
 - a. Posts: Set plumb in concrete footings with 600 mm (24 inches) minimum depth.
 - 1) Minimum Footing Diameter: Four times largest cross section of post, up to 100 mm (4 inches) O.D. and three times largest cross section of post greater than 100 mm (4 inches). O.D.
 - 2) Provide larger footings for gate posts. Top of post concrete footing, at grade crowned to shed water away from the post.
 - 3) Space line posts not exceeding 3 m (10 ft.) on center.
 - b. Top rail: Install 6.4 m (21 ft.) lengths of rail continuous thru line post or barb arm loop top. Splice rail using top rail sleeves minimum 150 mm (6 inches) long.
 - 1) Secure rail to terminal post by brace band and rail end.
 - 2) Field cut and secure bottom rail or intermediate rail to line posts with boulevard bands or rail ends and brace bands.

- 3) Provide mid rail for fences 3.7 m (12 feet) high or higher.
- c. Terminal posts: Brace and truss end, corner, pull and gate posts for fence 1.8 m (6 ft.) and higher and for fences 1.5 m (5 ft.) in height without top rail.
- d. Tension wire: Install tension wire 100 mm (4 inches) up from bottom of fabric. Fences without top rail, install tension wire 100 mm (4 inches) down from the top of the fabric.
 - 1) Stretched taut tension wire independently, between terminal posts and secure with brace band.
 - 2) Secure tension wire to chain link fabric with 3.76 mm (0.15 inch) hog rings 450 mm (18 inches) on center and to each line post with tie wire.
 - 3) Install top tension wire through barb arm loop for fences with barbed wire and no top rail.

C. Chain Link Fabric:

1. Install fabric outside of the framework with ground clearance of 50 mm (2 inches) maximum.
2. Stretch fabric between terminal posts and secure with tension bar.
3. Wrap tie wire around the post or rail. Attached to fabric wire picket on both sides.

D. Gate:

1. Swing Gates: Comply with ASTM F567. Outward swing. Gates plumb in closed position with 75 mm (3 inches) bottom clearance. Install electrically operated gates according to manufacturer's instructions.
2. Horizontal Slide Gates: Install according to manufacturer's instructions.

E. Nuts and Bolts:

1. Bolts: Install carriage bolts with head on the secure side of the fence. Peened over all bolts shall be to prevent removal of the nut.

F. Electrical Grounding:

1. Grounding: Grounding, when required, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

G. Touch up damaged factory finishes.

1. Repair galvanized surfaces with galvanized repair paint.
2. Repair painted surfaces with touch up primer.

3.3 CLEANING

- A. Clean exposed fence surfaces. Remove contaminants and stains.

3.4 PROTECTION

- A. Protect fence from traffic and construction operations.
- B. Repair damage.

- - - E N D - - -

SECTION 33 30 00**SANITARY SEWER UTILITIES****PART 1 - GENERAL****1.1 DESCRIPTION**

A. This section specifies materials and procedures for construction of outside, underground sanitary sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.

B. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

C. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

D. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 ABBREVIATIONS

A. PVC: Polyvinyl chloride plastic

B. DI: Ductile iron pipe

1.4 DELIVERY, STORAGE AND HANDLING

A. Store plastic piping protected from direct sunlight and support to prevent sagging and bending. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.

B. Handle manholes according to manufacturer's written rigging instructions.

1.5 QUALITY ASSURANCE:

A. Products Criteria:

1. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

1.6 SUBMITTALS:

A. Manufacturers' Literature and Data shall be submitted for the following as one package:

1. Pipe, Fittings, and, Appurtenances.
2. Jointing Material.
3. Manhole and Structure Material.
4. Frames and Covers.
5. Steps and Ladders.

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society for Testing and Materials (ASTM):

A74-09.....Cast Iron Soil Pipe and Fittings

A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete

A615/A615M-09b.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

A746-99.....Ductile-Iron Gravity Sewer Pipe

C478-09.....Precast Reinforced Concrete Manhole Sections

C857-11.....Minimum Structural Design Loading for Underground Precast Concrete Utility Structures

C890-11.....Minimum Structural Design Loading for Monolithic or Sectional Precast Concrete Water and Wastewater Structures

C913-08.....Precast Concrete Water and Wastewater Structures

C923-08.....Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals

C924-02(2009).....Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method

C990-09.....Joints for Concrete Pipe, Manholes, and precast Box Sections using Preformed Flexible Joint Sealants

