CONTRUCT OUTPATIENT MENTAL HEALTH VA PROJECT NUMBER: 438-450

VAMC SIOUX FALLS, SD 2501 WEST 22nd ST. SIOUX FALLS, SD 57105

U.S. Department of Veterans Affairs

Veterans Health Administration

TECHNICAL SPECIFICATIONS VOLUME II

ANDERSON ENGINEERING OF MN, LLC Project Number: 14541

> Issue for **100% BID DOCUMENTS** 01, OCTOBER 2018

Anderson Engineering of Minnesota, LLC 13605 1st Avenue North Plymouth, MN 55441 Phone: 763-412-4000 Fax: 763-412-4090

Prepared in association with the following: LEO A DALY & FARRIS ENGINEERING

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 21 08 00

COMMISSIONING OF FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.
- B. The Fire Suppression systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

VA Project 438-450 10-01-18 100% Bid Documents

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

VA Project 438-450 10-01-18 100% Bid Documents

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING

VA Project 438-450 10-01-18 100% Bid Documents

REQUIREMENTS and Division 21 Sections for additional Contractor training requirements.

---- END -----

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation, for all portions of Building, including the penthouse.
- C. Not Used

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.
- G. Not Used
- H. Not Used

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

- b. Ordinary Hazard Group 1 Occupancies: Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Data Rooms and Electric Closets.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, pharmacy and associated storage, storage areas, building management storage, file storage and housekeeping rooms.
- Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Base water supply on a flow test of:
 - a. Location: Hydrant nearest to the planned tap of the existing domestic water line.
 - b. Not Used
 - c. Not Used
 - d. Static pressure: 66 psi
 - e. Residual pressure: 60 psi
 - f. Flow: ____X___ L/s (1,280 gpm)
 - g. Date: 08/09/2016
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings. Note, the building is a single smoke zone.
- 6. Not Used

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in

Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

- 1. Qualifications:
 - a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
 - c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
 - b. Not Used
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in

Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:

- a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - One full size (or size as directed by the COR) printed copy.
 - 2.) One complete set in electronic pdf format.
 - One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

VA Project 438-450 10-01-18 100% Bid Documents

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of South Dakota fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-13.....Installation of Sprinkler Systems
25-14....Inspection, Testing, and Maintenance of WaterBased Fire Protection Systems

101-15....Life Safety Code

170-15.....Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.

- 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
- 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
- Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
- 4. Not Used
- 5. Plastic piping shall not be permitted except for drain piping.
- 6. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.
- E. Not Used
- F. Backflow Preventer: Provide backflow preventer in accordance with Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING. Provide means to forward flow test the backflow preventer in accordance with NFPA 13. Contractor shall provide initial certification of backflow preventer and include copy of certification in O&M Manual.

2.3 FIRE DEPARTMENT SIAMESE CONNECTION

A. Brass, flush wall type, exterior fire department connection with brass escutcheon plate and a minimum of two 65 mm (2-1/2 inch) connections threaded to match those on the local fire protection service, with polished brass caps and chains. Provide escutcheon with integral raised letters "Automatic Sprinkler". Install an automatic ball drip between

fire department connection and check valve with drain piping routed to the exterior of the building or a floor drain.

2.4 SPRINKLERS

- A. All sprinklers shall be FM approved quick response except
 - "institutional" type sprinklers shall be permitted to be UL Listed quick response. "Institutional" type sprinklers in Mental Health and Behavior Units shall be UL listed or FM approved quick response type. Maximum break away strength shall be certified by the manufacturer to be no more than 39 kPa (85 pounds). Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.
- B. Temperature Ratings: In accordance with NFPA 13.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.5 SPRINKLER CABINET

- A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13. Locate adjacent to the riser.
- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.6 SPRINKLER SYSTEM SIGNAGE

A. Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.7 SWITCHES:

A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for

attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.

- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- C. Not Used
- D. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.8 GAUGES

A. Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

A. Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

A. Provide chrome plated steel escutcheon plates.

2.11 ANTIFREEZE SOLUTION - NOT USED

2.12 VALVE TAGS

A. Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gauge, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide

a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping shall be installed accordance with NFPA 13.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Not Used
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- L. Not Used

VA Project 438-450 10-01-18 100% Bid Documents

- M. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- N. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 2400 to 3000 mm (8 to 10 feet) above each connection location. Size the sign to 450 by 450 mm (18 by 18 inches) with the symbol being at least 350 by 350 mm (14 by 14 inches).
- O. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- P. Not Used
- Q. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- R. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)
 - 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
 - 3. Hydraulic Placards:

- a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- S. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- T. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

VA Project 438-450 10-01-18 100% Bid Documents

3.3 INSTRUCTIONS

A. Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control
 - 25. DI: Digital Input
 - 26. DISS: Diameter Index Safety System

27. DO: Digital Output 28. DVD: Digital Video Disc 29. DN: Diameter Nominal 30. DWV: Drainage, Waste and Vent 31. ECC: Engineering Control Center 32. EPDM: Ethylene Propylene Diene Monomer 33. EPT: Ethylene Propylene Terpolymer 34. ETO: Ethylene Oxide 35. F: Fahrenheit 36. FAR: Federal Acquisition Regulations 37. FD: Floor Drain 38. FED: Federal 39. FG: Fiberglass 40. FNPT: Female National Pipe Thread 41. FPM: Fluoroelastomer Polymer 42. GPM: Gallons Per Minute 43. HDPE: High Density Polyethylene 44. Hq: Mercury 45. HOA: Hands-Off-Automatic 46. HP: Horsepower 47. HVE: High Volume Evacuation 48. ID: Inside Diameter 49. IPS: Iron Pipe Size 50. Kg: Kilogram 51. kPa: Kilopascal 52. lb: Pound 53. L/s: Liters Per Second 54. L/min: Liters Per Minute 55. MAWP: Maximum Allowable Working Pressure 56. MAX: Maximum 57. MED: Medical 58. m: Meter 59. MFG: Manufacturer 60. mg: Milligram 61. mg/L: Milligrams per Liter

VA Project 438-450 10-01-18 100% Bid Documents

62. ml: Milliliter 63. mm: Millimeter 64. MIN: Minimum 65. NF: Oil Free Dry (Nitrogen) 66. NPTF: National Pipe Thread Female 67. NPS: Nominal Pipe Size 68. NPT: Nominal Pipe Thread 69. OD: Outside Diameter 70. OSD: Open Sight Drain 71. OS&Y: Outside Stem and Yoke 72. OXY: Oxygen 73. PBPU: Prefabricated Bedside Patient Units 74. PH: Power of Hydrogen 75. PLC: Programmable Logic Controllers 76. PP: Polypropylene 77. PPM: Parts per Million 78. PSIG: Pounds per Square Inch 79. PTFE: Polytetrafluoroethylene 80. PVC: Polyvinyl Chloride 81. PVDF: Polyvinylidene Fluoride 82. RAD: Radians 83. RO: Reverse Osmosis 84. RPM: Revolutions Per Minute 85. RTRP: Reinforced Thermosetting Resin Pipe 86. SCFM: Standard Cubic Feet Per Minute 87. SDI: Silt Density Index 88. SPEC: Specification 89. SPS: Sterile Processing Services 90. STD: Standard 91. SUS: Saybolt Universal Second 92. SWP: Steam Working Pressure 93. TEFC: Totally Enclosed Fan-Cooled 94. TFE: Tetrafluoroethylene 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire

> 22 05 11 - 3 COMMON WORK RESULTS FOR PLUMBING

97. T/P: Temperature and Pressure 98. USDA: U.S. Department of Agriculture 99. V: Volt 100. VAC: Vacuum 101. VA: Veterans Administration 102. VAMC: Veterans Administration Medical Center 103. VAC: Voltage in Alternating Current 104. WAGD: Waste Anesthesia Gas Disposal 105. WOG: Water, Oil, Gas 1.2 RELATED WORK A. Section 01 00 00, GENERAL REQUIREMENTS. B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS. E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS. F. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout. G. Section 05 31 00, STEEL DECKING: Building Components for Attachment of Hangers. H. Section 05 36 00, COMPOSITE METAL DECKING: Building Components for Attachment of Hangers. I. Section 05 50 00, METAL FABRICATIONS. J. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations. K. Section 07 84 00, FIRESTOPPING. L. Section 07 92 00, JOINT SEALANTS. M. Section 09 91 00, PAINTING. N. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT. O. Section 22 07 11, PLUMBING INSULATION. P. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Q. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. R. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. S. Section 31 20 11, EARTHWORK (SHORT FORM): Excavation and Backfill.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code -BPVC Section IX-2013....Welding, Brazing, and Fusing Qualifications B31.1-2012....Power Piping C. American Society for Testing and Materials (ASTM): A36/A36M-2012.....Standard Specification for Carbon Structural Steel A575-96(R2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-2013a.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-2012a.....Standard Test Methods for Fire Tests of Building Construction and Materials F1760-01(R2011).....Standard Specification for Coextruded Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic Pipe Having Reprocessed-Recycled Content D. International Code Council, (ICC): IBC-2012.....International Building Code IPC-2012.....International Plumbing Code E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation SP-69-2003.....Pipe Hangers and Supports - Selection and Application F. Military Specifications (MIL): P-21035B..... Galvanizing Repair (Metric) G. National Electrical Manufacturers Association (NEMA): MG 1-2011.....Motors and Generators

- H. National Fire Protection Association (NFPA): 51B-2014.....Standard for Fire Prevention During Welding, Cutting and Other Hot Work 54-2012.....National Fuel Gas Code 70-2014.....National Electrical Code (NEC) I. NSF International (NSF): 5-2012.....Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment 14-2012.....Plastic Piping System Components and Related Materials 61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content J. Department of Veterans Affairs (VA): PG-18-10......Plumbing Design Manual
 - PG-18-13-2011.....Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly

coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.

- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping layout drawings have been approved. Detailed

layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.

- 1. Mechanical equipment rooms.
- 2. Interstitial space.
- 3. Hangers, inserts, supports, and bracing.
- 4. Pipe sleeves.
- 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- J. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.
 - Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- L. Submit training plans, trainer qualifications and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Products Criteria:

 Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.

- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

- Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided

to the COR at least 10 working days prior to commencing installation of any item.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- G. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in

accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.

 Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.

Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Non-pressure PVC pipe shall contain a minimum of 25 percent recycled content. Steel pipe shall contain a minimum of 25 percent recycled content.
- B. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.
- C. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.
- D. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- E. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

VA Project 438-450 10-01-18 100% Bid Documents

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

- A. All material and equipment furnished and installation methods used shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.
- B. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71° C (160°F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers and water heaters.
 - b. Other wiring at boilers and water heaters, and to control panels, shall be NFPA 70 designation THWN.
 - c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
 - 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven

22 05 11 - 15 COMMON WORK RESULTS FOR PLUMBING equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.

- Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act (EPACT), revised 2005. Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.
- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC).
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for specifications.
- B. The combination of controller and motor shall be provided by the respective pump manufacturer, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficient type, "invertor duty", and be approved by the motor controller manufacturer. The controller-motor

combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor sheaves shall be fixed pitch.

D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.

- 3. Valve lists: Valve lists shall be created by the Contractor using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
- 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided by the Contractor in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC). Submittals based on the International Building Code (IBC) requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.

- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING and Section 05 36 00, COMPOSITE METAL DECKING.
- F. For Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate

shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.

- 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
 - j. Spring hangers are required on all plumbing system pumps one horsepower and greater.

- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.

- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.

- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
 - Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.

- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- K. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes

interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.

- M. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.
- N. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- O. Work in Animal Research Areas: Seal all pipe penetrations with silicone sealant to prevent entrance of insects.
- P. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.
- Q. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.
- R. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

VA Project 438-450 10-01-18 100% Bid Documents

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.

- e. Control valves and thermostatic elements.
- f. Lubrication devices and grease fittings.
- g. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Valve stems and rotating shafts.
- i. Pressure gages and thermometers.
- j. Glass.
- k. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.7 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in

Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

B. The commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 2 weeks prior notice.

3.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. Perform tests as required for commissioning provisions in accordance with Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.10 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.

- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 12 GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the general motor requirements for plumbing equipment and applies to all sections of Division 22.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Bearing Manufacturers Association (ABMA): ABMA 9-1990 (R2008)....Load Ratings and Fatigue Life for Ball Bearings
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

841-2009..... and Chemical

Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors--Up to and Including 370 kW (500 HP)

-
- D. International Code Council (ICC):

IPC-2012.....International Plumbing Code

E. National Electrical Manufacturers Association (NEMA): MG 1-2011.....Motors and Generators MG 2-2001 (R2007).....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Materia and Generators

Motors and Generators

250-2008......Enclosures for Electrical Equipment (1000 Volts

Maximum)

F. National Fire Protection Association (NFPA):

70-2011.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT", with applicable paragraph identification.
- C. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Motor nameplate information shall be submitted including electrical ratings, dimensions, mounting details, materials, horsepower, power factor, current as a function of speed, current efficiency, speed as a function of load, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
 - Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.
- D. Operating and Maintenance Manuals: Companion copies of complete maintenance and operating manuals, including technical data sheets and application data shall be submitted simultaneously with the shop drawings. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

- E. Certification: Two weeks prior to final inspection, unless otherwise noted, the following certification shall be submitted to the Contracting Officer's Representative (COR).
 - 1. Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty totally enclosed motors, IEEE 841 shall apply.
- C. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240-volt or 480volt systems: 230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems: Shall conform to NEMA MG 1 Standards for connection to the nominal system voltage shown on the drawings.

- D. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- E. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- F. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration and running torque without exceeding nameplate ratings or considering service factor.
- G. Motor Enclosures:
 - 1. Shall be the NEMA types shown on the drawings for the motors.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
 - All motors in hazardous locations shall be approved for the application and meet the Class and Group as required by the area classification.
- H. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of Class B, 130 degrees
 C (266 degrees F).
 - The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (144 degrees F).
 - The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.

22 05 12 - 4 GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

- 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
- 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable Voltage or Adjustable Frequency Controls, or both, or NEMA MG 1, Part 31, Definite Purpose Inverter Fed Polyphase Motors.
- I. Mechanical Design Requirements:
 - Bearings shall be rated for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hour rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
 - Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
 - 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
 - Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
 - 7. Noise level shall meet the requirements of the application.
 - Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
 - 9. All external fasteners shall be corrosion resistant.
 - Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
 - Winding thermostats, when specified shall be normally closed, connected in series.
 - 12. Grounding provisions shall be in the main terminal box.
- J. Additional requirements for specific motors, as indicated in other sections, shall also apply.

22 05 12 - 5

K. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746 W (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 W (1 HP) or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Efficiencies				Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM	Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

L. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be installed unless the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 FIELD TESTS

A. Megger all motors after installation, before start-up. All shall test free from grounds.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

- - - E N D - - -

SECTION 22 05 19 METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gages primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 25 10 10, ADVANCED UTILITY METERING SYSTEM.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B40.100-2013.....Pressure Gauges and Gauge Attachments B40.200-2008.....Thermometers, Direct Reading and Remote Reading
- C. American Water Works Association (AWWA):

C700-2009..... Standard for Cold Water Meters, Displacement Type, Bronze Main Case

C701-2012.....Cold Water Meters-Turbine Type, for Customer Service

C702-2010.....Cold Water Meters - Compound Type C706-2010....Direct-Reading, Remote-Registration Systems for Cold-Water Meters

- D. Institute of Electrical and Electronics Engineers (IEEE): C2-2012.....National Electrical Safety Code (NESC)
- E. International Code Council (ICC): IPC-2012.....International Plumbing Code

- F. National Fire Protection Association (NFPA): 70-2011.....National Electrical Code (NEC)
- G. NSF International (NSF): 61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAGES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Water Meter.
 - 2. Pressure Gages.
 - 3. Thermometers.
 - 4. Product certificates for each type of meter and gage.
 - 5. BACnet communication protocol.
- D. Operations and Maintenance manual shall include:
 - 1. System Description.
 - 2. Major assembly block diagrams.
 - 3. Troubleshooting and preventive maintenance guidelines.
 - 4. Spare parts information.
- E. Shop Drawings shall include the following: One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit copies of complete operation and maintenance data updated to include submittal review comments, substitutions and construction

revisions shall be inserted into a three ring binder per the requirements of Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 DISPLACEMENT WATER METER

- A. For pipe sizes 50 mm (2 inches) and smaller, the water meter shall be displacement type, full size nutating disc, magnetic drive, sealed register, and fully conform to AWWA C700. Peak domestic flow shall be 2.2 L/s (34 gpm). The meter register shall indicate flow in liters (U.S. gallons).
- B. The water meter shall be rated for use at temperatures ranging from -40 degrees C (-40 degrees F) and 70 degrees C (158 degrees F) and operate at a working pressure of 1035 kPa (150 psig).
- C. The meter case, bottom caps, and register box lids shall be constructed from cast bronze.
- D. The meter shall register plus or minus 3 percent of the water actually passing through it at any rate of flow within the normal test flow limits specified in AWWA 700.
- E. The water meter shall conform to NSF 61andNSF 372.

2.2 WATER METER STRAINER

- A. All meters shall be fitted with a factory installed integral strainer or bronze inlet strainer with top access. The strainer shall conform to AWWA C702.
- B. The water meter strainer shall conform to NSF 61andNSF 372.

2.3 WATER METER PROGRAMMING

- A. All meters 50 mm or DN 50 (2 inches) and above shall be programmable with software supplied by the meter manufacturer.
- B. The software shall have a Microsoft based interface and operate on the latest Windows operating system. The software shall allow the user to configure the meter, troubleshoot the meter, query and display meter parameters, and configure data and stored values.
- C. The meter firmware shall be upgradeable through one of the communication ports without removing the unit from service.
- D. The meter shall include output for analog 4-20 milliamp signals and binary output.
- E. The meter shall have two dry contact relays outputs for alarm or control functions.

2.4 WATER METER COMMUNICATION PROTOCOL

A. The meter shall use a native BACnet Ethernet communication protocol supporting HTTP, SMTP and Modbus. The communications shall be protected against surges induced on its communications channels.

2.5 REMOTE READOUT REGISTER

A. All meters shall be equipped with a remote readout register in accordance with AWWA C706.

2.6 PRESSURE GAGES FOR WATER AND SEWAGE USAGE

- A. ASME B40.100 all metal case 115 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1380 kPa (0 to 200 psig) gage.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.
- H. The pressure gage for water domestic use shall conform to NSF 61andNSF 372.

2.7 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 175 mm (7 inches) high, 4 degrees C to 100 degrees C (40 degrees F to 212 degrees F). Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gages shall be installed in piping tees with pressure gage located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gage.
- C. Test plugs shall be installed on the inlet and outlet pipes of all heat exchangers or water heaters serving more than one plumbing fixture.
- D. Pressure gages shall be installed where indicated on the drawings and at the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure reducing valve.
 - Suction and discharge of each domestic water pump or re-circulating hot water return pump.
- E. Water meter installation shall conform to AWWA C700, AWWA C701, and AWWA C702. Electrical installations shall conform to IEEE C2, NFPA 70, and to the requirements specified herein. New materials shall be provided.
- F. Remote readout register shall be mounted at the location indicated on the drawings or as directed by the COR.
- G. Thermometers shall be installed on the water heater inlet and outlet piping, thermostatic mixing valve outlet piping, and the hot water circulation pump inlet piping.
- H. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 FIELD QUALITY CONTROL

A. The meter assembly shall be visually inspected and operationally tested. The correct multiplier placement on the face of the meter shall be verified.

VA Project 438-450 10-01-18 100% Bid Documents

3.3 TRAINING

A. A training course shall be provided to the medical center on meter configuration and maintenance. Training manuals shall be supplied for all attendees with four additional copies supplied. The training course shall cover meter configuration, troubleshooting, and diagnostic procedures.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A112.14.1-2003.....Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2008.....Performance Requirements for Atmospheric Type Vacuum Breakers

- 1003-2009.....Performance Requirements for Water Pressure Reducing Valves for Domestic Water Distribution Systems
- 1011-2004.....Performance Requirements for Hose Connection Vacuum Breakers
- 1013-2011.....Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers

1015-2011.....Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies 1017-2009.....Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems 1020-2004.....Performance Requirements for Pressure Vacuum Breaker Assembly 1035-2008.....Performance Requirements for Laboratory Faucet Backflow Preventers 1069-2005..... Performance Requirements for Automatic Temperature Control Mixing Valves 1070-2004.....Performance Requirements for Water Temperature Limiting Devices 1071-2012.....Performance Requirements for Temperature Actuated Mixing Valves for Plumbed Emergency Equipment D. American Society for Testing and Materials (ASTM): A126-2004(R2009).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes A536-1984(R2009).....Standard Specification for Ductile Iron Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B584-2013.....Standard Specification for Copper Alloy Sand Castings for General Applications E. International Code Council (ICC): IPC-2012.....International Plumbing Code F. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2008.....Standard Marking Systems for Valves, Fittings, Flanges and Unions SP-67-2011.....Butterfly Valves

SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2011.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe & Angle Valves, Flanged and Threaded Ends SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends G. National Environmental Balancing Bureau (NEBB): 7th Edition 2005 Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems H. NSF International (NSF): 61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR): 9th Edition......Manual of Cross-Connection Control 1.4 SUBMITTALS A. Submittals, including number of required copies, shall be submitted in

- accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Butterfly Valves.
 - 3. Balancing Valves.
 - 4. Check Valves.
 - 5. Backwater Valves.

- 6. Backflow Preventers.
- 7. Thermostatic Mixing Valves.
- D. Test and Balance reports for balancing valves.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 4. Piping diagrams of thermostatic mixing valves to be installed.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large values. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
 - 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug

type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.

2.3 BALANCING VALVES

A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.

2.4 CHECK VALVES

A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.

2.5 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for

maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.

- 1. Deionizers.
- 2. Sterilizers.
- 3. Stills.
- 4. Dialysis, Deionized or Reverse Osmosis Water Systems.
- 5. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water.
- 6. Water service entrance from loop system.
- 7. Dental equipment.
- 8. Power washer.
- 9. Medical equipment.
- 10. Process equipment.
- 11. Autopsy, on each hot and cold water outlet at each table or sink.
- 12. Reclaimed water systems.
- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.
 - 1. Hose bibs and sinks with threaded outlets.
 - 2. Disposers.
 - 3. Showers (telephone/handheld type).
 - 4. Hydrotherapy units.
 - 5. All kitchen equipment, if not protected by air gap.
 - 6. Ventilating hoods with wash down system.
 - 7. Film processor.
 - 8. Detergent system.
 - 9. Fume hoods.
 - 10. Glassware washers.

- 11. Service sinks (integral with faucet only).
- 12. Laundry tubs (integral with faucet only).
- 13. Sitz baths.
- D. The hose connection vacuum breaker shall be ASSE listed 1011. The main body shall be cast brass with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to hose thread outlets. Hose connection vacuum breakers shall be installed in the following locations requiring non-continuous pressure: 1. Hose bibbs and wall hydrants.
- E. The pressure vacuum breaker shall be ASSE listed 1020. The main body shall be brass. The disc and O-ring seal shall be the elastomer type. The valve seat and disc float shall be the thermoplastic type. Tee handle or lever handle shut-off ball valves. Test cocks for testing and draining where freezing conditions occur. All materials shall be suitable for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Pressure vacuum breakers shall be installed in the following locations requiring continuous pressure and no backpressure including equipment with submerged inlet connections: 1. Lawn Irrigation.
- F. The double check backflow prevention assembly shall be ASSE listed 1015 and supply with full port, OS&Y, positive-seal, resilient gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The first and second check valve shall be accessible for maintenance without removing the device from the line. Double check valves shall be installed in the following location requiring continuous pressure subject to backpressure and backsiphonage conditions.
 - 1. Lawn Irrigation.

- 2. Food Processing Equipment.
- 3. Laundry equipment.

2.6 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
 - No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
 - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
 - 5. Valve finish shall be chrome plated in exposed areas.
 - 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.
 - 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
 - 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
 - 9. Provide mixing valves with integral check valves with screens and stop valves.
- B. Hi-Lo Water-Mixing-Valve Assemblies:
 - 1. Application: Tempered water distribution from hot water source covering a wide range of flow.
 - Description: Factory-fabricated, cabinet-type or exposed-mounting, thermostatically controlled, water-mixing-valve assembly in twovalve parallel arrangement including pressure regulators, pressure gages and thermometer.

- Large-Flow Parallel: Master thermostatic water mixing value and downstream pressure regulator with pressure gages on inlet and outlet.
- 4. Small-Flow Parallel: Master thermostatic water mixing valve.
- 5. Master Thermostatic Mixing Valves: Comply with ASSE 1017.
- Water Regulator(s): Comply with ASSE 1003. Include pressure gage on inlet and outlet.
- 7. Component Pressure Ratings: 861 kPa (125 psig) minimum, unless otherwise indicated.
- 8. Cabinet: Factory-fabricated, stainless steel, for recessed or surface mounting and with hinged, stainless-steel door.
- 9. Connections: Soldered or threaded union inlets and outlet.
- 10. Thermometers shall be provided to indicate mixed water temperature.
- 11. Provide a high temperature alarm device to detect mixing valve failure.
- C. Water Temperature Limiting Devices:
 - Application: Single plumbing fixture point-of-use such as sinks or lavatories.
 - 2. Standard: ASSE 1070.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
 - 5. Connections: Threaded union, compression or soldered inlets and outlet.
 - Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.
- D. Temperature Activated Mixing Valves:
 - 1. Application: Emergency eye/face/drench shower equipment.
 - 2. Standard: ASSE 1071.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 24-30 degrees C (75-85 degrees F).
 - 5. Connections: Soldered or threaded union inlets and outlet.
 - Cabinet: Factory-fabricated, stainless steel, for recessed or surface mounting and with hinged, stainless-steel door.

- 7. Thermometers shall be provided to indicate mixed water temperature.
- 8. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Check valves shall be installed for proper direction of flow and as follows:
 - Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- F. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may

22 05 23 - 11 GENERAL-DUTY VALVES FOR PLUMBING PIPING be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.

- Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- G. Install pressure gages on outlet of backflow preventers.
- H. Do not install bypass piping around backflow preventers.
- Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - Install cabinet-type units recessed in or surface mounted on wall as specified.
- J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Master, thermostatic, water mixing valves.
 - 3. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops.

After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.

- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
- B. Definitions:
 - 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 - Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
 - Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
 - 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 7. FSK: Foil-scrim-Kraft facing.
 - Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).

- b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- G. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.
- H. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- I. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- J. Section 23 21 13, HYDRONIC PIPING: electrical heat tracing systems.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. B. American Society for Testing and Materials (ASTM): B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011.....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013).....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014).....Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450.....Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C533-2013..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534/C534M-2014.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2015..... Standard Specification for Mineral Fiber Pipe Insulation C552-2014.....Standard Specification for Cellular Glass Thermal Insulation C553-2013.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C591-2013.....Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation

C680-2014..... Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs C612-2014.....Standard Specification for Mineral Fiber Block and Board Thermal Insulation C1126-2014.....Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation C1136-2012.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation C1710-2011.....Standard Guide for Installation of Flexible Closed Cell Preformed Insulation in Tube and Sheet Form D1668/D1668M-1997a (2014)e1 Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-2015a.....Standard Test Method for Surface Burning Characteristics of Building Materials E2231-2015.....Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics C. Federal Specifications (Fed. Spec.): L-P-535E-1979.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

> 22 07 11 - 4 PLUMBING INSULATION

MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

F. National Fire Protection Association (NFPA): 90A-2015.....Standard for the Installation of Air-Conditioning and Ventilating Systems

- G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013).....Standard for Test for Surface Burning Characteristics of Building Materials 1887-2004 (R2013).....Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics
- H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; http://www.pipeinsulation.net

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.

- d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
- e. Make reference to applicable specification paragraph numbers for coordination.
- f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.
- E. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - 3. Each accessory material: Minimum 120 ml (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit <u>http://www.biopreferred.gov</u>.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in

electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version _2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (nominal 1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (842 degrees F).

2.3 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from

minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.5 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II.
- D. Characteristics:

Insulation Characteristics					
ITEMS	TYPE I	TYPE II			
Surface Temperature, maximum degrees C (degrees F)	649 (1200)	927 (1700)			
Density (dry), Kg/m ³ (lb/ ft3)	240 (15)	352 (22)			
Thermal conductivity: Min W/ m K (Btu in/h ft ² degrees F)@ mean temperature of 93 degrees C (199 degrees F)	0.065 (0.45)	0.078 (0.540)			
Surface burning characteristics: Flame spread Index, Maximum	0	0			
Smoke Density index, Maximum	0	0			

2.6 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket.

Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.

- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.7 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.8 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.9 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.10 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.11 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.12 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be

> 22 07 11 - 14 PLUMBING INSULATION

clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.

- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- M. Freeze protection of above grade outdoor piping (over heat tracing tape): 20 mm (3/4 inch) thick insulation, for all pipe sizes 75 mm (3 inches) and smaller and 25 mm (1 inch) thick insulation for larger pipes. Provide metal jackets for all pipe insulations. Provide freeze protection for cold water make-up piping and equipment where indicated on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).

- N. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature in high humidity locations.
- O. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1829 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets except for cold pipe or tubing applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- P. Provide PVC jackets over insulation as follows:
 - Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (FormB), inserts surface temperature of above 4 degrees C (40 degrees

F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degreesF). Secure first layer of mineral fiber insulation with twine.Seal seam edges with vapor barrier mastic and secure with fitting tape.

- c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- B. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided, exterior only, for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the ASTM E84 or UL 723 surface burning characteristics requirements of maximum 25/50 indexes in paragraph "Quality Assurance".
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together.
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - Condensation control insulation: Minimum 25 mm (1 inch) thick for all pipe sizes depending on high humidity exposures.

- a. Body of roof and overflow drains horizontal runs and offsets (including elbows) of interior downspout piping in all areas above pipe basement.
- b. Waste piping from electric water coolers and icemakers to drainage system.
- c. Waste piping receiving cooling condensate to drainage system.
- d. Waste piping located above basement floor from ice making and film developing equipment and air handling units, from equipment (including trap) to main vertical waste pipe.
- e. MRI quench vent piping.
- f. Bedpan sanitizer atmospheric vent
- g. Reagent grade water piping.
- h. Cold water piping, exterior only.

C. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impreganted glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.

- f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- g. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.
- E. Calcium Silicate:
 - 1. Minimum thickness in millimeter (inches) specified below for piping other than in boiler plant.

Nominal Thickness Of Calcium Silicate Insulation (Non-Boiler Plant)					
Nominal Pipe Size Millimeters (Inches)	Thru 25 (1)	32 to 75 (1-1/4 to 3)	100-200 (4 to 8)	Greater than 200 (8)	
93-260 degrees C (199-500 degrees F)(HPS, HPR)	100(4)	125(5)	150(6)	Greater than 150(6)	

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
	Nominal Pipe Size Millimet		illimeters	(Inches)	
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 $(1\frac{1}{2} - 3)$	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Polyiso- cyanurate Closed-Cell Rigid (Exterior	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)

	Locations only)				
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(4-15 degrees C (40-60 degrees F)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent. B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed

checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction

> 22 08 00 - 3 COMMISSIONING OF PLUMBING SYSTEMS

VA Project 438-450 10-01-18 100% Bid Documents

to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

----- END -----

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- I. Section 22 07 11, PLUMBING INSULATION.
- J. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300

B16.9-2012.....Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings B16.15-2013Cast Copper Alloy Threaded Fittings: Classes 125 and 250 B16.18-2012.....Cast Copper Alloy Solder Joint Pressure

- Fittings
- B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings

22 11 00 - 1 FACILITY WATER DISTRIBUTION

VA Project 438-450 VAMC Sioux Falls, SD Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.51-2013.....Copper and Copper Alloy Press-Connect Fittings ASME Boiler and Pressure Vessel Code -BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications C. American Society of Sanitary Engineers (ASSE): 1010-2004..... Performance Requirements for Water Hammer Arresters D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A269/A269M-2014e1.....Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A403/A403M-2014.....Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-2008 (R2014).....Standard Specification for Solder Metal B43-2014..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings

> 22 11 00 - 2 FACILITY WATER DISTRIBUTION

B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples C919-2012.....Standard Practice for Use of Sealants in Acoustical Applications D1785-2012.....Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2000-2012.....Standard Classification System for Rubber Products in Automotive Applications D2564-2012.....Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Piping Systems D2657-2007.....Standard Practice for Heat Fusion Joining of Polyolefin Pipe and Fittings D2855-1996 (R2010).....Standard Practice for Making Solvent-Cemented Joints with Poly (Vinyl Chloride) (PVC) Pipe and Fittings D4101-2014.....Standard Specification for Polypropylene Injection and Extrusion Materials E1120-2008.....Standard Specification for Liquid Chlorine E1229-2008.....Standard Specification for Calcium Hypochlorite F2389-2010.....Standard Specification for Pressure-rated Polypropylene (PP) Piping Systems F2620-2013.....Standard Practice for Heat Fusion Joining of Polyethylene Pipe and Fittings F2769-2014.....Standard Specification for Polyethylene of Raised Temperature (PE-RT) Plastic Hot and Cold-Water Tubing and Distribution Systems

> 22 11 00 - 3 FACILITY WATER DISTRIBUTION

E. American Water Works Association (AWWA): C110-2012..... Ductile-Iron and Gray-Iron Fittings C151-2009.....Ductile Iron Pipe, Centrifugally Cast C153-2011.....Ductile-Iron Compact Fittings C203-2008.....Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot Applied C213-2007.....Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines C651-2014.....Disinfecting Water Mains F. American Welding Society (AWS): A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and Braze Welding G. International Code Council (ICC): IPC-2012.....International Plumbing Code H. Manufacturers Specification Society (MSS): SP-58-2009......Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application, and Installation SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends I. NSF International (NSF): 14-2015......Plastics Piping System Components and Related Materials 61-2014a.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content J. Plumbing and Drainage Institute (PDI): PDI-WH 201-2010.....Water Hammer Arrestors K. Department of Veterans Affairs: H-18-8-2013.....Seismic Design Handbook

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.

D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 UNDERGROUND WATER SERVICE CONNECTIONS TO BUILDINGS

- A. From inside face of exterior wall to a distance of approximately 1500 mm (5 feet) outside of building and underground inside building, material to be the same for the size specified inside the building.
- B. 75 mm (3 inch) Diameter and Greater: Ductile iron, AWWA C151, 2413 kPa (350 psig) pressure class, exterior bituminous coating, and cement lined. Bio-based materials shall be utilized when possible. Provide flanged and anchored connection to interior piping.
- C. Under 75 mm (3 inch) Diameter: Copper tubing, ASTM B88, Type K, seamless, annealed. Fittings are as specified in paragraph "Above Ground (Interior) Water Piping". Use brazing alloys, AWS A5.8M/A5.8, Classification BCuP.
- D. Flexible Expansion Joint: Ductile iron with ball joints rated for 1725 kPa (250 psig) working pressure conforming to AWWA C153, capable of deflecting a minimum of 20 degrees in each direction. Flexible expansion joint size shall match the pipe size it is connected to and shall have the expansion capability designed as an integral part of the ductile iron ball castings. Pressure containing parts shall be lined with a minimum of 15 mils of fusion bonded epoxy conforming to the

applicable requirements of AWWA C213 and shall be factory tested with a 1500 volt spark test. Flexible expansion joint shall have flanged connections conforming to AWWA C110. Bolts and nuts shall be 316 stainless steel and gaskets shall be neoprene. The flexible expansion fitting shall not expand or exert an axial thrust under internal water pressure. Provide piping joint restraints at each mechanical joint end connection and piping restraints at the penetration of the building wall. The restraints shall be provided to address the developed thrust at the change of piping direction.

2.3 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
 - 3. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- E. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.4 EXPOSED WATER PIPING

A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment

and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.

- 1. Pipe: ASTM B43, standard weight.
- 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
- 3. Nipples: ASTM B687, Chromium-plated.
- Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.5 TRAP PRIMER WATER PIPING

- A. Pipe: Copper tube, ASTM B88, type K, hard drawn.
- B. Fittings: Bronze castings conforming to ASME B16.18 Solder joints.
- C. Solder: ASTM B32 alloy type Sb5. Provide non-corrosive flux.

2.6 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.7 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.8 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120.
- B. Liquid Chlorine: ASTM E1229.

2.9 WATER HAMMER ARRESTER

A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All

> 22 11 00 - 9 FACILITY WATER DISTRIBUTION

units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:

- 1. All solenoid valves.
- 2. All groups of two or more flush valves.
- 3. All quick opening or closing valves.
- 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.

22 11 00 - 10 FACILITY WATER DISTRIBUTION

- 5) Concrete Inserts: "Universal" or continuous slotted type.
- 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
- 8) Rollers: Cast iron.
- Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.

- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
 - c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain values at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.

- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 22 11 23 DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Hot water circulating pump, hot water recirculation pump and domestic water pressure booster system.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- G. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

ASME Boiler and Pressure Code -BPVC Section VIII-1-2015 Rules for Construction of Pressure

Vessels, Division 1

BPVC Section VIII-2-2015 Rules for Construction of Pressure Vessels, Division 2-Alternative Rules

- C. American Society for Testing and Materials (ASTM): A48/A48M-2003 (R2012)...Standard Specification for Gray Iron Castings B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications

- E. National Electrical Manufacturers Association (NEMA): ICS 6-1993 (R2001, R2006) Industrial Control and Systems: Enclosures 250-2014.....Enclosures for Electrical Equipment (1000 Volts Maximum)
 F. NSF International (NSF)
 - 61-2014a.....Drinking Water System Components Health Effects

372-2011.....Drinking Water System Components - Lead Content G. Underwriters' Laboratories, Inc. (UL):

508-1999 (R2013).....Standards for Industrial Control Equipment 778-2010 (R2014)....Standard for Motor-Operated Water Pumps

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 23, DOMESTIC WATER PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed.
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Motor:
 - a. Manufacturer, frame and type.
 - b. Speed.
 - c. Current Characteristics.
 - d. Efficiency.
 - 3. Tank:
 - a. Manufacturer and model.

b. Capacity

- D. Certified copies of all the factory and construction site test data sheets and reports.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. General:
 - 1. UL Compliance: Comply with UL 778 for motor-operated water pumps.
 - 2. Design Criteria:
 - a. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - b. Head-capacity curves shall slope up to maximum head at shut-off. Select pumps near the midrange of the curve, and near the point of maximum efficiency, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - c. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.

- d. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified.
 Statically and dynamically balance all rotating parts.
- e. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- f. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- g. After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- B. Hot Water Circulating and Recirculating Pumps: Components shall be assembled by a single manufacturer and the pump motor assembly shall be the standard cataloged product of the manufacturer.
- C. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer,

model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall be prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.

2.2 HOT WATER RECIRCULATING PUMP

- A. Horizontal, Wet-Rotor Circulators:
 - Maintenance free, close-coupled pump and motor with maximum 3,300 rpm rotational speed.
 - 2. Bronze or Cast-iron body construction with ceramic shaft, plastic impeller, fluid lubricated bearings, no mechanical seal, and flanged connections. Pump shall be capable of pumping 6 GPM @ 4 Meters of head (14 Feet of head) when drive by 60 Watt single phase, 115 VAC motor.
 - 3. Bearings: Carbon type.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. System Test: After installation is completed provide an operational test of the completed system including flow rates, pressure compliance, alarms and all control functions.
- C. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- D. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to startup and testing.

3.2 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.3 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS: Sealant products.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- J. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS
- K. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- L. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
- 1.3 APPLICABLE PUBLICATIONS
 - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
 - B. American Society of Mechanical Engineers (ASME): A13.1-2007.....Scheme for the Identification of Piping Systems A112.36.2M-1991(R 2012).Cleanouts A112.6.3-2001 (R2007)...Standard for Floor and Trench Drains B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings

B16.4-2011.....Standard for Grey Iron Threaded Fittings Classes 125 and 250 B16.15-2013.....Cast Copper Alloy Threaded Fittings, Classes 125 and 250 B16.18-2012.....Cast Copper Alloy Solder Joint Pressure Fittings B16.21-2011.....Nonmetallic Flat Gaskets for Pipe Flanges B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2011.....Cast Copper Alloy Solder Joint Drainage Fittings: DWV B16.24-2001 (R2006).....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.29-2012.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings: DWV B16.39-2009.....Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 B18.2.1-2012......Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange, Lobed Head, and Lag Screws (Inch Series) C. American Society of Sanitary Engineers (ASSE): 1001-2008.....Performance Requirements for Atmospheric Type Vacuum Breakers 1018-2001..... Performance Requirements for Trap Seal Primer Valves - Potable Water Supplied 1044-2001.....Performance Requirements for Trap Seal Primer Devices - Drainage Types and Electronic Design Types 1079-2012.....Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A53/A53M-2012.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless

A74-2013a.....Standard Specification for Cast Iron Soil Pipe and Fittings A888-2013a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008..... Standard Specification for Solder Metal B43-2009..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B75-2011.....Standard Specification for Seamless Copper Tube B88-2009.....Standard Specification for Seamless Copper Water Tube B306-2013..... Standard Specification for Copper Drainage Tube (DWV) B584-2013.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R 2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples B813-2010..... Standard Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube B828-2002 (R 2010).....Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings C564-2012.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D1785-2012.....Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2321-2011.....Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2564-2012.....Standard Specification for Solvent Cements for Poly(Vinyl Chloride) (PVC) Plastic Piping Systems

VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 D2665-2012.....Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D2855-1996 (R 2010)....Standard Practice for Making Solvent-Cemented Joints with Poly(Vinyl Chloride) (PVC) Pipe and Fittings D5926-2011.....Standard Specification for Poly(Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems F402-2005 (R 2012).....Standard Practice for Safe Handling of Solvent Cements, Primers, and Cleaners Used for Joining Thermoplastic Pipe and Fittings F477-2010.....Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe F1545-1997 (R 2009).....Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges E. Cast Iron Soil Pipe Institute (CISPI): 2006.....Cast Iron Soil Pipe and Fittings Handbook 301-2012.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012..... Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. Copper Development Association, Inc. (CDA): A4015.....Copper Tube Handbook G. International Code Council (ICC): IPC-2012.....International Plumbing Code H. Manufacturers Standardization Society (MSS): SP-123-2013.....Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube I. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

- J. Plumbing and Drainage Institute (PDI): WH-201 (R 2010).....Water Hammer Arrestors Standard
- K. Underwriters' Laboratories, Inc. (UL): 508-99 (R2013).....Standard For Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Grease Removal Unit.
 - 4. Cleanouts.
 - 5. Trap Seal Protection.
 - 6. Penetration Sleeves.
 - 7. Pipe Fittings.
 - 8. Traps.
 - 9. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm(5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

- B. Copper Tube, (DWV):
 - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
 - 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15 and ASTM D2665.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:

- 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall

be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.

- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a 1.1 to 1.8 Kg (2.5 to 4 lbs.) flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.

- B. Type B (FD-B) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type B floor drain shall be constructed of galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with secondary strainer in bottom for large debris. The grate shall be 175 mm (7 inches) minimum.
- C. Type C (FD-C) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty nickel bronze adjustable strainer with round or square grate of 150 mm (6 inches) width or diameter minimum for toilet rooms, showers and kitchens.
- D. Type D (FD-D) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type D floor drain shall have a cast iron body with flange for membrane type flooring, integral reversible clamping device, seepage openings and 175 mm (7 inch) diameter or square satin nickel bronze or satin bronze strainer with 100 mm (4 inch) flange for toilet rooms, showers and kitchens.
- E. Type E (FD-E) floor drain shall comply with ASME A112.6.3. The type E floor drain shall have a heavy, cast iron body, double drainage pattern, heavy non-tilting nickel bronze grate not less than 300 mm (12 inches) square, removable sediment bucket. Clearance between body and bucket shall be ample for free flow of waste water. For traffic use, an extra heavy duty load classification ductile iron grate shall be provided.
- F. Type F (FD-F) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type F floor drain shall be have a cast iron body with flange, integral reversible clamping device, seepage openings and a 228 mm (9 inch) two-piece satin nickel-bronze or satin bronze strainer for use with seamless vinyl floors in toilet rooms and showers.
- G. Type G (FD-G) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type G floor drain shall have a cast iron body, shallow type with double drainage flange and removable, perforated aluminum sediment bucket. The type G drain shall have all interior and exposed exterior surfaces coated with acid resistant porcelain enamel

finish. The floor drain shall have a clamping device. The frame and grate shall be nickel bronze. The grate shall be approximately 200 mm (8 inches) in diameter. The space between body of drain and basket shall be sufficient for free flow of waste water.

- H. Type H (FD-H) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type H drain shall have a cast iron body, double drainage pattern, without sediment bucket but with loose set nickel bronze grate, secondary strainer, and integral clamping collar. The grate shall be 300 mm (12 inches) in diameter or 300 mm (12 inches) square. The drain body shall be 150 mm (6 inches) deep.
- I. Type I (FD-I) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type I floor drain shall have a cast iron body, wide flange for seamless floor, double drainage pattern, with all interior surfaces and exposed exterior surfaces provided with acid resistant enamel finish for sanitary areas. The type I floor drain shall have a clamping device, secured nickel bronze rim, aluminum enameled finish sediment basket with, perforations with not less than 19,300 square mm (30 square inches) of free area. The sediment basket shall be approximately 100 mm (4 inches) deep, and be provided with grips for easy handling. The floor drain shall be provided with a loose-set, nickel bronze grate approximately 300 mm (12 inches) square and of sufficient strength to support pedestrian traffic. Ample space between body of drain and sediment basket shall be provided for free flow of waste liquids.
- J. Type N (FD-N) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type N floor drain shall have a cast iron body, wide flange for seamless floors, double drainage pattern, with all interior and exposed exterior surfaces provided with acid resistant enamel finish for sanitary areas. The type N floor drain shall have a clamping device, secured nickel bronze rim, aluminum enameled finish sediment basket, perforated with not less than 9,000 square mm (14 square inches) of free area and approximately 50 mm (2 inches) deep. The sediment bucket shall be provided with grips for easy handling. The loose-set, nickel bronze grate approximately 200 mm (8 inches) shall be round and of sufficient strength to support pedestrian traffic. Ample

space between body of drain and sediment basket shall be provided for free flow of waste liquids.

- K. Type O (FD-O) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type O floor drain shall have a cast iron body, double drainage pattern, clamping device, less grate and sediment basket but with dome type secondary strainer. The drain shall be 300 mm (12 inches) in diameter or 300 mm (12 inches) square and approximately 150 mm (6 inches) deep. The interior and exposed exterior surfaces shall have an acid resisting, enamel finish for sanitary areas.
- L. Type P (FD-P) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type P floor drain shall have a cast iron body, double drainage pattern, with all interior and exposed exterior surfaces provided with acid resistant enamel finish for sanitary areas. The type P floor drain shall have a clamping device, secured nickel bronze rim, an aluminum enameled finish sediment basket perforated with not less than 27,000 square mm (42 square inches) of free area and approximately 100 mm (4 inches) deep. The sediment bucket shall be provided with grips for easy handling. The loose-set, nickel bronze grate shall be approximately 7,700 square mm (12 square inches) and of sufficient strength to support pedestrian traffic. Ample space between body of drain and sediment basket shall be provided for free flow of waste liquids.
- M. Type S (FD-S) floor sink shall comply with ASME A112.6.3. The type S floor sink shall be constructed from type 304 stainless steel and shall be 300 mm (12 inches) square, and 200 mm (8 inches deep). The interior surface shall be polished. The double drainage flange shall be provided with weep holes, internal dome strainer, and heavy duty non-tilting loose set grate. A clamping device shall be provided.
- N. Type T (FD-T) floor drain shall comply with ASME A112.6.3. The type T drain shall be Funnel Type, chemical resistant floor drain with integral p-trap. Double drainage pattern floor drain shall have an integral seepage pan for embedding in floor and weep holes to provide adequate drainage from pan to drain pipe. Floor drain shall be polypropylene, flame retardant, Schedule 40 or 80. An outlet of floor drain shall be suitable for properly jointing perforated or slotted

floor-level grate and funnel extension. Cut-out grate below funnel. Minimum dimensions as follows:

1. Height of funnel - 95 mm (3-3/4 inches).

- 2. Diameter of lower portion of funnel 50 mm (2 inches).
- 3. Diameter of top portion of funnel 100 mm (4 inches).

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS

- A. Trap Primer (TP-1): The trap seal primer system shall be electronic type conforming to ASSE 1044.
 - The controller shall have a 24 hour programmable timer, solid state, 6 outlet zones, minimum adjustable run time of 1 minute for each zone, 12 hour program battery backup, manual switch for 120VAC power, 120VAC to 24VAC internal transformer, fuse protected circuitry, UL listed, 120VAC input-24VAC output, constructed of enameled steel or plastic.
 - 2. The cabinet shall be recessed mounting with a stainless steel cover.
 - 3. The solenoid valve shall have a brass body, suitable for potable water service, normally closed, 861 kPa (125 psig) rated, 24VAC.
 - 4. The control wiring shall be copper in accordance with the National Electric Code (NFPA 70), Article 725 and not less than 18 gauge. All wiring shall be in conduit and in accordance with Division 26 of the specifications.
 - 5. The vacuum breaker shall conform to ASSE 1001.
- B. Trap Primer (TP-2): The trap seal primer value shall be hydraulic, supply type with a pressure rating of 861 kPa (125 psig) and conforming to standard ASSE 1018.

- 1. The inlet and outlet connections shall be 15 mm or DN15 (NPS 1/2 inch)
- The trap seal primer valve shall be fully automatic with an all brass or bronze body.
- 3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required.
- The trap seal primer valve shall include a manifold when serving two, three, or four traps.
- 5. The manifold shall be omitted when serving only one trap.

2.8 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.

- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- M. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.

- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.

- 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
- 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
- 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
- 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

- I. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- J. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all

p-traps shall be inspected for leaks and any leaks found shall be corrected.

- 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- J. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A112.6.4-2003 (R2012) ..Roof, Deck, and Balcony Drains A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B1.20.1-2013......Pipe Threads, General Purpose, Inch B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300

B16.9-2012.....Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings

> 22 14 00 - 1 FACILITY STORM DRAINAGE

B16.15-2013.....Cast Copper Alloy Threaded Fittings: Classes 125 and 250 B16.18-2012.....Cast Copper Alloy Solder-Joint Pressure Fittings B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2011.....Cast Copper Alloy Solder Joint Drainage Fittings - DWV B16.29-2012.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings - DWV C. American Society of Sanitary Engineering (ASSE) 1079-2012.....Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated Welded and Seamless A74-2013a.....Standard Specification for Cast Iron Soil Pipe and Fittings A183-2014.....Standard Specification for Carbon Steel Track Bolts and Nuts A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A536-1984(R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples A888-2013a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008 (R2014).....Standard Specification for Solder Metal

B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube B306-2013..... Standard Specification for Copper Drainage Tube (DWV) B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications B687-1999 (R2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples B828-2002 (R2010).....Standard Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings B813-2010..... Standard Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube C564-2014.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings C1173-2010 (R2014).....Standard Specification for Flexible Transition Couplings for Underground Piping Systems D1785-2012.....Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80 and 120 D2000-2012.....Standard Classification System for Rubber Products in Automotive Applications D2321-2014e1.....Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2564-2012.....Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Piping Systems

D2665-2014.....Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D2855-1996 (R2010).....Standard Practice for Making Solvent-Cemented Joints with Poly (Vinyl Chloride) (PVC) Pipe and Fittings D4101-2014.....Standard Specification for Polypropylene Injection and Extrusion Materials D5926-2011.....Standard for Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems F477-2014.....Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe F656-2010.....Standard Specification for Primers for Use in Solvent Cement Joints of Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings F1545-2015.....Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges E. American Welding Society (AWS): A5.8M/A5.8 AMD1-2011....Specification for Filler Metals for Brazing and Braze Welding F. Copper Development Association (CDA): A4015-2011.....Copper Tube Handbook G. Cast Iron Soil Pipe Institute (CISPI): 301-2012......Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012......Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications H. International Code Council (ICC): IPC-2012.....International Plumbing Code

I. Manufacturers Standardization Society of the Valve and Fittings
Industry, Inc. (MSS):

SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder

Joint, Grooved and Flared Ends

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 00, FACILITY STORM DRAINAGE", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and Fittings.
 - 2. Specialty Pipe Fittings.
 - 3. Cleanouts.
 - 4. Roof Drains.
 - 5. Expansion Joints.
 - 6. Downspout Nozzles.
 - 7. Sleeve Flashing Devices.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.
- E. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all

> 22 14 00 - 5 FACILITY STORM DRAINAGE

performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.
 - All mechanical equipment rooms or other areas containing mechanical air handling equipment.
 - The cast iron storm pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

2.2 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be unshielded, elastomeric, sleeve type reducing or transition pattern conforming with ASTM C1173 and include shear ring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- B. Dielectric fittings shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig at a minimum temperature of 82 degrees C (180

degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.

- C. Dielectric flanges shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig. The flange shall be a factory fabricated, bolted, companion flange assembly. The end connection shall be threaded or solder-joint copper alloy and threaded ferrous.
- D. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- E. Dielectric nipples shall be electroplated steel and shall conform with ASTM F1545 with a pressure ratings of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene. Bio-based materials shall be utilized when possible.

2.3 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside caulk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way

cleanouts shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.

- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.4 ROOF DRAINS AND CONNECTIONS

- A. Roof Drains: Roof Drains (RD) shall be cast iron with clamping device for making watertight connection and shall conform with ASME A112.6.4. Free openings through strainer shall be twice area of drain outlet. For roof drains not installed in connection with a waterproof membrane, a soft copper membrane shall be provided 300 mm (12 inches) in diameter greater than outside diameter of drain collar. An integral gravel stop shall be provided for drains installed on roofs having built up roofing covered with gravel or slag. Integral no-hub, soil pipe gasket or threaded outlet connection shall be provided.
 - 1. Flat Roofs: The roof drain shall have a beehive or dome shaped strainer with integral flange not less than 300 mm (12 inches) in diameter. For an insulated roof, a roof drain with an adjustable drainage collar shall be provided, which can be raised or lowered to meet required insulation heights, sump receiver and deck clamp. The bottom section shall serve as roof drain during construction before insulation is installed.
 - 2. Canopy Roofs: The roof drain shall have a beehive or dome shaped strainer with the integral flange no greater than 200 mm (8 inches) in diameter. For an insulated roof, the roof drain shall be provided with an adjustable drainage collar, which can be raised or lowered to meet the required insulation heights, sump receiver and deck

clamp. Bottom section shall serve as roof drain during construction before insulation is installed.

- 3. Protective Roof Membrane Insulation Assembly: The roof drain shall have a perforated stainless steel extension filter, non-puncturing clamp ring, large sump with extra wide roof flange and deck clamp.
 - a. Non pedestrian Roofs: The roof drain shall have large polypropylene or aluminum locking dome.
 - b. Pedestrian Roof: The roof drain shall have a bronze promenade top 356 mm (14 inches) square, set in square secured frame support collar.
- Roof Drains, Overflow or Secondary (Emergency): Roof Drains identified as overflow or secondary (emergency) drains shall have a 50 mm (2 inch) water dam integral to the drain body.
- 5. Roof drains in areas subject to freezing shall have heat tape and shall be insulated.
- B. Expansion Joints: Expansions joints shall be heavy cast iron with cast brass or PVC expansion sleeve having smooth bearing surface working freely against a packing ring held in place and under pressure of a bolted gland ring, forming a water and air tight flexible joint. Asbestos packing is prohibited.
- C. Interior Downspouts: An expansion joint shall be provided, specified above, at top of run on straight, vertical runs of downspout piping 12 m (40 feet) long or greater.
- D. Downspout Nozzle: The downspout nozzle fitting shall be of brass, unfinished, with internal pipe thread for connection to downspout.

2.5 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the IPC and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
- D. All pipe runs shall be laid out to avoid interference with other work/trades.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 2.44 m (8 feet) (1 percent slope) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two drains are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried storm drainage piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements. Bio-based materials shall be utilized when possible.

- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA A4015.
- M. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - Pipe sections with damaged threads shall be replaced with new undamaged sections of pipe at no additional time or cost to Government.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

A. All piping shall be supported according to the IPC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.

- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, wall and ceiling plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.
 - 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield shall be 100 mm (4)

inches) in length and be 1.6 mm (16 gage) steel. The shield shall be sized for the insulation.

- G. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- I. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

3.5 INSULATION

A. Insulate horizontal sections and 600 mm (2 feet) past changes of direction to vertical sections for interior section of roof drains. Install insulation in accordance with the requirements of Section 22 07 11, PLUMBING INSULATION.

3.6 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to

22 14 00 - 14 FACILITY STORM DRAINAGE

point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- Final Tests: While either one of the following tests may be used, Contractor shall check with VA as to which test will be performed.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 0.25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.
- C. COR shall witness all tests. Contractor shall coordinate schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to flushing, disinfection/sterilization, startup, and testing.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.8 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

VA Project 438-450 10-01-18 100% Bid Documents

- - - E N D - - -

SECTION 22 31 11 WATER SOFTENERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide sodium cycle, cation exchange, pressure type, water softening equipment complete with piping services, electrical services, controls, accessories and auxiliary equipment.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings: Classes 25, 125, 250

B16.3-2011......Malleable Iron Threaded Fittings: Classes 150 and 300

B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code -

BPVC Section VIII-1-2015 Rules for Construction of Pressure Vessels, Division 1

BPVC Section X-2015.....Fiber-Reinforced Plastic Pressure Vessels

C. American Society of Sanitary Engineering (ASSE):

1013-2011.....Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced

Pressure Principle Fire Protection Backflow Preventers D. ASTM International (ASTM): A6/A6M-2014.....Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc Coated, Welded and Seamless D1785-2012.....Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80 and 120 E. American Water Works Association (AWWA): B300-2010.....Hypochlorites B301-2010.....Liquid Chlorine C511-2007.....Reduced-Pressure Principle Backflow Prevention Assembly C651-2014.....Disinfecting Water Mains F. Federal Specifications (Fed. Spec.): A-A-694D-2002.....Sodium Chloride, Technical G. Department of Health and Human Services, Food and Drug Administration (FDA): CFR 21, Chapter 1, Part 173.25, Ion-Exchange Resins CFR 21, Chapter 1, Part 175.300, Resinous and Polymeric Coatings (Biobased materials shall be utilized when possible.) H. International Code Council (ICC): IPC-2012.....International Plumbing Code I. National Electrical Manufacturers Association (NEMA): ICS 6-1993 (R2001, R2006) Industrial Control and Systems: Enclosures J. NSF International (NSF): 61-2014a.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content K. Underwriters' Laboratories, Inc. (UL): 979-2005 (R2014).....Standard for Water Treatment Appliances

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 31 11, WATER SOFTENERS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - Softener tank construction, coatings and linings. Bio-based materials shall be utilized when possible.
 - 2. Tank distribution system design.
 - 3. Main operating valve.
 - 4. Control system and flow meter.
 - 5. Wiring diagram for controls.
 - 6. Exchange resin.
 - 7. Brine system.
 - 8. Accessories including pressure gages and test kit.
 - 9. Performance data including normal and maximum flow and pressure drop. Certification that required performance shall be achieved.
 - 10. Piping.
- D. Complete detailed layout, setting, arrangement, and installation drawings including electrical/pneumatic controls. Drawings shall also show all parts of the apparatus including relative positions, dimensions, and sizes and general arrangement of connecting piping.
- E. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 PROJECT CONDITIONS

- A. Water sample shall be tested by USEPA certified testing laboratory. Sample shall be taken by water softener equipment contractor and submitted for testing.
- B. Influent Water Analysis:

Component	Concentration (mg/L)
Alkalinity	44
Aluminum	
Arsenic	
Barium	
Cadmium	
Carbonate Hardness as Calcium Carbonate	44
Free Carbon Dioxide Calcium Carbonate	
Methyl Orange as Calcium Carbonate	
Noncarbonate Hardness as Calcium Carbonate	
Phenolphthalein as Calcium Carbonate	
Total Hardness as Calcium Carbonate	238
Chlorides	30
Residual Chlorine	2.5
Chromium	
Copper	
Fluoride	0.64
Dissolved Iron	
Total Iron	0.01
Lead	

	Magnesium	121		
	Manganese			
	Mercury			
	Nickel			
	Nitrates	0.66		
	Odor			
	Dissolved Oxygen			
	Conductivity pH	8.6		
	Color by Platinum Standard Comparison			
	Silica			
	Silver			
	Sodium			
	Sodium Potassium			
	Total Dissolved Solids	417		
	Sulphate	200		
	Turbidity in Nethlometric Turbidity units	0.06		
	Zinc			
	Confirm the analysis with current samples and	d tests.		
С.	. Design Parameters:			
	Normal System Flow and Pressure Drop: 41 gpm	0 15 psig		
	Maximum System Flow and Pressure Drop: 78 gpr	n @ 25 psig		
	Backwash/Rinse Flow: L/s (gpm)			
	Backwash Volume: liters nominal (ga	allons nominal)		
Daily Water Usage: liters per day (gallons per day) Volume of soft water between regenerations: liters (ga		gallons per day)		
		liters (gallons)		
	min.			
Daily Hours of Water Demand:				
	Operating Temperature Range: 4 to 49 degrees C (40 to 120 degrees F)			
	Operating Pressure Range (System):	kPa (psig)		
	Electrical Requirements: Dedicated 120 v, 60 $$	Hz, 1 phase receptacle.		
1.7 AS-BUILT DOCUMENTATION				
A. Submit manufacturer's literature and data updated to include sub		dated to include submittal		
	review comments and any equipment substitutions.			

B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in

electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CADD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.

2.2 SOFTENING SYSTEM

A. Vertical, down flow, pressure type with automatic controls to operate on sodium cycle. Automatic-alternating duplex units. Designed for 690 kPa (100 psig) working pressure. All materials exposed to water shall be considered as generally safe by the Food and Drug Administration (FDA). System shall comply with UL 979.

- B. Performance Requirements:
 - Continuous flow of zero hardness soft water (use hardness test strips) with influent water conditions and flows listed in Part 1, with only one of the duplex units in service.
 - Exchanger material shall not wash out of apparatus during any softening run regardless of rate of flow.
 - 3. Turbidity and color of treated water shall not increase above that of raw water.
 - Dirty or turbid water shall not occur during any softening run, regardless of changes in demand rate.
 - 5. Strainer system, gravel bed, and exchange material shall not become fouled, either by turbidity in the raw water, or by dirt, rust or scale from pipe to the extent to render backwash ineffective.
 - 6. Regeneration shall be accomplished within a period of 75 minutes and occur not more than once per day. Regeneration period shall be that part of cycle of operation from the time unit has delivered its softening capacity until it is ready to be delivering soft water again, including all backwashing, brining and brine washout, complete. Amount of salt necessary to completely recondition unit after a capacity run shall not exceed 240 kg per cubic meter (15 pounds per cubic foot) of existing material.
- C. Softener Tanks-Steel:
 - Fiberglass Reinforced Plastic (FRP): Polyester reinforced by a continuous roving glass filament overwrap. Hydrostatically test at design pressure and provide certification to comply with ASME Boiler and Pressure Vessel Code, Section X. Support on a molded structural base. Tanks shall have flanged openings for mineral filling and removal. Provide vacuum breaker.
- D. Distribution System: Soft water collector and backwash water distributor shall be non-clogging, single point and hub radial laterals, designed to not cause channeling in the bed, PVC, Schedule 80. The distributor system shall be fully covered by one layer of

quartz under-bedding with no debris or fines mesh size from 16 to 40 and above.

- E. Exchange Material: Solid virgin high capacity styrene base resinous material. Material shall be stable over the entire pH range with resistance to bead fracture from attrition or osmotic shock. Particle size 20 to 50 mesh and contain no agglomerates, shells, plates or other shapes that might interfere with the functioning of the softener. Exchange capacity as CaCO3 shall be considered to be 840 grains per cubic meter (23.8 grains per cubic foot) at 240 kg per cubic meter (15 pounds per cubic foot) salt dosage. Resin shall not require dosing or addition of any chemical, mixture, or solution to the water requiring treatment, or the water used for backwashing, other than NaCl for regeneration. Resin shall be FDA compliant under CFR 21, Chapter 1, Part 173.25.
- F. Brine Measuring Tank with Cover: Rotationally molded high density polyethylene. Tank sized to provide a minimum of four regenerations per load of salt at a full salting. Tank shall include elevated salt plate and a chamber to house the brine valve assembly.
- G. Brine System Controls: Automatic valve shall open to admit brine to softener and close to prevent air admission to the softener. During refill, the valve shall regulate flow of soft water to the brine tank. Provide float-operated safety valve to prevent brine tank overfill.
- H. System Controls:
 - The controller shall be completely automatic and shall sequence all steps of regeneration and return the softener to a service or standby mode and alternate the duplex units. Selectable time or flow meter initiated regeneration. The initiating time or volume set points shall automatically reset upon initiation of the regeneration sequence. Controller shall permit manual initiation of regeneration.
 - 2. Computer-based field-programmable controller with selectable flow meter based and time clock based operating cycles. The controller shall utilize alphanumeric, self-prompting programming for simple startup. EEPROM memory shall store program data eliminating need for battery back up on configuration input after power loss. Selfdiagnostic and capable of emitting an audible error signal and

displaying error-specific messages. Lockout function to prevent unauthorized access to the program data. Sealed keypad with capability of all programming functions. Fluorescent alphanumeric display on face of controller. Enclose controls in NEMA ICS 6; Type 4X enclosure mounted approximately 1.5 meters (5 feet) above the floor.

- 3. Operating conditions shall be continuously monitored and display shall show time of day, volume remaining before next regeneration, number of regenerations in last 14 days, number of days since last regeneration, instantaneous flow rate, resettable totalized flow since the last regeneration, time of next regeneration, and identify the cycle that is in progress.
- 4. Flow shall be regulated to prevent resin loss, operate between 200 and 690 kPa (29 and 100 psig) supply pressure, and prevent noise and hydraulic shock. Control shall permit only one unit to regenerate at a time.
- 5. Flow meter shall have turndown range of 60/1, minimum accuracy of +/-1 percent of maximum range, repeatability of +/-0.5 percent of full range. Install with manufacturer's recommended straight pipe before and after the meter.
- 6. Main operating valve shall be a fully automatic multiport diaphragm type or valve nest constructed of cast iron or corrosion resistant alloy material with hard-coat anodization and final coat of flouroplate polymer. Coating shall resist 1000 hour/5 percent salt spray test without sign of corrosion. Bio-based materials shall be utilized when possible. Valves shall be slow opening and closing, free of water hammer; diaphragm assembly shall be fully guided. All valve parts accessible for service. The main operating valve shall include a valve mounted automatic self-adjusting brine injector to draw brine and control rinse at a constant rate regardless of water pressure in the range of 200 to 690 kPa (29 to 100 psig). Valve shall have soft water sampling cock and indicator to show system status.
- I. Sampling Cocks: Provide for hard and soft water.

J. Sodium Chloride: Fed. Spec. A-A-694D. Provide sufficient quantity for ten regenerations.

2.3 EXTERNAL SOFTENER PIPING

- A. Pipe: ASTM A53/A53M, PVC, ASTM D1785, Schedule 80.
- B. Fittings: PVC, Schedule 80.
- C. Flanges: ASME B16.1, Class 125.
- D. Threaded Joints: Shall be made with ends reamed out. Apply bituminous base lubricant or fluorocarbon resin tape to male threads only. Bio-based materials shall be utilized when possible.

2.4 BRINE PIPING

A. Polyvinyl chloride (PVC), ASTM D1785, Schedule 80 with solvent welded joints.

2.5 VALVES

A. Ball: Carbon steel body, stainless steel trim, reinforced Teflon seat and seal, full port, threaded ends.

2.6 PRESSURE GAGES

A. ASME B40.100, Grade A, 1 percent accuracy, 115 mm (4-1/2 inches) diameter, all metal case, bottom connected. White dials, black hands, graduated from 0 to 690 kPa (0 to 100 psig) and identity labeled. Provide gages with gage cocks at softener hard water inlet and soft water outlet to show pressure drop thru softener.

2.7 REDUCED PRESSURE BACKFLOW PREVENTER

A. Provide on suction side of water softener serving boilers. Parts shall be made of corrosion-resistant materials and shall be of heavy duty construction, 861 kPa (125 psig) class minimum. Backflow preventer shall meet the requirements of ICC IPC, ASSE 1013, and AWWA C511.

2.8 WATER TESTING EQUIPMENT

A. Furnish water testing hardness test strips which measure 0-25 grains of hardness with minimum bottle of 50 strips with color code chart for reading test strips.

PART 3 - EXECUTION

3.1 REQUIRED TECHNICAL SERVICES

A. Provide services of a qualified manufacturer's representative to check complete installation for conformance to manufacturer's recommendation, put system into service, make all adjustments required for full

conformance to design and specified requirements, and perform all demonstrations and tests.

3.2 FLUSHING AND DISINFECTING

- A. Flush and disinfect new water lines and softener interiors in accordance with AWWA C651.
- B. Material:
 - 1. Liquid chlorine: AWWA B301.
 - 2. Hypochlorite: AWWA B300.

3.3 STARTUP AND TESTING

- A. Operating: Tests shall be conducted in presence of COR. It is prohibited, for testing purposes, to add to or subtract from exchange material used in apparatus, neither will any regenerating agent, other than the solution specified, be permitted.
- B. Procedure:
 - 1. Regenerate system to demonstrate operation of multiport valve.
 - 2. Operate each softener at constant maximum required capacity for ten minutes after soft water is produced. When necessary, waste softened water to sewer to maintain above flow rate. Contractor shall submit samples to a USEPA certified testing laboratory. A certified test report shall be prepared indicating hardness levels are within the specified range. Hardness shall be less than 50 mg/L or as specified.
 - 3. Demonstrate all features of the control system including diagnostics and flow and cycle indications.
- C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

VA Project 438-450 10-01-18 100% Bid Documents

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

3.6 MAINTENANCE SERVICE

A. Provide full maintenance contract for 12 months by service technician of water softener manufacturers, including preventative maintenance as required for proper operation of water softener equipment. Servicing company shall be within 2 hours drive and be capable of responding within 6 to 8 hours.

- - - E N D - - -

SECTION 22 34 00 FUEL-FIRED DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for installing a complete gas fired domestic water heating system ready for operation including water heaters, thermometers, and all necessary accessories, connections, and equipment.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- F. Section 09 91 00, PAINTING: Preparation and finish painting.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING.
- I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- J. Section 22 07 11, PLUMBING INSULATION.
- L. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- M. Section 22 11 00, FACILITY WATER DISTRIBUTION: Piping, Fittings, Valves and Gages.
- N. Section 22 11 23, DOMESTIC WATER PUMPS: Circulating Pump.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI): Z21.10.1-2013.....Gas Water Heaters - Volume 1, Storage Water Heaters with Input Ratings of 75,000 Btu per

hour or less

Z21.10.3-2013.....Gas-Fired Water Heaters, Volume III, Storage Water Heaters with Input Ratings Above 75,000 Btu per hour, Circulating and Instantaneous Z21.15B-2013......Manually Operated Gas Valves for Appliances, Appliance Connector Valves and Hose End Valves Z21.18B-2012.....Gas Appliance Pressure Regulators Z21.20A-2010 (R2012)....Automatic Electrical Controls for Household and Similar Use Z21.21-2012.....Automatic Valves for Gas Appliance Z21.22B-2001 (R2008)....Relief Valves for Hot Water Supply Systems Z21.66-1996 (R2001)....Automatic Vent Damper Devices for Use With Gas-Fired Appliances C. American Society for Heating, Refrigerating and Air Conditioning Engineers (ASHRAE): 90.1-(2013).....Energy Standard for Buildings Except Low-Rise Residential Buildings D. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code -BPVC Section IV-2013....Rules for Construction of Heating Boilers BPVC Section VIII-1-2013 Rules for Construction of Pressure Vessels, Division 1 Form U-1......Manufacturer's Data Report for Pressure Vessels B1.20.1-2013).....Pipe Threads, General Purpose (Inch) B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 CSD-1-2012.....Controls and Safety Devices for Automatically Fired Boilers E. American Society of Sanitary Engineering (ASSE): 1005-1999..... Performance Requirements for Water Heater Drain Valves, 3/4 inch size F. National Electrical Manufacturers Association (NEMA): ICS 6-2011......Industrial Control and Systems: Enclosures

> 22 34 00 - 2 FUEL-FIRED DOMESTIC WATER HEATERS

G. National Fire Protection Association (NFPA): 54-2012.....National Fuel Gas Code 70-2011....National Electrical Code (NEC) H. NSF International (NSF): 5-2012....Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment 61-2012....Drinking Water System Components - Health Effects 372-2011....Drinking Water System Components - Lead Content I. Underwriters Laboratories, Inc. (UL): 429-2013....Standard for Electrically Operated Valves 795-2011....Standard for Commercial-Industrial Gas Heating

Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 34 00, FUEL-FIRED DOMESTIC WATER HEATERS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Water Heaters.
 - 2. Pressure and Temperature Relief Valves.
 - 3. Thermometers.
 - 4. Pressure Gages.
 - 5. Vacuum Breakers.
 - 6. Expansion Tanks.
 - 7. Heat Traps.
 - 8. Gas Shut-off Valves.
 - 9. Motorized Gas Valves.
 - 10. Gas Pressure Regulators.
 - 11. Manifold Kits.

- D. For each gas fired domestic hot water heater type and size, the following characteristics shall be submitted:
 - 1. Rated Capacities
 - 2. Operating characteristics
 - 3. Electrical characteristics
 - 4. Furnished specialties and accessories
 - 5. A form U-1 or other documentation stating compliance with the ASME Boiler and Pressure Vessel Code.
- E. Shop drawings shall include wiring diagrams for power, signal and control functions.
- F. Submit documentation indicating compliance with applicable requirements of ASHRAE 90.1 or Energy Star for Service Water Heating.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Gas water heaters up to 530 liters (140 gallons) are covered under the FEMP and the ENERGY STAR program. Federal laws and executive orders mandate the purchase of gas water heaters that meet or exceed the ENERGY STAR listed minimum efficiency. Comply with American Society of Heating, Refrigerating and Air- Conditioning Engineers (ASHRAE) for efficiency performance ASHRAE 90.1, "Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings for commercial water heaters."

- B. Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70 by a qualified testing agency, and marked for intended location and application.
- C. ASME code construction shall be a vessel fabricated in compliance with the ASME BPVC Section VIII-1.
- D. Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.
- E. The domestic water heater shall be certified and labeled by an independent testing agency.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- B. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof,

it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

PART 2 - PRODUCTS

2.1 CONDENSING, GAS FIRED, STORAGE DOMESTIC WATER HEATERS

- A. The gas fired domestic water heater shall comply with ANSI Z21.10.3. Provide with access for cleaning and disinfection.
- B. The water heater design shall provide a combustion efficiency of at least 95 percent at operating conditions. Water heater capacities are scheduled on the drawings.
- C. The tank construction shall be ASME BPVC duplex, stainless steel, with 1035 kPa (150 psig) working pressure complying with NSF 61 and NSF 372 for barrier materials for potable-water tank linings.
- D. The tapping (openings) shall be factory fabricated of materials compatible with the tank and in accordance with appropriate ASME standards for piping connection, pressure and temperature relief valve, pressure gauge, thermometer, drain valve, anode rods and controls. The tappings shall be:
 - 1. 50 mm or DN50 (2 inch) and smaller: Threaded ends according to ASME B1.20.1.
 - 65 mm or (DN65) (2-1/2 inch) and larger: Flanged ends according to ASME B16.5 for steel and stainless steel flanges, and according to ASME B16.24.
- E. The natural gas-fired burner shall include the following:
 - Metal-fiber mesh covering a stainless steel body with spark ignition and flame rectification.
 - All burner material exposed to the combustion zone shall be of stainless steel construction.
 - 3. High temperature limit and low water cutoff devices for safety controls.
 - 4. Automatic ignition in accordance with ANSI Z21.20.
 - 5. The modulating motor must be linked to both the gas valve body and air valve body with a single linkage. The linkage shall not require any field adjustment.
- F. The control shall provide an integral sensor set point adjustment. The set point shall be adjustable in 1 degrees C (1 degrees F) increments.

- G. Temperature Setting shall be set for a minimum water temperature of 60 degrees C (140 degrees F). The temperature setting shall be adjustable. Heaters shall be capable of raising the discharge temperature to 77 to 82 degrees C (170 to 180 degrees F) for thermal eradication.
- H. The drain valve shall be corrosion resistant metal complying with ASSE 1005.
- I. The power vent system shall be interlocked with the burner.
- J. Combination Pressure and Temperature relief Valve: ANSI Z21.22 rated, constructed of all brass or bronze with a self-closing reseating valve.
- K. Special requirements: NSF 5 construction.
- L. ASHRAE 90.1 Compliant.
- M. Electronic operating system with integrated ignition and operating controls.
- N. Programmable electronic operator with digital temperature readouts, adjustable from 80 Deg. F to 180 Deg F.
- O. Alarm with remote contacts.
- P. Pre-mix surface burner.
- Q. Low Nox emissions. <20 ppm

2.2 DOMESTIC HOT WATER EXPANSION TANKS

- A. A steel pressure rated tank constructed with welded joints and factory installed butyl rubber diaphragm shall be installed as scheduled. The air precharge shall be set to minimum system operating pressure at tank.
- B. The tappings shall be factory fabricated steel, welded to the tank and include ASME B1.20.1 pipe thread.
- C. The interior finish shall comply with NSF 61 and NSF 372 barrier materials for potable water tank linings and the liner shall extend into and through the tank fittings and outlets.
- D. The air charging valve shall be factory installed.

2.3 HEAT TRAPS

A. Heat traps shall be installed in accordance with ASHRAE 90.1 if not provided integral with the heater.

2.4 COMBINATION TEMPERATURE AND PRESSURE RELIEF VALVES

A. The combination pressure and temperature relief Valve shall be ANSI Z21.22 and ASME rated and constructed of all brass or bronze with a

self-closing reseating valve. The relief valves shall include a relieving capacity greater than the heat input and include a pressure setting less than the water heater's working pressure rating. Sensing element shall extend into storage tank.

2.5 GAS SHUTOFF VALVES

A. The gas shutoff valve shall be manually operated with proof of closure conforming to ANSI Z21.15.

2.6 MOTORIZED GAS VALVES

- A. Automatic Gas Valves: Comply with ANSI Z21.21 and shall have the following characteristics:
 - 1. Body: Brass or aluminum.
 - 2. Seats and Disc: Nitrile rubber.
 - 3. Springs and Valve Trim: Stainless steel.
 - 4. Normally closed.
 - 5. Visual position indicator.
 - 6. Electrical operator for actuation by appliance automatic shutoff device.
- B. Electrically Operated Valves: Comply with UL 429 and shall have the following characteristics:
 - 1. Pilot operated.
 - 2. Body: Brass or aluminum.
 - 3. Seats and Disc: Nitrile rubber.
 - 4. Springs and Valve Trim: Stainless steel.
 - 5. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
 - 6. NEMA ICS 6, Type 4, coil enclosure.
 - 7. Normally closed.
 - 8. Visual position indicator.

2.7 GAS PRESSURE REGULATORS

A. The gas pressure regulator shall be appliance type, pressure rating matching inlet gas supply temperature, and conforming to ANSI Z21.18.

2.8 AUTOMATIC GAS VALVES

A. Each water heater shall incorporate dual over-temperature protection with manual reset, in accordance with ASME BPVC Section IV and ASME

CSD-1. The automatic gas valves shall be appliance type, electrically operated, on-off automatic control, and conforming to ANSI Z21.21.

2.9 THERMOMETERS

A. Thermometers shall be rigid stem or remote sensing, scale or dial type with an aluminum, black metal, stainless steel, or chromium plated brass case. The thermometer shall be back connected, red liquid (alcohol or organic-based) fill, vapor, bi-metal or gas actuated, with 225 mm (9 inches) high scale dial or circular dial 50 to 125 mm (2 to 5 inches) in diameter graduated from 4 to 100 degrees C (40 to 212 degrees F), with two-degree graduations guaranteed accurate within one scale division. The socket shall be separable, double-seat, micrometer-fittings, with extension neck not less than 65 mm (2-1/2 inches) to clear tank or pipe covering. The thermometer shall be suitable for 20 mm (3/4 inch) pipe threads. Thermometers may be console-mounted with sensor installed in separate thermometer well.

2.10 SUPPORTS

- A. Water heater stands shall be factory-fabricated steel for floor mounting capable of supporting water heater and water a minimum of 450 mm (18 inches) above the floor.
- B. Wall brackets for wall mounted heaters shall be factory-fabricated steel capable of supporting water heater and water.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. The water heaters shall be installed on concrete bases unless elevated above the floor. Refer to Specification Section 03 30 00, CAST-IN-PLACE CONCRETE and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. The water heaters shall be installed level and plumb and securely anchored.
- C. The water heaters shall be installed and connected in accordance with manufacturer's written instructions with manufacturer's recommended clearances.
- D. All pressure and temperature relief valves discharge shall be piped to a nearby floor drains with air gap or break.

- E. Thermometers shall be installed on the water heater inlet and outlet piping and shall be positioned such that they can be read by an operator or staff standing on floor or walkway.
- F. Vent piping from gas-train pressure regulators and valves shall be piped to the outside of building and shall conform to NFPA 54.
- G. The thermostatic control shall be set for a minimum setting of 60 degrees C (140 degrees F) for storage heaters and regulated to a maximum discharge temperature of 54 degrees C (130 degrees F) for distribution to personnel.
- H. Shutoff valves shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
- I. All manufacturer's required clearances shall be maintained.
- J. A combination temperature and pressure relief valve shall be installed at the top portion of the storage tank in accordance with manufacturer's recommendations. The sensing element shall extend into the tank. The relief valve outlet drain piping shall discharge by positive air gap or break into a floor drain.
- K. Piping type heat traps shall be installed on the inlet and outlet piping of the domestic water heater storage tanks, unless provided integrally with the tanks.
- L. Water heater drain piping shall be installed as indirect waste to spill by positive air gap into open drains or over floor drains. Hose end drain valves shall be installed at low points in water piping for gas fueled domestic hot water heaters without integral drains.
- M. The type B galvanized or stainless steel combustion vent shall be installed and sized according to the water heaters recommendations and extended through the roof or wall as allows by the local fuel gas code or NFPA 54. Install vents for condensing heaters in accordance with manufacturer's recommendations.
- N. Dielectric unions shall be provided if there are dissimilar metals between the water heater connections and the attached piping.
- O. Provide vacuum breakers per ANSI Z21.22 on the inlet pipe if the water heater is bottom fed.
- P. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 LEAKAGE TEST

A. Before piping connections are made, the water heaters shall be tested at a hydrostatic pressure of 1380 kPa (200 psig) and 1654 kPa (240 psig) for a unit with a MAWP of 1103 kPa (160 psig). If any leakage is found on the water heater, the water heater shall be replaced with a new unit at no additional cost to the VA.

3.3 PERFORMANCE TEST

A. All of the remote water outlets shall be tested to ensure a minimum of43 degrees C (110 degrees F) and a maximum of 49 degrees C (120 degreesF) water flow at all times.

3.4 STARTUP AND TESTING

- A. As recommended by product manufacturer and listed standards and under actual or simulated operating conditions, tests shall be conducted to prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with each integrated system.
- B. The tests shall include system capacity, control function, and alarm functions.
- C. When any defects are detected, correct defects and repeat test at no additional costs to the Government.
- D. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior to notice.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.6 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 35 00 DOMESTIC WATER HEAT EXCHANGERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for domestic hot water heat exchangers including thermometers and all necessary accessories, connections and equipment.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- F. Section 09 91 00, PAINTING: Preparation and finish painting.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING.
- I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- J. Section 22 07 11, PLUMBING INSULATION.
- K. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- L. Section 22 11 00, FACILITY WATER DISTRIBUTION: Piping, Fittings, Valves and Gages.
- M. Section 22 11 23, DOMESTIC WATER PUMPS: Circulating Pump.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Heating, Refrigerating and Air Conditioning Engineers (ASHRAE): 90.1 (2013).....Energy Standard for Buildings Except Low-Rise Residential Buildings
- C. American National Standard Institute (ANSI): Z21.22B-2001 (R2008)....Relief Valves for Hot Water Supply Systems

D. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code -BPVC Section IV-2013....Rules for Construction of Heating Boilers BPVC Section VIII-1-2013 Rules for Construction of Pressure Vessels, Division 1 Form U-1......Manufacturer's Data Report for Pressure Vessels B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 PTC 25.3-02.....Pressure Relief Devices E. National Fire Protection Association (NFPA): 70-2011......National Electrical Code (NEC) F. NSF International (NSF): 61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content G. Underwriter Laboratories (UL): 207-2013......Standard for Refrigerant-Containing Components and Accessories, Nonelectrical 778-2002.....Standard for Motor-Operated Water Pumps

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 35 00, DOMESTIC WATER HEAT EXCHANGERS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Heat Exchangers.

- 2. Heat Reclaimers.
- 3. Pressure and Temperature Relief Valves.
- 4. Steam Control Valves.
- 5. Heating Hot Water Control Valves.
- 6. Thermometers.
- 7. Pressure Gages.
- 8. Vacuum Breakers.
- 9. Safety Valves.
- 10. Expansion Tanks.
- 11. Heat Traps.
- D. A form U-1 or other documentation stating compliance with the ASME Boiler and Pressure Vessel Code.
- E. Shop drawings shall include wiring diagrams for power, signal and control functions.
- F. Submit documentation indicating compliance with applicable requirements of ASHRAE 90.1, Unfired Storage Tanks, for Service Water Heating.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Equipment components in contact with potable water shall meet compliance requirements in documents NSF 61 and NSF 372.
- B. Comply with American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1 for efficiency performance.

22 35 00 - 3 DOMESTIC WATER HEAT EXCHANGERS

- B. The heat exchanger shall be certified and labeled by an independent testing agency.
- C. Circulating pump shall be installed per NFPA 70.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- B. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

PART 2 - PRODUCTS

2.1 SHELL AND TUBE, DOMESTIC WATER HEAT EXCHANGERS

A. The shell and tube heat exchangers shall be double wall horizontal with water in the shell and steam in the tubes. Heat exchanger shall be of

22 35 00 - 4 DOMESTIC WATER HEAT EXCHANGERS counterflow design. The shell and tube heat exchanger shall be a packaged assembly of tank, heat exchanger coils, control valves, controls, and specialties constructed of ASME code stainless steel or cupro-nickel shell with 1035 kPa (150 psig) minimum working pressure. Heat exchanger shall comply with NSF 61 and NSF 372 for barrier materials for potable-water tank linings. Provide with access for cleaning and disinfection. Heat exchanger capacities are scheduled on the drawings.

B. The stand or skid shall be factory fabricated for floor mounting.

- C. The tappings (openings) shall be factory fabricated of materials compatible with the tank and in accordance with appropriate ASME standards for piping connections, pressure and temperature relief valve, pressure gauge, thermometer, drain valve, anode rods and controls. The openings shall be in accordance with ASME standards listed below:
 - 1. 50 mm or DN50 (2 inch) and smaller: Threaded ends according to ASME B1.20.1.
 - 2. 65 mm or DN65 (2-1/2 inch) and larger: Flanged ends according to ASME B16.5 for steel and stainless steel flanges, and according to ASME B16.24.
- D. Shell insulation shall comply with ASHRAE 90.1 and suitable for operating temperature. The entire shell and nozzles shall be completely surrounded except connections, gages and controls.
- E. The heat exchanger coils shall be constructed from copper and fabricated in a helix wound for steam heating medium. The pressure rating shall be equal to or greater than the steam supply pressure plus 50 percent.
- F. The temperature controls shall be designed for an output temperature of 60 degrees C (140 degrees F) based upon an adjustable temperature transmitter that operates a control valve and is capable of maintaining outlet water temperature within 2 degrees C (4 degrees F) of setting. Heaters shall be capable of raising the discharge temperature to 77-82 degrees C (170-180 degrees F) for thermal eradication.
 - Steam control valve shall regulate the control of steam flow to the heating coil to control water temperature and shall be

electronically operated. The outlet water temperature shall not vary more than \pm 1 degrees C (\pm 2.5 degrees F).

- A drip trap, steam condensate trap (if required), Y strainer, vacuum breaker, and pressure gage shall be factory sized and piped with steam control valve.
- 3. A normally closed solenoid valve shall be rated at 5 amps, 120-volt. Solenoid valve shall close the steam supply to the heating coil, should the water temperature in the tank reach the high set point.
- G. Safety control shall be automatic, high temperature limit shutoff device.
- H. The relief valves shall be ASME rated and stamped for combination temperature and pressure relief valves.
- I. The pressure storage vessel shall be all welded construction and ASME BPVC Section VIII-1 stamped for a working pressure of 1035 kPa (150 psig). The storage tank shall be cupro-nickel. Lining shall meet NSF 61 and NSF 372 requirements. The storage vessel shall be provided with a fiberglass insulation system in compliance with ASHRAE 90.1, with jacket, and a magnesium anode. Provide with access for cleaning and disinfection.

2.2 DOMESTIC WATER HEAT RECLAIMERS

- A. Waste heat recovery device complying with an listed according to UL 207 for heat reclaimers. Includes copper vertical drainage tube with helical, domestic-water preheat coil around drainage tube.
- B. The working pressure shall be rated at 1035 kPa (150 psig).

2.3 THERMOMETERS

A. Thermometers shall be rigid stem or remote sensing, scale or dial type with an aluminum, black metal, stainless steel, or chromium plated brass case. The thermometer shall be back connected, red liquid (alcohol or organic-based) fill, vapor, bi-metal or gas actuated, with 225 mm (9 inches) high scale dial or circular dial 50 to 125 mm (2 to 5 inches) in diameter graduated from 4 to 100 degrees C (40 to 210 degrees F), with two-degree graduations guaranteed accurate within one scale division. The socket shall be separable, double-seat, micrometer-fittings, with extension neck not less than 65 mm (2 1/2 inches) to clear tank or pipe covering. The thermometer shall be suitable for 20

22 35 00 - 6 DOMESTIC WATER HEAT EXCHANGERS mm (3/4 inch) pipe threads. Thermometers may be console-mounted with sensor installed in separate thermometer well.

2.4 SAFETY VALVES FOR SHELL AND COIL HEATERS

- A. Separate combination pressure/temperature relief valves shall be provided on each water heater.
- B. A double solenoid safety system shall be provided for each shell and coil heater to function as a safety over temperature prevention system. System shall consist of aquastat, pilot light, solenoid safety valve and solenoid water safety valve located in the control circuit. The aquastat shall be set at 60 degrees C (140 degrees F).

2.5 DOMESTIC HOT WATER EXPANSION TANKS

- A. A steel pressure rated tank constructed with welded joints and factory installed butyl rubber diaphragm shall be installed as scheduled. The air precharge shall be set to minimum system operating pressure at tank.
- B. The tappings shall be factory fabricated steel, welded to the tank and include ASME B1.20.1 pipe thread.
- C. The interior finish shall comply with NSF 61 and NSF 372 for barrier materials for potable water tank linings and the liner shall extend into and through the tank fittings and outlets.
- D. The air charging valve shall be factory installed.