C1173-10.....Flexible Transition Couplings for Underground Piping Systems

C1440-08.....Thermoplastic Elastomeric (TPE) Gasket
Materials for Drain, Waste and Vent (DWV),
Sewer, Sanitary and Storm Plumbing Systems

C1460-08.....Shielded Transition Couplings for Use With
Dissimilar DWV Pipe and Fittings Above Ground

C1461-08.....Mechanical Couplings Using Thermoplastic
Elastomeric (TPE) Gaskets for Joining Drain,
Waste and Vent (DWV), Sewer, Sanitary and Storm
Plumbing systems for Above and below Ground Use

D2321-11.....Underground Installation of Thermoplastic Pipe
for Sewers and Other Gravity-Flow Applications

D3034-08.....Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe
and Fittings

F477-10.....Elastomeric Seals (Gaskets) for Joining Plastic
Pipe

F679-08.....Poly(Vinyl Chloride) (PVC) Large-Diameter
Plastic Gravity Sewer Pipe and Fittings

F891-10.....Coextruded Poly(vinyl Chloride) (PVC) Plastic
Pipe With a Cellular Core

F949-10.....Poly(Vinyl Chloride) (PVC) Corrugated Sewer
Pipe With a Smooth Interior and Fittings

F1417-11.....Standard Test Method for Installation
Acceptance of Plastic Gravity Sewer Lines Using
Low-Pressure Air

F1668-08.....Construction Procedures for Buried Plastic Pipe

C. American Water Works Association (AWWA):

C105/A21.5-10.....Polyethylene Encasement for Ductile-Iron Pipe
Systems

C110-08.....Ductile-Iron and Gray-Iron Fittings

C111/A21.11-06.....Rubber Gasket Joints for Ductile Iron Pressure
Pipe and Fittings

C151/A21.51-09.....Ductile Iron Pipe, Centrifugally Cast

C153/A21.53-06.....Ductile Iron Compact Fittings for Water Service
C219-11.....Bolted, Sleeve-Type Couplings for Plain-End Pipe
C512-07.....Air Release, Air/Vacuum and Combination Air Valves for Water Works Service
C600-10.....Installation of Ductile-Iron Mains and Their Appurtenances
C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

D. American Society of Mechanical Engineers:

A112.14.1-2003.....Backwater Valves
A112.36.2M-1991.....Cleanouts

1.8 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will provide all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements.
B. All pipe and fittings used in the construction of force mains shall be rated to meet the system maximum operating pressure with a minimum of 150 psi (1035 kPa).
C. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical Joint Piping

1. Pipe and Fittings: AWWA C151, thickness Class 52 unless otherwise shown or specified.
2. Compact Fittings: AWWA C153.
3. Gaskets: AWWA C111.
4. Exterior coating: AWWA C151.
5. Interior lining shall be as per ASTM A746.
6. Pipe and fittings shall be polyethylene encased as per AWWA C105.

B. Push-on-Joint Piping:

1. Pipe: AWWA C151, thickness Class 52 , with bolt holes in bell.
2. Standard Fittings: AWWA C110.
3. Compact Fittings: AWWA C153.
4. Gaskets: AWWA C111.
5. Exterior coating: AWWA C151.
6. Interior lining: AWWA C151.
7. Pipe and fittings shall be polyethylene encased as per AWWA C105.

2.3 PVC, GRAVITY SEWER PIPE AND FITTINGS

A. PVC Gravity Sewer Piping:

1. Pipe and Fittings shall conform to ASTM D3034 and SDR 26.
2. Gaskets: ASTM F477.

2.4 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C1173, elastomeric, sleeve type, reducing or transition coupling, for joining underground nonpressure piping. Include ends to match same sizes of main line piping and install corrosion-resistant metal tension bands and tightening mechanism on each end.

B. Sleeve Materials:

1. For Plastic Pipes: ASTM F477, elastomeric seal.
2. For Dissimilar Pipes: PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:

1. Couplings shall be elastomeric sleeve with stainless steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:

1. Couplings shall meet ASTM C1460 with elastomeric with full-length, corrosion-resistant outer shield with corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:

1. Couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger mainline pipe and for spigot of smaller main line pipe to fit inside ring.

F. Nonpressure-Type, Rigid Couplings:

1. Coupling shall be ASTM C1461, sleeve-type, reducing- or transition-type mechanical coupling, molded from ASTM C1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.5 EXPANSION JOINTS AND DEFLECTION FITTINGS

A. Ductile-Iron, Flexible Expansion Joints:

1. Compound fittings: Fittings shall have a combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one gasketed sleeve section, rated for 250-psi (1725-kPa) minimum working pressure and for offset and expansion indicated.