2.6 HEAT TRAPS

A. Heat traps shall be installed in accordance with ASHRAE 90.1 unless provided integrally with the heaters.

2.7 COMBINATION TEMPERATURE AND PRESSURE RELIEF VALVES

A. The combination pressure and temperature relief Valve shall be ANSI Z21.22 and ASME rated and constructed of all brass or bronze with a self-closing reseating valve. The relief valves shall include a relieving capacity greater than the heat input and include a pressure setting less than the water heater's working pressure rating. Sensing element shall extend into storage tank.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. The water heaters shall be installed on concrete bases. Refer to Specification Section 03 30 00, CAST-IN-PLACE CONCRETE and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. The water heaters shall be installed level and plumb and securely anchored.
- C. Water heaters shall be installed and connected in accordance with manufacturer's written instructions with manufacturer's recommended clearances.
- D. All pressure and temperature relief valves discharge shall be piped to nearby floor drains with air gap or break.
- E. Thermometers and isolation values shall be installed on water heater inlet and outlet piping and shall be positioned such that they can be read by an operator or staff standing on floor or walkway.
- F. The thermostatic control shall be set for a minimum setting of 60 degrees C (140 degrees F) for storage heaters and regulated to a maximum discharge temperature of 54 degrees C (130 degrees F) for distribution to personnel.
- G. Shutoff values shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
- H. All manufacturer's required clearances shall be maintained.
- I. A combination temperature and pressure relief valve shall be installed at the top portion of the storage tank. The sensing element shall extend into the tank. The relief valve outlet drain piping shall discharge by positive air gap into a floor drain.
- J. Piping type heat traps shall be installed on the inlet and outlet piping of the domestic water heater storage tanks, unless provided integrally with the tanks.
- K. Water heater drain piping shall be installed as indirect waste to spill by positive air gap into open drains or over floor drains. Hose end drain valves shall be installed at low points in water piping for gas fueled domestic hot water heaters without integral drains.
- L. Dielectric unions shall be provided if there are dissimilar metals between the water heater connections and the attached piping.

- M. Provide vacuum breakers per ANSI Z21.22 on the inlet pipe if the water heater is bottom fed.
- N. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 LEAKAGE TEST

A. Before piping connections are made, the water heaters shall be tested at a hydrostatic pressure of 1380 kPa (200 psig) for water heaters rated at less than 1103 kPa (160 psig) and 1654 kPa (240 psig) for units with an maximum working pressure of 1103 kPa (160 psig) or over. Any failed test shall be corrected and the water heater shall be replaced with a new unit at no additional cost to the VA.

3.3 PERFORMANCE TEST

A. Ensure that all of the remote water outlets will have a minimum of 43 degrees C (110 degrees F) and a maximum of 49 degrees C (120 degrees F) water flow at all times. If necessary, make all correction to balance the return water system or reset the thermostat to make the system comply with design requirements.

3.4 STARTUP AND TESTING

- A. As recommended by product manufacturer and listed standards and under actual or simulated operating conditions, tests shall be conducted to prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with each integrated system.
- B. The tests shall include system capacity, control function, and alarm functions.
- C. When any defects are detected, correct defects and repeat test at no additional costs to the Government.
- D. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior to notice.

3.5 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

B. Components provided under this section of the specification will be tested as part of a larger system.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- F. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.
- I. Section 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME):
 A112.6.1M-1997 (R2012)..Supports for Off-the-Floor Plumbing Fixtures for Public Use
 A112.19.1-2013.....Enameled Cast Iron and Enameled Steel Plumbing Fixtures
 A112.19.2-2013.....Ceramic Plumbing Fixtures
 A112.19.3-2008.....Stainless Steel Plumbing Fixtures
 C. American Society for Testing and Materials (ASTM):
 A276-2013a....Standard Specification for Stainless Steel Bars

and Shapes

VA Project 438-450 VAMC Sioux Falls, SD Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 B584-2008.....Standard Specification for Copper Alloy Sand Castings for General Applications D. CSA Group: B45.4-2008 (R2013).....Stainless Steel Plumbing Fixtures E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-2006.....Metal Finishes Manual F. American Society of Sanitary Engineering (ASSE): 1016-2011.....Automatic Compensating Valves for Individual Showers and Tub/Shower Combinations G. NSF International (NSF): 14-2013.....Plastics Piping System Components and Related Materials 61-2013.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content H. American with Disabilities Act (A.D.A) I. International Code Council (ICC): IPC-2015.....International Plumbing Code 1.4 SUBMITTALS A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification. C. Manufacturer's Literature and Data including: Full item description and

- optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

VA Project 438-450 10-01-18 100% Bid Documents

D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

E. Mental Health Area: Provide stainless steel drain guard for all lavatories not installed in casework.

2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.5 LAMINAR FLOW CONTROL DEVICE

A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. Aerators are prohibited.

B. Flow Control Restrictor:

- Capable of restricting flow from 32 ml/s to 95 ml/s (0.5 gpm to 1.5 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 174 ml/s to 190 ml/s (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.
- Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psig and 80 psig).
- Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.6 CARRIERS

- A. ASME A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME A112.6.1M, lavatory, concealed arm support. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

VA Project 438-450 10-01-18 100% Bid Documents

2.7 WATER CLOSETS

- A. (P-102) Water Closet (Floor Mounted, ASME A112.19.2, Figure 6)-office and industrial, elongated bowl, siphon jet 4.8 L (1.28 gallons) per flush, floor outlet. Top of seat shall be 435 mm to 438 mm (17-1/8 inches to 17-1/4 inches) above finished floor.
 - Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.
 - 2. Fittings and Accessories: Floor flange fittings-cast iron; Gasketwax; bolts with chromium plated cap nuts and washers.
 - 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, battery powered active infrared sensor for automatic operation with courtesy flush button for manual operation top spud connection, adjustable tailpiece, one-inch IPS screwdriver back check angle stop with vandal resistant cap, high back pressure vacuum breaker, solid-ring pipe support, and sweat solder adapter with cover tube and cast set screw wall flange. Set centerline of inlet 292 mm (11-1/2 inches) above seat. Seat bumpers shall be integral part of flush valve. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM B584 Alloy classification for semi-red brass.

2.8 LAVATORIES

- A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
- B. Brass components in contact with water shall contain no more than 0.25 percent lead content by dry weight. Faucet flow rates shall be 3.9 L/m (1.5 gpm) for private lavatories and either 1.9 L/m (0.5 gpm) or 1.0 liter (0.25 gallons) per cycle for public lavatories.
- C. (P-401) Lavatory (Single Lever Handle Control ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) maximum apron, first quality vitreous china. Punching for faucet on 102 mm (4 inches) centers. Set with rim 864 mm (34 inches) above finished floor.

- Faucet: Solid cast brass construction, vandal resistant, heavy-duty single lever handle, center set. Control shall be washerless ceramic disc cartridge type. Provide laminar flow control device, adjustable hot water limit stop, and vandal proof screws. Flow shall be limited to 1.9 L/m (0.5 gpm).
- 2. Drain: Cast or wrought brass with flat grid strainer offset tailpiece, chrome plated. Provide cover per A.D.A 4-19.4.
- Stops: Angle type, see paragraph "Stops". Provide cover per A.D.A 4-19.4.
- 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extensions to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall. Provide cover per A.D.A 4-19.4.
- D. (P-402) Lavatory (Elbow Control, ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) maximum apron, first quality vitreous china. Punching for faucet on 203 mm (8 inches) centers. Set with rim 864 mm (34 inches) above finished floor.
 - 1. Faucet: Solid cast brass construction with washerless ceramic disc mixing cartridge type and centrally exposed rigid gooseneck spout with outlet 127-152 mm (5-6 inches) above rim. Provide laminar flow control device. One hundred millimeters (4 inches) elbow handles on faucets shall be cast, formed or drop forged copper alloy. Faucet, wall and floor escutcheons shall be either copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Flow shall be limited to 1.9 L/m (0.5 gpm).
 - 2. Drain: Cast or wrought brass with flat grid strainer and offset tailpiece, chrome plated finish.
 - 3. Stops: Angle type, See paragraph "Stops".
 - 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extensions to wall. Exposed metal trap surfaces and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.

5. Provide cover for exposed piping, drain, stops and trap per A.D.A.

2.9 SINKS

- A. Dimensions for sinks are specified, length by width (distance from wall) and depth.
- B. (P-502) Service Sink (Corner, Floor Mounted) stain resistant terrazzo, 711 mm by 711 mm by 305 mm (28 inches by 28 inches by 12 inches) with 152 mm (6 inches) drop front. Terrazzo, composed of marble chips and white Portland cement, shall develop compressive strength of 20684 kPa (3000 psig) seven days after casting. Provide extruded aluminum cap on front side.
 - 1. Faucet: Solid brass construction, 9.5 L/m (2.5 gpm) combination faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, integral check/stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch) hose coupling threads, vacuum breaker, and top or bottom brace to wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Provide 914 mm (36 inches) hose with wall hook. Centerline of rough in is 1219 mm (48 inches) above finished floor.
 - Drain: Seventy six millimeter (3 inches) cast brass drain with nickel bronze strainer.
 - 3. Trap: P-trap, drain through floor.
- C. (P-528) Sink (CRS, Single Compartment, Counter Top ASME A112.19.2, Kitchen Sinks) self-rimming, back faucet ledge, approximately 533 mm by 559 mm (21 inches by 22 inches) with single compartment inside dimensions approximately 406 mm by 483 mm by 191 mm (16 inches by 19 inches by 7 1/2 inches) deep. Shall be minimum of 1.3 mm thick (18 gauge) CRS. Corners and edges shall be well rounded:
 - Faucet: Solid brass construction, 8.3 L/m (2.2 gpm) deck mounted combination faucet with Monel or ceramic seats, removable replacement unit containing all parts subject to ware, swivel gooseneck spout with approximately 203 mm (8 inches) reach with spout outlet 152 mm (6 inches above deck and 102 mm (4 inches) wrist blades. Faucet shall be polished chrome plated.

- 2. Drain: Drain plug with cup strainer, stainless steel.
- 3. Trap: Cast copper alloy 38 mm (1 1/2 inches) P-trap with cleanout plug. Provide wall connection and escutcheon.
- 4. Provide cover for exposed piping, drain, stops and trap per A.D.A.
- D. (P-604) Electric Water Cooler (Mechanically Cooled, Wall Hung, Selfcontained, Wheelchair) bubbler style, 30 l/h (8 gph) minimum capacity, lead free. Top shall be CRS anti-splash design. Cabinet, CRS, satin finish, approximately 457 mm by 457 mm by 635 mm (18 inches by 18 inches by 25 inches) high with mounting plate. Set bubbler 914 mm (36 inches) above finished floor. Unit shall be push bar operated with front and side bar and automatic stream regulator. All trim polished chrome plated. Provide with bottle filler option..D. (P-608) Electric Water Cooler (Mechanically Cooled, Wall Hung, Wheelchair, with Glass Filler) bubbler style, air cooled compressor, 30 l/h (8 gph) minimum capacity, lead free. Top shall be one piece type 304 CRS anti-splash design. Cabinet, CRS satin finish, approximately 457 mm by 457 mm by 635 mm (18 inches by 18 inches by 25 inches) high with mounting plate. Dual height, high/low unit shall be push bar operated with front and side bars, automatic stream regulator, and heavy chrome plated brass push down glass filler with adjustable flow control, and all trim chrome plated. Set bubbler 914 mm (36 inches) above finished floor. Provide with bottle filler option.

2.10 EMERGENCY FIXTURES

A. (P-708) Emergency Eye and Face Wash (Wall Mounted): CRS, wall mounted, foot pedal control. Mount eye and face wash spray heads 1067 mm (42 inches) above finished floor. Pedal shall be wall mounted, entirely clear of floor, and be hinged to permit turning up. Receptor shall be complete with drain plug with perforated strainer, P-trap and waste connection to wall with escutcheon. Provide with thermostatic mixing valve to provide tepid water from 30 to 35 degrees C (85 to 95 degrees F). Flow rate shall be 11.4 L/m (3 gpm).

2.11 HYDRANT, HOSE BIBB AND MISCELLANEOUS DEVICES

A. (P-801) Wall Hydrant: Cast bronze non-freeze hydrant with detachable Thandle. Brass operating rod within casing of bronze pipe of sufficient length to extend through wall and place valve inside building. Brass valve with coupling and union elbow having metal-to-metal seat. Valve

VA Project 438-450 10-01-18 100% Bid Documents

rod and seat washer removable through face of hydrant; 19 mm (3/4 inch) hose thread on spout; 19 mm (3/4 inch) pipe thread on inlet. Finish may be rough; exposed surfaces shall be chrome plated. Set not less than 457 mm (18 inches) nor more than 914 mm (36 inches) above grade. On porches and platforms, set approximately 762 mm (30 inches) above finished floor. Provide integral vacuum breaker which automatically drains when shut off.

- B. (P-812) Water Supply Box Units: Fabricate of 16-gage steel with highly corrosion resistant epoxy finish. Unit to have 13 mm (1/2 inch) combination MPT brass sweat connection, ball type shut-off valve. Size 229 mm by 298 mm (9 inches by 11 3/4 inches) rough wall opening 203 mm by 254 mm by 92 mm (8 inches by 10 inches by 3 5/8 inches). Bottom of box shall be 457 mm (18 inches) above finished floor.
- C. (P-810) Thermostatic Mixing Valve in Recessed Cabinet:
 - 1. Valve: Master water mixing valve. Bronze construction, 19 mm (3/4 inch) IPS hot water inlet, 19 mm (3/4 inch) IPS cold water inlet, 25 mm (1 inch) IPS outlet. Liquid filled thermal motor, Sliding piston and liner shall be stainless steel. Provide high/low outlet with dial thermometer range -7 to 115 degrees C (20 to 240 degrees F.
 - 2. Cabinet: Concealed cabinet for recessed installation, body 16 gage CRS, door and flange 12 gage CRS, NAAMM Number 4 finish. Piano hinge in left side of door, cylinder lock, top inlets and stainless steel hose rack. Factory assembled or a unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Toggle Bolts: For hollow masonry units, finished or unfinished.
- D. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into

masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.

- E. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- F. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- G. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- H. Aerators are prohibited on lavatories and sinks.
- I. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Section 05 31 00, STEEL DECKING,
- E. Section 07 84 00, FIRESTOPPING
- F. Section 07 92 00, JOINT SEALANTS
- G. Section 09 91 00, PAINTING
- H. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION
- I. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- J. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC
- K. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- L. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- M. Section 23 08 11, DEMONSTARION and TESTS FOR BOILER PLANT.
- N. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- O. Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUITS and CABLES.

1.3 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality

> 23 05 11 - 1 COMMON WORK RESULTS FOR HVAC

institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC

- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer.
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.

- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:
 - HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.

- Provide complete layout drawings required by Paragraph, SUBMITTALS.
 Do not commence construction work on any system until the layout drawings have been approved.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, and PRODUCT DATA, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.
- F. Layout Drawings:
 - 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment,

piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.

- 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- H. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

VA Project 438-450 10-01-18 100% Bid Documents

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):

IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves

IP-21-2009..... Specifications for Drives Using Double-V

(Hexagonal) Belts

E. Air Movement and Control Association (AMCA):

410-96..... Recommended Safety Practices for Air Moving Devices

F. American Society of Mechanical Engineers (ASME):

Boiler and Pressure Vessel Code (BPVC):

Section I-2007.....Power Boilers

Section IX-2007......Welding and Brazing Qualifications

Code for Pressure Piping:

B31.1-2007.....Power Piping

G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel

A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

- E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials
- E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials

H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation SP 69-2003.....Pipe Hangers and Supports-Selection and Application SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application I. National Electrical Manufacturers Association (NEMA): MG-1-2009..... Motors and Generators J. National Fire Protection Association (NFPA): 31-06..... of Oil-Burning Equipment 54-09.....National Fuel Gas Code 70-08.....National Electrical Code 85-07.....Boiler and Combustion Systems Hazards Code 90A-09..... Standard for the Installation of Air Conditioning and Ventilating Systems 101-09....Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government.
 - Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.

- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.

D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.4 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without

> 23 05 11 - 9 COMMON WORK RESULTS FOR HVAC

bending or distortion of shape, such as rapid lowering and braking of load.

2.5 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.6 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 25,000 AIC. Provide AC input line reactors (3% impedance) filters on incoming power line.

23 05 11 - 10 COMMON WORK RESULTS FOR HVAC

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
 - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
 - C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
 - D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
 - E. Valve Tags and Lists:
 - 1. HVAC and Boiler Plant: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.8 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.9 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint form.

2.10 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- F. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING.

- G. Attachment to Wood Construction: Wood screws or lag bolts.
- H. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:

- Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
- For vertical runs use epoxy painted or plastic coated riser clamps.
- For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
 - c. Piping with Vertical Expansion and Contraction:
 - Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.
- K. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.

- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal.
 Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
- Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.11 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.

- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.12 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.13 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.

- D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All

23 05 11 - 17 COMMON WORK RESULTS FOR HVAC gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.

- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during

installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Install steam piping expansion joints as per manufacturer's recommendations.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).
- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling

under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.3 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.

- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.4 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.

- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.5 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.6 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.7 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated

plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application.

- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.9 STARTUP AND TEMPORARY OPERATION

A. Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

VA Project 438-450 10-01-18 100% Bid Documents

3.11 INSTRUCTIONS TO VA PERSONNEL

A. Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- E. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- F. Section 26 24 19, MOTOR-CONTROL CENTERS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, and PRODUCT DATA, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.

E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 ..Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators
 C. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code (NEC)
 D. Institute of Electrical and Electronics Engineers (IEEE): 112-04....Standard Test Procedure for Polyphase Induction Motors and Generators
 E. American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE):

90.1-2007.....Energy Standard for Buildings Except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.

- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - 1. Contractor's Option Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt
 systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt
 systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA Standards for connection to the nominal system voltage shown on the drawings.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.

- b. Motors for equipment assemblies, less than 746 W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 40°C (104°F) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 40°C (104°F), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.

- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees
 C (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open₇ drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	n Premium	Efficier	ncies	Minimum	Premium	Efficiend	cies
	Open Drip	-Proof		Totally	Enclosed	l Fan-Coo	led
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM

0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

D. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of all equipment. Coordinate the startup and contractor testing schedules with Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

A. Noise criteria and vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors(Public)	40
Examination Rooms	35
Laboratories (With Fume Hoods)	45 to 55
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Patient Rooms	35
Phono/Cardiology	25
Treatment Rooms	35

2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the fore-

going noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.

- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Acoustical enclosures.

C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): 2009Fundamentals Handbook, Chapter 7, Sound and Vibration
- C. American Society for Testing and Materials (ASTM): A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010)....Standard Test Method for Rubber Property -

Durometer Hardness

D. Manufacturers Standardization (MSS): SP-58-2009.....Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC): 2009 IBC.....International Building Code.
- I. Department of Veterans Affairs (VA):
 H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a

minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.

- b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
- 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed

elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.

- 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.
- D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.3 BASES

A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate

stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.

- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.4 SOUND ATTENUATING UNITS

A. Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.

- 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4 inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.

- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT		ON GRADE	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40ET	FLOOR	SPAN	50FT	FLOOR	SPAN
	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL	MIN DEFL	BASE TYPE	ISOL	MIN DEFL
REFRIGERATION MACHINES	MACHI	NES													
PACKAGED HERMETIC	IC	Д	0.3	 	SР	0.8		SР	1.5		SР	1.5	К	SР	2.5
OPEN CENTRIFUGAL	ы	D	0.3	р	SP	0.8		SР	1.5	р	SР	1.5	В	SP	3.5
RECIPROCATING:		-													
ALL		D	0.3	 	SР	0.8	Ц	SP	2.0	Ц	SР	2.5	К	SР	3.5
COMPRESSORS A	AND VACUUM PUMPS	UUM P	UMPS												
UP THROUGH 1-1/2 HP		D, L, W	0.8		D, L, W	0.8		D, L, W	1.5	1	D, L, W	1.5	 	D, L, W	
2 HP AND OVER:															
500 - 750 RPM		Д	0.8		S	0.8		N	1.5		S	1.5		S	2.5
750 RPM & OVER		D	0.8	 	S	0.8		S	1.5		S	1.5		S	2.5
PUMPS															
CLOSE UP TO COUPLED 1-1/2 HP	5 0			-	D, L, W		-	Д, L, W		-	D, L, W			D, L, W	
2 HP & OVER			 	Г	N	°.0	н	o v	1.5	н	S	1.5	ц	N	2.0

Т-1

VA Project 438-450 10-01-18 100% Bid Documents

EQUIPMENT	0	ON GRADE	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR SPAN	SPAN	50FT	FLOOR SPAN	SPAN
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL	MIN DEFL
ROOF FANS															
ABOVE OCCUPIED AREAS:	 														
5 HP & OVER	-	-		CB	N	1.0	CB	N	1.0	CB	S	1.0	CB	S	1.0
CENTRIFUGAL FANS	<u></u>														
UP TO 50 HP:															
UP TO 200 RPM	р	N	0.3	В	N	2.5	Д	N	2.5	щ	S	3.5	Д	S	3.5
201 - 300 RPM	В	Ν	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500 RPM	Э	N	0.3	В	Ŋ	2.0	Д	N	2.0	щ	N	2.5	Щ	S	. 5 С
501 RPM & OVER	Ю	N	0.3	В	Ŋ	2.0	Д	N	2.0	Щ	S	2.0	Д	S	2.5
60 HP & OVER:															
UP TO 300 RPM	В	S	2.0	Ι	Ŋ	2.5	I	S	3 . 5	I	S	3.5	Ι	S	3.5
301 - 500 RPM	В	N	2.0	Ι	Ŋ	2.0	I	S	2.5	I	S	3.5	Ι	S	3.5
501 RPM & OVER	В	S	1.0	Ι	S	2.0	Ι	S	2.0	Ι	S	2.5	Ι	S	2.5

VA Project 438-450 10-01-18 100% Bid Documents

EQUIPMENT	0	ON GRADE	ы	20ET	FLOOR	SPAN	30ET	FLOOR	SPAN	40ET	FLOOR	SPAN	50FT	FLOOR	SPAN
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
AIR HANDLING UNIT P	PACKAGES	70													
FLOOR MOUNTED:															
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM		D		Ц	S, THR	1.5	Ц	S, THR	2.5	Ц	S, THR	2.5	Ц	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	К	S, THR	1.5	Я	S, THR	2.0
HEAT PUMPS															
ALL		S	0.75		S	0.75		S	0.75	CB	S	1.5			NA
CONDENSING UNITS															
ALL		SS	0.25		SS	0.75		SS	1.5	CB	SS	1.5			NA
IN-LINE CENTRIFUGAL AND VANE AXIAL FANS	AND V?	NNE AXI	AL FAN:		FLOOR MOUNTED:		(APR 9)								
UP THRU 50 HP:															
501 - & OVER		D			S	1.0		ß	1.0	Я	S	2.0	Я	S	2.5

VA Project 438-450 10-01-18 100% Bid Documents

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span. ∼
 - 3. For separate chiller building on grade, pump isolators may be omitted
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 51 NOISE AND VIBRATION CONTROL FOR BOILER PLANT

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the application of noise and vibration control techniques to boiler plant rotating equipment including pumps, fans, compressors, motors and steam turbines.

1.2 RELATED WORK

- A. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT, and STEAM GENERATION.
- B. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- C. Section 23 08 11, DEMONSTRATIONS and TESTS FOR BOILER PLANT.
- D. Section 23 21 11, BOILER PLANT PIPING SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Noise and Vibration Control Devices; include with the equipment submittals.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Boiler Manufacturers Association (ABMA): ABMA-BOILER 304-1995....Measurement of Sound from Steam Generators

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 BALANCING AND ALIGNMENT OF ROTATING EQUIPMENT

A. Statically and dynamically balance all pumps, fans, compressors and drivers. Align shafts of pumps, fans, and drivers to limit noise and vibration to specified values. Level and anchor equipment as necessary to achieve and maintain alignment. Refer to Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION, and Section 23 21 11, BOILER PLANT PIPING SYSTEMS.

3.2 VIBRATION TESTS ON ROTATING EQUIPMENT

- A. Perform vibration tests on all pumps, fans, compressors and drivers during the pretest of the equipment. Refer to Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT. Tests shall be conducted by an experienced technician in the presence of the Resident Engineer (RE).
- B. Perform tests at each bearing in axial, horizontal, and vertical positions.
- C. RMS vibration velocity shall not exceed 0.0025 m/s (0.10-inch per second). Correct the cause of excessive vibration and provide retest.
- D. Test instruments furnished by contractor:
 - 1. Portable, with output capability to print data.
 - 2. Frequency range, 600-150,000 CPM minimum.
 - 3. Amplitude range, 2.54 m/s (0-100 inches per second).
 - 4. Sensitivity, 0.00013 m/s (0.005-inch per second).
 - 5. Frequency filter "out" for tests.
- E. Submit tabulated vibration readings to the RE.

3.3 SOUND LEVELS

- A. Sound level limitations apply to all burners, fans, blowers, pumps, compressors, control valves, pressure reducing valves, motors, turbines.
- B. Sound levels shall not exceed 85 DBA when measured 1400 mm (4.5-feet) above the floor and 910 mm (3-feet) horizontally from each surface of the smallest imaginary rectangular box which could completely enclose the entire unit which contains the sound source. Sound level limitations apply to the operation of the equipment at all loads within the equipment requirements.
- C. Tests will be performed by the Government using a standard sound level meter on the "A" scale, slow response. At the option and expense of the Government, a testing company may be employed to conduct tests using methods conforming to the referenced ABMA publication.
- D. If sound levels exceed requirements, modify or replace the equipment as necessary to achieve required sound levels and other specified requirements.

- Submit all proposed modifications or replacements for review prior to starting the work.
- 2. After completing the work, provide complete retest of equipment operation and performance.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes condenser water, heating hot water, and glycol-water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- E. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION:
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Equipment Insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- H. Section 23 31 00, HVAC DUCTS AND CASINGS
- I. Section 23 36 00, AIR TERMINAL UNITS:

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject

certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:

- One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Minimum outside air: 0 percent to plus 10 percent.
 - d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - e. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

2011HVAC Applications ASHRAE Handbook, Chapter 38, Testing, Adjusting, and Balancing and Chapter 48, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 2002.....AABC National Standards for Total System Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration

3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction

- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3rd Edition 2002 HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

A. The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the

23 05 93 - 6 TESTING, ADJUSTING, AND BALANCING FOR HVAC inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.

C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

A. TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- B. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.

- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 14 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the

heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).

- c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 3. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.

B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - Take readings in rooms, approximately five percent of all rooms. The Resident Engineer may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2011 ASHRAE Handbook, "HVAC Applications", Chapter 48, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 16 meters (50 feet) for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

A. Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

A. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation.

> 23 05 93 - 11 TESTING, ADJUSTING, AND BALANCING FOR HVAC

All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F)HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWS: Hot water heating supply.
- 21. HWK: Hot water heating return.
- 22. VR: Vacuum condensate return.
- 23. CPD: Condensate pump discharge.
- 24. R: Pump recirculation.
- 25. CW: Cold water.
- 26. SW: Soft water.
- 27. HW: Hot water.
- 28. RS: Refrigerant suction.
- 29. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 21 13, HYDRONIC PIPING.

- G. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- H. Section 23 22 23, STEAM CONDENSATE PUMPS

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For

pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, and PRODUCT DATA.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99(2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-07..... Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534-08..... Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-07..... Standard Specification for Mineral Fiber pipe Insulation

23 07 11 - 6 HVAC AND BOILER PLANT INSULATION

C552-07.....Standard Specification for Cellular Glass Thermal Insulation C553-08.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C585-09..... Standard Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System) R (1998) C612-10.....Standard Specification for Mineral Fiber Block and Board Thermal Insulation C1126-04.....Standard Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation C1136-10.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation D1668-97a (2006).....Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Method for Fire Tests of Building Construction and Materials E136-09b.....of Materials in a Vertical Tube Furnace at 750 degrees C (1380 F) E. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 96-08.....Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-09....Life Safety Code 251-06.....Standard methods of Tests of Fire Endurance of Building Construction Materials 255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials

> 23 07 11 - 7 HVAC AND BOILER PLANT INSULATION

F. Underwriters Laboratories, Inc (UL): 723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08 G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.3 CELLULAR GLASS CLOSED-CELL

A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).

1

B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

Insulation Characteristics						
ITEMS	TYPE I	TYPE II				
Temperature, maximum degrees C	649 (1200)	927 (1700)				
(degrees F)						
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)				
Thermal conductivity:						
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078				
mean temperature of 93 degrees C	(0.41)	(0.540)				
(200 degrees F)						
Surface burning characteristics:						
Flame spread Index, Maximum	0	0				
Smoke Density index, Maximum	0	0				

2.5 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity areas conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.6 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of
 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.7 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)						
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)					
Up through 125 (5)	150 (6) long					
150 (6)	150 (6) long					
200 (8), 250 (10), 300 (12)	225 (9) long					
350 (14), 400 (16)	300 (12) long					
450 through 600 (18 through 24)	350 (14) long					

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- C. Boiler Plant Pipe supports: MSS SP58, Type 39. Apply at all pipe support points, except where MSS SP58, Type 3 pipe clamps provided as part of the support system.

2.8 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.9 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.10 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.

F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.11 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.12 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Insulate PRVs, flow meters, and steam traps.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Expansion tanks, flash tanks, hot water pumps,
 - 5. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- J. Boiler plant work not to be insulated(NI)or if insulated the insulation shall be removal jacket type (RJ):
 - 1. Pipes, valves and fittings:
 - a. Gas fuel(NI)
 - b. Threaded valves (RJ)
 - c. Check valves (RJ)
 - d. Unions (RJ)

- e. Orifice flanges (RJ)
- f. Dielectric flanges and unions (RJ)
- g. Steam header drains (NI)
- h. Non-return stop and check valve drains (NI)
- i. Pneumatic controls (NI)
- j. Pressure transmission to gages (NI)
- k. Piping in control panels (NI)
- 2. Boilers:
 - a. Water column, piping and blowdown (NI)
 - b. Auxiliary low water cutoff, piping and blowdown(NI)
 - c. Remote water level indicators and piping blowdown(NI)
 - d. Steam gage piping(NI)
 - e. Soot blower and piping(NI)
 - f. Safety valves and drip pan ells(NI)
 - g. Water level sensors and piping except where required by equipment manufacturer(NI)
 - h. Control piping and devices or interlocks (NI)
 - i. Drum heads (water-tube boilers) (NI)

3. Equipment:

- a. Condensate return pump units(NI)
- b. Vacuum return pump units (NI)
- c. Pumps-inlet to outlet(NI)
- d. Flash tanks(NI)
- e. Safety valves(NI)
- f. Water meters(NI)
- g. Air compressors and tanks(NI)
- h. Refrigerated or desiccant air drier(NI)
- i. Chemical feeders(NI)
- j. Boiler and feedwater sampler(NI)
- k. All nameplates (NI)
- 4. Specialties:
 - a. Control valves-water and steam(NI)
 - b. Level sensors-piping, valves and blowdown(NI)
 - c. Back pressure regulators-oil and steam(NI)
 - d. Strainers under 65 mm (2-1/2 inch) pipe size(RJ)

- e. Expansion bellows(RJ)
- f. Flexible connectors(RJ)
- g. Ball joints except piping between joints (NI)
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- N. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(linch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- O. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature.
- P. Provide metal jackets over insulation as follows:

- 1. All piping and ducts exposed to outdoor weather.
- 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
- 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct, unlined air handling units, and afterfilter housing.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and pre-filter housing.

- c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
- d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- e. 50 mm (2 inch) thick insulation faced with ASJ: Intake air plenum and relief air plenum.
- 3. Supply air duct in the warehouse and in the laundry: 25 mm (one inch) thick insulation faced with ASJ.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.a. Convertors, air separators, steam condensate pump receivers.
 - b. Reheat coil casing and separation chambers on steam humidifiers
 - b. Reneat coll casing and separation champers on steam numidifiers located above ceilings.
 - c. Domestic water heaters and hot water storage tanks (not factory insulated).
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.

- a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
- b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - b. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees

C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.

- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
 - 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Cellular Glass Insulation:
 - Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt

impregnated glass fabric, bituminous mastic and outside protective plastic film.

- a. 75 mm (3 inches) thick for hot water piping.
- b. As scheduled at the end of this section for chilled water piping.
- c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
- d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- e. Underground insulation shall be inspected and approved by the Resident Engineer as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
- f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.
- 4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
- F. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
 - Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - Install insulation with all joints tightly butted (except expansion) joints in hot applications).

- 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
- 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
- 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
- For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Underground piping: Follow instructions for above ground piping but the vapor retarder jacketing shall be 6 mil thick PVDC or minimum 30 mil thick rubberized bituminous membrane. Sand bed and backfill shall be a minimum of 150 mm (6 inches) all around insulated pipe.
- 10. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 11. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 12. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:

- Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.3	APPLICATION	-BOILER	PLANT,	PIPE,	VALVES,	STRAINERS	AND	FITTINGS:
-----	-------------	---------	--------	-------	---------	-----------	-----	-----------

Nominal Thickness	Of Calcium Silicate Insulation						
(Boiler Plant)							
Pipe Diameter mm	Insulation Thickness mm						
(in)	(in)						
25 (1 and below)	125 (5)						
25 to 38 (1-1/4 to 1-	125 (5)						
1/2)							
38 (1-1/2) and above	150 (6)						

A. Temperature range 100 to 121 degrees C (211 to 250 degrees F):

- Application: Steam service 103 kpa (15 psig) and below, trap assembly discharge piping, boiler feedwater from feedwater heater to boiler feed pump recirculation, feedwater heater overflow, heated oil from oil heater to burners.
- 2. Insulation and Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (0 to 6 feet) above boiler room floor, feedwater heater mezzanine floor and access platform, and any floors or access platforms on which tanks or pumps are located.
 - b. Mineral Fiber or rigid closed cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on condensate lines at boilers and burners.
- 3. Thickness-calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation						
Pipe Diameter mm (in)	Insulation Thickness mm (in)					
25 (1 and below)	50 (2)					
25 to 38 (1-1/4 to 1-	50 (2)					
1/2)						
38 (1-1/2) and above	75 (3)					

4. Thickness-rigid closed-cell phenolic foam insulation:

Nominal Thickness Of Insulation							
Pipe Diameter mm (in)	Insulation Thickness mm (in)						
25 (1 and below)	38 (1.5)						
25 to 38 (1-1/4 to 1-	38 (1.5)						
1/2)							
38 (1-1/2) and above	75(3)						

- B. Temperature range 32 to 99 degrees C (90 to 211 degrees F):
 - Application: Pumped condensate, vacuum heating return, gravity and pumped heating returns, condensate transfer, condensate transfer pump recirculation, heated oil system to heaters and returns from burners, condensate return from convertors and heated water storage tanks.
 - 2. Insulation Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (six feet above boiler room floor, feedwater heater mezzanine floor and access platform and any floor or access platform on which tanks or pumps are located.
 - b. Mineral fiber or rigid closed-cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - 3. Thickness-calcium silicate and mineral fiber insulation:

Nominal Thickness Of Insulation						
Pipe Diameter mm (in) Insulation Thickness mm (in)						
25 (1 and below)	38 (1.5)					
25 to 38 (1-1/4 to 1-1/2)	50(2)					
38 (1-1/2) and above	75 (3)					

4. Thickness-rigid closed-cell phenolic foam insulation:

Nominal Thickness Of Insulation							
Pipe Diameter mm (in) Insulation Thickness mm (in)							
25 (1 and below)	19 (0.75)						
25 to 38 (1-1/4 to 1-1/2)	19 (0.75)						
38 (1-1/2) and above	25 (1)						

- C. Installation:
 - 1. At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.
 - Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 300 mm (12 inch) centers.
 - 3. At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.
 - 4. Terminate insulation and jacket hard and tight at anchor points.
 - Terminate insulation at piping facilities not insulated with a 45 degree chamfered section of insulating and finishing cement covered with jacket.
 - 6. On calcium silicate, mineral fiber and rigid closed-cell phenolic foam systems, insulated flanged fittings, strainers and valves with sections of pipe insulation cut, fitted and arranged neatly and firmly wired in place. Fill all cracks, voids and coat outer surface with insulating cement. Install jacket. Provide similar construction on welded and threaded fittings on calcium silicate systems or use premolded fitting insulation.
 - 7. On mineral fiber systems, insulate welded and threaded fittings more than 50 mm (2 inches) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.
 - Insulate fittings 50 mm (2 inches) and smaller with mastic finishing material and cover with jacket.
 - 9. Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.
 - 10. Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless

steel bands 300 mm (12 inches) on center or aluminum screws on 200 mm (4 inch) centers.

11. Do not insulate basket removal flanges on strainers.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)						
		Nominal	Pipe Size	Millimeters	(Inches)	
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above	
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)	
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)	
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)	
100-121 degrees C (212-250 degrees F)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)	

(HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)					
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
39-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
4-16 degrees C (40-60 degrees F)	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

(CH, CHR, GC, GCR and RS for DX refrigeration)					
<pre>4-16 degrees C (40-60 degrees F) (CH, CHR, GC and GCR (where underground)</pre>	Polyiso- cyanurate Closed-Cell Rigid	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent. B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed

checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction

> 23 08 00 - 3 COMMISSIONING OF HVAC SYSTEMS

VA Project 438-450 10-01-18 100% Bid Documents

to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

SECTION 23 08 11 DEMONSTRATIONS AND TESTS FOR BOILER PLANT

PART 1 - GENERAL

1.1 REQUIREMENTS INCLUDED

- A. Procedures for on-site demonstration and testing of equipment and systems, including temporary facilities.
- B. Instruction of Government operating personnel.
- C. All demonstrations, instructions and testing must be completed prior to Government acceptance for beneficial use. All safety devices most pass 100 percent before the boiler plant can be accepted for beneficial use.
- D. Plumbing and emergency power systems are not included.

1.2 DEFINITIONS

- A. Start-Up: Initial inspection, cleaning, lubrication, adjustment, and operation of equipment and systems by the contractor with the assistance of the representatives of the equipment manufacturers.
- B. Pre-Tests: The final stage of the start-up procedure. This occurs after all adjustments have been made except for minor fine-tuning that can be done during the pre-test. Serves as verification that the systems are ready for the final test. Witnessing of pre-test by Resident Engineer (RE) is not required.
- C. Final Tests: Tests, witnessed by the RE/COTR or their representative, which demonstrate that all equipment and systems are in compliance with requirements. At VA expense, VA may utilize the services of an independent testing organization or consultant to witness the tests.

1.3 RELATED REQUIREMENTS

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- C. Section 23 05 51, NOISE and VIBRATION CONTROL FOR BOILER PLANT.
- D. Section 23 21 11, BOILER PLANT PIPING SYSTEMS.
- E. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 09 11, INSTRUMENTATION and CONTROL FOR BOILER PLANT.
- G. Section 23 52 25, LOW PRESSURE WATER HEATING BOILERS.

VA Project 438-450 10-01-18 100% Bid Documents

1.4 QUALITY ASSURANCE

- A. Experienced, trained technical service personnel who are representatives of the equipment manufacturers and system designers shall demonstrate, provide instructions, pre-test and final test, as specified, the following equipment:
 - 1. Boilers and economizers
 - 2. Burners
 - 3. Control systems.
 - 4. Instrumentation.
- B. Experienced technicians shall demonstrate and provide instructions on the following equipment:
 - 1. Pumps and piping systems
 - 2. Ventilation and heating systems
 - 3. Compressed air systems
 - 4. Control and safety valves
- C. The person responsible for programming the computer workstation shall demonstrate and provide instructions on hardware, software and programming.
- D. The RE, upon request, will provide a list of personnel to receive instructions and will coordinate their attendance at agreed-upon times.
- E. All safety devices shall comply with the VHA Boiler Plant Safety Manual.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, and PRODUCT DATA.
- B. Names and qualifications of personnel performing demonstrations, instructions and tests.
- C. Certification that pre-testing is complete. Copies of boiler-burner and feedwater deaerator pre-test data as specified.
- D. Preliminary schedule of all demonstrations, instructions and final tests two weeks prior to proposed dates.
- E. Provide reports within three weeks after satisfactory completion of demonstrations, instructions, and tests. List date, type of work, persons participating, amount of time, test results, calculations of test results, test data.

F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 PREPARATION FOR FINAL TESTS, DEMONSTRATIONS, AND INSTRUCTIONS

- A. Verify that equipment and systems are fully operational. Complete all start-up and pre-test activities for all equipment and systems. Complete all construction and finish work.
- B. Arrange for all test personnel for all equipment to be continuously present during one period of time so that all equipment and systems can be tested in their interrelated functions. For instance, feedwater deaerator will be tested during the boiler testing, and instrumentation performance will be evaluated in conjunction with boiler testing.
- C. Deliver maintenance and operating manuals four weeks prior to instruction period.
- D. Furnish all special tools.

3.2 FINAL TESTS

- A. Demonstrate proper operation of each equipment and system.
- B. Provide tests on equipment as specified in the individual specification sections.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contactor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATIONS AND TRAINING

- A. Demonstrate operation and maintenance of equipment and systems to Government personnel no more than four weeks prior to scheduled Government operation of the plant.
- B. Use operation and maintenance manuals as basis of instruction. Review contents of manuals with personnel in detail to explain all aspects of operation and maintenance.
- C. Demonstrate start-up, operation, control, adjustment, trouble-shooting, servicing, maintenance, and shut-down of each item of equipment. Allow Government personnel to practice operating the equipment under supervision of instructors.
- D. Prepare and insert additional data in operations and maintenance manuals when need for additional data becomes apparent during instructions.
- E. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

3.6 TIME ALLOCATED FOR DEMONSTRATIONS AND INSTRUCTIONS

- A. At least 32 total instructor hours to include boilers, economizers, burners, burner controls, combustion controls, instrumentation.
- B. At least 16 total instructor hours to include computer workstation and programs.
- C. At least 8 total instructor hours to include pumps, steam turbine, feedwater deaerator, and other equipment.
- D. Do not exceed three trainees per session, one-four hour session, per day, per trainee.

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services,

permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following:
 - 1. Refrigerant leak detection system.
 - 2. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this

23 09 23 - 2 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:

- Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
- 2. Advanced utility metering systems. These systems may take information from the control system or its component meters and sensors. There is no command or control action from the advanced utility monitoring system on the control system however.
- 3. Boiler controls. These controls, if not native BACnet, will require a BACnet Gateway.
- 4. Terminal units' velocity sensors
- 5. Unitary HVAC equipment (packaged indoor air conditioning units, split systems, packaged pumping stations) controls. These include:
 - a. Discharge temperature control.
 - b. Economizer control.
 - c. Flowrate control.
 - d. Setpoint reset.
 - e. Time of day indexing.
 - f. Status alarm.
- 6. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 7. The following systems have limited control (as individually noted below) from the ECC:
 - Constant temperature rooms: temperature out of acceptable range and status alarms.
 - b. Domestic water heating systems: low temperature, high temperature and status alarms.
 - c. Building lighting systems: on/off and scene control.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with boiler controls	23 09 23	23 09 23	23 09 23	26
boiler controls interface with control system	23	23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Boiler interlock wiring	23	23	23	26
Boiler Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23 09 23	26	23 09 23	26
Refrigerant monitors	23	23 09 23	23 09 23	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Computer Room A/C Unit field-mounted controls	23	23	16	26
Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	26
CRU A/C unit controls interface with control system	23	23 09 23	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26

- 1. Leave existing direct-digital control system intact and in place. Provide a new ASHRAE Standard 135 BACnet-compliant ECC in the same room as the existing system's ECC, and provide a new standalone BACnet-compliant control system serving the work in this project. No interoperability is required.
- F. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.

- The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
- 4. Responsibility Table:

Item/Task	Section 23 09 23 contactor	Control system integrator	VA
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels and equipment	Х		
Point addressing: all hardware and software points including setpoint, calculated point, data point(analog/ binary), and reset schedule point	Х		
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	

					and LAN system	Х		
1.2 RI	ELATED	veri WORE		atior				
A.	Secti	on 22	2 35	00,	Domestic Water Heat Excha	ngers.		
		Section 23 09 11, Instrumentation and Control for Boiler Plant.						
					Hydronic Piping.			
					Steam and Condensate Heat.	ing Piping.		
Е.	Secti	on 23	3 31	00,	HVAC Ducts and Casings.			
F.	Secti	on 23	3 36	00,	Air Terminal Units.			
G.	Secti	on 23	3 73	00,	Indoor Central-Station Ai	r-Handling	Units.	
H.	Secti	on 23	8 81	23,	Computer-Room Air-Conditi	oners.		
I.	Secti	on 25	5 10	10,	Advanced Utility Metering	System.		
J.	Secti	on 26	5 0 5	11,	Requirements for Electric	al Installa	tions.	
К.	Secti	on 26	5 0 5	19,	Low-Voltage Electrical Por	wer Conduct	ors and Cabl	.es.
L.	Secti	on 26	5 0 5	33,	Raceway and Boxes for Ele	ctrical Sys	tems.	
М.	Secti	on 26	5 0 9	23,	Lighting Controls.			
N.	Secti	on 26	5 27	26,	Wiring Devices.			
Ο.	Secti	on 27	7 15	00,	Communications Horizontal	Cabling		
1.2 DI	EFINIT	ION						
A.	Algor	Algorithm: A logical procedure for solving a recurrent mathematical				.1		
	probl	problem; A prescribed set of well-defined rules or processes for the						
	solut	solution of a problem in a finite number of steps.						
В.	ARCNE	ARCNET: ANSI/ATA 878.1 - Attached Resource Computer Network. ARCNET is				T is		
	a det	a deterministic LAN technology; meaning it's possible to determine the					the	
			_		ore a device is able to tra		_	
С.					ously varying signal value	(e.g., tem	perature,	
	curre			_				
D.		BACnet: A Data Communication Protocol for Building Automation and						
		Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data						
						devices to	communicate	data
-					over a network.			
뇬.					J of Standard 135. It def			

reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.

- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).

- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.

- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital

pulses (values), represent motor status, filter status, on-off equipment etc.

- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- 00. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required.

23 09 23 - 11 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC Objects are controlled by reading from and writing to object properties.

- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design,

installation and service of such building automation control systems similar in size and complexity.

- Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.

 Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
 - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.

9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading
Air pressure (ducts)	±25 Pa [±0.1"w.c.]
Air pressure (space)	±0.3 Pa [±0.001"w.c.]
Water pressure	±2% of full scale *Note 1
Electrical Power	±0.5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	$\pm 10\%$ of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the

construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.

- Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

- 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.

G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 32 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 32 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
 - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.

D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
- D. American Society of Testing Materials (ASTM):

в32-08	Standard Specification for Solder Metal
	Standard Specifications for Seamless Copper
	Water Tube
B88M-09	Standard Specification for Seamless Copper
	Water Tube (Metric)
В280-08	Standard Specification for Seamless Copper Tube
	for Air-Conditioning and Refrigeration Field
	Service
D2737-03	Standard Specification for Polyethylene (PE)
	Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.

- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.

- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - The ARCNET data link / physical protocol may be used in new BACnet sub-networks in VA non-healthcare and non-lab (i.e., business and cemetery) facilities.
 - 3. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each

remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.

- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 PORTABLE OPERATOR'S TERMINAL (POT)

A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required.

- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - 1. POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.
- C. Software: POT shall include software equal to the software on the ECC.

2.5 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.6 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)

- b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP.
 STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the

controllers involved so that the BACnet name and the EMCS name are the same.

2.7 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.8 CONTROLLERS

A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.

- 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
- The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
- 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and
 - b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-

removable, modular terminal strips or to a termination card connected by a ribbon cable.

- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.

- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.

- d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
- e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.
 - b. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature falls below changeover set point the energy

control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.

- c. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
- d. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day

schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.9 SENSORS (AIR, WATER AND STEAM)

A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.

- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel cover plate with an insulated back and security screws.
 - d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
 - f. Wire: Twisted, shielded-pair cable.

g. Output Signal: 4-20 ma.

- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
 - 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
 - Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a

single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting.

- 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100% humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.
 - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet).
 - e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
 - f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.
 - g. RFI effect flow meter shall not be affected by RFI.
 - h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- F. Steam Flow Sensor/Transmitter:
 - Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.

- e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - 1) Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent noncondensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
- f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.
- G. Refrigerant Leak Detection Sensors: Provide state-of-the-art gas detection system which can detect at minimum Halocarbon refrigerants, Carbon Dioxide, and Hydrocarbons. The sensor shall be capable of integrating into the DDC Building Management System. Unit shall have a visual and audible alarm. Provide a remote sensor with the unit. Remote sensor shall be mounted 12" above the floor below the unit housing mounted on the wall.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 50°C (-40°F to 122°F), 5 to 100% humidity.
 - b. Factory set alarm points: Halocarbon Refrigerants 500 ppm, Carbon Dioxide - 5000 ppm.
 - c. Nominal sensitivity range: Halocarbon Refrigerants 0-1000 ppm, Carbon Dioxide - 0-10,000 ppm.
- H. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and

relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.10 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
 - 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 19.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted

Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.

- Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.11 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum manufacturer's recommendation finish, setpoint range and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.

- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.12 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.

- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).

- c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
 - 3. See drawings for required control operation.

2.13 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.

- B. Air Flow Measuring Station -- Pneumatic Type:
 - 1. Airflow measuring stations shall measure airflow by the pitot tube traverse method. Each unit shall consist of a network of static and total pressure sensors, factory positioned and connected in parallel, to produce an equalized velocity pressure. The measured velocity pressure converted to airflow (cfm) shall have accuracy within 2 percent of the full scale throughout the velocity range from 200 to 1,200 meter per minute (700 to 4,000 fpm).
 - 2. Airflow measuring stations shall consist of 16-gauge sheet metal casing, an aluminum air velocity treatment and air straightening section with an open face area not less than 97 percent and a total and static pressure sensing manifold made of copper. Each station shall contain noncombustible sensors which shall be incapable of producing toxic gases or fumes in the event of elevated duct temperatures. All interconnecting tubing shall be internal to the unit with the exception of one total pressure and one static pressure meter connection.
 - 3. Each air flow measuring station shall be installed to meet at least the manufacturer's minimum installation conditions and shall not amplify the sound level within the duct. The maximum resistance to airflow shall not exceed 0.3 times the velocity head for the duct stations and 0.6 times the velocity head for the fan stations. The unit shall be suitable for continuous operation up to a temperature of 120°C (250°F).
 - 4. Differential pressure transducers shall measure and transmit pressure signals to the direct digital controller.
- C. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.

- b. Electronics Panel shall be A/C powered 120 VAC and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F . The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	6	
8 to <12	8	
12 to <16	12	
>=16	16	

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.

- Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 19. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.

- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.

- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.

5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper

23 09 23 - 51 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.

- Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:

- a. Running each specified report.
- b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
- c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
- d. Execute digital and analog commands in graphic mode.
- e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
- f. Demonstrate EMS performance via trend logs and command trace.
- g. Demonstrate scan, update, and alarm responsiveness.
- h. Demonstrate spreadsheet/curve plot software, and its integration with database.
- i. Demonstrate on-line user guide, and help function and mail facility.
- j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

---- END -----

SECTION 23 11 23 FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fuel gas systems, including piping, equipment and all necessary accessories as designated in this section. Fuel gas piping for central boiler plants is not included.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT AND STEAM GENERATION, Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 05 23, GENERAL DUTY VALVES FOR PLUMBING PIPING.
- I. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- J. Section 23 09 11, INSTRUMENTATION AND CONTROL FOR BOILER PLANT.
- K. Section 23 21 11, BOILER PLANT PIPING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B16.3-2011......Malleable Iron Threaded Fittings: Classes 150 and 300

B16.9-2012.....Factory Made Wrought Buttwelding Fittings B16.11-2011....Forged Fittings, Socket-Welding and Threaded B16.15-2013....Cast Copper Alloy Threaded Fittings: Classes 125 and 250

VA Project 438-450 VAMC Sioux Falls, SD Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 B16.40-2013......Manually Operated Thermoplastic Gas Shutoffs and Valves in Distribution Systems B31.8-2016.....Gas Transmission and Distribution Piping Systems C. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014) .. Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2015.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless-Steel Pipe Nipples B43-2015..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B687-1999(2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples D2513-2014e1.....Standard Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and Fittings D2683-2014.....Standard Specification for Socket-Type Polyethylene Fittings for Outside Diameter-Controlled Polyethylene Pipe and Tubing D3261-2016..... Standard Specification for Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (PE) Plastic Pipe and Tubing D. American Water Works Association (AWWA): C203-2015.....Coal-Tar Protective Coatings and Linings for Steel Water Pipes E. International Code Council (ICC): IFGC-2015.....International Fuel Gas Code IPC-2015International Plumbing Code F. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS):

SP-72-2010a......Ball Valves with Flanged or Butt-Welding for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends
G. NACE International (NACE): SP0274-2011.....High-Voltage Electrical Inspection of Pipeline Coatings SP0490-2007.....Holiday Detection of Fusion-Bonded Epoxy External Pipeline Coating of 250 to 760 µm (10 to 30 mil)

H. National Fire Protection Association (NFPA):
54-2015National Fuel Gas Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 11 23, FACILITY NATURAL-GAS PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe & Fittings.
 - 2. Valves.
 - 3. Strainers.
 - 4. All items listed in Part 2 Products.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.

- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them in threedimensional Building Information Modeling (BIM) software version provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.6 SYSTEM PRESSURE

A. Natural gas systems unless otherwise noted are designed and materials and equipment selected to prevent failure under gas pressure of 10 psig) entering government property.

PART 2 - PRODUCTS

2.1 FUEL GAS SERVICE CONNECTIONS TO BUILDING

- A. From inside face of exterior wall to a distance of approximately 1500 mm (5 feet) outside of building.
- B. Pipe: Black steel, ASTM A53/A53M, Schedule 40. Shop-applied pipe coating shall be one of the following types:
 - Coal Tar Enamel Coating: Exterior of pipe and fittings shall be cleaned, primed with Type B primer and coated with hot-applied coal tar enamel with bonded layer of felt wrap in accordance with AWWA C203. Asbestos felt shall not be used; felt material shall be fibrous glass mat in accordance with AWWA C203.
- C. Holiday Inspections: Procedure for holiday inspection: Holiday Inspection shall be conducted on all coatings to determine the presence and number of discontinuities in those coatings using a Tinker & Rasor model AP/W Holiday Detector or equal. Holiday inspection shall be

performed in a manner spelled out in the Tinker & Rasor operating instructions and at a voltage level recommended by the coating manufacturer or applicable NACE standard such as SP0274 or SP0490 in the case thermosetting epoxy coating. Holiday Detectors shall be calibrated and supplied with a certificate of calibration from the factory. A calibration of the Holiday Detector shall be performed once every 6 months to verify output voltages are true and correct.

- D. Steel Fittings:
 - 1. Butt weld fittings, wrought steel, ASME B16.9.
 - 2. Socket weld and threaded fittings forged steel, ASME B16.11.
 - 3. Grooved End: Ductile iron (ASTM A536, Grade 65-45-12), malleable iron (ASTM A47/A47M, Grade 32510), or steel (ASTM A53/A53M, Type F or Type E or S, Grade B).
- E. Steel Joints: Welded, ASME B31.8.

2.2 EMERGENCY GAS SAFETY SHUT-OFF VALVE

- A. Permits remote shut-off of fuel gas flow to boiler plant.
- B. Type: Manually opened, electrically held open, automatic closing upon power interruption. Pneumatic operator is prohibited.
- C. Performance: Shall shut bubble tight within one second after power interruption. Refer to the drawings for pressure, flow, and valve size requirements.
- D. Service: Natural gas and LP gas.
- E. Construction: UL listed, FM approved, rated for 861 kPa (125 psig) ASME flanged ends for pipe sizes above 50 mm (2 inches), threaded ends for pipe sizes 50 mm (2 inches) and under. Cast iron, cast steel or bronze body, open and shut indicator. Valves for LP gas service shall be rated at 1725 kPa (250 psig).
- F. Control Switch: Mounted on Boiler Plant Instrumentation Panel and at exterior doorways (multiple switches). Switch shall also cut the power to the fuel oil pump set. Refer to Section 23 09 11, INSTRUMENTATION AND CONTROL FOR BOILER PLANT. Provide auxiliary switch to provide signal to Computer Work Station.

2.3 FUEL GAS PIPING ABOVE GROUND

A. Pipe: Black steel, ASTM A53/A53M, Schedule 40.

- B. Nipples: Steel, ASTM A733, Schedule 40.
- C. Fittings:
 - 1. Sizes 50 mm (2 inch) under ASME B16.3 threaded malleable iron.
 - 2. Over 50 mm (2 inch) and up to 100 mm (4 inch) ASME B16.11 socket welded.
 - 3. Over 100 mm (4 inch) ASME B16.9 butt welded.
- D. Joints: Provide welded or threaded joints.
- E. Threaded Metallic Joints: Threaded joints in metallic pipe shall have tapered threads evenly cut. Metal screwed pipe joints shall be made leak-tight by applying Rector Seal No. 5 pipe thread sealant to all threaded joints. Care must be taken to prevent the pipe dope compound from getting inside the internal pipeline. Teflon tape type sealant is prohibited.

2.4 EXPOSED FUEL GAS PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed fuel gas piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples: ASTM B687, Chromium-plated.
 - 4. Unions: 50 mm (2 inches) and smaller MSS SP-72, MSS SP-110, brass or bronze threaded with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
 - 5. Valves: MSS SP-72, MSS SP-110, brass or bronze with chrome finish.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.5 VALVES

A. Ball Valve: Bronze body, rated for 1034 kPa at 185 degrees C (150 psig at 365 degrees F), 1723 kPa at 121 degrees C (250 psig at 250 degrees F), reinforced TFE seat, stem seal and thrust washer; end entry, threaded ends, UL-listed for natural or LP gas shut off service when used on those services.

B. Gas Vent Cocks: Type 701: Bronze body, tee handle, rated for 207 kPa at 38 degrees C (30 psig at 100 degrees F), ground plug, rated for tight shut-off on fuel gas service.

2.6 WATERPROOFING

- A. Provide at points where pipes pass through membrane waterproofed floors or walls in contact with earth.
- B. Floors: Provide cast iron stack sleeve with flashing device and a underdeck clamp. After stack is passed through sleeve, provide a waterproofed caulked joint at top hub.
- C. Walls: See detail shown on drawings.

2.7 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Gas Lines: "Y" type with removable mesh lined brass strainer sleeve.
- C. Body: Smaller than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and larger, cast iron or semi-steel.

2.8 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

2.9 GAS EQUIPMENT CONNECTORS

A. Flexible connectors with Teflon core, interlocked galvanized steel protective casing, AGA certified design.

2.10 FUEL GAS PIPING BELOW GROUND

A. Thermoplastic (Polyethylene - PE): PE pipe and heat fusion fittings shall conform to ASTM D2513, SDR 11 and manufactured for 861 kPa (125 psig) working pressure. Pipe and fittings shall have heat fusion joints PE pipe and fitting materials for heat fusion shall be compatible to ensure uniform melting and a proper bond.

B. Fittings:

- 1. Socket Fusion Fittings: ASTM D2683.
- 2. Butt Fusion Fittings: ASTM D3261, molded and matching pipe dimensions.

- C. Risers: Manufacturer's standard anodeless type riser, transition from plastic to steel pipe with fusion bonded epoxy coating. Inlet connection socket or butt weld or swaged gas-tight construction with O-ring seals, metal insert, and protective sleeve. Outlet or above ground connection end shall be threaded or flanged. Riser shall comply with ASTM A53/A53M, Type F and E, Grade A, Schedule 40.
- D. Polyethylene ball valves, ASME B16.40 shall be manufactured and rated for underground gas service. Operating pressure to 861 kPa (125 psig) (SDR 9.3). Valve shall be maintenance and corrosion free. Polyethylene valves shall be full port opening type. Valves shall be wrench operated. Wrench operated valves shall have a 50 mm (2 inch) square adaptor securely fastened to the valve stem. Polyethylene valves shall be installed by butt fusion method.

2.11 VALVE BOXES

A. Provide each valve on buried piping with a plastic or cast iron valve box of a size suitable for the valve. Valve box shall have a round cover with the word "Gas" cast on it. A metal tag or label shall be installed on top or inside of each valve box lid. The tag shall designate the appropriate location number, valve size, and other pertinent information. Each cast iron box shall be given a heavy coat of bituminous paint. Provide adjustable box extensions of length required for depth of buried valve.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the ICC IFGC, ICC IPC and the following:
 - Install branch piping for fuel gas and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, shall be reamed to full size after cutting.
 - All pipe runs shall be laid out to avoid interference with other work.
 - Install valves with stem in horizontal position whenever possible.
 All valves shall be easily accessible.

- Install union and shut-off valve on pressure piping at connections to equipment.
- 6. Pipe Hangers, Supports and Accessories:

a. All piping shall be supported per the ICC IFGC.

- b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with red lead or zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - Solid or split unplated cast iron, chrome plated in finished areas.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Riser Clamps: Malleable iron or steel.
 - 8) Rollers: Cast iron.
 - Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories.
- Install cast chrome plated escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 8. Penetrations:
 - a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 Completely fill and seal clearances between piping and openings with the fire stopping materials.

- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- B. Fuel gas piping shall conform to the following:
 - 1. Entire fuel gas piping installation shall be in accordance with requirements of NFPA 54.
 - 2. Provide fuel gas piping with plugged drip pockets at low points.
- C. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 CLEANING OF SYSTEM AFTER INSTALLATION

A. Clean all piping systems to remove all dirt, coatings and debris.

3.3 TESTS

- A. General: Test system either in its entirety or in sections after system is installed or cleaned.
- B. Test shall be made in accordance with Section 406 of the International Fuel Gas Code. The system shall be tested at a minimum of 1.5 times maximum working pressure, but not less than 3 psig (21 kPa) gauge).
- C. System Purging: After completing pressure tests, and before testing a gas-contaminated line, purge line with nitrogen at junction with main line to remove all air and gas. Clear completed line by attaching a test pilot fixture at capped stub-in line at building location and let gas flow until test pilot ignites. Procedures shall conform to NFPA 54 and ASME B31.8.

3.4 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing

schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

- - - E N D - - -

SECTION 23 21 11 BOILER PLANT PIPING SYSTEMS

PART 1 - GENERAL:

1.1 DESCRIPTION:

A. All boiler plant piping systems, except plumbing and sanitary, including piping supports. Piping located outside of the boiler plant building is not included except for gas regulator and meter stations.

1.2 RELATED WORK:

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 22 11 00 FACILITY WATER DISTRIBUTION.
- C. Section 22 31 11, WATER SOFTENERS.
- D. Section 23 05 10, COMMON WORK RESULTS FOR Boiler Plant and STEAM GENERATION
- E. Section 23 05 51, NOISE and VIBRATION CONTROL FOR BOILER PLANT.
- F. Section 23 07 11, HVAC and BOILER PLANT INSULATION.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 11, INSTRUMENTATION and CONTROL FOR BOILER PLANT.

1.3 QUALITY ASSURANCE:

- A. Entire installation shall comply with ASME Power Piping Code, ASME B31.1 and appendices.
- B. Boiler External Piping, as defined in the ASME Boiler and Pressure Vessel Code, Section I, is required to be constructed and inspected in conformance with the ASME Code.
- C. Mechanics shall be skilled in their work or trade. Welders on pressure vessels or piping shall show evidence of qualification in accordance with the ASME Power Piping Code and the ASME Boiler and Pressure Vessel Code. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. Each welder shall utilize a stamp to identify all work performed by the welder. The Government reserves the right to reject any personnel found unqualified in the performance of work for which they are employed.

1.4 SUBMITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Piping:
 - 1. ASTM material specification number.
 - 2. Grade, class or type, schedule number.
 - 3. Manufacturer.
- C. Pipe Fittings, Unions, Flanges:
 - 1. ASTM material specification number.
 - 2. ASME standards number.
 - 3. Catalog cuts.
 - 4. Pressure and temperature ratings.
- D. Valves Gate, Globe, Check, Plug, Butterfly, Ball:
 - 1. Catalog cuts showing design and construction.
 - 2. Pressure and temperature ratings.
 - 3. Materials of construction.
 - 4. Accessories.
- E. Sight flow indicators:
 - 1. Catalog cuts showing design and construction.
 - 2. Pressure and temperature ratings.
 - 3. Materials of construction.
- F. Quick-Couple Hose Connectors and Steam Hose:
 - 1. Catalog cuts showing design and construction.
 - 2. Pressure and temperature ratings.
 - 3. Materials of construction.
 - 4. Type of seal between couplings.
 - 5. Flexibility of steam hose.
- G. Pressure Reducing and Regulating Valves, Back Pressure Relief Valves, Safety Valves, Relief Valves:
 - 1. Catalog cuts showing design and construction.
 - Service limitations (type of fluid, maximum pressure and temperatures).
 - 3. Materials of construction.
 - 4. Flow capacity at required set pressure.
 - 5. Predicted sound levels, at operating condition, for steam pressure reducing valves.
- H. Strainers:
 - 1. Catalog cuts showing design and construction.

- 2. Pressure and temperature ratings.
- 3. Materials of construction.
- 4. Strainer basket or liner mesh.
- 5. Pressure loss and flow rate data.
- I. Emergency Gas Safety Shutoff Valves:
 - 1. Catalog cuts showing design and construction.
 - 2. Maximum pressure rating.
 - 3. Material of construction.
 - 4. Pressure loss and flow rate data.
- J. Steam Traps:
 - 1. Catalog cuts showing design and construction.
 - 2. Service limitations (maximum pressures and temperatures).
 - 3. Materials of construction.
 - 4. Flow rates at differential pressures shown on drawings.
 - 5. Orifice size for each trap.

K. Flexible Connectors:

- 1. Catalog cuts showing design and construction.
- 2. Pressure and temperature ratings.
- 3. Materials of construction.
- 4. Maximum allowable lateral and axial movements.
- 5. Description of type of movement permitted, intermittent offset or continuous vibration.

L. Pipe Support Systems:

- Credentials of technical personnel who will design the support systems.
- 2. Validation of computer program for pipe support selection.
- 3. Input and output data for pipe support selection program for all piping systems with pipe sizes 60 mm (2-1/2 inches) and above.
- Boiler and feedwater deaerator steam nozzle (pipe connection) allowable and actual forces and moments imposed by connecting piping.
- 5. Hanger load calculation methods and results for piping systems with pipe sizes 50 mm (2 inches) and below.
- 6. Piping layouts showing location and type of each hanger and support.

- 7. Catalog cuts showing design and construction of each hanger and support and conformance of hangers and supports to MSS standards.
- 8. Drawings showing arrangement and sizes of all components comprising each spring-type hanger and support assembly.
- 9. Load rating and movement tables for all spring hangers, and seismic shock absorbing devices.
- 10. Stress analyses on the boiler plant piping systems under all possible load conditions as part of the design. Once all piping is completed another stress analysis is required on the as built systems.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING:

All piping shall be stored and kept free of foreign material and shall be internally and externally cleaned of all oil, dirt, rust and foreign material. Deliver and store valves and pipe hangers in sealed shipping containers with labeling in place. Storage must be in dry, protected location.

1.6 INFORMATION ON PRESSURE-TEMPERATURE DESIGN OF PIPING SYSTEMS:

- A. Steam service pressures are selected to provide optimum pressure to the facilities served by the boiler plant. Main steam header pressure shall be controlled at 50 psi). Maximum pressure capability of steam systems between boilers and through first pressure reducing valve protected by a safety valve shall be governed by the pressure/temperature relationship of the highest safety valve setting shown for the boilers.
- B. Steam distribution systems protected by safety values following pressure reducing stations or protected by safety values on the boilers shall be governed by the pressure/temperature relationship developed by the maximum setting of the safety value on that system.
- C. Condensate collection and transfer systems to suction of boiler feed pumps are designed for maximum temperatures to 100 °C (212 °F), and pressures 276 kPa (40 psi). Vacuum return systems shall operate between 0 and 27 kPa (0 and 8 inch Hg) vacuum and equivalent steam saturation temperatures.
- D. Natural gas fuel systems are designed and materials and equipment are applied to prevent failure under gas pressure of 10 psi entering

Government property. LP gas systems for igniters (pilots) are designed for maximum LP tank pressure of 1725 kPa (250 psig).

- E. Verify water service pressures. Systems are designed to operate under conditions of maximum available pressure.
- F. Drips, drains, blowdown, water sampling, and chemical treatment are designed, and materials and equipment are applied in accordance with the maximum pressure and temperature of the system with which they are associated.
- G. Low pressure steam, condensate, vacuum and vents are designed for service pressures and temperatures equivalent to 103 kPa (15 psi) saturated steam.

1.7 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

```
A47/A47M-99(2009).....Standard Specification for Ferritic Malleable Iron Castings
```

A48/A48M-03(2008).....Standard Specification for Gray Iron Castings A53/A53M-10....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

- A105/A105M-10.....Standard Specification for Carbon Steel Forgings for Piping Applications
- A106/A106M-10.....Standard Specification for Seamless Carbon Steel Pipe For High Temperature Service
- A126-04(2009).....Standard Specification for Gray Iron Castings for Valves, Flanges and Pipe Fittings
- A193/A193M-10.....Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature Service
- A194/A194M-10.....Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both

A197/A197M-00(2006)....Standard Specification for Cupola Malleable Iron A216/A216M-08.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, For High Temperature Service A234/A234M-10.....Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A269-10.....Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service A395/A395M-99(2009)....Standard Specification for Ferritic Ductile Iron Pressure-Retaining Castings for use at Elevated Temperatures A536-84(2009).....Standard Specification for Ductile Iron Castings B61-08..... Standard Specification for Steam or Valve Bronze Castings B62-09..... Standard Specification for Composition Bronze or Ounce metal Castings B88/B88M-09.....Standard Specification for Seamless Copper Water Tube C. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code: 2010 Edition with current Addenda Section I.....Power Boilers Section IX......Welding and Brazing Qualifications B16.3-2006......Malleable Iron Threaded Fittings B16.4-2006.....Gray Iron Threaded Fittings B16.5-2009.....Pipe Flanges and Flanged Fittings: NPS ½ Through 24 B16.9-2007.....Factory Made Wrought Buttwelding Fittings B16.11-2009.....Forged Fittings, Socket-Welding and Threaded B16.22-2001.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings B31.1-2010.....Power Piping

D. Manufacturers Standardization Society of the Valve and Fittings Industry (MSS): SP-45-03(2008).....Bypass and Drain Connections SP-58-2009.....Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation SP-69-2003.....Pipe Hangers and Supports-Selection and Application SP-80-2008.....Bronze, Gate, Globe, Angle and Check Valves SP-89-2003.....Pipe Hangers and Supports-Fabrication and Installation Practices SP-90-2000.....Guidelines on Terminology for Pipe Hangers and Supports SP-97-2006.....Integrally Reinforced Forged Branch Outlet Fittings - Socket Welding, Threaded and Buttwelding Ends SP-127-2001.....Bracing for Piping Systems Seismic - Wind -Dynamic Design, Selection, Application E. National Fire Protection Association (NFPA): 30-2008.....Flammable and Combustible Liquids Code 31-2011.....Standard for the Installation of Oil Burning Equipment F. American Welding Society (AWS): B2.1-2009..... Specification for Welding Procedure and Performance Qualification G. Pipe Fabrication Institute (PFI): PFI ES-24-08.....Pipe Bending Methods, Tolerances, Process and

Material Requirements

PART 2 - PRODUCTS:

2.1 STEAM PIPING:

A. Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or electric resistance welded (ERW). Schedule 40 for piping up to 125 psig with welded ends, Schedule 80 for piping with threaded ends and piping over 125 psig with welded ends. Standard weight permitted for pipe sizes 12 inches and above.

- B. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded
 - Pipe sizes 50 mm (2 inches) and below: Threaded, butt-welded, or socket-welded.
- C. Fittings:
 - 1. Welded joints: Steel, ASTM A234, Grade B, ASME B16.9, same schedule as adjoining pipe, all elbows long radius.
 - Threaded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class; or malleable iron, ASTM A47 or A197, ASME B16.3, 2050 kPa (300 psi) class.
 - 3. Socket-welded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi) class.
- D. Unions on Threaded Piping: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 2050 kPa (300 psi) on piping 50 mm (2 inches) and under.
- E. Flanges and Bolts: Forged steel weld neck, ASME B16.5, ASTM A105, 1025 kPa (150 psi) pressure class, except 2050 kPa (300 psi) class required adjacent to 1725 kPa (250 psi) and 2050 kPa (300 psi) class valves. Bolts shall be high strength steel ASTM A193, Class 2, Grade B8. Nuts shall be ASTM A194.

2.2 STEAM CONDENSATE PIPING:

- A. Includes all gravity, drip return, pumped and vacuum systems. Does not include piping system between boiler feed pumps and boilers.
- B. Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or ERW, Schedule 80.
- C. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded.
 - Pipe sizes 50 mm (2 inches) and below: Threaded, butt-welded or socket-welded.
- D. Fittings:
 - 1. Welded joints: Steel, ASTM A234, Grade B, ASME B16.9, same schedule as adjoining pipe.
 - Threaded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class; or malleable iron, ASTM A47 or A197, ASME B16.3, 2050 kPa (300 psi) class.

- 3. Socket-welded joints: Forged steel, ASME B16.11, 13,800 kPa (2000 psi) class.
- E. Unions on Threaded Piping: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 2050 kPa (30 psi). On piping 50 mm (2 inches) and under.
- F. Flanges: Forged steel weld neck, ASTM A105, ASME B16.5, 1025 kPa (150 psi).

2.3 FUEL PIPING:

- A. Natural gas for main burner and igniter (pilot), gas vent piping. Comply with ASME B31.1.
- B. Piping: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or ERW, Schedule 40. Fuel oil piping shall be seamless downstream of burner automatic shutoff valves.
- C. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded.
 - 2. Pipe sizes 50 mm (2 inches) and below: Socket-welded or butt-welded.
- D. Fittings:
 - 1. Butt-welded joints: Steel, ASTM A234, Grade B, ASME B16.9, same schedule as adjoining pipe.
 - 2. Socket-welded joints: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class.
- E. Unions on piping 50 mm (2 inches) and under: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class.
- F. Flanges: Forged steel weld neck, ASME B16.5, ASTM A105, 1025 kPa (150 psi).
- G. Companion flanges: Flanges and bolting shall conform to ASME B16.5.
- H. Burner Piping: Furnished as part of the factory-assembled burners may be manufacturer's standard materials and assembly. Comply with ASME B31.1, for the actual operating conditions.
- I. Igniter (Pilot) Piping: Furnished as part of the factory assembled burners may have 2050 kPa (300 psi) ASTM A47, ASME B16.3 malleable iron threaded fittings in lieu of welded steel. If threaded fittings are provided, piping shall be Schedule 80.

2.4 DRAIN PIPING FROM BOILER ACCESSORIES TO DRAIN VALVE:

- A. Drain piping from water column, low water cutoffs, gage glass, water level sensor, remote water level devices (where applied).
- B. Pipe: Carbon steel, ASTM A106, seamless, Schedule 40.
- C. Joints: Threaded.
- D. Fittings: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class); or malleable iron, ASTM A47 or A197, ASME B16.3, 2050 kPa (300 psi) class.
- E. Unions: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 2050 kPa (300 psi) class.

2.5 VENT LINES FROM TANKS AND SAFETY AND RELIEF VALVES:

- A. Pipe: Carbon steel, ASTM A53 Grade B or A106 Grade B, seamless or ERW, Schedule 40.
- B. Joints:
 - 1. Pipe sizes 65 mm (2-1/2 inches) and above: Butt-welded.
 - 2. Pipe sizes 50 mm (2 inches) and below: Threaded or butt-welded.
- C. Fittings:
 - 1. Welded Joints: Steel, ASTM A234 Grade B, ASME B16.9, same schedule as adjoining pipe.
 - 2. Threaded Joints: Cast iron, ASME B16.4, 850 kPa (125 psi).
- D. Unions: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, 1025 kPa (150 psi) class.
- E. Flanges: Forged steel weld neck, ASME B16.5, ASTM A105, 1025 kPa (150 psi).

2.6 COLD WATER PIPING:

- A. Soft Water: See Section 22 31 11, WATER SOFTENERS.
- B. City Water: See Section 22 11 00, FACILITY WATER DISTRIBUTION.
- C. All copper pipe shall use only soldered fittings.

2.7 MISCELLANEOUS PIPING:

- A. Instrument and Control Piping (Sensing Point to Transmitter, Controller, or Other Instrument): Construction shall be same as specified for main service.
- B. Drain Piping (All Drain Piping Discharging to Floor Drain-From Drain Valve to Floor Drain):
 - Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or ERW, Schedule 40.

- 2. Fittings and Unions: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class); or malleable iron, 1025 kPa (150 psi), threaded.
- C. Pump Recirculation:
 - Pipe: Carbon steel, ASTM A53 Grade B or ASTM A106 Grade B, seamless or ERW, double extra strong. Schedule 40 permitted on all lines 1500 mm (5 feet) or more from the recirculation orifice.
 - 2. Joints: Threaded.
 - 3. Fittings: Forged steel, ASME B16.11, 13,790 kPa (2000 psi class); or malleable iron, ASTM A47 or A197, ASME B16.3, 2050 kPa (300 psi) class, except 1025 kPa (150 psi) class permitted on all lines 1500 mm (5 feet) or more from the recirculation orifice.
 - Unions: Forged steel, 13,800 kPa (2000 psi) class or 20,680 kPa (3000 psi) class; or malleable iron, ASTM A47 or A197, same pressure class as nearest fittings.

2.8 DIELECTRIC FITTINGS:

Provide threaded dielectric unions for pipe sizes 50 mm (2 inches) and under. For 65 mm (2-1/2 inches) and above, provide copper and steel flanges electrically isolated at gasket and by sleeves at bolts. Fittings on cold water and soft water lines shall be rated for 690 kPa (100 psi), 27 °C (80 °F). Fittings on steam condensate lines shall be rated at 510 kPa (75 psi), 120 °C (250 °F). Fittings on other services shall be rated for the maximum pressure and temperature conditions of the service.

2.9 VALVES; GATE, GLOBE, PLUG, CHECK, BALL, BUTTERFLY, VENT COCKS:

- A. Valves for particular services are generally specified as Type Numbers. The Type Numbers are defined below. All valves of the same type shall be the products of a single manufacturer. Comply with MSS SP-45, MSS SP-80, and ASME B31.1. Design valves for the service fluids and conditions. Pressure-temperature ratings listed are minimum requirements. Packing and gaskets shall not contain asbestos.
- B. Valve Type Designations:
 - 1. Gate Valves:
 - a. Type 101: Cast steel body ASTM A216 WCB, rated for 1025 kPa at 260 °C (150 psi at 500 °F), 11-1/2 to 13 percent chromium stainless steel flexible wedge and hard faced (stellite) or

23 21 11 - 11 BOILER PLANT PIPING SYSTEMS nickel copper alloy seats, 1025 kPa (150 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet.

- Provide factory installed globe-valved warm-up bypass when main valve is 75 mm (3 inch) pipe size or greater and serves steam main longer than 6 m (20 feet). Conform to MSS SP-45.
- Drill and tap bosses for connection of drains. Conform to MSS SP-45.
- b. Type 102: Cast iron body ASTM Al26 Class B, rated for 1725 kPa (250 psi) saturated steam, 3440 kPa (500 psi) WOG, bronze wedge and seats, 1725 kPa (250 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.
 - Provide factory installed globe-valved bypass when main valve is 75 mm (3 inch) pipe size or greater and serves steam main longer than 6 m (20 feet). Conform to MSS SP-45.
 - Drill and tap bosses for connection of drains if valve is in steam service. Conform to MSS SP-45.
- c. Type 103: Cast iron body ASTM Al26 Class B, rated for 850 kPa (125 psi) saturated steam, 1375 kPa (200 psi) WOG, bronze or bronze faced wedge and seats, 850 kPa (125 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.
 - Provide factory installed globe-valved bypass when main valve is 75 mm (3 inch) pipe size or greater and serves steam main longer than 6 m (20 feet). Conform to MSS SP-45.
 - Drill and tap bosses for connection of drains if valve is in steam service. Conform to MSS SP-45.
- d. Type 104: Bronze body ASTM B61, rated for 1375 kPa (200 psi) saturated steam, 2750 kPa (400 psi) WOG, bronze wedges and Monel or stainless steel seats, threaded ends, rising stem, union bonnet.
- e. Type 105: Forged steel body ASTM A105, rated for 2050 kPa at 216 °C (300 psi at 420 °F) minimum, Class 4130 kPa (600 psi) or Class 5500 kPa (800 psi), hardened stainless steel or stellite wedge and seats, threaded ends, OS&Y, rising stem, bolted bonnet.
- 2. Globe Valves:

- a. Type 201: Cast steel body ASTM A216 WCB, rated for 1025 kPa at 260 °C (150 psi at 500 °F), 11-1/2 to 13 percent chromium stainless steel or stellite disc and seat, 1025 kPa (150 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings. Drill and tap bosses for connection of drains where shown. Conform to MSS SP-45.
- b. Type 202: Cast iron body ASTM A126 Class B, rated for 1725 kPa (250 psi) saturated steam, 3440 kPa (500 psi) WOG, bronze or bronze faced disc and seat, 1725 kPa (250 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings. Drill and tap bosses for connection of drains where shown. Conform to MSS SP-45.
- c. Type 203: Cast iron body ASTM A126 Class B, rated for 850 kPa (125 psi) saturated steam, 1375 kPa (200 psi) WOG, bronze or bronze-faced disc (Teflon or composition facing permitted) and seat, 850 kPa (125 psi) ASME flanged ends, OS&Y, rising stem, bolted bonnet, renewable seat rings.
- d. Type 204: Bronze body ASTM B61, rated for 1375 kPa (200 psi) saturated steam, 2750 kPa (400 psi) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, renewable seat rings.
- e. Type 205: Forged steel body ASTM A105, rated for 2050 kPa at 216 °C (300 psi at 420 °F) minimum, Class 4130 kPa (600 psi) or Class 5500 kPa (800 psi), stainless steel disc, stellite seat, threaded ends, OS&Y, rising stem, bolted bonnet.
- 3. Plug Valves: Cast iron body ASTM Al26 Class B, rated for 1200 kPa (175 psi) WOG, one-fourth turn to open. 850 kPa (125 psi) ASME flanged ends for pipe sizes above 50 mm (2 inches), threaded ends for pipe sizes 50 mm (2 inches) and under. All components designed for service to which applied: natural gas, LP gas (propane), or fuel oil. Furnish lever handle for each valve.
 - a. Type 301: Two-way valves up through 100 mm (4 inches) pipe size. Eccentric action, non-lubricated plug with resilient seal molded into groove on plug face providing bubble-tight shut off. O-ring stem seal, corrosion-resistant bearings, corrosion-resistant seat

coating, seal materials as recommended by valve manufacturer for the service. Valves on natural gas service AGA approved.

- b. Type 302: Two-way values 125 mm (5 inches) pipe size and above, all sizes of three way values. Lubricated full-port plug type with lubricant for intended service. Reinforced Teflon stem seal, value plug floated on Teflon surfaces, lubricant injection system that has sufficient pressure to fully lubricate all sealing surfaces. Provide laminated plastic label attached to each value stating, "Lubricate with (<u>Insert appropriate description</u>) once a year".
- 4. Check Valves:
 - a. Type 401: Not used.
 - b. Type 402: Swing-type, cast iron body ASTM A126 Class B, rated for 1725 kPa (250 psi) saturated steam, 3440 kPa (500 psi) WOG, bronze or bronze-faced disc and seat, 1725 kPa (250 psi) ASME flanged ends, bolted cover, renewable disc and seat.
 - c. Type 403: Swing-type, cast iron body ASTM Al26 Class B, rated for 850 kPa (125 psi) saturated steam, 1375 kPa (200 psi) WOG, bronze or bronze-faced disc and seat, 850 kPa (125 psi) ASME flanged ends, bolted cover, renewable disc and seat.
 - d. Type 404: Swing-type, bronze body ASTM B61, rated for 1375 kPa (200 psi) saturated steam, 2750 kPa (400 psi) WOG, bronze disc, threaded ends, regrinding disc.
 - e. Type 405: Lift-type, forged steel body ASTM A105, rated for 2050 kPa at 216 °C (300 psi at 420 °F) minimum (Class 4130 kPa (600 psi) or 5500 kPa (800 psi)), hardened stainless steel disc, hard faced seat, bolted cover, threaded ends.
 - f. Type 406: Swing-type, Type 316 stainless steel body, disc and hanger, rated for 1725 kPa at 182 °C (250 psi at 360 °F) minimum.
 - g. Type 407: Silent spring-loaded wafer type, cast iron body ASTM A48 or A126 Class B, rated for 850 kPa (125 psi) water, 121 °C (250 °F).

- h. Type 408: Silent spring-loaded wafer type, cast steel ASTM A216
 WCB or cast iron ASTM A48 or A126 body, rated for 2050 kPa (300 psi) water, 121 °C (250 °F), stainless steel trim.
- 5. Ball Valves: Reduced port permitted for bypass (throttling) service; full port required for all other services, one-fourth turn to open.
 - a. Type 501: Type 316 stainless steel body, ball and stem, rated for 1025 kPa at 185 °C (150 psi at 365 °F), 4130 kPa at 93 °C (600 psi at 200 °F); reinforced TFE seat, stem seal and thrust washer; end entry, threaded ends.
 - b. Type 502: Bronze body, rated for 1025 kPa at 185 °C (150 psi at 365 °F), 1725 kPa at 121 °C (250 psi at 250 °F), reinforced TFE seat, stem seal and thrust washer; end entry, threaded ends, ULlisted for natural or LP gas shut off service when used on those services.
 - c. Type 503: Carbon steel or ASTM B61 bronze body, steam service, rated for 1380 kPa at 200 °C (200 psi at 390 °F), stainless steel ball and stem, Polyfil seat, live-loaded or adjustable stem seal, threaded ends.
 - d. Type 504: Carbon steel or ASTM A536 ductile iron body, saturated steam service, rated for 1030 kPa (150 psi), stainless steel ball and stem, Polyfil seat, live-loaded stem seal, ASME flanged ends.
- 6. Butterfly Valves:
 - a. Type 601: Ductile iron body ASTM A395 or A536, wafer style, rated for 850 kPa at 120 °C (125 psi at 250 °F), bronze disc, stainless steel stem, EPDM liner, EPDM stem seal and body seal, neck extending beyond pipe insulation, lever operator.
 - b. Type 602: Carbon steel body, triple-offset design, lug or flanged type, rated for steam service at 1025 kPa at 260 °C (150 psi at 500 °F), stainless steel nitrided disc, stainless steel seat, stainless steel shaft, stainless steel/graphite laminated seal ring, neck extending beyond pipe insulation, geared handwheel operator for valves 100 mm (4 inch) pipe size and over, lever operator for valves 75 mm (3 inch) pipe size and under.
- 7. Gas Vent Cocks:

a. Type 701: Bronze body, tee handle, rated for 205 kPa at 38 °C (30 psi at 100 °F), ground plug, rated for tight shut-off on fuel gas service.

C. Boiler Valves:

- 1. Steam Non-Return Stop Check Valves:
 - a. Type: Straight-way Y-pattern, with dash-pot and piston and tapped drain openings, OS&Y, bolted bonnet, rising stem. Provide angle pattern only if shown on the contract drawings.
 - b. Construction: Cast steel body ASTM A216 WCB, rated for 2050 kPa (300 psi) saturated steam, stellite faced steel disc, alloy steel seat, 2050 kPa (300 psi) ASME flanged ends.
 - c. Operation: Valves shall automatically close tightly when boiler steam pressure becomes less than that of the steam header. Valves shall operate without sticking or chattering.
- Stop Valves for Soot Blower, Steam Vents on Boiler Drums and Steam Lead, Steam Pressure Gage:
 - a. Installation of steam pressure gage shut-off valves shall conform to ASME Boiler and Pressure Vessel Code, Section I.
 - b. Soot blower angle stop valves (water tube boilers), OS&Y, chain operated, cast or forged steel, 1375 kPa (200 psi) steam rating, renewable seat and disc.
 - c. Gate valves, two inches and under: Type 105.
- 3. Valves in Drain Lines from Steam Stop-Check Valve, Water Column, Gage Glass, Low Water Cut-offs, Soot Blower:
 - a. Gate valves, two inches and under: Type 105.
 - b. Check valves, two inches and under: Type 405.
- D. Steam above 100 kPa (15 psi), all valves in steam pressure reducing stations:
 - 1. Gate valves, 50 mm (2 inches) and under: Type 105.
 - 2. Gate valves, 65 mm (2-1/2 inches) and above: Type 101.
 - 3. Globe valves, 50 mm (2 inches) and under: Type 205.
 - 4. Globe values, 65 mm (2-1/2 inches) and above: Type 201.
 - 5. Butterfly valves, 75 mm (3 inches) and above: Type 602.
 - 6. Ball valves, 50 mm (2 inches) and under: Type 503.
 - 7. Ball valves, 65 mm (2-1/2 inches) and above: Type 504.

23 21 11 - 16 BOILER PLANT PIPING SYSTEMS

E. Steam 100 kPa (15 psi) and under: 1. Gate Valves, 50 mm (2 inches) and under: Type 104. 2. Gate valves, 65 mm (2-1/2 inches) and above: Type 103. 3. Globe valves, 50 mm (2 inches) and under: Type 204. 4. Globe values, 65 mm (2-1/2 inches) and above: Type 203. 5. Butterfly valves, 75 mm (3 inches) and above: Type 602. 6. Ball valves, 50 mm (2 inches) and under: Type 503. 7. Ball valves, 65 mm (2-1/2 inches) and above: Type 504. F. City (Cold) Water: See Section 22 11 00, FACILITY WATER DISTRIBUTION. G. Soft Water: See Section 22 31 11, WATER SOFTENERS. H. Instrumentation and Control Piping: 1. Ball valves, 50 mm (2 inches) and under: Type 502. I. Non-Boiler Blowdowns, Drains, Flow Sensing Lines: 1. Gate valves, 50 mm (2 inches) and under: Type 104. 2. Ball valves, 50 mm (2 inches) and under: Type 503 2.10 SIGHTFLOW INDICATORS: A. Provide, where shown, to allow observation of flow in piping systems. B. Type: In line, dual portholes on opposite sides, with safety shield, with or without rotor as shown on the drawings. Where provided, rotor shall have minimum of three vanes. C. Construction: Cast iron or bronze body, tempered borosilicate window, PTFE seals (except Buna-N on oil service), threaded ends on pipe sizes under 65 mm (2-1/2 inches), flanged ends on sizes 65 mm (2-1/2 inches)and above. Pressure and temperature ratings shall be equivalent to requirements for valves on the same pipelines. D. Safety Shield: Transparent wrap-around overlap covering entire sightflow indicator, designed to protect personnel from failure of indicator. Shield shall fit the indicator tightly and be suitable for 1030 kPa, 150 °C (150 psi, 300 °F). 2.11 SAFETY VALVES, RELIEF VALVES, SAFETY RELIEF VALVES AND ACCESSORIES: A. Provide valves and accessories to protect piping systems and pressure

vessels from over-pressure. All valves shall comply with ASME Boiler and Pressure Vessel Code (Section I and VIII). Flow capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors (NB).

- B. Steam Service (Pressure Vessels and Piping Systems): Refer to schedules on drawings for set pressures and capacities. Provide lifting levers, stainless steel trim, lapped seats on cast iron valves, EPDM o-rings on bronze valves.
- C. Drip Pan Ells: Cast iron factory-built safety valve discharge fitting with pipe-within-pipe slip-type connection to vertical vent pipe, basin for collecting condensate from vent pipe, drain connections on basin and at base of ell.

2.12 STRAINERS, SIMPLEX BASKET TYPE

- A. Provide on condensate lines where shown. Refer to Section 23 50 11, BOILER PLANT MECHANICAL EQUIPMENT, for duplex basket strainers at oil pumps.
- B. Type: Simplex cylindrical basket type, clamp cover, closed-bottom, removable basket, drain at bottom with threaded plug.
- C. Service: Water at 100 °C (212 °F), 100 kPa (15 psi) maximum pressure.
- D. Construction:
 - Body: Cast iron rated for 850 kPa (125 psi) ASME flanged ends, flow arrows cast on side.
 - Basket: Stainless steel, 3 mm (0.125-inch) perforations. Ratio of screen open area to cross section of pipe; four to one minimum.