B. Ductile-Iron Expansion Joints:

1. Jointing Material: Joints shall be a three-piece assembly of telescoping sleeve with gaskets and restrained-type, ductile iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psi (1725-kPa) minimum working pressure and for expansion indicated.

C. Ductile-Iron Deflection Fittings:

1. Jointing Material: Compound coupling fittings with ball joint, flexing section, gaskets, and restrained-joint ends shall comply with AWWA C110 or AWWA C153. Include rating for 250-psi (1725-kPa) minimum working pressure and for up to 15 deg of deflection.

2.6 CLEANOUTS

A. Cast-Iron Cleanouts:

1. Cleanouts shall be as per ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

2. Top-Loading Classification(s): Valve loadings shall be designed for Heavy Duty.

3. Cleanout Riser: Sewer pipe fitting on main line pipe and riser shall be as per ASTM A74, service class.

B. PVC Cleanouts:

1. PVC body with PVC threaded plug: Cleanout shall be as per ASTM D3034. PVC sewer pipe fitting and riser to cleanout.
2. Cleanout Riser: Sewer pipe fitting on main line sewer and riser shall match main line piping.

2.7 CONCRETE

- A. Cast-in-place concrete shall be 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
- B. Reinforcement
 1. Reinforcing fabric shall be ASTM A185, steel, welded wire fabric, plain.
 2. Reinforcing bars shall be ASTM A615, Grade 60 (420 MPa) deformed steel.
- C. Benches shall be concrete, sloped to drain into the channel. Provide 6 inches (150 mm) from the cut section of top of pipe to edge of manhole.
- D. Ballast and Pipe Supports shall be Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.

2.8 WET WELL

- A. 500-gallon grease interceptor shall be lifetime guaranteed and made in USA of seamless, molded polyethylene with minimum 7/16" uniform wall thickness. Flow control cartridge shall be PVC. Interceptor shall be furnished for below grade installation with adjustable cover adapter, access restrictor built into each cover adapter and temporary jobsite cover. Interceptor shall be certified for hydromechanical performance to ASME A112.14.3 (Type C) and CSA B481.1. Interceptor flow rate shall be 100 GPM, or up to 500 GPM in high-flow applications. Interceptor grease capacity shall be 3,048 lbs. @ 100 GPM, or 1,000 lbs. @ 500 GPM (factory rated). Cast iron, traffic cover shall provide water/ gas-tight seal and have minimum 16,000 lbs. load capacity. Interceptor shall be furnished with risers as needed to extend cover and adapter to finish grade. Interceptor shall be furnished with pumpout port kit to enable remote pumpout.

B. Tank Design Criteria:

1. Internal Load: Tank shall withstand without leakage a 5 psi (34.5 kpa) air pressure test with 5 to 1 safety factor. Contractor shall test prior to installation as this is to test for leakage.
2. Vacuum Test: The tank shall be tested to 11.5 inches (292 mm) of mercury vacuum by the tank manufacturer to assure structural

integrity. Contractor shall submit vacuum test certificate if test conducted by manufacturer at plant.

3. Surface Loading: Tank shall withstand surface AASHTO HS20-44 axle loads.
4. External Hydrostatic Pressure: Tank shall withstand 7 feet (2.1 m) of overburden with the hole fully flooded with a 3 to 1 safety factor against leaking.
5. Threaded fittings shall be of a material consistent with the requirements of the UL label and be of the sizes and locations shown on the drawings.

2.9 WARNING TAPE

- A. Warning tape shall be standard, 4 mil (0.1 mm) polyethylene 3 inch (76 mm) wide tape non-detectable type, green with black letters and imprinted with "CAUTION BURIED SEWER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans and details indicate the general location and arrangement of underground sanitary sewer piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at the low point, true to grades and alignment indicated on the drawings, with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
- D. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
- E. Inspect pipes and fittings for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
- F. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.