2.13 STRAINERS, Y-TYPE

- A. Provide as shown on steam, water and compressed air piping systems.
- B. Type: Open-end removable cylindrical screen. Threaded blow-off connection.
- C. Construction:
 - 1. Steam Service 420 to 1025 kPa (61 to 150 psi): Cast steel rated for 1025 kPa (150 psi) saturated steam with 1025 kPa (150 psi) ASME flanged ends, or cast iron with 1725 kPa (250 psi) ASME flanged ends, for pipe sizes above 50 mm (2 inches). Cast iron or bronze, rated for saturated steam at 1025 kPa (150 psi) threaded ends, for pipe sizes 50 mm (2 inches) and under.
 - 2. Steam Service 415 kPa (60 psi) and under, water (except boiler feed between feedwater pumps and boilers), compressed air: Cast iron rated for 850 kPa (125 psi) saturated steam, 1200 kPa (175 psi) WOG, with 850 kPa (125 psi) ASME flanged ends for pipe sizes above 50 mm

(2 inches). Cast iron or bronze, threaded ends, rated for 850 kPa (125 psi) saturated steam, 1200 kPa (175 psi) WOG, for pipe sizes 50 mm (2 inches) and under.

- 3. Boiler Feed between Feedwater Pumps and Boilers: Cast steel rated for 1725 kPa at 232 °C (250 psi at 450 °F) with 2050 kPa (300 psi) ASME flanged ends, or cast iron with 1725 kPa (250 psi) ASME flanged ends, for pipe sizes above 50 mm (2 inches). Cast iron or bronze, threaded ends, rated for 1725 kPa at 232 °F (250 psi at 450 °F) for pipe sizes 50 mm (2 inches) and under.
- D. Screen: Monel or stainless steel, free area not less than 2-1/2 times flow area of pipe. For strainers 80 mm (3 inch) pipe size and smaller, diameter of openings shall be 0.8 mm (0.033 inch) or less on steam service, 1.3 mm (0.05 inch) or less on water service, 0.3 mm (0.01-inch) or less on compressed air service. For strainers 100 mm (4 inch) pipe size and greater, diameter of openings shall be 1.3 mm (0.05 inch) on steam service, 3 mm (0.125 inch) on water service. Provide 80 mesh stainless steel screen liner on all strainers installed upstream of water meters or control valves.
- E. Accessories: Gate or ball valve and quick-couple hose connection on all blowoff connections. These items are specified elsewhere in this section.

2.14 EMERGENCY GAS SAFETY SHUT-OFF VALVE:

- A. Permits remote shut-off of fuel gas flow to boiler plant.
- B. Type: Manually opened, electrically held open, automatic closing upon power interruption. Pneumatic operator is not permitted.
- C. Performance: Shall shut bubble tight within one second after power interruption. Refer to the drawings for pressure, flow, and valve size requirements.
- D. Service: Natural gas and LP gas.
- E. Construction: UL listed, FM approved, rated for 850 kPa (125 psi) ASME flanged ends for pipe sizes above 50 mm (2 inches), threaded ends for pipe sizes 50 mm (2 inches) and under. Cast iron, cast steel or bronze body, open and shut indicator. Valves for LP gas service shall be rated at 1725 kPa (250 psi).

F. Control Switch: Mounted on Boiler Control Panel and at exterior doorways (multiple switches). Switch shall also cut the power to the fuel oil pump set. Refer to Section 23 09 11, INSTRUMENTATION and CONTROL FOR BOILER PLANT. Provide auxiliary switch to provide signal to Computer Work Station.

2.15 STEAM TRAPS

- A. Application: Steam line drip points and heat exchangers. Each type furnished by a single manufacturer.
- B. Type: Inverted bucket type with thermostatic vent in bucket except closed float-thermostatic on discharge side of pressure reducing stations and on all heat exchangers. Refer to the drawings for trap locations, capacity and size, differential operating pressures, and design pressure.
- C. Bodies: Cast iron or stainless steel. Construction shall permit ease of removal and servicing working parts without disturbing connected piping, 4 bolt flanged ends with flexmatalic gaskets.
- D. Floats: Stainless steel.
- E. Valves: Hardened chrome-steel.
- F. Mechanism and Thermostatic Elements: Stainless steel mechanisms. Bimetallic strip air vent on inverted bucket traps.
- G. Trap Performance Monitoring Systems: All traps shall be provided with electronic monitoring devices. These devices shall be compatible with the existing monitoring system so that trap malfunctions will be automatically transmitted to and properly interpreted by the existing monitoring system. Provide all necessary power sources, transmitting and retransmitting devices and batteries to achieve a properly operating system. Verify the existing monitoring system with VA representative.
- H. Provision for Future Trap Monitoring System: All traps shall include ports for future installation of monitoring devices. Ports shall be plugged. To facilitate future removal of the plugs, install them with Teflon tape on the threads.
- I. Identification: Label each trap at the factory with an identification number keyed to number that is shown on the drawings. Label shall be a metal tag permanently affixed to the trap.

J. Factory-Packaged Trap Station: As an option for drip points requiring isolating valves, strainer, trap, trap monitoring device or ports for future monitoring device, and valved test ports, provide factorypackaged trap station including these features

2.16 FLEXIBLE CONNECTORS

- A. Provide flexible connectors as shown to allow differential movements of pumps and piping systems subject to thermal expansion, to serve as vibration isolators between air compressors and piping systems, and to allow connection of steam or compressed air atomizing media for oil burners on water tube boilers.
- B. Units for Water Service
 - Service: Refer to schematic diagrams for pressure, temperature and movement requirements. If requirements are not shown on the drawings, units shall be designed for maximum system pressure, temperature, axial movement and lateral movement.
 - 2. Construction
 - a. Teflon Bellows Type: Molded Teflon bellows with metal reinforcing rings, flanged ends, bolted limit rods.
 - b. Stainless Steel Bellows Type: Multi-ply stainless steel with flanged ends, bolted limit rods.
 - c. Flexible Metal Hose Type: Corrugated stainless steel or bronze hose wrapped with wire braid sheath. Ends shall be threaded, with union connectors, for pipe sizes 50 mm (2 inches) and below, flanged for pipe sizes 65 mm (2-1/2 inches) and greater.

2.17 PIPING SUPPORT SYSTEMS

- A. Provide an engineered piping support system with all hangers, supports and anchors designed and located by experienced technical pipe support specialists, utilizing piping system design and analysis software. The system design must be completely documented and submitted for review.
- B. All pipe hangers and supports, and selection and installation shall comply with MSS SP-58, SP-69, SP-89, SP-90, SP-127.
- C. All pipe hanger and support devices must be in compliance with specified MSS SP-58 type numbers, have published load ratings, and be products of engineered pipe support manufacturers.

- D. All pipe stresses and forces and moments on connecting equipment and structures shall be within the allowances of the ASME B31.1 code, applicable building codes, and equipment manufacturer's design limits.
- E. Piping that expands and contracts horizontally including steam, steam condensate, boiler feed, condensate transfer, shall be supported by roller or sliding type hangers and supports except when long vertical hanger rods permit sufficient horizontal movement with the vertical angles of the rods less than 4 degrees.
- F. Piping that expands and contracts vertically including steam, steam condensate, boiler feed, condensate transfer, shall be supported by engineered variable spring and spring cushion hangers. Utilize MSS SP-69 selection requirements and guidelines. Vibration isolator hanger types are not permitted.
- G. Piping system anchors shall be engineered and located to control movement of piping that is subject to thermal expansion.
- H. Prior to construction, submit complete engineering calculation methods and results, descriptions of all devices with MSS numbers, sizes, load capabilities and locations. Submit calculations on all moments and forces at anchors and guides, all hanger loads, all pipe stresses that are within 20% of the code allowable or exceed the ASME B31.1 code allowable, all pipe movements at supports.
- I. Detailed Design Requirements:
 - Piping system design and analysis software shall be current state of the art that performs B31.1 Code analyses, and shall be utilized to analyze pipe movement and deflection, pipe stresses, pipe support forces and moments, and for selection of pipe support types and sizes.
 - 2. Each support for piping 60 mm (2-1/2 inches) and above shall be completely engineered to include location, type and size, hot and cold loads and movement. Submit layout drawings showing precise support locations and submit individual drawings for each support assembly showing all components, sizes, loadings.
 - 3. Supports for piping 50 mm (2 inches) and below shall be engineered in general terms with approximate locations, typical support types

and sizes, approximate movements. Submit layout drawings showing general locations and support types and sizes.

- 4. Obtain permissible loadings (forces and moments) for equipment nozzles (pipe connections) from the manufacturer of the boilers, the feedwater deaerator and any other equipment as necessary. Professional structural engineer shall verify capability of building structure to handle piping loads.
- 5. The project drawings may show locations and types of resilient supports including rollers and springs, and may also show special supports including anchors, guides and braces. Comply with the drawing requirements unless it is determined that piping may be overstressed or supports overloaded. Refer conflicts to the RE/COTR.
- 6. Variable spring hangers conforming the MSS SP-58, Type 51, shall support all piping that expands vertically from thermal effects which may include connected equipment, such as boilers. Spring rates must be selected to avoid excessive load transfer to the connected equipment as the piping expands vertically. Vibration-type spring isolators are not acceptable. Light duty spring hangers, MSS SP-58, Type 48, may be utilized on loads of 90 kg (200 lb) or less, and vertical movement of 3 mm (0.125 inches) or less. Spring cushion hangers, MSS SP-58, Type 49, may be utilized for vertical movement of 3 mm (0.125 inches) or less.
- 7. Locate supports to permit removal of valves and strainers from pipelines without disturbing supports.
- If equipment and piping arrangement differs from that shown on the drawings, support locations and types shall be revised at no cost to the Government.
- J. Hangers and Supports Products:
 - Factory-built products of a manufacturer specializing in engineered pipe supports. All components must have published load ratings. All spring type supports shall have published spring rates and movement limits. All support assemblies shall include threaded connections that permit vertical position adjustment. Supports shall comply with MSS SP-58 Type Numbers as listed below.

- Upper Attachments to Building Structure: Types 18, 20, 21, 22, 23, 29, and 30.
- 3. Roller Supports: Types 41, 43, and 46. Provide vertical adjustment for Type 41 with threaded studs and nuts adjacent to the roller.
- 4. Variable Spring Hanger Assembly:
 - Type 51 variable spring, with Type 3 pipe clamp or Type 1 clevis.
 Type 53 variable spring trapeze may also be used. Locate Type 51 variable spring within 300 mm (1 foot) above pipe attachment.
 Attach rod to top of variable spring with Type 14 clevis.
 - b. Typical features of variable spring hangers include spring rates under 150 lb/in, enclosed spring, load and travel indicator, sizes available with load capabilities ranging from 50 lb to multiples of 10,000 lb.
- 5. Spring Cushion Hanger Assembly: Double Rod: Type 41 and 49.
- 6. Light Duty Spring Hanger Assembly: Type 48 light duty spring, with Type 3 pipe clamp or Type 1 clevis. Locate Type 48 light duty spring within 300 mm (1 foot) above pipe attachment.
- 7. Clevis Hangers: Type 1.
- 8. Wall Brackets: Type 31, 32, and 33.
- 9. Pipe Stands: Type 38.
- 10. Riser Clamps: Type 42.
- 11. Roller Guides: Type 44. Construct guides to restrain movement perpendicular to the long axis of the piping. All members shall be welded steel.
- 12. Trapeze Supports: May be used where pipes are close together and parallel. Construct with structural steel channels or angles. Bolt roller supports to steel to support piping subject to horizontal thermal expansion. Attach other piping with U-bolts.
- 13. Pipe Covering Protection Saddles: Type 39. Provide at all support points on insulated pipe except where Type 3 pipe clamp is provided. Insulation shields are not permitted. Refer to Section 23 07 11, HVAC and BOILER PLANT INSULATION.
- 14. Sliding Supports: Type 35. Welded steel attachments to pipe and building structure with Teflon or graphite sliding surfaces bonded

to the attachments. Provide steel guides, except at expansion bends, to prevent lateral movement of the pipe.

15. Piping Anchors: Provide engineered designs to accommodate the calculated loads.

2.18 PIPE AND VALVE FLANGE GASKETS

Non-asbestos, designed for the service conditions. On steam service utilize 3 mm (1/8 inch) thick Class 300 spiral-wound with Type 304 stainless steel and mica/graphite filler and carbon steel gauge ring.

2.19 THREAD SEALANTS:

As recommended by the sealant manufacturer for the service.

2.20 PIPE SLEEVES:

- A. Service: For pipes passing through floors, walls, partitions.
- B. Construction: Steel pipe, schedule 10 minimum.
- C. Sleeve Diameter: Not less than 25 mm (1 inch) larger than the diameter of the enclosed pipe and thermal insulation, vapor barrier, and protective covering for insulated pipe; sleeves for un-insulated pipe shall be not less than 25 mm (1 inch) larger than the diameter of the enclosed pipe.

PART 3 - EXECUTION

3.1 ARRANGEMENT OF PIPING

- A. The piping arrangement shown is a design based on currently available equipment. The plans show typical equipment to scale and show practical arrangement. Modification will be necessary during construction, at no additional cost to the Government, to adapt the equipment layout and piping plans to the precise equipment purchased by the Contractor. Accessibility for operation and maintenance must be maintained.
- B. All piping shall be installed parallel to walls and column centerlines (unless shown otherwise). Fully coordinate work of each trade to provide the designed systems without interference between systems. All piping shall be accurately cut, true, and beveled for welding. Threaded piping shall be accurately cut, reamed and threaded with sharp dies. Copper piping work shall be performed in accordance with best practices requiring accurately cut clean joints and soldering in accordance with the recommended practices for the material and solder employed, compression type fittings are not allowed.

- C. All piping shall be pitched for drainage at a constant slope of 25 mm in 12 m (1 inch in 40 feet). Steam, condensate, trap discharge, drip, drain, air, gas and blowdown piping shall pitch down in direction of flow. Service water, pumped condensate, pumped boiler feedwater, oil, shall pitch up in direction of flow. Provide valved air vents at top of rise and valved drains at low points. Gas piping may be run level as it is presumed to be dry, but dirt pockets shall be provided at base of risers.
- D. Valves shall be located and stems oriented to permit proper and easy operation and access to valve bonnet for maintenance of packing, seat and disc. Valve stems shall not be below centerline of pipe. Refer to plans for stem orientation. Where valves are more than 2100 mm (7 feet) above the floor or platform, stems shall be horizontal unless shown otherwise. Gate and globe valves more than 3 m (10 feet) above floor or platform, shall have chain wheel and chain for operation from floor or platform. Provide hammer-blow wheel on any valve that cannot be opened or tightly closed by one person. Steam line gate and butterfly type isolation valves 750 mm (3 inch) pipe size and above shall have factory or field-fabricated 20 mm or 25 mm (3/4 or one inch) globe-valved warm-up bypasses if the steam line length is 6 m (20 feet) or longer.
- E. Provide union adjacent to all threaded end valves.
- F. Bolt wafer-type butterfly valves between pipe flanges.
- G. Provide values as necessary to permit maintenance of a device or sub-system without discontinuing service to other elements of that service or system.
- H. Do not install any piping within 600 mm (2 feet) of water tube boiler side or top casings.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used by his organization, determine the suitability of the procedures used, determine that the welds made will meet the required tests, and also determine that the welding operators have the ability to make sound welds under standard conditions.

- 2. Comply with ASME B31.1 and AWS B2.1.
- 3. Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, and AWS B2.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the Resident Engineer (RE), to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the RE with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Utilize split welding rings or approved alternate method for joints on all pipes above 50 mm (two-inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (one foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:

- The RE may require up to ten percent of the welded piping joints to be examined using radiographic testing. If defective welds are discovered the RE may require examination of all pipe joint welds. All welds will be visually inspected by the COR.
- 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The RE/COTR reserves the right to review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening will not be permitted. Welders responsible for defective welds must be requalified.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPING JOINTS

- A. All butt-welded piping shall be welded at circumferential joints, flanges shall be weld neck type; slip-on flanges, screwed flanges may be applied only with written approval of the RE.
- B. Companion flanges at equipment or valves shall match flange construction of equipment or valve. Raised face shall be removed at all companion flanges when attached to flanges equipped for flat face construction.
- C. Gaskets and bolting shall be applied in accordance with the recommendations of the gasket manufacturer and bolting standards of ASME B31.1. Strains shall be evenly applied without overstress of bolts. Gaskets shall cover entire area of mating faces of flanges.
- D. Screw threads shall be made up with Teflon tape except gas and oil piping joints shall utilize specified joint compound.

E. Solder joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.

3.4 BRANCH INTERSECTION CONNECTIONS

- A. Factory-built reinforced tees and laterals are required.
- B. Factory-built integrally-reinforced forged steel branch outlet fittings may be used on reduced size connections upon approval of RE. They must comply with MSS-SP-97.

3.5 EXPANSION AND FLEXIBILITY

A. The design includes provision for piping expansion due to pressure, thermal, weight and seismic (where applicable) effects. It is the Contractor's responsibility to avoid reduction in flexibility and increase in stress in piping systems. Major deviation will be shown by submittal for review of scale working drawings and stress calculations for the piping systems. Contractor shall provide any necessary additional construction and materials to limit stresses to safe values as directed by the RE and at no additional cost to the Government.

3.6 PIPE BENDING

A. Pipe bending shall be in accordance with the recommended practices of PFI ES24. Only ASTM A106 seamless pipe may be bent. Sizes below 50 mm (2 inches) may be bent in field; sizes 65 mm (2-1/2 inches) and larger shall have factory fabricated bends. Minimum radii and tangent lengths for field bent piping are shown in the following table:

Size	Minimum Radius	Minimum Tangent
1/2 inch	2-1/2 inches	1-1/2 inches
3/4 inch	2-3/4 inches	1-3/4 inches
1-inch	5-inches	2-inches
1-1/4 inches	6-1/4 inches	2-inches
1-1/2 inches	7-1/2 inches	2-1/2 inches

3.7 SIZE CHANGES

A. Piping size changes shall be accomplished by use of line reducers, reducing ell, reducing tee. Apply eccentric reduction in all piping requiring continuous drainage; steam, condensate, vacuum, blowdown. Concentric reduction may be applied in run of piping involving pressure water systems except at pump inlets. Use concentric increasers where flow is in direction of increased size. Eccentric reduction, top flat, at all pump connections.

3.8 ADDITIONAL DRIPS AND TRAPS

A. Where additional rises or drops in steam or gas lines are provided, provide additional drip pockets with steam trap assemblies on steam lines and additional dirt pockets on gas lines. All air drops shall have dirt legs and no actuator or other air operated equipment may come off the end of the air line. Airline taps are either from the top of the supplying line if the supply line is horizontal or from the side if the supplying line is vertical. All air operated equipment shall have inline moisture separators or dryers.

3.9 MINOR PIPING

A. Minor piping associated with instrumentation and control is generally not shown. Interconnection of sensors, transducers, control devices, instrumentation panels, combustion control panel, burner control panels is the responsibility of the contractor. Small piping associated with water cooling, drips, drains and other minor piping may not be shown to avoid confusion in the plan presentation but shall be provided as part of contract work.

3.10 DIELECTRIC CONNECTION

A. Where copper piping is connected to steel piping provide dielectric connections.

3.11 INSTALLATION - MAIN STEAM HEADER

- A. The header shall be the connection point for steam piping from all boilers and for steam distribution piping. The boiler plant steam pressure control transmitter shall be connected to the header.
- B. Steam header shall be assembly of tees, pipe sections, and weld neck flanges.
- C. Factory-fabricated forged steel integrally reinforced branch outlet welding fittings, standard weight, ASTM A105 Grade 2, may be applied in lieu of tees for all branch outlets less than the full size of the

header. Comply with fitting manufacturer's recommendations and requirements of ASME B31.1 and MSS-SP-97.

- D. Provide header supports and anchor as shown; apply insulation saddles for insulation thickness as required in Section 23 07 11, HVAC and BOILER PLANT INSULATION.
- E. Weld neck flange bolt position shall conform to required valve, stem, and bypass orientation as shown.
- F. Header construction as specified includes the entire header and branches to first valve.
- G. Anchor and guide header to resist thermal and weight forces and also seismic forces where required.
- H. All valves must be accessible without the use of ladders or chainwheels.

3.12 INSTALLATION - SIGHT FLOW INDICATORS

A. Locate to permit view from floor or platform.

3.13 INSTALLATION - PRESSURE AND TEMPERATURE REGULATORS, CONTROL VALVES, SAFETY SHUT-OFF VALVES

A. Provide sufficient clearance on all sides of valve to permit

replacement of working parts without removing valve from pipeline.

3.14 INSTALLATION - EMERGENCY GAS SAFETY SHUT-OFF VALVES AND EARTHQUAKE VALVES

- A. Locate so that valve position indicator is visible from nearest walkway.
- B. Provide control wiring and wiring to annunciator on instrumentation panel and to computer workstation (if provided).

3.15 INSTALLATION - FLEXIBLE CONNECTORS

A. Install units for water and compressed air service in a straight run of pipe. Units for atomizing media service may be installed with bends if necessary. Designer of atomizing media piping must coordinate hose connection points with allowable bend radius of hose.

3.16 INSTALLATION - SAFETY VALVES, RELIEF VALVES AND SAFETY-RELIEF VALVES

- A. Orient valves so that lifting levers are accessible from nearest walkway or access platform. Valves must be removable without requiring disassembling of vents, except where otherwise specifically provided.
- B. Provide a drip pan elbow at discharge of each steam or economizer valve with slip joint in vent discharge line, arranged to prevent vent line

from imposing any force on valve and to prevent any moisture accumulation in valve. Connected drip pan ell drains to drain piping to floor drain. Provide flexible connector on drain line, adjacent to drip pan ell.

- C. Support vent line from above. Each steam valve must have separate vent line to atmosphere unless shown otherwise.
- D. Relief values in steam piping shall have a manual value downstream of the relief value to allow for testing of the value in place without risk of over pressurizing downstream equipment.
- 3.17 INSTALLATION Y-TYPE STRAINERS ON STEAM SERVICE
 - A. Install with basket level with the steam pipe so that condensate is not trapped in the strainer.

3.18 INSTALLATION - QUICK COUPLE HOSE CONNECTORS

A. Install male plugs on each piping drain. Connect socket to one end of steam hose.

3.19 INSTALLATION - VIBRATION ISOLATORS IN PIPING

- A. Install on all air lines and water supply lines to air compressors.
- B. Also install on pump connections as shown.

3.20 INSTALLATION - PIPE SLEEVES

- A. Accurately locate and securely fasten sleeves to forms before concrete is poured; install in walls or partitions during the construction of the walls.
- B. Sleeve ends shall be flush with finished faces of walls and partitions.
- C. Pipe sleeves passing through floors shall project 25 mm (1 inch) minimum above the finished floor surface and the bottom of the sleeve shall be flush with the underside of the floor slab.

3.21 INSTALLATION - PIPE SUPPORT SYSTEMS

- A. Coordinate support locations with building structure prior to erection of piping. Also refer to approved shop drawings of equipment and approved piping layout and hanger layout drawings when locating hangers. Arrangement of supports shall facilitate operating, servicing and removal of valves, strainers, and piping specialties. Hanger parts must be marked at the factory with a numbering system keyed to hanger layout drawings. Layout drawings must be available at the site.
- B. Upper attachments to Building Structure:

- 1. New Reinforced Concrete Construction: Concrete inserts.
- 2. Existing Reinforced Concrete Construction: Upper attachment welded or clamped to steel clip angles (or other construction shown on the drawings) which are expansion-bolted to the concrete. Expansion bolting shall be located so that loads place bolts in shear.
- 3. Steel Deck and Structural Framing: Upper attachments welded or clamped to structural steel members.
- C. Expansion Fasteners and Power Set Fasteners: In existing concrete floor, ceiling and wall construction, expansion fasteners may be used for hanger loads up to one-third the manufacturer's rated strength of the expansion fastener. Power set fasteners may be used for loads up to one-fourth of rated load. When greater hanger loads are encountered, additional fasteners may be used and interconnected with steel members combining to support the hanger.
- D. Special Supports:
 - Secure horizontal pipes where necessary to prevent vibration or excess sway.
 - Where hangers cannot be adequately secured as specified, (for example, support for flow metering sensing lines, pneumatic tubing, control piping) special provisions shall be made for hanging and supporting pipe as directed by the RE.
 - 3. Pipe supports, hangers, clamps or anchors shall not be attached to equipment unless specifically permitted by the specifications for that equipment or unless RE gives written permission. No attachments to boiler casings permitted.
- E. Spring Hangers: Locate spring units within one foot of the pipe, breeching or stack attachment except in locations where spring assemblies interfere with pipe insulation. Adjust springs to loads calculated by hanger manufacturer.
- F. Seismic Braces and Restraints: Do not insulate piping within one foot of device until device has been inspected by RE.

3.22 CLEANING OF PIPING AFTER INSTALLATION

A. Flush all piping sufficiently to remove all dirt and debris. Fill piping completely. Velocity shall be equivalent to that experienced during normal plant operation at maximum loads. During flushing, all

23 21 11 - 33 BOILER PLANT PIPING SYSTEMS control valves, steam traps and pumps must be disconnected from the system. After cleaning is complete, remove, clean and replace all strainer baskets and elements. Reconnect all equipment. Provide safe points of discharge for debris blown from pipes.

3.23 TESTING

- A. Testing of piping components is not required prior to installation. Valves and fittings shall be capable of withstanding hydrostatic shell test equal to twice the primary design service pressure except as modified by specifications on fittings, ASME B16.5. This test capability is a statement of quality of material. Tests of individual items of pipe, fittings or equipment will be required only on instruction of RE and at Government cost.
- B. After erection, all piping systems shall be capable of withstanding a hydrostatic test pressure of 1.5 times design pressure, as stipulated in ASME B31.1. Hydrostatic tests will be required only on boiler external steam piping, utilizing water as the test medium. Hydrostatic tests will be required on other piping when operating tests described are unsatisfactory, or when inspection of welds shows poor workmanship and is subject to question by the RE. When hydrostatic tests show leaks, the RE will require necessary welding repairs, in accordance with ASME B31.1, at the Contractor's cost.
- C. Perform operating test as follows:
 - All steam piping prior to insulation shall be subjected to steam at final operating pressure. Inspect all joints for leaks and workmanship. Corrections shall be made as specified.
 - Test main gas piping with compressed air at twice the service pressure entering VA property from utility service. Test LP gas piping at the maximum tank pressure, 1725 kPa (250 psig), with compressed air. Test joints with soap solution, check thoroughly for leaks.
 - 3. Test boiler feedwater, condensate, vacuum and service water systems under service conditions and prove tight.
 - Test oil and compressed air systems under service conditions at pressure equal to highest setting of safety and relief valves in the individual systems.

- 5. Make corrections and retests to establish systems that have no leaks. Replace or recut any defective fittings or defective threads. Soldered material shall be thoroughly cleaned prior to resoldering. Back welding of threads will not be permitted.
- D. Hydrostatically test boiler external steam piping from boiler to header in approved manner with water of same time boiler is hydrostatically tested under the supervision of RE. Prior to hydrostatic test, remove all valves not rated for hydrostatic test pressure. Replace valves after tests are satisfactorily completed. Hydrostatic test pressure shall be 1.5 times design pressure and performed in accordance with ASME Boiler and Pressure Vessel Code, Section I.
- E. Generally, insulation work should not be performed prior to testing of piping. Contractor may, at own option and hazard, insulate piping prior to test, but any damaged insulation shall be replaced with new quality as specified for original installation at Contractor's cost and time.
- F. Safety, Safety-Relief, Relief Valves: After installation, test under pressure in presence of RE. Test operation, including set pressure, flow, and blowdown in accordance with ASME Boiler and Pressure Vessel Code. Any deficiencies must be corrected and retest performed.

3.24 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Extension of domestic water make-up piping.
 - 2. Glycol-water piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- E. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation.
- F. Section 23 21 11, BOILER PLANT PIPING SYSTEMS: Boiler piping.
- G. Section 23 23 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants.
- H. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Flexible connectors for water service.
 - 8. Pipe alignment guides.
 - 9. Expansion joints.
 - 10. Expansion compensators.
 - 11. All specified hydronic system components.
 - 12. Water flow measuring devices.
 - 13. Gages.
 - 14. Thermometers and test wells.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Water to Water)
 - 2. Air separators.
 - 3. Expansion tanks.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.

2. One complete set of reproducible drawings. 3. One complete set of drawings in electronic Autocad and pdf format. 1.5 APPLICABLE PUBLICATIONS A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc. B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings B40.100-05.....Pressure Gauges and Gauge Attachments C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): 70-2-2006.....Control Valve Seat Leakage D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings: Class 150 and 300 B16.4-2006.....Gray Iron Threaded Fittings: (Class 125 and 250) B16.5-2003.....Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24 Metric/Inch Standard B16.9-07.....Factory Made Wrought Butt Welding Fittings B16.11-05.....Forged Fittings, Socket Welding and Threaded B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-01......Wrought Copper and Bronze Solder Joint Pressure Fittings. B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.39-06......Malleable Iron Threaded Pipe Unions B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings

B31.1-08.....Power Piping E. American Society for Testing and Materials (ASTM): A47/A47M-99 (2004) Ferritic Malleable Iron Castings A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-04..... Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A183-03 Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-08 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A234/A234M-07 Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A307-07 Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A536-84 (2004) Standard Specification for Ductile Iron Castings A615/A615M-08 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement A653/A 653M-08 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) By the Hot-Dip Process B32-08 Standard Specification for Solder Metal B62-02 Standard Specification for Composition Bronze or Ounce Metal Castings B88-03 Standard Specification for Seamless Copper Water Tube B209-07 Aluminum and Aluminum Alloy Sheet and Plate C177-04 Standard Test Method for Steady State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus

C478-09 Precast Reinforced Concrete Manhole Sections C533-07 Calcium Silicate Block and Pipe Thermal Insulation C552-07 Cellular Glass Thermal Insulation D3350-08 Polyethylene Plastics Pipe and Fittings Materials C591-08 Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation F477-08 Elastomeric Seals Gaskets) for Joining Plastic Pipe F. American Water Works Association (AWWA): C110-08..... Ductile Iron and Grey Iron Fittings for Water C203-02.....Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied G. American Welding Society (AWS): B2.1-02.....Standard Welding Procedure Specification H. Copper Development Association, Inc. (CDA): CDA A4015-06.....Copper Tube Handbook I. Expansion Joint Manufacturer's Association, Inc. (EJMA): EMJA-2003.....s Association Joint Manufacturer's Association Standards, Ninth Edition J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-02a.....Butterfly Valves SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-08.....Bronze Gate, Globe, Angle and Check Valves SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

- SP-125-00.....Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves
- K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI):

14-06.....Plastic Piping System Components and Related Materials

50-2009a.....Equipment for Swimming Pools, Spas, Hot Tubs and other Recreational Water Facilities – Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities

61-2008..... Drinking Water System Components - Health Effects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

- A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.
- PART 2 PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

- A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- 2.2 PIPE AND TUBING
 - A. Extension of Domestic Water Make-up and All Solar Hot Water Piping: ASTM B88, Type K or L, hard drawn copper tubing.
 - B. Cooling Coil Condensate Drain Piping:
 - From air handling units: Copper water tube, ASTM B88, Type M, or schedule 40 PVC plastic piping.
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.
 - C. Chemical Feed Piping for Condenser Water Treatment: Chlorinated polyvinyl chloride (CPVC), Schedule 80, ASTM F441.
 - D. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.3 FITTINGS FOR STEEL PIPE

A. 50 mm (2 inches) and Smaller: Screwed or welded joints.

- 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
- 2. Forged steel, socket welding or threaded: ASME B16.11.
- 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
- 4. Unions: ASME B16.39.
- Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 400 psig working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.

- b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) 3. Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves):
 - a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Globe and Angle Valves
 - 1. Globe Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle.
- F. Check Valves

- 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150
 lb.), 45 degree swing disc.
 - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
- 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- 2.8 STRAINERS
- A. Y Type.
 - Screens: Bronze, or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.9 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral

flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.

- 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
- 3. Provide ductile iron retaining rings and control units.

2.10 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.

- 6. Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 2415 kPa (350 psig) maximum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, PTFE modified polyphenylene sulfide coated slide section, with grooved ends, suitable for axial end movement to 75 mm (3 inch).
- G. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- I. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.11 HYDRONIC SYSTEM COMPONENTS

- A. Heat Exchanger (Water to Water): Shell and tube type, U-bend removable tube bundle, heating fluid in shell, heated fluid in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 feet per second).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.001.

- 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.
- 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Plate and Frame Heat Exchanger:
 - 1. Fixed frame with bolted removable corrugated channel plate assembly, ASME code stamped for 150 psig working pressure.
 - 2. Corrugated channel plates shall be type 316 or 304 stainless steel.
 - Channel plate ports to be double gasketed to prevent mixing or cross-contamination of hot side and cold side fluids. Gaskets to be EPPM.
 - 4. Channel plate carrying bars to be carbon steel with zinc yellow chromate finish.
 - 5. Fixed frame plates and moveable pressure plates to be corrosion resistant epoxy painted carbon steel.
 - 6. Piping connections 2" and smaller to be carbon steel NPT tappings. Piping connections 4" and larger to be studded port design to accept ANSI flange connections. Connection ports to be integral to the frame or pressure plate.
 - 7. Finished units to be provided with OSHA required, formed aluminum splash guards to enclose exterior channel plate and gasket surfaces.
 - 8. Provide two sets of replacement gaskets and provide one set of wrenches for disassembly of plate type heat exchangers.
 - 9. Performance: As scheduled on drawings.
- C. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of converters, pumps, and other components supported on a welded steel frame. Refer to Section 23 22 13, STEAM and STEAM CONDENSATE HEATING PIPING, for additional requirements
- D. Air Purger: Cast iron or fabricated steel, 861 kPa (125 psig) water working pressure, for in-line installation.

- E. Tangential Air Separator: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the cross-sectional area of connecting piping.
- F. Diaphragm Type Pre-Pressurized Expansion Tank: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, welded steel shell, rust-proof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 116 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- H. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).
- I. Pressure Relief Valve: Bronze or iron body and bronze or stainless steel trim, with testing lever. Comply with ASME Code for Pressure Vessels, Section 8, and bear ASME stamp.
- J. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.12 WATER FILTERS AND POT CHEMICAL FEEDERS

See section 23 25 00, HVAC WATER TREATMENT, Article 2.2, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.13 GAGES, PRESSURE AND COMPOUND

A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.

- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.
- B. Provide one each of the following test items to the Resident Engineer:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel
 pressure gage adapter probe for extra long test plug. PETE'S 500 XL
 is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Hot Water and Glycol-Water: -1 116 degrees C (30-240 degrees F).

2.17 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves

with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.

- 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.
- 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.6 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel.

3.7 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.

- 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- C. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI):

AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416.....Type 416 Stainless Steel

C. American National Standards Institute (ANSI):

ANSI B15.1-00(R2008)..... Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-05.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800

- D. American Society for Testing and Materials (ASTM): A48-03 (2008).....Standard Specification for Gray Iron Castings B62-2009.....Standard Specification for Composition Bronze or Ounce Metal Castings
- E. Maintenance and Operating Manuals in accordance with Section 01 00 00, General Requirements.

1.6 DEFINITIONS

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

1.7 SPARE MATERIALS

A. Furnish one spare seal and casing gasket for each pump to the Resident Engineer.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A. General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - 2. Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1½ times the designed pressure.

- Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
- 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be Open Drip Proof and operate at 1750 rpm unless noted otherwise.
 - d. Heating pumps shall be suitable for handling water to 225°F.
 - e. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.
 - f. Pump Connections: Flanged.
 - g. Pump shall be factory tested.
 - h. Performance: As scheduled on the Contract Drawings.
- 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip-proof motor.
 - b. Variable Speed Motor Controllers: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION paragraph, Variable Speed Motor Controllers. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.
- B. In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 850 kPa (125 psig), ANSI B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - Casing Drain and Gage Taps: 15 mm (1/2-inch) plugged connections minimum size.

- 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
- 7. Shaft: Steel, AISI Type 1045 or stainless steel.
- 8. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
- 9. Shaft Sleeve: Bronze or stainless steel.
- 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, ANSI B15.1, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Re-greaseable ball or roller type.

Provide lip seal and slinger outboard of each bearing.

- e. Base: Cast iron or fabricated steel for common mounting to a concrete base.
- 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:
 - a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter openings for pump protection. Provide taps for strainer blowdown and gage connections.
 - b. Provide adjustable foot support for suction piping.
 - c. Strainer free area: Not less than five times the suction piping.
 - d. Provide disposable start-up strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.

- B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings. Boiler plant and outside steam distribution piping is covered in specification Section 33 63 00, STEAM ENERGY DISTRIBUTION and Section 23 21 11, BOILER PLANT PIPING SYSTEMS.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 22 23, STEAM CONDENSATE PUMPS.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.

- 12. Gages.
- 13. Thermometers and test wells.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).
 - 2. Flash tanks.
- D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-2006.....Gray Iron Threaded Fittings
- C. American Society of Mechanical Engineers (ASME): B16.1-2005.....Gray Iron Pipe Flanges and Flanged Fittings B16.3-2006.....Malleable Iron Threaded Fittings B16.9-2007.....Factory-Made Wrought Buttwelding Fittings B16.11-2005.....Forged Fittings, Socket-Welding and Threaded B16.14-91....Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2002.....Cast Copper Alloy Solder Joint Drainage Fittings

B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 B16.39-98.....Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300 B31.1-2007.....Power Piping B31.9-2008.....Building Services Piping B40.100-2005.....Pressure Gauges and Gauge Attachments Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1 D. American Society for Testing and Materials (ASTM): A47-99..... Ferritic Malleable Iron Castings A53-2007.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106-2008.....Seamless Carbon Steel Pipe for High-Temperature Service A126-2004..... Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A181-2006.....Carbon Steel Forgings, for General-Purpose Piping A183-2003 Carbon Steel Track Bolts and Nuts A216-2008 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-Intermediate-Tensile Strength A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A516-2006 Pressure Vessel Plates, Carbon Steel, for Moderate-and- Lower Temperature Service A536-84(2004)e1 Standard Specification for Ductile Iron Castings B32-2008 Solder Metal B61-2008 Steam or Valve Bronze Castings B62-2009 Composition Bronze or Ounce Metal Castings B88-2003 Seamless Copper Water Tube

> 23 22 13 - 3 STEAM AND CONDENSATE HEATING PIPING

F439-06 Socket-Type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441-02(2008) Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 E. American Welding Society (AWS): A5.8-2004..... Filler Metals for Brazing and Braze Welding B2.1-00..... Welding Procedure and Performance Qualifications F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-95.....Butterfly Valves SP-70-98.....Cast Iron Gate Valves, Flanged and Threaded Ends SP-71-97.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-97.....Bronze Gate, Globe, Angle and Check Valves SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends G. Military Specifications (Mil. Spec.): MIL-S-901D-1989......Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000 PART 2 - PRODUCTS 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.

- B. Steam Condensate and Pumped Condensate Piping:
 - Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 750 degrees F and 1500 psi.

- b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2100 mm (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.

- b. 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke.
 1) High pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - All other services: MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
 - Globe valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves.
 - 2. Angle Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2 1/2 inches) and larger:
 - Angle valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system): Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle valves.
- F. Swing Check Valves

- 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig), 45 degree swing disc.
- 2. 65 mm (2-1/2 inches) and Larger:
 - a Check valves for high pressure steam 413 kPa (60 psig) and above nominal MPS system: Cast steel body, ASTM A216 grade WCB, flanged, OS&Y, 1034 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 - 50 mm (2 inches) and smaller: Iron, ASTM A116 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
 - 2. 65 mm (2-1/2 inches) and larger: Flanged cast steel or 1723 kPa (250
 psig) cast iron.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast iron or bronze.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, iron body.
- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids.

2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.10 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-30 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-125 psig): Rated 1025 kPa (150
 psig) at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1025 kPa (126-150 psig): Rated 1375 kPa (200
 psig) at 194 degrees C (382 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (310 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 340 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:

- 1. Multiple corrugations of Type 304 stainless steel.
- 2. Internal and external guide integral with joint.
- 3. Design for external pressurization of bellows to eliminate squirm.
- 4. Welded ends.
- 5. Conform to the standards of EJMA and ASME B31.1.
- 6. Threaded connection at bottom, 25 mm (one inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainless steel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.11 FLEXIBLE BALL JOINTS

- A. Design and Fabrication: One piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1720 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 750 mm (30 inches). Joints through 350 mm (14 inches) shall have forged pressure retaining members; while size 400 mm (16 inches) through 760 mm (30 inches) shall be of one piece construction.
- B. Material:
 - Cast or forged steel pressure containing parts and bolting in accordance with Section II of the ASME Boiler Code or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME Section II SA 515, Grade 70.
 - Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6psig) saturated steam for 60 days.

- 2. Flex cycling: 800 Flex cycles at 3445 kPa (500 psig) saturated steam.
- Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
- Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
- 5. Vibration: 170 hours on each of three mutually perpendicular axis at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.1 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.12 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 feet per second).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft²hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components supported on a welded steel frame.
- C. Steam Pressure Reducing Valves in PRV Stations:
 - Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.

- Service: Provide controlled reduced pressure to steam piping systems.
- Pressure control shall be smooth and continuous with maximum drop of 10 percent. Maximum flow capability of each valve shall not exceed capacity of downstream safety valve(s).
- 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, monel, or similar durable material.
 - a. Pressure rating for high pressure steam: Not less than 1034 kPa (150 psig) saturated steam.
 - b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.
- 5. Select pressure reducing values to develop less than 85 dbA at 1500 mm (5 feet) elevation above adjacent floor, and 1500 mm (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing values shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.
- D. Safety Valves and Accessories: Comply with ASME Boiler and Pressure Vessel Code, Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown.
- E. Steam PRV for Individual Equipment: Cast steel or bronze body, screwed or flanged ends, rated 861 kPa (125 psig), or 20% about the working pressure, whichever is greater. Single-seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.
- F. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516 or ASTM A285, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53 Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.

- Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
- 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping, (4 bolt raised face flange). For systems without relief valve traps shall be 5. Mechanism: Brass, stainless steel or corrosion resistant alloy rated for the pressure upstream of the PRV supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- H. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- I. Steam Flow Meter/Recorder: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.13 GAGES, PRESSURE AND COMPOUND

A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.

- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa(15 psig)	0 to 207 kPa (30 psig).
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).
High pressure steam and steam condensate nominal 620 kPa to 861 kPa (90 to 125 psig)	0 to 1378 kPa (200 psig).
Pumped condensate, steam condensate, gravity or vacuum (30" HG to 30 psig)	0 to 415 kPa (60 psig)

2.14 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the Resident Engineer:
 - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.
 - 3. 0 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.15 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, coils, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly values with the value open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:

- Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25 percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.

- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.4 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.5 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.6 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.7 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 22 23 STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Select pumps so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.
 - 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.

- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- 9. Furnish one spare seal and casing gasket for each pump to the Resident Engineer.
- C. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.
- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI): AISI 1045.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI): ANSI B15.1-00(R2008)....Safety Standard for Mechanical Power Transmission Apparatus ANSI B16.1-05.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800 D. American Society for Testing and Materials (ASTM):
 - A48-03(2008).....Standard Specification for Gray Iron Castings

B62-09.....Standard Specification for Composition Bronze or Ounce Metal Castings

E. Maintenance and Operating Manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.6 DEFINITIONS

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM)) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.

PART 2 - PRODUCTS

2.1 CONDENSATE PUMP, PAD-MOUNTED

- A. General: Factory assembled unit consisting of vented receiver tank, motor-driven pumps, interconnecting piping and wiring, motor controls (including starters, if necessary) and accessories, designed to receive, store, and pump steam condensate.
- B. Receiver Tank: Cast iron with threaded openings for connection of piping and accessories and facilities for mounting float switches. Receivers for simplex pumps shall include all facilities for future mounting of additional pump and controls.
- C. Furnish seals for condensate pump with a minimum temperature rating of 121 degrees C (250 degrees F).
- D. Centrifugal Pumps: Bronze fitted with mechanical shaft seals.
 - Designed to allow removal of rotating elements without disturbing connecting piping or pump casing mounting.
 - 2. Shafts: Stainless steel, AISI Type 416 or alloy steel with bronze shaft sleeves.
 - 3. Bearings: Regreaseable ball or roller type.
 - 4. Casing wearing rings: Bronze.
- E. Motors: Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- F. Pump Operation:
 - Float Switches: NEMA 1, mounted on receiver tank, to start and stop pumps in response to changes in the water level in the receiver and adjustable to permit the controlled water levels to be changed. Floats and connecting rods shall be copper, bronze or stainless steel.

- 2. Alternator: Provide for duplex units to automatically start the second pump when the first pump fails in keeping the receiver water level from rising and to alternate the order of starting the pumps. For units 0.25 kW (1/3 horsepower) and smaller, the alternator may be the mechanical type for use in lieu of float switches.
- G. Control Cabinet for 3 Phase (0.37 kW (1/2 hp) and larger) Units: NEMA 1, UL approved, factory wired, enclosing all controls, with indicating lights, manual switches and resets mounted on the outside of the panel. Attach cabinet to the pump set with rigid steel framework, unless remote mounting is noted on the pump schedule.
 - Motor starters: Magnetic contact types with circuit breakers or combination fusible disconnect switches. Provide low voltage control circuits (120 volt maximum) and "hand-off-automatic" (H-O-A) switches for each pump.
 - 2. Indicating lights for each pump: Green to show that power is on, red to show that the pump is running.
- H. Electric Wiring: Suitable for 93 degrees C (200 degrees F) service; enclosed in liquid-tight flexible metal conduit where located outside of control cabinet.
- I. Receiver Accessories:
 - Thermometer: 34-216 degrees C (100 420 degrees F), mounted below minimum water level.
 - 2. Water level gage glass: Brass with gage cocks which automatically stop the flow of water when the glass is broken. Provide drain on the lower gage cock and protection rods for the glass.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Permanently support in-line pumps by the connecting piping only, not from the casing or the motor eye bolt.
- C. Pad-mounted Condensate Pump: Level, shim, bolt, and grout the unit base onto the concrete pad.

D. Coordinate location of thermometer and pressure gauges as per Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.

- - - E N D - - -

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Refrigerant piping shall be sized, selected, and designed by the equipment manufacturer. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.
- B. Definitions:
 - Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
 - Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- D. Section 23 21 13, HYDRONIC PIPING.
- E. Section 23 81 23, COMPUTER ROOM AIR CONDITIONERS.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of

every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.

- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Oil separators (when specified)
 - i. Gages
 - j. Pipe and equipment supports
 - k. Refrigerant and oil
 - 1. Pipe/conduit roof penetration cover
 - m. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.

D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002).....Standard for Refrigerant Liquid Receivers 730-2005.....Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers

C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE):

ANSI/ASHRAE 15-2007....Safety Standard for Refrigeration Systems (ANSI)

ANSI/ASHRAE 17-2008....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI)

63.1-95 (RA 01).....Method of Testing Liquid Line Refrigerant Driers (ANSI)

- D. American National Standards Institute (ANSI): ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006.....Safety Color Code
- E. American Society of Mechanical Engineers (ASME): ANSI/ASME B16.22-2001 (R2005) Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)

ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI) ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments ANSI/ASME B40.200-2008..Thermometers, Direct Reading and Remote Reading

F. American Society for Testing and Materials (ASTM)

23 23 00 - 3 REFRIGERANT PIPING

A126-04.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe FittingsB32-08 Standard Specification for Solder Metal B88-03....Standard Specification for Seamless Copper Water Tube B88M-05....Standard Specification for Seamless Copper Water Tube (Metric) B280-08....Standard Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service G. American Welding Society, Inc. (AWS): Brazing Handbook A5.8/A5.8M-04....Standard Specification for Filler Metals for Brazing and Braze Welding H. Federal Specifications (Fed. Spec.)

- Fed. Spec. GG
- I. Underwriters Laboratories (U.L.): U.L.207-2009.....Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M,45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32
 (95TA).

- Steel fittings: ASTM wrought steel fittings.
 a. Refrigerant piping Welded Joints.
- 3. Flanges and flanged fittings: ASME B16.24.
- 4. Refrigeration Valves:
 - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
 - b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
 - c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, twoposition, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally open holding coil.
 - d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
 - e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion

valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.

- Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.
- 7. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
- 8. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.

2.2 GAGES

- A. Temperature Gages: Comply with ASME B40.200. Industrial-duty type and in required temperature range for service in which installed. Gages shall have Celsius scale in 1-degree (Fahrenheit scale in 2-degree) graduations and with black number on a white face. The pointer shall be adjustable. Rigid stem type temperature gages shall be provided in thermal wells located within 1525 mm (5 feet) of the finished floor. Universal adjustable angle type or remote element type temperature gages shall be provided in thermal wells located 1525 to 2135 mm (5 to 7 feet) above the finished floor. Remote element type temperature gages shall be provided in thermal wells located 2135 mm (7 feet) above the finished floor.
- B. Vacuum and Pressure Gages: Comply with ASME B40.100 and provide with throttling type needle valve or a pulsation dampener and shut-off valve. Gage shall be a minimum of 90 mm (3-1/2 inches) in diameter with a range from 0 kPa (0 psig) to approximately 1.5 times the maximum system working pressure. Each gage range shall be selected so that at

normal operating pressure, the needle is within the middle-third of the range.

- Suction: 101 kPa (30 inches Hg) vacuum to 1723 kPa (gage) (250 psig).
- 2. Discharge: 0 to 3445 kPa (gage) (0 to 500 psig).

2.3 THERMOMETERS AND WELLS

A. Refer to specification Section 23 21 13, HYDRONIC PIPING.

2.4 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.5 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.6 PIPE/CONDUIT ROOF PENETRATION COVER

- A. Prefabricated Roof Curb: Galvanized steel or extruded aluminum 300 mm (12 inches) overall height, continuous welded corner seams, treated wood nailer, 38 mm (1-1/2 inch) thick, 48 kg/cu.m (3 lb/cu.ft.) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.
- B. Penetration Cover: Galvanized sheet metal with flanged removable top. Provide 38 mm (1-1/2 inch) thick mineral fiber board insulation.
- C. Flashing Sleeves: Provide sheet metal sleeves for conduit and pipe penetrations of the penetration cover. Seal watertight penetrations.

2.7 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - Install piping as short as possible, with a minimum number of joints, elbow and fittings.

- 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
- 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- 4. Use copper tubing in protective conduit when installed below ground.
- 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.
- B. Joint Construction:
 - 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than 45 kg (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping

insulated piping refer to Section 23 07 11, HVAC, and BOILER PLANT INSULATION.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - 2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

- A. Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.
- B. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of Resident Engineer. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.

- Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
- 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.
- C. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
 - Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
 - 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four

hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.

- Chemical treatment for closed systems, including installation and operating instructions.
- 3. Chemical treatment for open loop systems, including installation and operating instructions.
- 4. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2008.....National Electric Code (NEC)

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.

- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.
- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with polypropylene core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 13.8 kPa (2 psig) at design flow rate when clean, and maximum pressure drop of 172 kPa (25 psig) when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve

supply: 30 percent for hydronic system, and 50 percent for snowmelt system.

- C. Pot Feeder Make-up Unit: By pass type for chemical treatment, schedule 3.5 mm (10 gauge) heads, 20 mm (3/4-inch) system connections and large neck opening for chemical addition. Feeders shall be 19 Liters (5 gallon) minimum size.
- D. Glycol-Water Make-up System:
 - Glycol-Water storage tank: Self supporting polyethylene, minimum 90 mil thickness, with removable cover or black steel with 90 mil polyethylene insert. Capacity shall be 213 L (55 gallons), with approximate diameter of 584 mm (23 inches) and height of 914 mm (36 inches). Reinforced threaded pipe connections shall be provided for all connections. Provide identification for tank showing name of the contents.
 - 2. Glycol-Water make-up pump: Bronze fitted, self-priming, high head type suitable for pumping a 33 percent to 50 percent glycol-water solution in intermittent service. The pump shall be provided with a mechanical shaft seal and be flange connected to a 1750 rpm NEMA type C motor. The pump capacity shall be 11 L/m (3 gpm), 345 kPa (50 psig) discharge pressure with a suction lift capability of 127 mm (5 inches) of mercury, with a 2.5 kW (1/3 horsepower) drip-proof motor. The pump may be a "gear-within-a-gear" positive displacement type with built-in relief valve set for 296 kPa (43 psig), or the pump may be a regenerative turbine type providing self-priming with built-in or external relief valve set for design head of the pump.
 - 3. Back pressure regulating valve: Spring loaded, diaphragm actuated type with bronze or steel body, stainless steel trim with capacity to relieve 100 percent of pump flow with an allowable rise in the regulated pressure of 69 kPa (10 psig) above the set point. Set point shall be 103 kPa (15 psig) above system PRV setting.
 - 4. Low water level control: Steel or plastic float housing, stainless steel or plastic float, positive snap-acting SPST switch mechanism, rated 10 amps-120 volt AC, in General Purpose (NEMA 1) enclosure. The control shall be rated for pressures to 1034 kPa (150 psig) and make alarm circuit on low water level. The alarm circuit shall be

wired to an alarm light on the nearest local Temperature Control panel (LTCP). Provide remote output relay to indicate alarm condition at the Building Control System specified under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
 - 4. Install injection nozzles with corporation stops in the water piping serving the cooling tower downstream of the heat source.

- 5. Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
- Provide piping for erosion chemical feeder per manufacturer's installation instructions. Provide ball valves to isolate and service feeder.
- 7. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- F. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- G. Air Flow Control Valves and Terminal Units: Section 23 36 00, AIR TERMINAL UNITS.
- H. Duct Mounted Coils: Section 23 82 16, AIR COILS.
- I. Supply Air Fans: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- J. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- K. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

L. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - c. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Access sections.
 - d. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.

23 31 00 - 2 HVAC DUCTS AND CASINGS

- 7. Flexible ducts and clamps, with manufacturer's installation instructions.
- 8. Flexible connections.
- 9. Instrument test fittings.
- 10 Details and design analysis of alternate or optional duct systems.
- 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- C. American Society for Testing and Materials (ASTM):

A167-99(2009).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip

- A653-09.....for Steel Sheet,
 - Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process
- A1011-09a.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

- C1071-05e1.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material)
- E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials

- PART 2 PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.

- Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
- 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:

0 to 50 mm (2 inch)

> 50 mm to 75 mm (2 inch to 3 inch)

> 75 mm to 100 mm (3 inch to 4 inch)

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - 3. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe

penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.

- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

- B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 FIRE DOORS

A Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.6 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 3 feet. Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:

- Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
- 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
- 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.7 FLEXIBLE DUCT CONNECTIONS

A. Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.8 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.

- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.9 PREFABRICATED ROOF CURBS

A. Galvanized steel or extruded aluminum 24 inches above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.10 FIRESTOPPING MATERIAL

A. Refer to Section 07 84 00, FIRESTOPPING.

2.11 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.12 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

A. Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.13 INSTRUMENT TEST FITTINGS

A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave

> 23 31 00 - 9 HVAC DUCTS AND CASINGS

gasket for round ducts at the base, and a screw cap to prevent air leakage.

B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.14 AIR FLOW CONTROL VALVES (AFCV)

A. Refer to Section 23 36 00 / 23 82 00, AIR TERMINAL UNITS / CONVECTION HEATING and COOLING UNITS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to

swing against air pressure so that pressure helps to maintain a tight seal.

- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.

- 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
- 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall

measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.

- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Section 23 82 16, AIR COILS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:

- a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - Centrifugal fans, motors, drives, accessories and coatings.
 a. In-line centrifugal fans.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.

- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06...... Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09.....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-08.....Reverberant Room Method for Sound Testing of Fans C. American Society for Testing and Materials (ASTM): B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test G152-06.....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-04.....Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA): NFPA 96-08.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. National Sanitation Foundation (NSF):

37-07.....Air Curtains for Entrance Ways in Food and Food Service Establishments

F. Underwriters Laboratories, Inc. (UL):

181-2005.....Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

A. Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP.

Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.

- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION for controller/motor combination requirements.
- C. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self-acting back draft damper. Provide electric motor operated damper where indicated.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
 - 2. Air flow control valves.
- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-08.....Air Terminals Addendum to ARI 888-98 incorporated into standard posted 15th December 2002

23 36 00 - 1 AIR TERMINAL UNITS

C. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems
D. Underwriters Laboratories, Inc. (UL): 181-08.....Standard for Factory-Made Air Ducts and Air Connectors
E. American Society for Testing and Materials (ASTM): C 665-06.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame

Construction and Manufactured Housing

1.6 GUARANTY

A. In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

A. Coils:

1. All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.

- 2. Water Heating Coils:
 - a. ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.

- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule (...) shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of

NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material is permitted in the boxes serving operating rooms and Cystoscopy rooms.

- 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.

1. Provide direct reading air flow rate table pasted to box.

G. Provide static pressure tubes.

H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- C. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th

Edition

- C. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):

A167-99 (2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air

Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL):
 181-08.....UL Standard for Safety Factory-Made Air Ducts

and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

Refer to Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Steel or aluminum. Provide manufacturer's standard gasket.
 - Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.

23 37 00 - 2 AIR OUTLETS AND INLETS

- b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.
- c. Slot diffuser/plenum:
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions.
 - 2) Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, anti-microbial, and non-friable.
 - 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
 - Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.)
- 2. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 3. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.

- 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
- 5. Linear Type: To match supply units.
- 6. Door Grilles: Are furnished with the doors.
- 7. Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.
- E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.3 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

VA Project 438-450 10-01-18 100% Bid Documents

- - - E N D - - -

SECTION 23 40 00 HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.
- C. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.

- 2. Government Option: The Government at its option may take one of the filters for each different type submitted and run an independent test to determine if the filter meets the requirements of this specification. When the filter meets the requirements, the Government will pay for the test. When the filter does not meet the specification requirements, the manufacturer will be required to pay for the test and replace the filters with filters that will perform as required by the specifications.
- 3. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.
- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, and UL classification.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.

23 40 00 - 2 HVAC AIR CLEANING DEVICES

- 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2007.....Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME): NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL): 900;Revision 15 July 2009 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the Resident Engineer.
- B. The Resident Engineer will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.

- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

HVAC Filter Types Table 2.2C							
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type			
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway			
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			

D. HEPA Filters

HEPA Filters Table 2.2D						
Efficiency at 0.3 Micron	Application	Initial Resistance (inches w.g.)	Rated CFM	Construction		
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body		
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank		

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self-supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.

- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

HEPA Performance (Standard Capacity)							
	Table 2.5A						
Nominal Size	Airflow Capacity	Media Area					
(inches)	(cfm)	(Square Feet)					
24H by 24W by 12D 1080 at 1.0" w.g. 153							
24H by 12W by 12D 500 at 1.0" w.g. 33							
Follow manufacturers' recommendation for change out							
resistance, typically double the initial.							
HEPA Performance V-Bank Style (High Capacity)							
Table 2.5B							
Nominal Size Airflow Capacity Media Area							

(inches)	(cfm)	(Square Feet)			
24H by 24W by 12D	2000 at 1.0" w.g.	390			
24H by 12W by 12D	900 at 1.0" w.g.	174			
Follow manufacturers' recommendation for change out					
resistance, typically double the initial.					

2.5 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UVresistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of high-efficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.
 - 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one

half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within \pm 3% at 0.6" w.g.

 Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

Model Designation	Model of Choice
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (CFM)	2,000
Final Resistance (In W. G.)	1.2"
Rated Initial Resistance (In W. G.)	0.75″
Rated Efficiency	MERV 7

	Model De	signation Carbon Density (grams/sq. ft. filter face area)						
	Model of	Choice	300					
Nominal Size (Width x Height x Depth)			x	24x24x12	24x20x12 24		x12x12	
Rated Air	Rated Air Flow Capacity (CFM)			2,000	1,650		,000	
Rated Ini G.)	tial Res	istance (In	W.	0.20	0.20		0.20	
Media Area (Sq. Ft.)				67	55		30	
		Heavy Duty Casset		Medium (MD)Cas	-		oom Grade Cassette	3
Nominal Si	ze	12"(h) x 24 12"(dee		x 6"(h) x 24"(w) x 18"(deep)		24"(h) x 12"(w) 12"(deep)		Х
Rated airf face veloc		250 f _l	om	500 fpm		50	0 fpm	

Pressure Drop

	Heavy Duty (HD)	Medium Duty (MD)	Cleanroom Grade
	Cassette	Cassette	(CG) Cassette
Media Type	Inches W.G. @ 250 fpm face velocity	Inches W.G. @ 500 fpm face velocity	

2.6 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.7 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

2.8 FILTER RETURN GRILLES

Refer to Section 23 37 00 AIR OUTLETS AND INLETS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

A. Clean and vacuum air handling units and plenums prior to starting air handling systems. B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the Resident Engineer.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 52 25 LOW-PRESSURE WATER HEATING BOILERS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies packaged hot water boilers with trim (accessories), natural gas, fuel valve and piping trains and other accessories.

1.2 RELATED WORK:

- A. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 11 23, FACILITY NATURAL GAS PIPING
- G. Section 23 21 13, HYDRONIC PIPING.
- H. Section 23 21 23, HYDRONIC PUMPS.
- I. Section 23 05 93, TESTING, ADJUSTING, and BALANCING.

1.3 QUALITY ASSURANCE:

- A. Coordinate work of this section with all equipment and conditions. This includes, but is not limited to: boiler, boiler trim, burner, fuel valve and piping trains, gas pressure regulators and available gas pressure, control systems, combustion air piping, and venting.
- B. Provide a list of at least 5 installations, similar in size and scope as the proposed boilers. Include the name, address, and telephone number of a person familiar with each project as a reference source.
- C. Boiler shall be pressure tested at the factory and bear the ASME stamp.

1.4 SUBMITTALS:

- A. Before executing any work, submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Boiler:
 - Complete catalog information and outline drawings of boiler, burner, and accessories with dimensions including required service clearances and access space.

- Catalog cuts showing arrangement and construction of pressure parts, casing, internals, and support frame.
- 3. Piping connection sizes, locations, types (threaded or flanged).
- 4. Technical data including temperature rating and arrangement of refractory and insulation.
- 5. Design pressures and temperatures.
- C. Boiler Trim: Includes water level alarm and cutoff devices, low water cutoffs, piping, all valves and fittings furnished by boiler manufacturer.
 - 1. Design, construction, arrangement on the boiler.
 - 2. Pressure and temperature limitations.
 - 3. ASTM numbers and schedule numbers of piping.
 - 4. Type and pressure ratings of pipe fittings.
 - 5. Scale ranges of gages, thermometers and pressure switches.
 - 6. Set pressure and capacity of relief valves.
- D. Burner and Fuel Valve and Piping Trains:
 - 1. Catalog data and drawings showing burner assembly and fuel train arrangement.
 - 2. Drawings and catalog data on all equipment in fuel trains.
 - 3. ASTM numbers and schedule numbers on all piping.
 - 4. Type and pressure ratings of pipe fittings.
 - 5. Burner flow and pressure data
- E. Burner Management (Flame Safeguard) System:
 - 1. Catalog data and drawings showing burner management system assembly and arrangement
 - 2. Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Provide a ladder-type electrical diagram for boiler showing interlock requirements and clear division between the factory wiring and field wiring.
- G. Submit water treatment test report to determine if selected boilers will be applicable to the facility.

1.5 DEFINITIONS:

A. High Efficiency Condensing Boiler: A boiler designed to recover energy normally discharged to the atmosphere through the vent. The vent gasses will condense in the boiler and vent during normal operation.

The boiler shall be constructed to withstand the presence of condensation. The vent shall be constructed of corrosion resistant materials. The minimum efficiency shall be 94% on low-fire with a return water temperature of 38 degrees C (100 degrees F).

1.6 FUEL REQUIREMENTS

- A. Fuels to be Fired: Natural gas.
- B. Natural Gas: High heating value is reported as 1000 Btu per cubic foot at gas company base pressure and temperature. Pressure provided to the inlet of the boiler-mounted regulators will be 7 inches WC gage as maintained by main regulator station.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. ASTM International (ASTM):
 - A106/A106M-08.....Seamless Carbon Steel Pipe for High Temperature Service.
 - A178/178M-02(2007)....Electric Resistance Welded Carbon Steel and Carbon-Manganese Steel Boiler and Superheater Tubes
 - A269-08.....Seamless and Austenitic Welded Stainless Steel Tubing for General Service
 - C612-09..... Mineral Fiber Block and Board Thermal

Insulation

D396-09a.....Fuel Oils

C. American Society of Mechanical Engineers (ASME):

Boiler and Pressure Vessel Code - 2007 Edition with Amendments.

Section II.....Material Specifications

Section IV.....Heating Boilers

Section VI......Recommended Rules for Care of Heating Boilers

Section IX.....Welding and Brazing Qualifications

Code for Pressure Piping:

B31.1-2004.....Power Piping with addenda

D. National Fire Protection Association (NFPA):

85-2007.....Boiler and Combustion Systems Hazards Code.

23 52 25 **-** 3

- E. National Fire Protection Association/American National Standard Institute (NFPA/ANSI): 54/Z223.1-2009.....National Fuel Gas Code.
- F. Underwriters Laboratories (UL): 50-2007.....Standard for Enclosures for Electrical

Equipment, Non-Environmental Considerations

PART 2 - PRODUCTS

2.1 HIGH EFFICINCY CONDENSING BOILER:

- A. Type: Factory-assembled packaged low pressure hot water boiler suitable for forced draft natural gas. Include fuel burning system, controls and boiler trim.
- B. Service: Continuous long-term operation generating hot water at all loads from minimum to maximum output requirements in conformance to the specified performance requirements, shown in the schedules on drawings.
- C. Performance:
 - Minimum Efficiency at Required Maximum Output: Refer to schedules on drawings.
- D. Construction:
 - 1. Codes: Comply with ASME Boiler and Pressure Vessel Code, Section IV.
 - 2. Heat Exchanger:
 - a. Boiler heat exchanger design/construction shall be one of the following:
 - 1) Cast-iron sectional design
 - 2) Cast aluminum sectional design
 - Fin-tube design, with vertically aligned straight copper tubes, integral extruded fins and cast iron headers.
 - 4) Flex-tube design
 - 5) Fire tube design, constructed of a SA53 carbon steel primary heat exchanger and a 316L stainless steel secondary heat exchanger. The fire tubes and tube sheets shall be configured in a one-pass combustion gas flow design. The pressure vessel/heat exchanger shall be welded construction.
 - b. The boiler shall be capable of handling return water temperature down to 10 $^\circ\text{C}$ (50°F) without any failure due to thermal shock or

fireside condensation. The boiler shall be designed so that the thermal efficiency increases as the boiler firing rate decreases.

- c. The heat exchanger shall be ASME stamped for a working pressure not less than 150 psig. The boiler water pressure drop shall not exceed 10 psig at the design flow rate.
- d. There shall be removable access covers on the heat exchanger headers for the purposes of inspection, cleaning or repair. The heat exchanger shall have externally accessible boiler drains.
- 3. Insulation: Boiler manufacturer's standard and experience proven design except insulation on the boiler shell shall be a minimum of 50 mm (two inches) thick. No part of the external casing shall exceed 33 degrees C (60 degrees F) above ambient, except for areas within 300 mm (one foot) of the casing penetrations.
- Casing: Galvanized steel casing covering all areas of boiler shell. All openings in the casing shall be gasketed and sealed.
- 5. Skids/Bases: Boilers shall be factory-installed on the factory-fabricated skids/bases.
- E. FINISH
 - Provide surface preparation, heat-resistant prime and finish coats using standard color of the boiler manufacturer.
- F. BOILER TRIM (ACCESSORIES):
 - 1. Conform to ASME Boiler and Pressure Vessel Code, Section IV
 - 2. Relief Valves:
 - a. Provide one (1) ASME rated relief valve per boiler. The valve shall be sized to relieve full boiler capacity.Type: Bronze bodies, side outlet, threaded inlet and outlet, lifting lever, stainless steel trim and o-ring EPDM seats.
 - b. Settings and Adjustments: Factory set, sealed, and stamped on nameplate. Valves shall be set to relieve at the ASME working pressure.
 - 3. Pressure Gage:
 - a. Case: Turret-style, bottom connection, threaded ring, blowout disc in rear.
 - b. Dial: 75 mm (3-1/4 inch) minimum diameter, non-corrosive, black markings on white background.

- c. Measuring Element: Bourdon tube designed for hot water service.
- d. Movement: Stainless steel, rotary.
- e. Accuracy: One half percent of the full span.
- f. Range: 0 100 psi gage.
- 4. Water Level Safety Controls:
 - a. Provide primary and auxiliary low water burner cutoffs. Primary and auxiliary low water burner cutoff devices shall be in two separate water columns, piped individually to the boiler water spaces. One device shall be float-type, the other device shall be conductivity probes. Primary and auxiliary cutoffs shall require manual reset. Auxiliary cutoff shall shut down power to the burner.
- 5. Factory Switch Safety Control:
 - a. Provide flow switch to disable burner in event of loss of flow through the boiler.
 - b. Type: Brass body, paddle arm and pivot shaft.
 - c. Electric Switch: Cam acting type with adjustable flow sensitivity.
 - d. Ratings: 121 degrees C(250 degrees F), 1100kPA (160 psig)
- 6. Condensate drain connection and manufacturer supplied kit must be supplied for all condensing boilers.
- G. BURNER AND FUEL TRAINS:
 - Burner Type: packaged, forced draft, modulating firing.
 a. Gas Burner: Ring type with multiple ports or spuds.
 - 2. Service:
 - a. Continuous operation at all firing rates on each fuel listed under Article, PROJECT CONDITIONS of Part 1. Design the entire burner and fuel train system for application to the specific boiler furnished and for service at the available fuel pressures.
 - b. Main Fuels: Natural gas.
 - 3. Performance:
 - a. Main flame shall ignite at lowest firing rate.
 - b. Main flame characteristics at all firing rates:
 - 1) Flame retained at the burner.

- 2) Flame stable with no blow-off from the burner or flashback into the burner. No pulsations.
- 3) No deposits of unburned fuel or carbon at any location.
- No carryover of flame beyond the end of the first pass (furnace tube).
- c. Operation:
 - 1) Minimum turndown 5:1 for dual fuel or 3:1 for single fuel.
 - Operate at all loads on any one fuel without any manual changes to burners, fuel trains or fuel pressures.
 - Performance at any load point shall be repeatable after increasing or decreasing the firing rate.
 - 4) Noise and Vibration: Refer to Section 23 05 51, NOISE and VIBRATION CONTROL FOR BOILER PLANT for requirements on forced draft fan. Burners shall operate without pulsation.
- d. Flue Gas Emissions Limits:
 - 1) Carbon Monoxide: Shall not exceed 400 PPM.
 - Smoke: On natural gas and shall not be visible and shall not exceed No. 1 on the Bacharach smoke scale.
 - NOx: 20 ppm maximum, corrected to 3 percent oxygen, dry basis on natural gas.
- 4. Construction:
 - a. Burner Access (Main Burner): Arrange fuel valve and piping trains, controls and other devices so that they do not interfere with the removal and replacement of burner parts.
 - b. Arrangement of Fuel Valve and Piping Trains: All devices shall be accessible for maintenance or replacement without removal of other devices. Do not attach any piping or devices to boiler casings.
 - c. Coatings: Provide surface preparation, heat resistant prime and finish coats using standard color of boiler manufacturer.
- 5. Natural Gas Main Fuel Train:
 - a. Arrangement: Comply with ANSI requirements.
 - b. Pressure Regulator:
 - Single seated, diaphragm-operated, designed for natural gas service. Controlled pressure shall be sensed downstream of

23 52 25 - 7 LOW-PRESSURE WATER HEATING BOILERS main valve. Valve may be self-operated or pilot-operated as necessary to comply with performance requirements.

- 6. Automatic Safety Shut-Off Valves:
 - a. Type: Motorized-opening, spring closing, controlled by burner control system. Two valves required.
 - b. Service: Provide open-shut control of fuel flow to burner. Valves shall shut bubble tight and be suitable for operation with upstream pressure of two times the highest pressure at entrance to boiler-mounted regulators.
 - c. Approval: FM approved, UL listed for burner service.
- 7. Automatic Vent Valve:
 - a. Type: Motorized or solenoid closing, spring opening, full port, controlled by burner control system.
- 8. Pressure Switches: Switch settings must be within 20% of the controlled pressure.
- 9. Fuel Flow Control Valve:
 - a. Type: Throttling, controlled by combustion control system.
 - b. Performance and Service: Control fuel flow in exact proportion to combustion airflow over the entire firing range of the burner.
- H. BOILER CONTROL, BURNER MANAGEMENT (FLAME SAFEGUARD) SYSTEM AND ACCESSORIES:
 - The boiler control system shall be provided by the boiler manufacturer to control the burner incorporating all required safeties. The entire system shall be UL listed and FM approved.
 - 2. Provide a complete automatic safety control and monitoring system for burner ignition sequencing, operating cycle, and shut-down sequencing. System shall include microprocessor programmer, selfchecking flame scanner, burner cycle display, diagnostic annunciation display, burner safety shut down interlocks, communication with monitoring systems, and accessories.
 - 3. Control Panel:
 - a. Controls shall be mounted in NEMA 4 enclosure on side of boiler or on burner. There shall be no power wiring in this enclosure.

- b. Electrical: Provide circuit breakers, transformers, all devices for complete control system. All control electronics and relays shall be in waterproof UL 50 compliant NEMA 4X panels.
- c. The control panel shall include individual circuit boards in a single enclosure which houses all control functions. Each board shall be individually field replaceable. The combustion safeguard/flame monitoring system shall utilize spark ignition and a rectification type flame sensor.
- d. The control panel hardware shall support both RS-232 and RS-485 remote communications. The controls shall annunciate boiler & sensor status and include extensive self-diagnostic capabilities that incorporate a minimum of 8 separate status messages and 34 separate fault messages.
- 4. The boiler control system shall incorporate the following additional features for enhanced external system interface: system start temperature feature; pump delay timer; auxiliary start delay timer; auxiliary temperature sensor; mA output feature which allows for simple monitoring of either temperature setpoint, outlet temperature, or fire rate; remote interlock circuit; delayed interlock circuit; and fault relay for simple remote fault alarm.
- 5. Each boiler shall utilize an electric single seated safety shutoff valve with proof of closure switch in its gas train and incorporate dual over-temperature protection with manual reset in accordance with ASME Section IV and CSD-1.
- 6. Temperature Control Modes Boiler shall include integral factory wired operating controls to completely control and operate the boiler. The boiler(s) shall operate in the control modes listed below:
 - a. Internal Setpoint
 - b. Indoor/Outdoor Reset
 - c. 4ma to 20ma Temperature Setpoint
 - d Network Temperature Setpoint
- 7. Boiler Management System:
 - a. The Boiler Manufacturer shall supply as part of the boiler package a completely integrated Boiler Management System to

control all operation and energy input of the multiple boiler heating plant. The Boiler Management System shall be comprised of a microprocessor based control utilizing the open protocol to communicate with the Boilers via the RS-485 port.

- b. The controller shall have the ability to control each individual boiler throughout its full modulating range. The Boiler Management System shall provide contact closure for auxiliary equipment such as system pumps and combustion air inlet dampers based upon outdoor air temperature.
- 8. Controls Interoperability:
 - a. The boiler control panel shall utilize open protocol to interface with third party Building Automation Systems (BAS).
 - b. The BACnet controls interface shall utilize an interface/translator as required between the BAS and either the RS-485 port of the boiler control panel or the RS-232 port of the Boiler Management System.
- 9. Factory Testing: Install controls on boiler and burner at factory and test operation of all devices.

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 BOILER VENT/COMBUSTION AIR PIPING:

- The boiler vent shall be provided in accordance with applicable national codes (ANSI Z223.1), NFPA standards (NFPA 54) and per the boiler manufacturers' recommendations.
- 2. The boiler vent shall be an approved AL29-4C stainless steel venting system and components for cold-start condensate positive pressure Category IV stack and breeching of the double wall construction with a 25mm (1 inch) annular insulating air space, outer wall constructed of 304 stainless steel and inner wall constructed of type AL29-4C stainless steel. Vent components exposed to the atmosphere shall be type 304 stainless steel.
- 3. The combustion air conduit shall be CPVC pipe utilizing a vacuum relief damper sized equal in diameter to the intake pipe.
- 4. All supports, vent caps, adapters, flashing and drain fittings shall be included by and as recommended by the manufacturer.

2.2 PERFORMANCE

A. Provide boiler with capacity as scheduled.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Boiler and Burner Access Openings: Arrange all equipment and piping to allow access to openings without disassembly of equipment or piping. Provide space that permits full opening of all boiler and burner doors, panels and other access openings. Provide space for pulling full length of all boiler tubes directly from their installed location.
- C. Vent and combustion air piping shall be installed in accordance with applicable national codes, NFPA standards and per the boiler manufacturers' recommendations.

3.2 CLEANING AND PROTECTION FROM CORROSION:

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

3.3 INSPECTIONS AND TESTS:

- A. The following tests and demonstrations must be witnessed by the Contracting Officer's Technical Representative (COTR)/ Resident Engineer (RE) or his/her representative, and must prove that boilers, burners, controls, instruments, and accessories comply with requirements. When test results are not acceptable, make corrections and repeat tests at no additional cost to the Government. Pretests do not require the presence of the COTR/RE.
- B. Condition of Boiler After Delivery, Rigging, Placement: After setting the boiler and prior to making any connections to the boiler, the Contractor and COTR/RE shall jointly inspect interior and exterior for damage. Correct all damage by repair or replacement to achieve a like new condition.
- C. After boiler installation is completed, the manufacturer shall provide the services of a field representative for starting the unit and training the operator.
- D. A written test procedure shall be provided by the factory for field testing all safety devices installed on the boiler(s).

- E. Hydrostatic Tests:
 - 1. Boiler: Contractor shall provide inspector certified by National Board of Boiler and Pressure Vessel Inspectors to conduct tests after equipment is installed and connected for operation and prior to initial firing. Test pressure shall be 1-1/2 times the design pressure of the boiler for a period of four (4) hours. Provide written certification of the satisfactory test, signed by the inspector. Correct any deficiencies discovered during the testing, and retest equipment until satisfactory results are achieved and are accepted by the inspector.
 - Identify and remove any connecting equipment which is not rated for the test pressure. Cap the openings left by the disconnected equipment. Reinstall the equipment after tests are completed.
- F. Boiler Relief Valves:
 - 1. Test each valve set pressure with boiler operating pressure.
 - 2. Valve Popping Tolerance: Plus or minus three percent of set pressure for set pressures over 480 kPa (70 psi) gage.
 - 3. Valve Blowdown Tolerance: Reset at not less than 6 percent below set pressure of valve with the lowest set pressure. Minimum blowdown two percent of the set pressure.
- G. Burner Control (Flame Safeguard-Burner Management) System:
 - Demonstrate operation of all control, interlock and indicating functions.
 - Prior to scheduling final test submit certification that all control, indicating, and interlock functions have been pretested.
 - 3. Conduct final test immediately prior to boiler-burner tests.
 - 4. Experienced personnel representing the manufacturer of the system shall conduct the tests.
- H. Performance Testing of Boiler, Burner, Combustion Control, Boiler Plant Instrumentation:
 - 1. Perform tests on each boiler on all main burner fuels.
 - If required by local emissions authorities, provide services of testing firm to determine NOx and carbon monoxide. Test firm shall be acceptable to emissions authorities.
 - 3. Test No. P-1:

- a. Operate boiler on each fuel in service and record data for at least four evenly spaced loads from low fire start to 100% of full output, and in the same sequence back to low fire.
- b. Demonstrate proper operation of combustion controls and instrumentation systems.
- 4. Test Methods:
 - a. Utilize permanent instrumentation systems for data. All systems shall be operable and in calibration.
 - b. Utilize portable thermocouple pyrometer furnished and retained by Contractor to measure stack temperature as a verification of permanent stack temperature recorder.
 - c. Use portable electronic flue gas analyzer to determine constituents of flue gas. Analyzer shall be capable of measuring oxygen in per cent with accuracy of plus or minus 0.5 percent oxygen and carbon monoxide in parts per million (ppm) with accuracy of plus or minus 5 percent of reading (Range 0-1000 ppm). Obtain oxygen and carbon monoxide readings at each test point. Calibrate instrument with certified test gases within three months prior to use and immediately after analyzer cell replacement.
 - d. In Test No. P-1 retain boiler at each load point for a time period sufficient to permit stabilization of flue gas temperature and other parameters.
 - e. Utilize dry bulb and wet bulb thermometers furnished and retained by Contractor for checking combustion air.
 - f. Smoke testing shall be by visual observation of the stack and by smoke density monitor (permanent instrument - if provided). If smoke density monitor is not provided, utilize Bacharach Model 21-7006 Smoke Test Kit. If there is disagreement with the results of these tests, provide qualified observation person and tests in compliance with EPA Reference Method 9 (CFR 40, Part 60, Appendix A).
 - g. NOx emissions shall be tested with electronic analyzer reading in parts per million. Analyzer shall be calibrated with certified

test gas within three months prior to use. Analyzer shall be accurate to plus or minus 5% of reading.

h. An additional efficiency test will be required, conforming to ASME Performance Test Code PTC 4, if the boiler efficiency determined in the Test P-1 above, does not comply with requirements. Utilize ASME Test Forms PTC 4.1.a, 4.1.b, and the abbreviated input-output and heat balance methods.

- - - E N D - - -

SECTION 23 62 00 PACKAGED COMPRESSOR AND CONDENSER UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, refrigerant compressor and condenser units.

1.3 ACTION SUBMITTALS

- A. Product Data: For each compressor and condenser unit. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include equipment dimensions, weights and structural loads, required clearances, method of field assembly, components, and location and size of each field connection.
- B. Shop Drawings: For compressor and condenser units. Include plans, elevations, sections, details, and attachments to other work.1. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For compressor and condenser units indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members to which compressor and condenser units will be attached.
 - 2. Liquid and vapor pipe sizes.

- 3. Refrigerant specialties.
- 4. Piping including connections, oil traps, and double risers.
- 5. Compressors.
- 6. Evaporators.
- B. Field quality-control reports.
- C. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For compressor and condenser units to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Standard for Refrigeration Systems."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6, "Heating, Ventilating, and Air-Conditioning."
- D. ASME Compliance: Fabricate and label water-cooled compressor and condenser units to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1.7 COORDINATION

- A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 03 30 00 CAST-IN-PLACE CONCRETE.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07 72 00 ROOF ACCESSORIES.
- C. Coordinate location of piping and electrical rough-ins.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of compressor and condenser units that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:

- a. Compressor failure.
- b. Condenser coil leak.
- 2. Warranty Period: Five years from date of Substantial Completion.
- Warranty Period (Compressor Only): five years from date of Substantial Completion.
- 4. Warranty Period (Components Other Than Compressor):two years from date of Substantial Completion.
- 5. Warranty Period (Condenser Coil Only): Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 COMPRESSOR AND CONDENSER UNITS, AIR COOLED, 6 TO 120 TONS

- A. Manufacturers: Subject to compliance with requirements,:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Carrier Corporation; Commercial HVAC Systems.
 - 2. Continental Products.
 - 3. Dunham-Bush, Inc.
 - 4. Engineered Air.
 - 5. Lennox International Inc.
 - 6. McQuay International.
 - 7. Rheem Air Conditioning Division.
 - 8. Ruud Air Conditioning Division.
 - 9. Trane; a business of American Standard Companies.
- C. Description: Factory assembled and tested, air cooled; consisting of casing, compressors, condenser coils, condenser fans and motors, and unit controls.
- D. Compressor: Hermetic scroll compressor designed for service with crankcase sight glass, crankcase heater, and back-seating service access valves on suction and discharge ports.
 - 1. Capacity Control: Hot-gas bypass.
- E. Compressor: Hermetic or semihermetic rotary screw compressor designed for service with crankcase sight glass, crankcase heater, and backseating service access valves on suction and discharge ports.
 - 1. Capacity Control: Modulating Control with Digital Compressor.

- F. Refrigerant: R-410A.
- G. Condenser Coil: Seamless copper-tube, aluminum-fin coil, including subcooling circuit and backseating liquid-line service access valve. Factory pressure test coils, then dehydrate by drawing a vacuum and fill with a holding charge of nitrogen or refrigerant.
- H. Condenser Fans: Propeller-type vertical discharge; either directly or belt driven. Include the following:
 - 1. Permanently lubricated, ball-bearing totally enclosed motors.
 - 2. Separate motor for each fan.
 - 3. Dynamically and statically balanced fan assemblies.
- I. Operating and safety controls include the following:
 - 1. Manual-reset, high-pressure cutout switches.
 - 2. Automatic-reset, low-pressure cutout switches.
 - 3. Low-oil-pressure cutout switch.
 - 4. Compressor-winding thermostat cutout switch.
 - 5. Three-leg, compressor-overload protection.
 - 6. Control transformer.
 - 7. Magnetic contactors for compressor and condenser fan motors.
 - 8. Timer to prevent excessive compressor cycling.
- J. Accessories:
 - 1. Electronic programmable thermostat to control compressor and condenser unit and evaporator fan.
 - 2. Gage Panel: Package with refrigerant circuit suction and discharge gages.
 - 3. Hot-gas bypass kit.
 - 4. Part-winding-start timing relay, circuit breakers, and contactors.
 - 5. Reversing valve.
- K. Unit Casings: Designed for outdoor installation with weather protection for components and controls and with removable panels for required access to compressors, controls, condenser fans, motors, and drives. Additional features include the following:
 - Steel, galvanized or zinc coated, for exposed casing surfaces; treated and finished with manufacturer's standard paint coating.
 - 2. Perimeter base rail with forklift slots and lifting holes to facilitate rigging.

- 3. Gasketed control panel door.
- 4. Non-fused disconnect switch, factory mounted and wired, for single external electrical power connection.
- 5. Condenser coil hail guard grille.
- L. Capacities and Characteristics:
 - 1. Compressor and Condenser Unit:
 - a. Full-Load Cooling Capacity: 568 MBh.
 - b. Energy-Efficiency Ratio (EER): 11.0.
 - c. Compressor Suction Temperature: 45 deg F.
 - d. Capacity Steps: 4.
 - 2. Refrigerant Connections:
 - a. Liquid Pipe Size: 2-.88" NPS.
 - b. Suction Pipe Size: 2-2" NPS.
 - 3. Compressors:
 - a. Number of Compressors: 4
 - b. Rated-Load Amperes: 19.2
 - c. Power Input: 51.3
 - 4. Air-Cooled Condenser:
 - a. Ambient-Air Temperature: 95 F.
 - b. Number of Condenser Fans: 4.
 - c. Condenser Fan Motor Size: 2.1 A.
 - 5. Electrical Characteristics:
 - a. Kilowatt Input: 51.3.
 - b. Volts: 480.
 - c. Phase: 3.
 - d. Hertz: 60.
 - e. Maximum Circuit Ampacity: 91.3 A.
 - f. Maximum Overcurrent Protection: 110 A.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.
 - Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 SOURCE QUALITY CONTROL

- A. Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IESNA 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," Section 6, "Heating, Ventilating, and Air-Conditioning."
- B. Test and inspect shell and tube condensers according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of compressor and condenser units.
- B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.
- C. Examine walls, floors, and roofs for suitable conditions where compressor and condenser units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install units level and plumb, firmly anchored in locations indicated.
- B. Install roof-mounting units on equipment supports specified in Section 07 72 00 ROOF ACCESSORIES.
- C. Equipment Mounting:
 - 1. Install compressor and condenser units on cast-in-place concrete equipment bases.
 - Comply with requirements for vibration isolation devices specified in Section 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Maintain manufacturer's recommended clearances for service and maintenance.
- E. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.3 CONNECTIONS

- A. Comply with requirements for piping in other Section 23 21 13 HYDRONIC PIPING. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- C. Connect pre-charged refrigerant tubing to unit's quick-connect fittings. Install tubing so it does not interfere with access to unit. Install furnished accessories.
- D. Connect refrigerant piping to air-cooled compressor and condenser units; maintain required access to unit. Install furnished fieldmounted accessories. Refrigerant piping and specialties are specified in Section 23 23 00 REFRIGERANT PIPING.
- E. Connect refrigerant and condenser-water piping to water-cooled compressor and condenser units. Refrigerant piping and specialties are specified in Section 23 23 00 REFRIGERANT PIPING and condenser-water piping and specialties are specified in Section 23 21 13 HYDRONIC PIPING. Install shutoff valve and union or flange at each water supply connection; install balancing valve and union or flange at each return connection.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 - Leak Test: After installation, charge system with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor operation and unit operation, product capability, and compliance with requirements.

- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- 5. Verify proper airflow over coils.
- C. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- D. Compressor and condenser units will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - a. Inspect for physical damage to unit casing.
 - b. Verify that access doors move freely and are weathertight.
 - c. Clean units and inspect for construction debris.
 - d. Verify that all bolts and screws are tight.
 - e. Adjust vibration isolation and flexible connections.
 - f. Verify that controls are connected and operational.
- B. Lubricate bearings on fan motors.
- C. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
- D. Adjust fan belts to proper alignment and tension.
- E. Start unit according to manufacturer's written instructions and complete manufacturer's startup checklist.
- F. Measure and record airflow and air temperature rise over coils.
- G. Verify proper operation of condenser capacity control device.
- H. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- I. After startup and performance test, lubricate bearings.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain compressor and condenser units.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of single or multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Sound and vibration requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- C. Piping and duct insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- D. Piping and valves: Section 23 21 13 HYDRONIC PIPING and Section 23 22 13 STEAM AND CONDENSATE HEATING PIPING.
- E. Heating and cooling coils and pressure requirements: Section 23 82 16, AIR COILS.
- F. Return and exhaust fans: Section 23 34 00, HVAC FANS.
- G. Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining, and air leakage: Section 23 31 00, HVAC DUCTS and CASINGS.
- H. Air filters and filters' efficiency: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. HVAC controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Testing, adjusting and balancing of air and water flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- K. Types of motors: Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.

- L. General Commissioning: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- M. HVAC Commissioning: Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Air Handling Units Certification
 - Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

VA Project 438-450 10-01-18 100% Bid Documents

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for AHUS shall include fans, drives, motors, coils, mixing box with outside/return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).
 - 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
 - 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
 - Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).

- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing. Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
 - 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-01..... Air-Heating and Air-Cooling Coils 430-09..... Central Station Air Handling Units C. Air Movement and Control Association International, Inc. (AMCA): 210-07..... Fabric Laboratory Methods of Testing Fans for Rating D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 170-2008.....Ventilation of Health Care Facilities E. American Society for Testing and Materials (ASTM): ASTM B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus ASTM D1654-08.....Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments ASTM D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus ASTM D3359-08.....Standard Test Methods for Measuring Adhesion by Tape Test F. Military Specifications (Mil. Spec.): MIL-P-21035B-2003.....Paint, High Zinc Dust Content, Galvanizing Repair (Metric) G. National Fire Protection Association (NFPA): NFPA 90A..... Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

- A. General:
 - AHUS shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units,

subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.

- 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high

quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.

- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.
- B. Base:
 - Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap as shown on drawings.
 - AHUs shall be completely self supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.
 - 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Table 2.1.C.2

Outer Panel	0.8 mm (22 Gage) Minimum
Inner Panel	0.8 mm (22 Gage) Minimum

Insulation	Foam
Thickness	50 mm (2 inch) Minimum
Density	48 kg/m ³ (3.0 lb/ft ³) Minimum
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)
	Minimum

3. Casing Construction (Contractor's Option):

Table 2.1.C.3

Outer Panel	1.3 mm (18 Gage) Minimum						
Inner Panel	1.0 mm (20 Gage) Minimum						
Insulation	Fiberglass						
Thickness	50 mm (2 inch) Minimum						
Density	24 kg/m ³ (1.5 lb/ft ³) Minimum						
Total R Value	1.4 m ² .K/W (8.0 ft ² . ^o F.hr/Btu)						
	Minimum						

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 6. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between

the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.

- a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.
- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- D. Floor:
 - Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service

foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.

- Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - 3. Installation, including frame, shall be designed and sealed to prevent blow-by.
- F. Plenum Fans Single and/or Multiple Fans in an Array:
 - 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.