- G. Do not walk on pipe in trenches until covered by layers of bedding or backfill material to a depth of 12 inches (300 mm) over the crown of the pipe.
- H. Warning tape shall be continuously placed 12 inches (300 mm) above sewer pipe
- I. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- J. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- K. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process or microtunneling.
- L. Install gravity-flow, non-pressure, drainage piping according to the following:
 1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 2. Install piping with 42 inch (1220 mm) minimum cover as shown on Drawings.
 3. Install ductile iron, gravity sewer piping according to AWWA C600.
 4. Install PVC cellular-core, PVC corrugated sewer, PSM sewer and PVC gravity sewer according to ASTM D2321 and ASTM F1668.
- M. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.2 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, non-pressure, drainage piping according to the following:
 1. Join ductile iron, gravity sewer piping according to AWWA C600 for push-on joints.
 2. Join PVC piping according to ASTM D2321.
 3. Join dissimilar pipe materials with nonpressure-type, flexible or rigid couplings.
- B. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

1. Use non-pressure flexible couplings where required to join gravity-flow, non-pressure sewer piping unless otherwise indicated.
 - a. Shielded Flexible or Rigid couplings for pipes of same or slightly different OD.
 - b. Unshielded, increaser/reducer-pattern, flexible or rigid couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
2. Use pressure pipe couplings for force-main joints.

3.3 CONCRETE DEADMAN ANCHORS

- A. Install reinforced concrete as detailed on the drawings. The concrete shall not restrict access for future maintenance of the joints within the piping system.

3.4 WET WELLS

- A. Install tank with concrete deadman anchors as recommended by the manufacturer.
- B. Installation of the tank and fittings shall be in accordance with the recommendations of the manufacturer.
- C. In areas where the tank is subject to groundwater, the tank shall be anchored against floating as recommended by the manufacturer.
- D. After installation, the inlets and outlets shall be plugged, and the tank completely filled with water. The tank shall have no leakage over a 48 hour period.
- E. Top of wet well should be set a minimum of 6 inches (150 mm) above finish grade, unless in a traffic area, then it must match existing grade.
- F. Install a 12 inches (300 mm) concrete ring around the fiberglass tank if in a grassed area.
- G. All tank walls shall be level and plumb.
- H. Seal all joints and depressions in the wet well.
- I. Pipe and fittings entering and within the wet well shall be poly-lined ductile iron pipe.
- J. All pipe penetrations through the walls of the wet well shall be sealed water tight.

3.5 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Cleanouts should be 6 inches (150 mm) in diameter and consist of

a ductile iron 45 degree fitting on end of run, or combination Y fitting and 1/8 bend in the run with ductile iron pipe extension, watertight plug or cap and cast frame and cover flush with finished grade. Install piping so cleanouts open in direction of flow in sewer pipe.

1. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete, 18 by 18 by 12 inches (450 by 450 by 300 mm) 1 inch (25 mm) above surrounding grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
- D. The top of the cleanout assembly shall be 2 inches (50 mm) below the bottom of the cover to prevent loads being transferred from the frame and cover to the piping.

3.6 CONNECTIONS

- A. Make connections to existing piping and underground manholes by coring and installing the pipe at the design invert. Install an elastomeric gasket around the pipe and grout the interstitial space between the pipe and the core.
- B. Use commercially manufactured wye fittings for piping branch connections. Encase entire wye fitting plus 6-inch (150-mm) overlap with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 1. Make branch connections from the side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500), by removing a section of the existing pipe.
 2. Make branch connections from the side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes by cutting an opening into existing unit large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in concrete to provide additional support of collar from connection to undisturbed ground.
 3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.7 REGRADING

- A. Raise or lower existing manholes and structures frames and covers, cleanout frames and covers and valve boxes in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Adjust the elevation of the cleanout pipe riser, and reinstall the cap or plug. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.8 IDENTIFICATION

- A. Install green warning tape directly over piping and at outside edges of underground manholes.

3.9 FIELD QUALITY CONTROL

- A. All systems shall be inspected and obtain the Resident Engineer's approval. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- B. To inspect, thoroughly flush out the lines and manholes before inspection. Lamp test between structures and show full bore indicating sewer is true to line and grade. Lips at joints on the inside of gravity sewer lines are not acceptable.
 1. Submit separate report for each system inspection.
 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.

4. Re-inspect and repeat procedure until results are satisfactory.

C. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:

1. Test plastic gravity sewer piping according to ASTM F1417.

2. Test concrete gravity sewer piping according to ASTM C924.

3. Clean and isolate the section of sewer line to be tested. Plug or cap the ends of all branches, laterals, tees, wyes, and stubs to be included in the test to prevent air leakage. The line shall be pressurized to 4 psi (28 kPa) and allowed to stabilize. After pressure stabilization, the pressure shall be dropped to 3.5 psi (24 kPa) greater than the average back-pressure of any groundwater above the sewer.

4. Testing of Sewage Holding Tanks shall show no leakage during a 5 psi (35 kPa) air pressure test with 5:1 safety factor.

3.10 CLEANING

A. Clean dirt and superfluous material from interior of piping.

- - - E N D - - -