- 2. Allowable vibration tolerances for fan shall not exceed a selfexcited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
- 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
- G. Fan Motor, Drive, and Mounting Assembly (Plenum Fans): Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications.
- H. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23,

23 73 00 - 11 INDOOR CENTRAL-STATION AIR-HANDLING UNITS DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 2.8 cubic meters/min/square meter (9 CFM per square foot) at 995 Pa (4 inch WG) Electronic operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- I. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- J. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements.

1. Water Coils, Including Glycol-Water.

K. Discharge Section:

Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.

- L. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

E. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 81 23 COMPUTER-ROOM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies process cooling split systems air conditioning unit.
- B. Definitions:
 - Energy Efficiency Ratio (EER): A ratio calculated by dividing the cooling capacity in Btuh by the power input in watts at any given set of rating conditions, expressed in Watts (Btu/h) per watt.
 - Coefficient of Performance (COP): A ratio calculated by dividing the change in heating or cooling capacity (Btu/h) to the energy consumed by the system (kW), expressed in Btu/kWh.
 - 3. Unitary (AHRI): Consists of one or more factory-made assemblies, which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function.
 - 4. CRAC Units: Computer Room Air Conditioning Units.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Requirements for vibration isolators and room noise level.
- D. Section 23 23 00, REFRIGERANT PIPING: Requirements for field refrigerant piping.
- E. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Requirements for condensate piping and fittings.
- F. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for sheet metal ducts and fittings.
- G. Section 23 40 00, HVAC AIR CLEANING DEVICES: Requirements for filters including efficiency.

- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- I. Section 23 05 93: TESTING, ADJUSTING, and BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.
- J. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data, rated capacities (at design indoor and outdoor conditions), EER/COP, operating characteristics, required specialties and accessories. Submit published catalog selection data showing equipment ratings and compliance with required sensible ratio.
 - 1. Indoor Air Conditioning Unit
 - 2. Air Cooled Condensing Unit
- C. Submit detailed equipment assemblies with dimensions, operating weights, required clearances.
- D. Submit wiring diagrams for power, alarm and controls.
- E. Certification: Submit, simultaneously with shop drawings, a proof of certification:
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 GUARANTEE

A. The unit shall be guaranteed against all mechanical defects in material, parts or workmanship and shall be repaired or replaced at the Contractor's expense within the period of one year from final acceptance. Contractor shall adhere to a four hour service response time to troubles during the guarantee period.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed Spec): 00-A-374C-95.....Air-Conditioners with Remote Condensing Units or Remote Air-cooled and Water-Cooled Condenser Units, Unitary TT-C-490D-93.....Cleaning Methods for Ferrous Surfaces and Pretreatments for Organic Coatings C. Air-Conditioning, Heating and Refrigeration Institute (AHRI) Standards: 210/240-08.....Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment 340/360-07.....Performance Rating of Commercial and Industrial Unitary Air Conditioning and Heat Pump Equipment 410-01......Forced-Circulation Air-Cooling and Air-Heating Coils 460-2005.....Performance Rating of Remote Mechanical-Draft Air-Cooled Refrigerant Condensers 520-04.....Performance Rating of Positive Displacement Condensing Units AHRI-DCPP.....Directory of Certified Product Performance -Applied Directory of Certified Products D. Air Movement and Control Association (AMCA): 210-07.....Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating (ANSI) 410-96.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans E. American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc. (ASHRAE): 15-10.....Safety Standard for Refrigeration Systems (ANSI)

90.1-10.....Energy Standard for Buildings except Low-Rise Residential Buildings (ANSI Approved; IESNA Cosponsored)

2008 Handbook..... HVAC Systems and Equipment

2010 Handbook.....Refrigeration

52.1-92.....Gravimetric and Dust-Spot Procedures for

Testing Air-Cleaning Devices used in General

Ventilation for Removing Particulate Matter

F. American Society of Testing and Materials (ASTM):
B117-09.....Standard Practice for Operating Salt Spray

(Fog) Apparatus

- G. National Electrical Manufacturer's Association (NEMA): MG 1-09 (R2010).....Motors and Generators (ANSI)
- H. National Fire Protection Association (NFPA) Publications: 70-11.....National Electrical Code 90A-09....Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1. CEILING-MOUNTED UNITS

- A. Description: Self-contained, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for horizontal ceiling mounting, ceiling opening of 610 by 1220 mm (24 by 48 inches).
- B. Cabinet: Galvanized steel with baked-enamel finish, insulated with 13mm (1/2-inch) thick duct liner.
- C. Integral factory-supplied supply and return grille kit of 610 by 1220 mm (24 by 48 inches), with filter.
- D. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2010.
- E. Supply-Air Fan:
 - Forward-Curved, Centrifugal Fan: Provide with directly-driven fan with two-speed motor
- F. Compressor: Hermetic scroll, (VA: Type) with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.

- G. Refrigeration Circuit: Low-pressure switch, manual-reset high-pressure switch, thermal-expansion valve with external equalizer, sight glass with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.
- H. Refrigerant: R-407C unless otherwise indicated.
- I. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins.
 - Mount coil assembly over stainless-steel drain pan complying with ASHRAE 62.1-2007 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
- J. Remote Air-Cooled Refrigerant Condenser: Integral, copper-tube aluminum-fin coil with propeller fan, direct driven.
- K. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.
- L. Filter: 25-mm (1 inch) thick, disposable, glass-fiber media.1. MERV Rating: 8 according to ASHRAE 52.2.
- M Control: Fully modulating to provide gradual 0 to 100 percent capacity with field-adjustable maximum capacity; with high-water probe.
- N. Drain Cycle: Field-adjustable drain duration and drain interval.
- O. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- P. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature- and humidity control modules, time-delay relay, heating contactor, and high-temperature thermostat. Wall-mounted control panel shall be solid-state, with start-stop switch adjustable humidity dirty set point, and adjustable temperature set point.
- Q. DDC Interface: Provide connection to DDC system.

2.2 FAN MOTORS

- A. Default motor characteristics are specified in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- B. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in

Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EOUIPMENT.

- C. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- D. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

2.3 SPECIAL TOOLS

A. If any part of equipment furnished under these specifications requires a special tool for assembly, adjustment, setting, or maintenance and the tool is not readily available from the commercial tool market, furnish the necessary tools with equipment as a standard accessory

2.4 CORROSION CONTROL

- A. Remote Outdoor Condenser Coils:
 - 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UVresistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall be such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following: a. Salt Spray Resistance (Minimum 6,000 Hours) b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - e. Impact Resistance (Up to 160 Inch/Pound)
- B. Exposed Outdoor Cabinet

1. Casing Surfaces (Exterior and Interior): All exposed and accessible metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) AND 500 hours UV resistance (ASTM D4587).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Handle and install refrigeration units and accessories in accordance with the instructions and recommendations of the manufacturer.
- B. Coordinate installation of Computer room Air Conditioning Units with Computer room access flooring installer.
- C. Field Refrigerant Piping: As specified in specification Section 23 23 00, REFRIGERANT PIPING.
- D. Electrical System Connections and Equipment Ground: As specified in Division 26 Sections.

3.2 CONNECTIONS

- A. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. If Drawings are explicit enough, these requirements may be reduced or omitted.
- B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- C. Install piping adjacent to machine to allow service and maintenance.
- D. Water and Drainage Connections: Comply with applicable requirements in Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING and Section 22 11 00, FACILITY WATER DISTRIBUTION. Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.
- E. Retain first paragraph below for units with hot-water coils.
- F. Refrigerant Piping: Comply with applicable requirements in Section 23 23 00, REFRIGERANT PIPING. Provide shutoff valves and piping.

3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Inspect for and remove shipping bolts, blocks, and tie-down straps.

- 2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. After startup service and performance test, change filters and flush humidifier.

3.4 INSTRUCTIONS

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.5 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Radiant ceiling panels (for bathrooms), unit heaters, cabinet unit heaters, and finned-tube radiation.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- C. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- D. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- G. Section 23 82 16, AIR COILS: Additional coil requirements.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- I. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Unit heaters.
 - 2. Cabinet unit heaters.
 - 3. Finned-tube radiation.
 - 4. Radiant ceiling panels.

- C. Certificates:
 - 1. Compliance with paragraph, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI): 440-08......Performance Rating of Room Fan Coils

National Fire Protection Association (NFPA):

90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems

70-11.....National Electrical Code

C. Underwriters Laboratories, Inc. (UL):

181-08.....Standard for Factory-Made Air Ducts and Air Connectors

1995-05..... Heating and Cooling Equipment

1.6 GUARANTY

A. In accordance with FAR clause 52.246-21

PART 2 - PRODUCTS

2.1 UNIT HEATERS

- A. General: Horizontal or vertical discharge type for steam, hot water or electric heating medium, as indicated.
- B. Casing: Steel sheet, phosphatized to resist rust and finished in baked enamel. Provide hanger supports.
- C. Fan: Propeller type, direct driven by manufacturer's standard electric motor. Provide resilient mounting. Provide fan guard for horizontal discharge units.

- D. Discharge Air Control:
 - 1. Horizontal discharge: Horizontal, adjustable louvers.
 - 2. Vertical discharge: Radial louver diffuser.
- E. Steam or Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psig) steam working pressure.
- F. Controls: Provide field installed remote wall mounted line voltage electric space thermostats or unit mounted return air thermostats, where shown or specified to control the unit fan. Provide an aquastat on hot water units to prevent fan operation when the heating system is off.

2.2 CABINET UNIT HEATERS

- A. General: Vertical or horizontal type for steam, hot water or electric heating medium, as indicated.
- B. Cabinet: Not less than 1.3 mm (18 gage) steel with front panel for vertical units and hinged front panel for horizontal units. Finish on exposed cabinet shall be factory-baked enamel in manufacturer's standard color as selected by the Architect. Provide 76 mm (3-inch) high sub-base for vertical floor mounted units.
- C. Fan: Centrifugal blower, direct driven by a single phase, two-speed, electric motor with inherent overload protection. Provide resilient motor/fan mount.
- D. Filter: Manufacturer's standard, one inch thick, throwaway type MERV 7 filters.
- E. Steam or Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psi) steam working pressure.
- F. Factory Mounted Controls: Manual fan starter and three-position (low, high and off) fan speed switch. Provide field installed remote wall mounted line voltage electric space thermostats or unit mounted return air thermostats, where shown or specified to control the unit fan. Provide an aquastat on hot water units to prevent fan operation when the heating system is off.

2.3 FINNED-TUBE RADIATION

- A. Ratings: Certified under the I=B=R program of the Gas Appliance Manufacturer's Association.
- B. Enclosures: 1.6 mm (16 gage) steel, sloping top, designed for wall mounting. Provide baked enamel finish in standard manufacturer's colors as selected by the Architect. End plates and corner pieces shall be die-formed with round edges and fit flush with enclosure surface. Where continuous wall-to-wall installations are shown on the drawings provide all fillers, corner fittings, sleeves, end caps and other accessories, which shall have the same profile as the basic unit. Provide access panels or extensions where required for access to valves, or traps shown on the drawings.
- C. Hydronic/Steam Heating Elements: Steel pipe or nonferrous tubing with fins mechanically bonded by mechanical expansion of the tube. Elements shall be positively positioned front-to-back with provisions for silent horizontal expansion and contraction.

2.4 RADIANT CEILING PANELS:

A. Hydronic Radiant Panels: Lay-in type, 1.00 mm (0.040) inch aluminum faceplate with 13 mm (l/2-inch) I.D copper serpentine water coil mechanically bonded to faceplate, finished with two coats baked white polyester finish with a light reflection value of 70 to 80 percent. Panels shall weigh no more than 0.68 kg (l.5 pounds) per square foot when filled with water. Provide 75 mm (3-inch) un-faced fiberglass blanket insulation pre-cut for installation above panels. Panels shall be 2' x 4' continuous linear arranged as shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.

D. Install fiberglass blanket insulation with a minimum R value of 8 above hydronic radiant panels.

3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS. - - - E N D - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS
- D. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- E. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- G. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 36 00, AIR TERMINAL UNITS, or Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.

F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-01.....Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM): B75/75M-02.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA): 70-11.....National Electric Code
- E. National Electric Manufacturers Association (NEMA): 250-11.....Enclosures for Electrical Equipment (1,000 Volts Maximum)
- F. Underwriters Laboratories, Inc. (UL):
 1996-09.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- C. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.

- F. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- G. Pressures kPa (PSIG):

	Pressur	re	Water Coil		Steam Coil			Refrigerant Coil			
	Test	2070 (300)			17	1725 (250)			2070	(300)	
Ŵ	lorking	1	380 (200))	5	20	(75)		1725	(250)	

- H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- J. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- K. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (16 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and electric operators. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.2 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:1. Heating or preheat.
- C. Cleanable Tube Type; manufacturer standard:
 - 1. Well water applications.
 - 2. Waste water applications.

2.3 VOLATILE REFRIGERANT COILS

- A. Continuous circuit, straight tubes, dry expansion type equipped with multi-port distribution header, less expansion valve.
- B. Minimum 16 mm (5/8-inch) tube diameter.
- C. Designed for R22 or other EPA approved refrigerants.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 83 16 RADIANT-HEATING HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes radiant-heating piping, including pipes, fittings, and piping specialties.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. PEX: Crosslinked polyethylene.
- C. PEX/AL/PEX: Crosslinked polyethylene/aluminum/crosslinked polyethylene.
- D. PTFE: Polytetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - Include data for piping, fittings, manifolds, specialties, and controls; include pressure and temperature ratings, oxygen-barrier performance, fire-performance characteristics, and water-flow and pressure-drop characteristics.
- B. Shop Drawings: Show piping layout and details drawn to scale, including valves, manifolds, controls, and support assemblies, and their attachments to building structure.
 - 1. Shop Drawing Scale: 1/4 inch = 1 foot.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which radiant-heating piping will be attached.
 - 3. Items penetrating finished ceiling, including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.

- c. Speakers.
- d. Sprinklers.
- e. Access panels.
- 4. Perimeter moldings.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For radiant-heating piping valves and equipment to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PEX PIPE AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following: Sterling
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. FloorHeat Company (The).
 - 2. Heat Innovations Inc.
 - 3. HeatLink Group Inc.
 - 4. Infloor Radiant Floor Heating.
 - 5. IPEX Inc.
 - 6. Mr Pex Systems Inc.
 - 7. REHAU Incorporated.
 - 8. Slant/Fin Corporation.
 - 9. Uponor.
 - 10. Viega.
 - 11. Warmboard Inc.
 - 12. Watts Radiant, inc.; a Watts Water Technologies company.
 - 13. Zurn Industries, LLC; Zurn Pex, Inc.
- C. Pipe Material: PEX plastic according to ASTM F 876.
- D. Oxygen Barrier: Limit oxygen diffusion through the tube to maximum 0.10 mg per cu. m/day at 104 deg F according to DIN 4726.
- E. Fittings: ASTM F 1807, metal insert and copper crimp rings.
- F. Pressure/Temperature Rating: Minimum 100 psig and 180 deg F.

2.2 PEX/AL/PEX PIPE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Heat Innovations Inc.
- 2. IPEX Inc.
- 3. Uponor.
- 4. Viega.
- B. Pipe Material: PEX plastic bonded to the inside and outside of a welded aluminum tube according to ASTM F 1281.
- C. Oxygen Barrier: Limit oxygen diffusion through the pipe to maximum 0.10 mg per cu. m/day at 104 deg F according to DIN 4726.
- D. Fittings: ASTM F 1974, metal insert fittings with split ring and compression nut (compression joint) or metal insert fittings with copper crimp rings (crimp joint).
- E. Flame-Spread and Smoke-Developed Indices: 25 and 50 or less, respectively, tested according to ASTM E 84.
- F. Pressure/Temperature Rating: Minimum 100 psig and 210 deg F.

2.3 EPDM PIPE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Watts Radiant, inc.; a Watts Water Technologies company.

- B. Pipe Material: Crosslinked EPDM inner and outer tubes.
- C. Wall Thickness: Minimum 0.125 inch.
- D. Oxygen Barrier: Ductile aluminum foil layer applied to the inner tube to limit oxygen diffusion through the pipe to maximum 0.10 mg per cu. m/day at 104 deg F according to DIN 4726.
- E. Reinforcing Braid: Braided-aluminum wire between the inner and outer tube.
- F. Fittings: ASTM F 1807, copper with stainless-steel crimps or clamps.
- G. Pressure/Temperature Rating: Minimum 100 psig and 210 deg F.

2.4 DISTRIBUTION MANIFOLDS

- A. Manifold: Minimum NPS 1, brass.
- B. Main Shutoff Valves:
 - 1. Factory installed on supply and return connections.
 - 2. Two-piece body.
 - 3. Body: Brass or bronze.
 - 4. Ball: Chrome-plated bronze.
 - 5. Seals: PTFE.

- 6. CWP Rating: 150 psig.
- 7. Maximum Operating Temperature: 225 deg F.
- C. Manual Air Vents:
 - 1. Body: Bronze.
 - 2. Internal Parts: Nonferrous.
 - 3. Operator: Key furnished with valve, or screwdriver bit.
 - 4. Inlet Connection: NPS 1/2.
 - 5. Discharge Connection: NPS 1/8.
 - 6. CWP Rating: 150 psig.
 - 7. Maximum Operating Temperature: 225 deg F.
- D. Balancing Valves:
 - 1. Body: Plastic or bronze, ball or plug, or globe cartridge type.
 - 2. Ball or Plug: Brass or stainless steel.
 - 3. Globe Cartridge and Washer: Brass with EPDM composition washer.
 - 4. Seat: PTFE.
 - 5. Visual Flow Indicator: Flowmeter with visible indication in a clear plastic cap at top of valve.
 - 6. Differential Pressure Gage Connections: Integral seals for portable meter to measure loss across calibrated orifice.
 - 7. Handle Style: Lever or knob, with memory stop to retain set position if used for shutoff.
 - 8. CWP Rating: Minimum 125 psig.
 - 9. Maximum Operating Temperature: 250 deg F.
- E. Zone Control Valves:
 - 1. Body: Plastic or bronze, ball or plug, or globe cartridge type.
 - 2. Ball or Plug: Brass or stainless steel.
 - 3. Globe Cartridge and Washer: Brass with EPDM composition washer.
 - 4. Seat: PTFE.
 - 5. Actuator: Replaceable electric motor.
 - 6. CWP Rating: Minimum 125 psig.
 - 7. Maximum Operating Temperature: 250 deg F.
- F. Thermometers:
 - 1. Mount on supply and return connections.
 - 2. Case: Dry type, metal or plastic, 2-inch diameter.
 - 3. Element: Bourdon tube or other type of pressure element.

- 4. Movement: Mechanical, connecting element and pointer.
- 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- 6. Pointer: Black metal.
- 7. Window: Plastic.
- 8. Connector: Rigid, back type.
- 9. Thermal System: Liquid- or mercury-filled bulb in copper-plated steel, aluminum, or brass stem.
- Accuracy: Plus or minus 1 percent of range or plus or minus
 1 scale division to maximum of 1.5 percent of range.
- G. Mounting Brackets: Copper, or plastic- or copper-clad steel, where in contact with manifold.

2.5 **PIPING SPECIALTIES**

- A. Cable Ties:
 - Fungus-inert, self-extinguishing, one-piece, self-locking, Type 6/6 nylon cable ties.
 - 2. Minimum Width: 1/8 inch.
 - 3. Tensile Strength: 20 lb, minimum.
 - 4. Temperature Range: Minus 40 to plus 185 deg F.

2.6 CONTROLS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Danfoss Inc.
 - 2. HeatLink Group Inc.
 - 3. Honeywell International Inc.
 - 4. Infloor Radiant Floor Heating.
 - 5. IPEX Inc.
 - 6. REHAU Incorporated.
 - 7. Slant/Fin Corporation.
 - 8. tekmar Control Systems, Ltd.
 - 9. Uponor.
 - 10. Viega.
 - 11. Watts Radiant, inc.; a Watts Water Technologies company.
 - 12. Zurn Industries, LLC; Zurn Pex, Inc.
- B. Precipitation and Temperature Sensor:

- Microprocessor-based control with manual on, automatic, and standby/reset switch.
- Precipitation and temperature sensors shall sense the surface conditions of pavement and shall be programmed to operate pump and zone control valves as follows:
 - a. Temperature Span: 34 to 44 deg F.
 - b. Adjustable Delay Off Span: 30 to 90 minutes.
 - c. Start Pump or Open Zone Control Valves: Following two-minute delay if ambient temperature is below set point and precipitation is detected.
 - d. Stop Pump or Close Zone Control Valves: On detection of a dry surface plus time delay.
- 3. Corrosion-proof and waterproof enclosure suitable for outdoor mounting, for controls and precipitation and temperature sensors.
- 4. Minimum 30-A contactor to start pump and open valves.
- 5. Precipitation sensor shall be mounted in pavement.
- 6. Provide relay with contacts to indicate operational status, on or off, for interface with central HVAC control-system workstation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces and substrates to receive radiant-heating piping for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Ensure that surfaces and pipes in contact with radiant-heating piping are free of burrs and sharp protrusions.
 - 2. Ensure that surfaces and substrates are level and plumb.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Install the following types of radiant-heating piping for the applications described:
 - 1. Piping in Exterior Pavement: PEX.
 - 2. Piping in Interior Reinforced-Concrete Floors: PEX.
 - 3. Piping in Level Fill Concrete Floors (Not Reinforced): PEX.

3.3 INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings or coordination drawings.
- B. Install radiant-heating piping continuous from the manifold through the heated panel and back to the manifold without piping joints in heated panels.
- C. Connect radiant piping to manifold in a reverse-return arrangement.
- D. Do not bend pipes in radii smaller than manufacturer's minimum bend radius dimensions.
- E. Install manifolds in accessible locations, or install access panels to provide maintenance access as required in Section 08 31 13 ACCESS DOORS AND FRAMES.
- F. Comply with requirements in Section 23 21 13 HYDRONIC PIPING for pipes and connections to hydronic systems and for glycol-solution fill requirements.
- G. Fire- and Smoke-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations.
- H. Piping in Exterior Pavement:
 - Secure piping in concrete floors by attaching pipes to reinforcement using cable ties.
 - Space cable ties a maximum of 18 inches o.c. and at center of turns or bends.
 - 3. Maintain 3-inch minimum cover.
 - 4. Install a sleeve of 3/8-inch-thick, foam-type insulation or PE pipe around tubing and extending for a minimum of 10 inches on each side of slab joints to protect the tubing passing through expansion or control joints. Anchor sleeve to slab form at control joints to provide maximum clearance for saw cut.
 - 5. Maintain minimum 40-psig pressure in piping during concrete placement and continue for 24 hours after placement.
- I. Piping in Interior Reinforced-Concrete Floors:

- 1. Secure piping in concrete floors by attaching pipes to reinforcement using cable ties.
- Space cable ties a maximum of 18 inches o.c. and at center of turns or bends.
- 3. Maintain 2-inch minimum cover.
- 4. Install a sleeve of 3/8-inch-thick, foam-type insulation or PE pipe around tubing and extending for a minimum of 10 inches on each side of slab joints to protect the tubing passing through expansion or control joints. Anchor sleeve to slab form at control joints to provide maximum clearance for saw cut.
- 5. Maintain minimum 40-psig pressure in piping during concrete placement and continue for 24 hours after placement.
- J. Piping in Level Fill Concrete Floors (Not Reinforced):
 - Secure piping in concrete floors by attaching pipes to subfloor using tracks, clamps, or staples.
 - 2. Space tracks, clamps, or staples a maximum of 18 inches o.c. and at center of turns or bends.
 - 3. Maintain 3/4-inch minimum cover.
 - 4. Install a sleeve of 3/8-inch-thick, foam-type insulation or PE pipe around tubing and extending for a minimum of 10 inches on each side of slab joints to protect the tubing passing through expansion or control joints. Anchor sleeve to slab form at control joints to provide maximum clearance for saw cut.
 - 5. Maintain minimum 40-psig pressure in piping during the concrete pour and continue for 24 hours during curing.
- K. Revise locations and elevations from those indicated as required to suit field conditions and ensure integrity of piping and as approved by Architect.
- L. After system balancing has been completed, mark balancing valves to permanently indicate final position.
- M. Perform the following adjustments before operating the system:
 - 1. Open valves to fully open position.
 - 2. Check operation of automatic valves.
 - 3. Set temperature controls so all zones call for full flow.
 - 4. Purge air from piping.

- N. After concrete or plaster heating panel has cured as recommended by concrete or plaster supplier, operate radiant-heating system as follows:
 - Start system heating at a maximum of 10 deg F above the ambient radiant-panel temperature and increase 10 deg F each following day until design temperature is achieved.
 - 2. For freeze protection, operate at a minimum of 60 deg F supply-water temperature.

3.4 FIELD QUALITY CONTROL

- A. Prepare radiant-heating piping for testing as follows:
 - 1. Open all isolation valves and close bypass valves.
 - 2. Open and verify operation of zone control valves.
 - 3. Flush with clean water and clean strainers.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - Leak Test: After installation, charge system and test for leaks. Subject piping to hydrostatic test pressure that is not less than 1.5 times the design pressure but not more than 100 psig. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Radiant-heating piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Protect hydronic piping system from damage during construction.

- - - E N D - - -

SECTION 25 10 10 ADVANCED UTILITY METERING SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section includes the following for the advanced metering of the systems of the facility. The metered systems include the electrical power, natural gas distribution, fuel gas, steam, steam condensate, heating water, and domestic water systems. The metering systems in each facility are part of a Corporate-Wide utility metering system, rendering the VA accurate and automated metering of its facilities' energy and water flows. Metering systems are comprised of:
 - 1. PC-based workstation(s) or server(s) and software.
 - Communication network and interface modules for RS-232, RS-485, Modbus TCP/IP, IEEE 802.3 data transmission protocols.
 - 3. Electric meters.
 - 4. Volumetric flowmeters, temperature sensors and pressure transducers.
 - 5. Mass flowmeters.

1.2 RELATED WORK

- A. Section 22 05 19 METERS AND GAGES FOR PLUMBING PIPING: meters and gages.
- B. Section 22 35 00 DOMESTIC WATER HEATER EXCHANGERS: references meters.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements, common to more than one section in mechanical.
- D. Section 23 09 11, INSTRUMENTATION AND CONTROL FOR BOILER PLANT: Flowmeters
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Flowmeters and communications
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low voltage cable.

- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- J. Section 33 10 00 WATER UTILITIES: references meters.
- K. Section 33 51 00 NATURAL GAS DISTRIBUTION: references meters.
- L. Section 33 63 00 STEAM ENERGY DISTRIBUTION: references meters.

1.3 DEFINITIONS

- A. AMR: Automatic meter reading is the technology of automatically collecting consumption, diagnostic, and status data from water and energy metering devices (water, gas, electric, steam) and transferring that data to a central database for billing, troubleshooting, and analyzing.
- B. AUMS: Advanced Utility Metering System: the system described by this Section.
- C BACnet: BACnet is a Data Communications Protocol for Building Automation and Control Networks. It is defined by ASHRAE/ANSI Standard 135 (ISO 16484-5) standard protocol.
- D. Data Over Cable Service Interface Specification (DOCSIS): an international standard defining communications and operation support interface requirements for a data over cable system, by the Cable Television Laboratories, Inc. consortium
- E. Data Head (on meters): converts analog and pulse signals to digital signals for transmission to the Site Data Aggregation Device. Also provides for limited storage of the digital signals.
- F. Device Accuracy: accuracy in this section is based on actual flow, not full scale or full range. Device accuracy measures the conversion of flow information to analog or pulse signals.
- G. Ethernet: Local area network, based on IEEE 802.3 standards.
- H. Firmware: Software (programs or data) that has been written onto readonly memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.

- I. Gateway: Bi-directional protocol translator connecting control systems that use different communication protocols.
- J. GB: gigabyte. When used to describe data storage, "GB" represents 1024 megabytes.
- K. HTML: Hypertext markup language.
- L. I/O: Input/output.
- M. KB: Short for kilobyte. When used to describe data storage, "KB" represents 1024 bytes.
- N. KY Pulse: A term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay changing status in response to the rotation of the disk in the meter.
- O. LAN: Local area network. Sometimes plural as "LANs."
- P. LCD: Liquid crystal display.
- Q. LonMark: An association comprising of suppliers and installers of LonTalk products. The Association provides guidelines for the implementation of the LonTalk protocol to ensure interoperability through Standard implementation.
- R. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication.
- S. LonWorks: Network technology developed by the Echelon Corporation.
- T. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less that 50 V or remote-control, signaling and powerlimited circuits.
- U. MB: megabyte. When used to describe data storage, "MB" represents 1024 kilobytes.
- V. Mbps: Megabytes per second, equal to 8 megabits per second
- W. Modbus TCP/IP: An open protocol for exchange of process data.
- X. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.
- Y. PICS, Protocol Implementation Conformance Statement: A written document that identifies the particular options specified by BACnet that are implemented in a device.

- Z. REO: Resident Engineer Office: the VA office administering the construction contract.
- AA.Reporting Accuracy: this is the root-mean-square sum of all of the metering devices' inaccuracies: measurement inaccuracy, mechanical inaccuracy, analog-to-digital or pulse integration inaccuracy, etc., up to the meter's data head.
- BB.RS-232: A Telecommunications Industry Association standard for asynchronous serial data communications between terminal devices.
- CC.RS-485: A Telecommunications Industry Association standard for multipoint communications using two twisted-pairs.
- DD.TB: terrabyte. When used to describe data storage, "TB" represents 1024 gigabytes.
- EE.TCP/IP: Transport control protocol/internet protocol.
- FF.Turn-down: the maximum flow divided by the minimum flow through a meter; used along with accuracy requirements. For example, a meter shall be accurate to within 2% of actual flow with throughout a 20:1 turndown
- GG.THD: Total harmonic distortion.
- II.UTP: Unshielded twisted pair cabling, used to limit crosstalk and electromagnetic interference from the environment

JJ.WAN: Wide area network.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced at least three years in manufacturing and installing power monitoring and control equipment similar to that indicated for this Project and with a record of successful in-service performance.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency, and marked for intended use.

D. System Modifications: Make recommendations for system modification in writing to the VA. No system modifications shall be made without prior written approval of the VA. Any modifications made to the system shall be incorporated into the Operations and Maintenance Instructions, and other documentation affected. Provide to the VA software updates for all software furnished under this specification during this contract's construction and verification periods and for the first two years after government acceptance. All updated software shall be verified as part of this contract.

1.5 PERFORMANCE

- A. The advanced utility metering system shall conform to the following:
 - Meter Scan: All changes of metered values shall be transmitted over the high-speed network such that any data used or displayed at a controller or Site Data Aggregation Device will be current, within the prior ten seconds.
 - Alarm Response Time: The maximum time from when meter goes into alarm to when it is annunciated at the workstation shall not exceed ten seconds.
 - 3. Reporting Accuracy: Listed below are minimum acceptable reporting accuracies for all values within the below minimum turn-down envelope reported by the meters:

Measured Variable	Units Measured	Minimum Turn-Down of Meter	Reporting Accuracy (Note 1)
Electricity	V, A, W, etc.	n/a	±0.5% of measured value
Natural Gas	l/s (CFH)	10:1	±2%
Steam	kW (MBH)	20:1	±2%
Condensate	kW (MBH)	20:1	±2%
Domestic Water flow	l/s (GPH)	20:1	±2%
Make-up Water to Cooling Towers flow	l/s (GPH)	10:1	±2%
Heating Water	kW (MBH)	20:1	±2%
Outside Air Temperature	°C (°F)	n/a	±2%

Outside Air Relative	% rh	n/a	±2.5%
Humidity			

Table 1.5: Meter Performance Criteria

Table Notes:

- 1. This table shows reporting accuracy, not merely the meter's accuracy. Reporting accuracy includes meter accuracy and data conversion accuracy. See Article 1.3 in this Section for definition. Accuracy is shown against the measured value, not against the full range of the meter.
- 2. l/s: liter per second CFH: cubic feet per hour kW: kilowatt MBH: 1000's British Thermal Units per hour GPH: gallons per hour

1.6 WARRANTY

- A. Labor and materials for advanced utility metering systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Advance utility metering system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and metering devices.

1.7 SUBMITTALS

- A. Product Data: for each type of product indicated, Attach copies of approved Product Data submittals for products (such as flowmeters, temperature sensors and pressure transmitters, switchboards and switchgear) that describe advance utility metering features to illustrate coordination among related equipment and utility metering and control.
- B. Shop Drawings: include plans, elevations, sections, details, and attachments to other work.
 - Outline Drawings: Indicate arrangement of meters, components and clearance and access requirements. Clearly identify system components, internal connections, and all field connections.
 - Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify

networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.

- 3. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 4. Wiring Diagrams: Power, signal, and communications wiring. Coordinate nomenclature and presentation with a block diagram. Show all communications network components and include a communications single-line diagram indicating device interconnection and addressing information for all system devices. Identify terminal blocks used for interconnections and wire type to be used.
- C. Software and Firmware Operational Documentation:
 - Device address list and the set point of each device and operator option, as set in applications software.
- G. Qualification Data: For installer and manufacturer
- H. Other Informational Submittals:
 - System installation and setup guides, with data forms to plan and record options and setup decisions.
- I. Revise and update the Contract Drawings to include details of the system design. Drawings shall be on 17 by 11 inches sheets. Details to be shown on the Design Drawing include:
 - 1. Details on logical structure of the network. This includes logical location of all network hardware.
 - Manufacturer and model number for each piece of computer and network hardware.
 - 3. Physical routing of LAN cabling.
 - 4. Physical and qualitative descriptions of connectivities.

1.8 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For advanced utility metering system components and meters, to include in emergency, operation, and maintenance manuals. Include the following:
 - 1. Operating and applications software documentation.

- 2. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on CD-ROM of the hard-copy submittal.
- 3. In addition to the copies required by 01 00 00, provide 5 bound paper copies of the Operation and Maintenance Data and two compact disks (CD), with all Instructions as Acrobat PDF files. The pdf files shall identical to the paper copies and shall Acrobat navigation tools including Bookmarks for each Chapter.
- The advanced utility metering system Operation and Maintenance Instructions shall include:
 - a. Procedures for the AUMS system start-up, operation and shut-down.
 - b. Final As-Built drawings, including actual LAN cabling routing shown on architectural backgrounds.
 - IP address(es) as applicable for each piece of network hardware.
 - 2) IP address for each computer server, workstation and networked printer.
 - Network identifier (name) for each printer, computer server and computer workstation.
 - CEA-709.1B address (domain, subnet, node address) for each CEA-709.1B TP/FT-10 to IP Router.
 - c. Routine maintenance checklist, rendered in a Microsoft Excel format. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall list each device's node identifier/address, the third column shall describe each device's physical location, the fourth column shall state the maintenance activity or state no maintenance required, the fifth column shall state the frequency of the maintenance activity, frequency of calibration and the sixth column for additional comments or reference.
 - d. Qualified service organization list.
 - e. In addition to the requirements in Section 01 33 23, the submittal shall include manufacturer Installation Requirements.

25 10 10 - 8 ADVANCED UTILITY METERING SYSTEM

- f. Include complete instructions for calibration of each meter type and model.
- g. Start-Up and Start-Up Testing Report.
- h. Performance verification test procedures and reports.
- i. Preventive Maintenance Work Plan.
- j. In addition to factory-trained manufacturers' representatives requirements in 01 00 00, provide signed letter by factory-trained manufacturers' representatives stating that the system and components are installed in strict accordance with the manufacturers' recommendations.
- B. Field quality-control test reports.

1.9 LICENSING AGREEMENT

A. Licenses procured as part of this work become the property of the government upon acceptance of the work. Licenses shall have no expiration.

1.10 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced, unless otherwise noted. Publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B16.1-1998.....Cast Iron Pipe Flanges and Flanged Fittings B31.1-2007.....Power Piping B31.8-2007.....Gas Transmission and Distribution Piping Systems

B31.9-2008.....Building Services Piping

B40.100-1998..... Pressure Gauges and Gauge Attachments

C. American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASHRAE 135-2008.....A Data Communication Protocol for Building Automation and Control Networks (ANSI)

D. American Society for Testing and Materials (ASTM) A53-2006.....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

A106-2006.....Seamless Carbon Steel Pipe for High Temperature Service E. Consumer Electronics Association (CEA) 709.1B-2002.....Control Network Protocol Specification 709.3-1999.....Free-Topology Twisted-Pair Channel Specification 852-A-2004.....Tunneling Component Network Protocols Over Internet Protocol Channels F. Federal Communications Commission (FCC) EMC-2002.....FCC Electromagnetic Compliance Requirements G. Institute of Electrical and Electronics Engineers, Inc. (IEEE) 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 100-2000...... of IEEE Standards Terms 802.1D-2004......Media Access Control Bridges 802.2-2003......Standards for Local Area Networks: Logical Link Control 802.3-2005......Information Technology - Telecommunications and Information Exchange between Systems. Local and Metropolitan Area Networks - Specific Requirements - Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (ANSI) 1100-2005...... Recommended Practice for Powering and Grounding Electronic Equipment (ANSI) C37.90.1-2002.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C57.13-2008.....Standard Requirements for Instrument Transformers

C62.41.1-2002.....Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits C62.41.2-2002.....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits H. International Electrotechnical Commission (IEC) IEC 61000-2005.....Electromagnetic Compatibility (EMC) - Part 4-5: Testing and Measurement Techniques; Surge Immunity Test I. National Electrical Contractors Association NECA 1-2006.....Good Workmanship in Electrical Construction J. National Electrical Manufacturers Association (NEMA) Maximum) C12.1-2008.....Electric Meters; Code for Electricity Metering C12.20-2002.....Electricity Meter - 0.2 and 0.5 Accuracy Classes C62.61-1993.....Gas Tube Surge Arresters on Wire Line Telephone Circuits ICS 1-2008..... Standard for Industrial Control and Systems General Requirements K. National Institute of Standards and Technology (NIST) 800, Part 39-2008.....[DRAFT] Managing Risk from Information Systems: An Organizational Perspective 800, Part 46-2009.....Guide to Enterprise Telework and Remote Access Security 800, Part 52-2009.....Recommended Security Controls for Federal Information Systems and Organizations (FIPS) 200-2006......Minimum Security Requirements for Federal Information and Information Systems L. National Fire Protection Association (NFPA) 30-08......Flammable and Combustible Liquids Code 70-2008.....National Electrical Code (NEC) 54-06.....National Fuel Gas Code

85-07.....Boiler and Combustion Systems Hazard Code 101-06.....Life Safety Code 262-2007......Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces M. NSF International 14-03......Plastics Piping Components and Related Materials 61-02.....Drinking Water System Components-Health Effects (Sections 1-9) N. Telecommunications Industry Association, (TIA/EIA) H-088C3.....Pathway Design Handbook 232-F-2002.....Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange 485-A-2003.....Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint System 568-C.1-2009.....Commercial Building Telecommunications Cabling Standard 606-A-2002.....Administration Standard for the Telecommunications Infrastructure 607-A-2002.....Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications O. Underwriters Laboratories, Inc. (UL): 916-2007..... Energy Management Equipment 5085-3-2007.....UL Standard for Safety Standard Low Voltage 1244-2000..... Electrical and Electronic Measuring and Testing Equipment 1581-2006.....Electrical Wires, Cables, and Flexible Cords

PART 2 - PRODUCTS

2.1 ADVANCED UTILITY METERING SYSTEM

- A. Functional Description
 - Meter and record load profiles. Chart energy and water consumption patterns.

- a. Calculate and record the following:
 - 1) Load factor.
 - 2) Peak demand periods.
 - 3) Consumption correlated with facility activities.
- b. Measure and record metering data for the following:
 - 1) Electricity.
 - 2) Steam and condensate
 - 3) Domestic water.
 - 4) Natural gas.
- c. Electric Power Quality Monitoring: Identify power system anomalies and measure, display, capture waveforms, and record trends and alarms of the following power quality parameters:
 - 1) Voltage regulation and unbalance.
 - 2) Continuous three-phase rms voltage.
 - 3) Periodic max./min./avg. samples.
 - 4) Harmonics.
 - 5) Voltage excursions.
- d. System: Report equipment status and power system control.
- B. Communications Components and Networks
 - Site Data Aggregation Device and its networked meters shall communicate using BACNet protocol. Backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
 - a. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork.
 Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - b. Each controller shall have a communication port for connection to an operator interface.
 - Network Configuration: High-speed, multi-access, open nonproprietary, industry standard LAN and WAN and Internetworked LAN.

- Communication protocol; LANs complying with RS-485 or RS-485 accessed through Ethernet, 100 Base-TX Ethernet, and Modbus TCP/IP.
- 4. Network Hardware
 - a. IP Network Hardware
 - 1) Wire and Cables, copper connectivity devices.
 - 2) Fiber Optic Patch Panel.
 - 3) Fiber Optic Media Converter
 - 4) Ethernet Switch
 - 5) IP Router
- 5. Communication Security
 - a. Remote teleworking and remote access of the network shall be through a firewall, at the Site Data Aggregation Device, complying with the requirements associated with Level 1 security in the Federal Information Processing Standard 140-2 (2002), Security Requirements for Cryptographic Modules.
 - b. Direct access to network shall be restricted as described in

2.2 CABLE SYSTEMS - TWISTED PAIR

- A. General:
 - All metallic cable sheaths, etc. (i.e.: risers, underground, station wiring, etc. shall be grounded.
 - 2. Install temporary cable and wire pairs so as to not present a pedestrian safety hazard. Provide for all associated work for any temporary installation and for removal when no longer necessary. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and approved by the VA prior to installation.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 4. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.

- 5. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 6. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges specified. The cable tests shall demonstrate the operation of this cable at not less than 10 mega (m) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at the maximum rate of speed. Make available all cable installation and test records at acceptance testing by the VA and shall thereafter be maintained in the Facility's Telephone Switch Room. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 7. Coordinate with the Electrical Contractor to install the telephone entrance cable to the nearest point of entry into the Facility and as shown on the drawings. Coordinate with the VA and the Electrical Contractor to provide all cable pairs/circuits from the Facility point of entry to the Telephone Switch Room all telephone, FTS, DHCP, ATM, Frame Relay, data, pay stations, patient phones, and any low voltage circuits as described herein.
- Provide all cable pairs/circuits from the Server Room and establish circuits throughout the Facility for all cabling as described herein.
- 9. Provide proper test equipment to demonstrate that cable pairs meet each OEM's standard transmission requirements, and guarantee the cable will carry data transmissions at the required speeds, frequencies, and fully loaded bandwidth.
- B. LAN COPPER CABLES
 - 1. Comply with Section 27 15 00 COMMUNICATIONS HORIZONTAL CABLING.
 - 2. RS-485 Cable:

- a. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted,
 No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- Unshielded Twisted Pair Cables: Category 5e or 6 as specified for horizontal cable for data service in Section 27 15 00 COMMUNICATIONS HORIZONTAL CABLING.
- 4. Cabling products shall be tested and certified for use at data speeds up to at least 100 Mbps. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media. Short lengths of media and transceivers may be used in these applications. Provide separately orderable media, taps and connectors.
- 5. Ethernet Switch shall be IEEE Std 802.3 bridges which shall function as the center of a distributed-star architecture and shall be "learning" bridges with spanning tree algorithms in accordance with IEEE Std 802.1D. The switch shall support the connected media types and shall have a minimum of 150% the required ports and no fewer than 4 ports. One port shall be switch selectable as an uplink port.
- Provide IP router network equipment. The routers shall be fully configurable for protocol types, security, and routing selection of sub-networks. The router shall meet all requirements of RFC 1812.
- C. LOW-VOLTAGE WIRING
 - Low-Voltage Control Cable: Multiple conductor, color-coded, No. 20 AWG copper, minimum.
 - a. Sheath: PVC; except in plenum-type spaces, use sheath listed for plenums.
 - b. Ordinary Switching Circuits: Three conductors, unless otherwise indicated.
 - c. Switching Circuits with Pilot Lights or Locator Feature: Five conductors, unless otherwise indicated.

2.3 GROUNDING

A. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with VA 27 05 26 Grounding and Bonding for Communications Systems and with VA 26 05 26 Grounding and Bonding for Electrical Systems.

2.4 METER COMMUNICATION

- A. Provide a BACNet network allowing communication from the meters' data heads to the Site Data Aggregation Device.
- B. Provide data heads at each meter, converting analog and pulsed information to digital information. Data heads shall allow for up to 24 hours of data storage (including time stamp, measured value, and scaling factor).
 - Each data head shall reside on a BACnet network using the MS/TP Data Link/Physical layer protocol. Each data head shall have a communication port for connection to an operator interface.
 - 2. Environment: Data Head hardware shall be suitable for the conditions ranging from -29°C to 60°C (-20°F to 140°F). Data Heads used outdoors and/or in wet ambient conditions shall be mounted within waterproof enclosures and shall be rated for operation at conditions ranging from -29°C to 60°C (-20°F to 140°F).
 - Provide a local keypad and display for interrogating and editing data. An optional system security password shall be available to prevent unauthorized use of the keypad and display.
 - Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The building controller shall maintain all BIOS and data in the event of a power loss for at least 72 hours.
 - 6. Immunity to power and noise. Controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

2.5 ELECTRICAL POWER METERS AND SUB-METERS

A. ELECTRICAL METER APPLICATIONS

- Energy meters in the advanced utility metering system shall have models available for amperage ranges of 100-2400 amperes.
 - a. The RS-485 communications shall provide communications links up to 10,000 feet long.
- Power meters shall be installed as part of the advanced utility metering system.
 - a. All setup parameters required by the power meter shall be stored in nonvolatile memory and retained in the event of a control power interruption.
 - b. The power meter may be applied in three-phase, three- or fourwire systems.
 - c. The power meter shall be capable of being applied without modification at nominal frequencies of 50, 60, or 400 Hz.
 - d. The power meter shall provide for onboard data logging, able to log data, alarms, waveforms and events.
- B. Physical and Common Requirements
 - Electrical power meters shall be separately mounted, and enclosed in a NEMA 250, Type 1 enclosure. Environmental Conditions: System components shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - a. Ambient conditions of 0 to 140 deg F dry bulb and 20 to 95 percent relative humidity, noncondensing.
- C. Current and voltage ratings:
 - Designed for use with current inputs from standard instrument current transformers with 5-A secondary and shall have a metering range of 0-10 A.
 - Withstand ratings shall be not less than 15 A, continuous; 50 A, lasting over 10 seconds, no more frequently than once per hour; 500 A, lasting 1 second, no more frequently than once per hour.
 - Voltage inputs from standard instrument potential transformers with 120 volt secondary output. The power meter shall support PT primaries through 3.2 MV.

- 4. The power meter shall operate properly over a wide range of control power including 90-457 VAC or 100-300 VDC.
- D. Electrical measurements and calculated values
 - 1. Power meters shall include the following rms Real-Time Measurements:
 - a. Current: Each phase, neutral, average of three phases, percent unbalance.
 - b. Voltage: Line-to-line each phase, line-to-line average of three phases, line-to-neutral each phase, line-to-neutral average of three phases, line-to-neutral percent unbalance.
 - c. Power: Per phase and three-phase total.
 - d. Reactive Power: Per phase and three-phase total.
 - e. Apparent Power: Per phase and three-phase total.
 - f. True Power Factor: Per phase and three-phase total.
 - g. Displacement Power Factor: Per phase and three-phase total.
 - h. Frequency.
 - i. THD: Current and voltage.
 - j. Accumulated Energy: Real kWh, reactive kVARh, apparent kVAh
 (signed/absolute).
 - k. Incremental Energy: Real kWh, reactive kVARh, apparent kVAh
 (signed/absolute).
 - Conditional Energy: Real kWh, reactive kVARh, apparent kVAh (signed/absolute).
 - 2. Power meters shall perform the following demand current

calculations, per phase, three-phase average and neutral:

- a. Present.
- b. Running average.
- c. Last completed interval.
- d. Peak.
- 3. Power meters shall perform the following demand real power calculations, three-phase total:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Predicted.

- e. Peak.
- f. Coincident with peak kVA demand.
- g. Coincident with kVAR demand.
- 4. Power meters shall perform the following demand reactive power calculations, three-phase total:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Predicted.
 - e. Peak.
 - f. Coincident with peak kVA demand.
 - g. Coincident with kVAR demand.
- 5. Power meters shall perform the following demand apparent power calculations, three-phase total:
 - a. Present.
 - b. Running average.
 - c. Last completed interval.
 - d. Predicted.
 - e. Peak.
 - f. Coincident with peak kVA demand.
 - g. Coincident with kVAR demand.
- 6. Power meters shall perform the following average true power factor calculations, demand coincident, three-phase total:
 - a. Last completed interval.
 - b. Coincident with kW peak.
 - c. Coincident with kVAR peak.
 - d. Coincident with kVA peak.
- 7. Power Analysis Values:
 - a. THD, Voltage and Current: Per phase, three phase, and neutral.
 - b. Displacement Power Factor: Per phase, three phase.
 - c. Fundamental Voltage, Magnitude and Angle: Per phase.
 - d. Fundamental Currents, Magnitude and Angle: Per phase.
 - e. Fundamental Real Power: Per phase, three phase.
 - f. Fundamental Reactive Power: Per phase.

- g. Harmonic Power: Per phase, three phase.
- h. Phase rotation.
- i Unbalance: Current and voltage.
- j. Harmonic Magnitudes and Angles for Current and Voltages: Per phase, up to 31st harmonic.
- 8. Power meters shall perform one of the following demand calculations, selectable by the User; meters shall be capable of performance of all of the following demand calculations.
 - a. Block interval with optional subintervals: Adjustable for 1minute intervals, from 1 to 60 minutes. User-defined parameters for the following block intervals:
 - Sliding block that calculates demand every second, with intervals less than 15 minutes, and every 15 seconds with an interval between 15 and 60 minutes.
 - 2) Fixed block that calculates demand at end of the interval.
 - Rolling block subinterval that calculates demand at end of each subinterval and displays it at end of the interval.
 - b. Demand calculations initiated by a Utility-furnished

synchronization signal:

- Signal is a pulse from an external source. Demand period begins with every pulse. Calculation shall be configurable as either a block or rolling block calculation.
- Signal is a communication signal. Calculation shall be configurable as either a block or rolling block calculation.
- 3) Demand can be synchronized with clock in the power meter.
- c. Minimum and maximum values: Record monthly minimum and maximum values, including date and time of record. For three-phase measurements, identify phase of recorded value. Record the following parameters:
 - 1) Line-to-line voltage.
 - 2) Line-to-neutral voltage.
 - 3) Current per phase.
 - 4) Line-to-line voltage unbalance.
 - 5) Line-to-neutral voltage unbalance.

- 6) Power factor.
- 7) Displacement power factor.
- 8) Total power.
- 9) Total reactive power.
- 10)Total apparent power.
- 11) THD voltage L-L.
- 12) THD voltage L-N.
- 13) THD current.
- 14) Frequency.
- d. Harmonic calculation: display and record the following:
 - Harmonic magnitudes and angles for each phase voltage and current through 31st harmonic. Calculate for all three phases, current and voltage, and residual current. Current and voltage information for all phases shall be obtained simultaneously from same cycle.
 - 2) Harmonic magnitude reported as a percentage of the fundamental or as a percentage of rms values, as selected by the VA.
- E. Waveform Capture:
 - Capture and store steady-state waveforms of voltage and current channels; initiated manually. Each capture shall be for 3 cycles, 128 data points for each cycle, allowing resolution of harmonics to 31st harmonic of basic 60 Hz.
 - 2. Capture and store disturbance waveform captures of voltage and current channels, initiated automatically based on an alarm event. Each capture shall be fully configurable for duration with resolution of at least 128 data points per cycle, for all channels simultaneously. Waveform shall be configurable to capture pre-event cycles for analysis.
 - 3. Store captured waveforms in internal nonvolatile memory; available for PC display, archiving, and analysis.
- F. Meter accuracy:
 - 1. Comply with ANSI C12.20, Class 0.5; and IEC 60687, Class 0.5 for revenue meters.
 - 2. Accuracy from Light to Full Rating:

- a. Power: Accurate to 0.5 percent of reading.
- b. Voltage and Current: Accurate to 0.5 percent of reading.
- c. Power Factor: Plus or minus 0.005, from 0.5 leading to 0.5 lagging.
- d. Frequency: Plus or minus 0.01 Hz at 45 to 67 Hz.
- G. Meter input, sampling, display, output, recording and reading Capabilities
 - 1. Input: One digital input signal.
 - a. Normal mode for on/off signal.
 - b. Demand interval synchronization pulse, accepting a demand synchronization pulse from a utility demand meter.
 - c. Conditional energy signal to control conditional energy accumulation.
 - 2. Sampling:
 - a. Current and voltage shall be digitally sampled at a rate high enough to provide accuracy to 63rd harmonic of 60-Hz fundamental.
 - b. Power monitor shall provide continuous sampling at a rate of 128 samples per cycle on all voltage and current channels in the meter.
 - 3. Display Monitor:
 - a. Backlighted LCD to display metered data with touch-screen or touch-pad selecting device.
 - b. Touch-screen display shall be a minimum 12-inch diagonal, resolution of 800 by 600 RGB pixels, 256 colors; NEMA 250, Type 1 display enclosure.
 - c. Display four values on one screen at same time.
 - Coordinate list below with meter capabilities specified in subparagraphs above.
 - 2) Current, per phase rms, three-phase average.
 - 3) Voltage, phase to phase, phase to neutral, and three-phase averages of phase to phase and phase to neutral.
 - 4) Real power, per phase and three-phase total.
 - 5) Reactive power, per phase and three-phase total.
 - 6) Apparent power, per phase and three-phase total.

25 10 10 - 23 ADVANCED UTILITY METERING SYSTEM

- 7) Power factor, per phase and three-phase total.
- 8) Frequency.
- 9) Demand current, per phase and three-phase average.
- 10) Demand real power, three-phase total.
- 11) Demand apparent power, three-phase total.
- 12) Accumulated energy (MWh and MVARh).
- 13) THD, current and voltage, per phase.
- d. Reset: Allow reset of the following parameters at the display:1) Peak demand current.
 - 2) Peak demand power (kW) and peak demand apparent power (kVA).
 - 3) Energy (MWh) and reactive energy (MVARh).
- 4. Outputs:
 - a. Operated either by user command sent via communication link, or set to operate in response to user-defined alarm or event.
 - b. Closed in either a momentary or latched mode as defined by user.
 - c. Each output relay used in a momentary contact mode shall have an independent timer that can be set by user.
 - d. One digital KY pulse to a user-definable increment of energy measurement. Output ratings shall be up to 120-V ac, 300-V dc, 50 mA, and provide 3500-V rms isolation.
 - e. One relay output module, providing a load voltage range from 20to 240-V ac or from 20- to 30-V dc, supporting a load current of 2 A.
 - f. Output Relay Control:
 - Relay outputs shall operate either by user command sent via communication link or in response to user-defined alarm or event.
 - Normally open and normally closed contacts, field configured to operate as follows:
 - a) Normal contact closure where contacts change state for as long as signal exists.
 - b) Latched mode when contacts change state on receipts of a pickup signal; changed state is held until a dropout signal is received.

- c) Timed mode when contacts change state on receipt of a pickup signal; changed state is held for a preprogrammed duration.
- d) End of power demand interval when relay operates as synchronization pulse for other devices.
- e) Energy Pulse Output: Relay pulses quantities used for absolute kWh, absolute kVARh, kVAh, kWh In, kVARh In, kWh Out, and kVARh Out.
- f) Output controlled by multiple alarms using Boolean-type logic.
- 5. Onboard Data Logging:
 - a. Store logged data, alarms, events, and waveforms in 2 MB of onboard nonvolatile memory.
 - b. Stored Data:
 - Billing Log: User configurable; data shall be recorded every 15 minutes, identified by month, day, and 15-minute interval. Accumulate 24 months of monthly data, 32 days of daily data, and between 2 to 52 days of 15-minute interval data, depending on number of quantities selected.
 - 2) Custom Data Logs: three user-defined log(s) holding up to 96 parameters. Date and time stamp each entry to the second and include the following user definitions:
 - a) Schedule interval.
 - b) Event definition.
 - c) Configured as "fill-and-hold" or "circular, first-in firstout."
 - 3) Alarm Log: Include time, date, event information, and coincident information for each defined alarm or event.
 - Waveform Log: Store captured waveforms configured as "filland-hold" or "circular, first-in first-out."
 - c. Default values for all logs shall be initially set at factory, with logging to begin on device power up.
- 6. Alarms.
 - a. User Options:

- 1) Define pickup, dropout, and delay.
- Assign one of four severity levels to make it easier for user to respond to the most important events first.
- Allow for combining up to four alarms using Boolean-type logic statements for outputting a single alarm.
- b. Alarm Events:
 - 1) Over/undercurrent.
 - 2) Over/undervoltage.
 - 3) Current imbalance.
 - 4) Phase loss, current.
 - 5) Phase loss, voltage.
 - 6) Voltage imbalance.
 - 7) Over kW demand.
 - 8) Phase reversal.
 - 9) Digital input off/on.
 - 10) End of incremental energy interval.
 - 11) End of demand interval.

2.6 WATER GAS METER DEVICES

- A. Water, oil and gas meter applications:
 - Steam Meters: provide vortex-shedding flowmeters, along with temperature sensors and pressure transducers to develop the energy flow.
 - 2. Steam Condensate Meters: provide a magnetic flowmeter in new installations; provide an ultrasonic or vortex-shedding flowmeter in existing installations which service interruption is not allowed. Provide temperature and pressure transducers to develop the energy flow.
 - 3. Natural Gas Meters: provide vortex-shedding flowmeters with pressure sensors.
 - 4. Potable (Domestic) Water: provide a magnetic flowmeter in new installations; provide an ultrasonic or vortex-shedding flowmeter with pressure sensor in existing installations which service interruption is not allowed.
 - 5. HVAC Hydronic System Water Meters

- a. Chilled Water Systems: provide vortex-shedding flowmeters with pressure and temperature sensors to determine energy flow.
- b. Heating Water Systems: provide vortex-shedding flowmeters with pressure and temperature sensors to determine energy flow.
- B. Associated Devices (to provide outside air conditions as well as energy metering, not merely flow metering):
 - Temperature Sensors: Resistance Temperature Device (RTD) with an integral transmitter type.
 - a. Immersion sensors shall be provided with a separable thermowell. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - b. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - c. Output Signal: 4-20 ma or digital.
 - 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - b. Output Signal: 4-20 ma continuous output signal.
 - 3. Pressure sensors.
 - a. Gas Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - b. Water Pressure Transmitters: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
 - 4. Thermowells.
 - a. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting. Stepped shank unless straight or tapered shank is indicated. ASME B40.200. Bore diameter required to match thermometer bulb or stem. Insertion length required to match thermometer bulb or stem. Provide a lagging extension on thermowells for insulated piping and tubing. Provide bushings. Use a mixture of graphite and glycerin for the thermowell's heat transfer medium.

1) Material for Use with Copper Tubing: copper nickel (90-10).

2) Material for Use with Steel Piping: stainless steel.

- C. Vortex-shedding flowmeters.
 - Meter shall have an all-welded flanged 316 stainless steel meter body with no seals. No sensor parts shall be exposed to the flow stream. Provide a 316 stainless steel trapezoidal shedder bar, sensing by detecting stresses in the shedder bar caused by vortices, and dual piezoelectric crystals located outside the process flow sense the shed vortices (dual crystal alignment cancels effects of noise and vibration). Design meter for Schedule 40 piping.
 - a. Meter shall be suitable for 25% warmer than the fluid operating temperature and for 25% higher than either the fluid's operating pressure or 25% higher than the piping system's safety valve set pressure, whichever is higher.
 - b. Meter flanges shall be Class 300 or higher, if required by the piping system's temperature and pressure Class.
 - c. Meter shall be suitable for installation in ambient conditions ranging from -29 to 60 degrees C (-20 to 140 degrees F).
 - 2. Provide meter data head.
 - a. Meters shall have digital readout of pressure-compensated flow rate and totalization located at transmitter and transmit flow rate and totalization digital signals to the Site Data Aggregation Device. As an option, pressure compensation and the compensated flow rate may be performed and displayed by the Site Data Aggregation Device receiving signals from the flow meter and from a pressure transmitter.
 - b. Provide programmable microprocessor electronics with on-board programming. Output signals shall be immune to ambient temperature swings. Processor shall include continuous selfdiagnostic routines that identify electronics problems and provide a warning. Electronics shall be replaceable in the field without affecting metering accuracy. Provide power supply as recommended by meter manufacturer. Mount electronics in a NEMA 4

enclosure separate from meter body in position accessible from platform or floor without the use of a portable ladder.

- Power supply to meter and transmitter shall be 120V/60hz.
 Provide a Class 2 control voltage transformer for 24VDC power to meter as needed.
- 2) Provide an internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
- 3. Performance:
 - a. Transmitted signal from flowmeter and its transmitter shall have a total (rms) accuracy plus or minus 1.5% of flow rate.
 - b. Flowmeter accuracy shall be no more than plus or minus 1% of span for gasses and plus or minus 0.7% of span for liquids. Flowmeter repeatability shall be no more than 0.2% of actual flow rate. Meter shall be designed to minimize vibration effect and to provide elimination of this effect.
 - c. Minimum turndown ratio shall be 20:1 for gasses and liquids. Maximum fluid pressure drop shall be as scheduled.
- D. Ultrasonic (Doppler and time of travel) flowmeters.
 - 1. Provide a clamp-on flowmeter precluding the requirement of penetrating into the process pipe. The flowmeter shall be completely microprocessor based utilizing the transit-time flow measurement technique. The flowmeter shall employ the phase detection multiple pulse transmit principle in conjunction with multiple frequency axial beam transducer technology to insure operation on liquids with solids and or bubbles. In addition, the flowmeter shall incorporate an alternate Doppler method measurement mode for highly aerated or heavy solid bearing liquids.
 - 2. Provide a meter data head.
 - a. The flowmeter shall provide automatic transducer spacing for clamp-on transducers utilizing a prefabricated mounting frame or mounting track (ruler scales shall not be acceptable), the meter shall also support in-line transducers. The meter shall also provide automatic Reynolds Number and liquid sonic velocity variation compensation and live zero flow measurement.

- By use of either transit-time or Doppler modes of operation, the flowmeter shall be capable of measuring all liquids in full sonically conductive pipes.
- b. The flowmeter shall have the ability to indicate flow rate, flow velocity, total flow, signal strength, liquid sonic velocity, Reynolds Number and liquid aeration level.
- c. The flowmeter shall be equipped with an integral front panel keypad and multifunction 240 X 128 pixel LCD display. In addition, the flowmeter shall provide self and application diagnostics to isolate any fault conditions to either equipment failure or abnormal process conditions.
- d. The flowmeter shall have full HELP menu routines corresponding to all levels of programming and operation.
- e. The flowmeter electronics shall be housed in a NEMA 4X enclosure and powered by 90-240VAC, 50-60Hz. Two isolated 4 to 20 maDC and two 0 to 5000 Hz pulse outputs proportional to flow shall be provided. The current outputs must be capable of driving a 1000ohm resistive load. In addition, the unit shall provide two 0 to 10 volt outputs and four SPDT alarm relays assignable to flow velocity, liquid sonic velocity, signal strength or liquid aeration.
- f. Provide an internal 1 MB data logger shall be provided to allow storage of all measured and calculated variables and alarms in intervals of 10 minutes.
- g. Two each bi-directional communications ports shall be provided.1) One each RS-485 with Modbus RTU or BACnet protocol.
- 3. Performance:
 - a. The flowmeter shall have an accuracy of plus or minus 1% of flow over span. Repeatability shall be 0.25% of flow.
 - b. Meter shall have a flow sensitivity of 0.001 fps at any flow rate including no flow conditions.
- E. Magnetic flowmeters.
 - 1. Provide meter data head.

- a. Meters shall have digital readout of pressure-compensated flow rate and totalization located at transmitter and transmit flow rate and totalization digital signals to the Site Data Aggregation Device. As an option, pressure compensation and the compensated flow rate may be performed and displayed by the Site Data Aggregation Device receiving signals from the flow meter and from a pressure transmitter.
- b. Provide programmable microprocessor electronics with on-board programming. Output signals shall be immune to ambient temperature swings. Processor shall include continuous selfdiagnostic routines that identify electronics problems and provide a warning. Electronics shall be replaceable in the field without affecting metering accuracy. Provide power supply as recommended by meter manufacturer. Mount electronics in a NEMA 4 enclosure separate from meter body in position accessible from platform or floor without the use of a portable ladder.
 - Power supply to meter and transmitter shall be 120V/60hz.
 Provide a Class 2 control voltage transformer for 24VDC power to meter as needed.
- 2. Performance:
 - a. Transmitted signal from flowmeter and its transmitter shall have a total (rms) accuracy plus or minus 1.5% of flow rate.
 - b. Flowmeter accuracy shall be no more than plus or minus 1.5% of actual flow rate for gasses and plus or minus 1% of actual flow rate for liquids. Flowmeter repeatability shall be no more than 0.2% of actual flow rate. Meter shall be designed to minimize vibration effect and to provide elimination of this effect.
 - c. Minimum turndown ratio shall be 20:1 for gasses and liquids. Maximum fluid pressure drop shall be as scheduled.
- F. Positive-displacement oil flowmeters.
 - Meter shall be a rotating- or oscillating-piston meter with a and aluminum piston, cast bronze body, safety filter, viton o-rings and Class 150 flanges mating with Schedule 40 piping. Meter shall transmit pulse signals to meter's data head.

- 2. Provide meter data head.
 - a. Meters shall have digital readout flow rate and totalization located at transmitter and transmit flow rate and totalization digital signals to the Site Data Aggregation Device.
 - b. Provide programmable microprocessor electronics with on-board programming. Output signals shall be immune to ambient temperature swings. Processor shall include continuous selfdiagnostic routines that identify electronics problems and provide a warning. Electronics shall be replaceable in the field without affecting metering accuracy. Provide power supply as recommended by meter manufacturer. Mount electronics in a NEMA 4 enclosure separate from meter body in position accessible from platform or floor without the use of a portable ladder.
 - Power supply to meter and transmitter shall be 120V/60hz.
 Provide a Class 2 control voltage transformer for 24VDC power to meter as needed.
- 3. Performance:
 - a. Flowmeter accuracy shall be no more than plus or minus 1.5% of actual flow rate.
 - b. Minimum turndown ratio shall be 10:1.

PART 3 - EXECUTION

3.1 INSTALLATION REQUIREMENTS

- A. Cabling
 - 1. Install Category 5e UTP, Category 6 UTP, and optical fiber cabling system as detailed in TIA-568-C.1, TIA/EIA-568-B.2, or TIA-568-C.3.
 - Screw terminals shall not be used except where specifically indicated on plans.
 - 3. Use an approved insulation displacement connection (IDC) tool kit for copper cable terminations.
 - Do not untwist Category 5e, Category 6 UTP cables more than 12 mm (1/2 inch) from the point of termination to maintain cable geometry.
 - 5. Provide service loop on each end of the cable, 3 m (10 feet) at the server rack and 304 mm (12 inches) at the meter.

- Do not exceed manufacturers' cable pull tensions for copper and optical fiber cables.
- 7. Provide a device to monitor cable pull tensions. Do not exceed 110 N (25 pounds) pull tension for four pair copper cables.
- 8. Do not chafe or damage outer jacket materials.
- 9. Use only lubricants approved by cable manufacturer.
- 10.Do not over cinch cables, or crush cables with staples.
- 11.For UTP cable, bend radii shall not be less than four times the cable diameter.
- 12.Cables shall be terminated; no cable shall contain unterminated elements.
- 13.Cables shall not be spliced.
- 14.Label cabling in accordance with paragraph Labeling in this section.
- B. Labeling
 - Labels: Provide labeling in accordance with TIA/EIA-606-A.
 Handwritten labeling is unacceptable. Stenciled lettering for all circuits shall be provided using laser printer.
 - 2. Cables: Cables shall be labeled using color labels on both ends with identifiers in accordance with TIA/EIA-606-A.
- C. Grounding: ground exposed, non-current-carrying metallic parts of electrical equipment, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, telecommunications system grounds, and grounding conductor of nonmetallic sheathed cables, as well as equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with VA 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS and with VA 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- D. Surge Protection
 - Provide surge protective devices on all metallic cables entering and leaving an interior environment to an exterior environment or vice versa, i.e. surge protective device at each interior location of a penetration to the exterior environment.
- E. Network Hardware

- System components and appurtenances shall be installed in accordance with the manufacturer's instructions and as shown. Necessary interconnections, services, and adjustments required for a complete and operable wired or wireless data transmission system shall be provided and shall be fully integrated with the configured network chosen for the project.
- F. Electrical Meters
 - 1. Power monitoring and control components shall all be factory installed, wired and tested prior to shipment to the job site.
 - 2. All control power, CT, PT and data communications wire shall be factory wired and harnessed within the equipment enclosure.
 - 3. Where external circuit connections are required, terminal blocks shall be provided and the manufacturer's drawings must clearly identify the interconnection requirements including wire type to be used.
 - All wiring required to externally connect separate equipment lineups shall be furnished and installed at the site as part of the contractor's responsibility.
 - 5. Contractor interconnection wiring requirements shall be clearly identified on the power monitoring and control system shop drawings.
- G. Water, Oil and Gas Meters
 - 1. Thermowells
 - a. Install thermowells with socket extending a minimum of 2 inches into fluid or one-third of pipe diameter and in vertical position in piping tees.
 - b. Install thermowells of sizes required to match temperature sensor connectors. Include bushings if required to match sizes.
 - c. Install thermowells with extension on insulated piping.
 - d. Fill thermowells with heat-transfer medium.
 - 2. Provide a test plug beside each temperature sensor.
 - 3. Flow meters, general
 - a. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

- b. Connect flowmeter-system elements to meters, connect flowmeter transmitters to meters, and connect thermal-energy meter transmitters to meters.
- c. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- d. Install flowmeter elements in accessible positions in piping systems.
- e. Install flowmeter, with minimum 20 x pipe diameter straight lengths of pipe upstream and minimum 10 x pipe diameter straight lengths of pipe downstream from flowmeter unless otherwise indicated by manufacturer's written instructions.
- f. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.

3.2 ADJUSTING AND IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.3 FIELD QUALITY CONTROL

- A. The power monitoring and control system vendor must be able to provide development, integration and installation services required to complete and turn over a fully functional system including:
 - Project management to coordinate personnel, information and on-site supervision for the various levels and functions of suppliers required for completion of the project.
 - 2. All technical coordination, installation, integration, and testing of all components.
 - 3. Detailed system design and system drawings.
- B. Cabling, equipment and hardware manufacturers shall have a minimum of 5 years experience in the manufacturing, assembly, and factory testing of components which comply with EIA TIA/EIA-568-B.1, EIA TIA/EIA-568-B.2 and EIA TIA/EIA-568-B.3.

- C. The network cabling contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified network cabling systems and equipment. The contractor shall demonstrate experience in providing successful systems within the past 3 years. Submit documentation for a minimum of three and a maximum of five successful network cabling system installations.
 - Supervisors and installers assigned to the installation of this system or any of its components shall be Building Industry Consulting Services International (BICSI) Registered Cabling Installers, Technician Level. Submit documentation of current BICSI certification for each of the key personnel.

3.4 ACCEPTANCE TESTING

- A. Develop testing procedures to address all specified functions and components of the Advanced Utility Metering System (AUMS). Testing shall demonstrate proper and anticipated responses to normal and abnormal operating conditions.
 - 1. Provide skilled technicians to start and operate equipment.
 - 2. Coordinate with equipment manufacturers to determine specific requirements to maintain the validity of the warranty.
 - Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for issues identified in testing.
 - Provide all tools to start, check-out and functionally test equipment and systems.
 - 5. Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for issues identified in any testing
 - 6. Review test procedures, testing and results with Government.
- B. Testing checklists: Develop project-specific checklists to document the systems and all components are installed in accordance with the manufacturers recommendation and the Contract Documents.
- C. Before testing, the following prerequisite items must be completed.
 - All related equipment has been started and start-up reports and checklists submitted and approved as ready for testing:

- 2. All associated system functions for all interlocking systems are programmed and operable per contract documents.
- 3. All punchlist items for the AUMS and equipment are corrected.
- 4. The test procedures reviewed and approved.
- 5. Safeties and operating ranges reviewed.
- D. The following testing shall be included:
 - Demonstrate reporting of data and alarm conditions for each point and ensure that alarms are received at the assigned location, including Site Data Collection Device.
 - Demonstrate ability of software program to function for the intended application.
 - 3. Demonstrate via graphed trends to show the reports are executed in correct manner.
 - Demonstrate that the meter readings are accurate using portable NIST traceable portable devices and calibrated valves in the piping system
 - 5. Demonstrate that the systems perform during power loss and resumption of power.
- E. Copper cables: Contractor shall provide all necessary testing equipment to test all copper network circuit cables. Tests shall conform to EIA/TIA 568B Permanent Link testing criteria. All testers are to be EIA/TIA 568B, Level IIe compliant. The primary field test parameters are:
 - Wire map: The wire map test is intended to verify pair to pin termination at each end and check for installation connectivity errors. For each of the conductors in the cable, the wire map indicates:
 - a. Continuity to the remote end
 - b. Shorts between any two or more conductors
 - c. Crossed pairs
 - d. Reversed pairs
 - e. Split pairs
 - f. Any other mis-wiring

- Length requirements: The maximum physical length of the basic link shall be 94 meters (including test equipment cords).
- 3. Insertion Loss: Worst case insertion loss relative to the maximum insertion loss allowed shall be reported.
- 4. Near-end crosstalk (NEXT) loss: Field tests of NEXT shall be performed at both ends of the test configuration.
- 5. Power sum near-end crosstalk (PSNEXT) loss
- 6. Equal-level far-end crosstalk (ELFEXT: Field tests of ELFEXT shall be performed at both ends of the test configuration
- 7. Power sum equal-level far-end crosstalk (PSELFEXT): Must be determined from both ends of the cable. Power sum Near End Crosstalk is not a category 3 parameter. For all frequencies from 1 to 100 MHz, the category 5e PSELFEXT of the cabling shall be measured in accordance with annex E of ANSI/TIA/EIA-568-B.2 and shall meet the values determined using equations (12) and (13) for the permanent link. PSELFEXT is not a required category 3 measurement parameter.
- 8. Return loss: Includes all the components of the link. The limits are based on the category of components and cable lengths. Return loss must be tested at both ends of the cable. Cabling return loss is not a required measurement for category 3 cabling.
- 9. Propagation delay and delay skew: Propagation delay is the time it takes for a signal to propagate from one end to the other. Propagation delay shall be measured in accordance with annex D of ANSI/TIA/EIA-568 B.2. The maximum propagation delay for all category permanent link configurations shall not exceed 498 ns measured at 10 MHz. Delay skew is a measurement of the signaling delay difference from the fastest pair to the slowest. Delay skew shall be measured in accordance with annex D of ANSI/TIA/EIA-568-B.2. The maximum delay skew for all category permanent link configurations shall not exceed 44 ns.
- 10.Administration: In addition to Pass/Fail indications, measured values of test parameters should be recorded in the administration system. Any reconfiguration of link components after testing may change the performance of the link and thus invalidates previous

test results. Such links shall require retesting to regain conformance.

- 11.Test equipment connectors and cords: Adapter cords that are qualified and determined by the test equipment manufacturer to be suitable for permanent link measurements shall be used to attach the field tester to the permanent link under consideration.
- 12.Test setup: The permanent link test configuration is to be used by installers and users of data telecommunications systems to verify the performance of permanently installed cabling. A schematic representation of the permanent link is illustrated in figure 1. The permanent link consists of up to 90 m (295 ft) of horizontal cabling and one connection at each end and may also include an optional transition/consolidation point connection. The permanent link excludes both the cable portion of the field test instrument cord and the connection to the field test instrument.
- 13.Replace or repair and cables, connectors, and/or terminations found to be defective.
- 14.Repair, replace, and/or re-work any or all defective components to achieve cabling tests which meet or exceed 568B permanent link requirements prior to acceptance of the installation or payment for services.

3.5 DEMONSTRATION AND INSTRUCTION

- A. Furnish the services of a factory-trained engineer or technician for a total of two four-hour classes to instruct designated Facility Information Technologies personnel. Instruction shall include cross connection, corrective, and preventive maintenance of the wired network system and connectivity equipment.
- B. Before the System can be accepted by the VA, this training must be provided and executed. Training will be scheduled at the convenience of the Facilities Contracting Officer and Chief of Engineering Service.
- C. On-site start-up and training of the advanced utility metering system shall include a complete working demonstration of the system with simulation of possible operating conditions that may be encountered.

- Include any documentation and hands-on exercises necessary to enable electrical and mechanical operations personnel to assume full operating responsibility for the advanced utility monitoring system after completion of the training period.
- D. Include 6 days on-site start-up assistance and 3 days on-site training in two sessions separated by minimum 1 month.
- E. Regularly schedule and make available factory training for VA staff training on all aspects of advanced utility metering system including:
 - Comprehensive software and hardware setup, configuration, and operation.
 - 2. Advanced monitoring and data reporting.
 - 3. Advanced power quality and disturbance monitoring.
- F. Before the system is accepted by the VA, the contractor shall walkthrough the installation with the VA's representative and the design engineer to verify proper installation. The contractor may be requested to open enclosures and terminal compartments to verify cable labeling and/or installation compliance.
- G. As-built drawings shall be provided noting the exact cable path and cable labeling information. Drawings in .DWG format will be available to the contractor. As-builts shall be submitted to the VA on disk saved as .DXF or .DWG files. Redline hardcopies shall be provided as well. CAD generated as-built information shall be shown on a new layer named AS_BUILT.

----- END -----

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the Government's system shall conform to the Government's requirements. Coordinate fuses, circuit breakers and relays with the Government's system, and obtain Government approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts,

> 26 05 11 - 1 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 - Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:

- Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
- The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.

26 05 11 - 3 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the Resident Engineer, typical for all.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.

- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - Electricians must use full protective equipment (e.g., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
 - 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the Resident Engineer, COR, and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer and COR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.

26 05 11 - 5 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

- 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the Government's system shall conform to the Government's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Arc flash boundary (inches).

- Available arc flash incident energy at the corresponding working distance (calories/cm2).
- 4. Required PPE category and description.
- limited approach distance (inches), restricted approach distance (inches).
- Equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the Resident Engineer and COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.

- Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
- 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.

26 05 11 - 8 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the Resident Engineer and COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests.

Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the Resident Engineer and COR at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Medium-voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.

2) Installation instructions.

- 2. Samples:
 - a. After approval and prior to installation, furnish the Resident Engineer and COTR with a sample of each type and size of cable per the requirements of Section 25 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 3. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.
 - b. Field Test Reports: Submit field test reports for approval.
 - c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
 - d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install and test cables, splices, and terminations shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the approved splices and terminations.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.
- 5. Government Approval:
 - a. Prior to construction, obtain written approval from the Government for the following items:
 - 1) Service entrance cables, splices, and terminations.

26 05 13 - 2 MEDIUM-VOLTAGE CABLES A list of qualified workers who will install, splice, and terminate the service entrance cables.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B3-01 (2007).....Standard Specification for Soft or Annealed

Copper Wire

C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

48-09..... Test Procedures and Requirements for

- Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded
- Insulation Rated 2.5 kV through 500 kV 386-95..... Separable Insulated Connector Systems for Power Distribution Systems above 600 V
- 400-01.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems
- 400.2-04.....Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF)
- 400.3-06.....Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment
- 404-00.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V
- D. National Electrical Manufacturers Association (NEMA): WC 71-99.....Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy WC 74-06......5-46 KV Shielded Power Cable for Use in the Transmission and Distribution of Electric

Energy

- E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- F. Underwriters Laboratories (UL):

1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 1. 15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.
- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP or XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.

H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.
- C. Splices:
 - Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - 2. Load-break terminations for indoor and outdoor use: 200 A loadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - 3. Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
 - Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and per manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number

of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.

- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.

- B. Installation shall be accomplished by qualified workers trained to perform medium-voltage equipment installations. Use tools as recommended or provided by the manufacturer. All manufacturer's instructions shall be followed.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes, and supported with cable arms at approximately the same elevation as the enclosing duct.
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and electrical inspections.
- B. Test equipment, labor, and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the Resident Engineer and COTR.
- C. Visual Inspection:
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.

- 3. Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
- 4. Verify installation of fireproofing tape and identification tags.
- D. Electrical Tests:
 - Acceptance tests shall be performed on new and service-aged cables as specified herein.
 - 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:
 - Maintenance tests shall be performed on service-aged cable interconnected to new cable.
 - After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
 - Test data shall include megohm readings and leakage current readings. Cables shall not be energized until insulation-resistance test results have been approved by the Resident Engineer and COTR. Test voltages and minimum acceptable resistance values shall be: Voltage Class Test Voltage Min. Insulation Resistance

15kV	2,500 VDC	5,000 megohms

- 2. Submit a field test report to the Resident Engineer and COTR that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- G. Online Partial Discharge Test: Comply with IEEE 400 and 400.3. Test all new and service-aged cables. Perform tests after cables have passed the insulation-resistance test, and after successful energization.
 - Testing shall use a time or frequency domain detection process, incorporating radio frequency current transformer sensors with a partial discharge detection range of 10 kHz to 300 MHz.

- 2. Submit a field test report to the Resident Engineer and COTR that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and numerically and graphically identifies the magnitude of partial discharge detected for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the Resident Engineer and COTR.

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:

- Electrical ratings and insulation type for each conductor and cable.
- 2) Splicing materials and pulling lubricant.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid

Electrical Insulating Materials

D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

44-10..... Thermoset-Insulated Wires and Cables

83-08.....Thermoplastic-Insulated Wires and Cables

467-07.....Grounding and Bonding Equipment

- 486A-486B-03.....Wire Connectors
- 486C-04.....Splicing Wire Connectors

486D-05..... Sealed Wire Connector Systems

486E-09.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables 514B-04.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2.
- D. Color Code:
 - No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	A	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident Engineer and COTR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.

26 05 19 - 4

3. Splice and insulation shall be product of the same manufacturer.

- E. Underground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation. Listed for wet locations, and approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- F. Underground Splices for No. 8 AWG and Larger:
 - Mechanical type, of high conductivity and corrosion-resistant material. Listed for wet locations, and approved for copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

26 05 19 - 5

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.

B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.
- E. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- F. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- G. Section 26 41 00, FACILITY LIGHTNING PROTECTION: Lightning protection.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Resident Engineer and COTR.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07.....Standard Specification for Soft or Annealed Copper Wire B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-83..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12.....National Electrical Safety Code 99-12.....Health Care Facilities E. Underwriters Laboratories, Inc. (UL): 44-10Thermoset-Insulated Wires and Cables
 - 83-08 Thermoplastic-Insulated Wires and Cables
 - 467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel

26 05 26 - 3

bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes,

cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- B. Pad-Mounted Transformers:
 - Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- C. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Panelboards and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:

- Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
- Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.5 RACEWAY

- A. Conduit Systems:
 - Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinet, and other enclosure through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG

bonding jumper at all intermediate metallic enclosures and across all section junctions.

- Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.

3.6 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.7 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.8 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.9 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.10 EXTERIOR LIGHT POLES

A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional unspliced length in and above foundation as required to reach pole ground stud.

3.11 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the Government ground resistance requirements.

3.12 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.13 ACCEPTANCE CHECKS AND TESTS

A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility

> 26 05 26 - 8 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.

- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the Resident Engineer and COTR prior to backfilling. The Contractor shall notify the Resident Engineer and COTR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- H. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- I. Section 31 20 11, EARTHWORK (SHORT FORM): Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Shop Drawings:
 - 1. Size and location of main feeders.
 - 2. Size and location of panels and pull-boxes.
 - 3. Layout of required conduit penetrations through structural elements.
- D. Certifications:
 - Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications.
 - b. Certification by the contractor that the material has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA): 70-08.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

1-05.....Flexible Metal Conduit 5-04....Surface Metal Raceway and Fittings 6-07....Electrical Rigid Metal Conduit - Steel 50-95....Enclosures for Electrical Equipment 360-093....Liquid-Tight Flexible Steel Conduit 467-07....Grounding and Bonding Equipment

514A-04.....Metallic Outlet Boxes 514B-04.....Conduit, Tubing, and Cable Fittings and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-00.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Electrical Intermediate Metal Conduit - Steel E. National Electrical Manufacturers Association (NEMA): TC-2-03.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1.
 - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less.
 - 4. Flexible galvanized steel conduit: Shall conform to UL 1.
 - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360.
 - Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

- 7. Surface metal raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical metallic tubing fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats./
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 3. Flexible steel conduit fittings:

- a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
- b. Clamp-type, with insulated throat.
- 4. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct burial plastic conduit fittings:

Fittings shall meet the requirements of UL 514C and NEMA TC3.

- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.

- 3. Multiple conduit (trapeze) hangers: Not less than 1.5 x 1.5 in [38 mm x 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods.
- Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the Resident Engineer as required by limited working space.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as specified herein.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, e.g., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts.
 - Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.

- 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground

continuity through the conduits. Tightening setscrews with pliers is prohibited.

- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Conduit for conductors 600 V and below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 6 ft
 [1.8 M] of flexible metal conduit extending from a junction box to
 the fixture.
 - 5. Tightening setscrews with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors above 600 V: Rigid steel. Mixing different types of conduits indiscriminately in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits indiscriminately in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals.
- G. Surface metal raceways: Use only where shown.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between.

3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, e.g., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 5 ft [1.5 M] of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit.

3.8 EXPANSION JOINTS

- A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable.

C. Install expansion and deflection couplings where shown.

3.9 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment.
 - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm].
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- E. Hollow Masonry: Toggle bolts.
- F. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- I. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for

26 05 33 - 11 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes.
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- G. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 31 20 11, EARTHWORK(SHORT FORM): Trenching, backfill, and compaction.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.

- c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the Resident Engineer for approval prior to construction.
- Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-11/318M-11.....Building Code Requirements for Structural

Concrete & Commentary

SP-66-04.....ACI Detailing Manual

C. American National Standards Institute (ANSI):

77-10.....Underground Enclosure Integrity

D. American Society for Testing and Materials (ASTM): C478-12.....Standard Specification for Precast Reinforced Concrete Manhole Sections

C858-10e1.....Underground Precast Concrete Utility Structures C990-09.....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint

Sealants.

E. National Electrical Manufacturers Association (NEMA): TC 2-03.....Electrical Polyvinyl Chloride (PVC) Conduit TC 3-04.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing

TC 6 & 8-03.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations TC 9-04.....Fittings For Polyvinyl Chloride (PVC) Plastic

Utilities Duct For Underground Installation

F. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

70E-12.....National Electrical Safety Code

G. Underwriters Laboratories, Inc. (UL): 6-07.....Electrical Rigid Metal Conduit-Steel

467-07.....Grounding and Bonding Equipment

651-11.....Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

651B-07.....Continuous Length HDPE Conduit

PART 2 - PRODUCTS

2.1 PRE-CAST CONCRETE MANHOLES AND HARDWARE

- A. Structure: Factory-fabricated, reinforced-concrete, monolithicallypoured walls and bottom. Frame and cover shall form top of manhole.
- B. Cable Supports:
 - Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms.
 - 2. Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long.
 - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable.
 - 4. Equip each cable stanchion with one spare cable arm, with three spare insulators for future use.
- C. Ladder: Aluminum or Fiberglass with 400 mm (16 inches) rung spacing. Provide securely-mounted ladder for every manhole over 1.2 M (4 feet) deep.

- D. Ground Rod Sleeve: Provide a 75 mm (3 inches) PVC sleeve in manhole floors so that a driven ground rod may be installed.
- E. Sump: Provide 305 mm x 305 mm (12 inches x 12 inches) covered sump frame and grated cover.

2.2 PULLBOXES

- A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 15 loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.
- B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom.

2.3 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. NEMA TC6 & 8 and TC9 plastic utilities duct.
 - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.
- C. Ducts (direct-burial):
 - 1. Plastic duct:
 - a. NEMA TC2 and TC3.
 - b. Duct shall be suitable for use with 75° C (167° F) rated conductors.
 - Rigid metal conduit: UL6 and NEMA RN1 galvanized rigid metal, halflap wrapped with 10 mil PVC tape.

2.4 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.5 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.6 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 MANHOLE AND PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install manholes and pullboxes level and plumb.
 - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inches) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.
- C. Grounding in Manholes:
 - Ground Rods in Manholes: Drive a ground rod into the earth, through the floor sleeve, after the manhole is set in place. Fill the sleeve with sealant to make a watertight seal. Rods shall protrude approximately 100 mm (4 inches) above the manhole floor.
 - Install a No. 3/0 AWG bare copper ring grounding conductor around the inside perimeter of the manhole and anchor to the walls with metallic cable clips.
 - Connect the ring grounding conductor to the ground rod by an exothermic welding process.
 - Bond the ring grounding conductor to the duct bank equipment grounding conductors, the exposed non-current carrying metal parts of racks, sump covers, and like items in the manholes with a minimum No. 6 AWG bare copper jumper using an exothermic welding process.

3.2 TRENCHING

A. Refer to Section 31 20 11 EARTHWORK(SHORT FORM) for trenching, backfilling, and compaction.

- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 foot) intervals to establish the grade and route of the duct bank.
 - Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the Resident Engineer.

3.3 DUCT INSTALLATION

A. General Requirements:

- Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
- Join and terminate ducts with fittings recommended by the manufacturer.
- 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inch) in 30 M (100 feet).

- 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
- 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
- 6. Install insulated grounding bushings on the conduit terminations.
- 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
- 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
- 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
- 10. Clearances between individual ducts:

a. For similar services, not less than 75 mm (3 inches).

- b. For power and signal services, not less than 150 mm (6 inches).
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.

- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
 - Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
 - 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
 - Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.

- 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- 8. Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Resident Engineer.
- C. Direct-Burial Ducts:
 - Install direct-burial ducts only where shown on the drawings. Provide direct-burial ducts only for low-voltage power and lighting branch circuits.
 - 2. Tops of ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - 3. Do not kink the ducts. Compaction shall not deform the ducts.
- D. Connections to Manholes: Ducts connecting to manholes shall be flared to have an enlarged cross-section to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 300 mm (12 inches) in each direction. Perimeter of the duct bank opening in the manhole shall be flared toward the inside or keyed to provide a positive interlock between the duct and the wall of the manhole. Use vibrators when this portion of the encasement is poured to ensure a seal between the envelope and the wall of the structure.

- E. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.
- F. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- G. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to

the satisfaction of the Resident Engineer at no cost to the Government.

4. Mandrel pulls shall be witnessed by the Resident Engineer.

---END---

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, indicated as the study in this section.
- B. A short-circuit and selective coordination study shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the building service transformer.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

VA Project 438-450 10-01-18 100% Bid Documents

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 242-01.....Protection and Coordination of Industrial and Commercial Power Systems 399-97....Industrial and Commercial Power Systems Analysis 1584a-04....Guide for Performing Arc-Flash Hazard Calculations

1.6 STUDY REQUIREMENTS

- A. The study shall include one line diagram, short-circuit and ground fault analysis, and protective coordination plots for all overcurrent protective devices.
- B. One Line Diagram:
 - 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- C. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.

- Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
- 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- D. Coordination Curves:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
 - 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent. B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed

checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction

> 26 08 00 - 3 COMMISSIONING OF ELECTRICAL SYSTEMS

VA Project 438-450 10-01-18 100% Bid Documents

to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

----- END -----

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting control, submit the following information.
 - 1. Manufacturer's catalog data.
 - 2. Wiring schematic and connection diagram.
 - 3. Installation details.
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.

26 09 23 - 1 LIGHTING CONTROLS

- Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Green Seal (GS):
 GC-12.....Occupancy Sensors
- C. Illuminating Engineering Society of North America (IESNA): IESNA LM-48.....Guide for Calibration of Photoelectric Control Devices
- D. National Electrical Manufacturer's Association (NEMA)
 - C136.10.....American National Standard for Roadway Lighting Equipment-Locking-Type Photocontrol Devices and Mating Receptacles - Physical and Electrical Interchangeability and Testing
 - ICS-1.....Standard for Industrial Control and Systems General Requirements
 - ICS-2.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
 - ICS-6.....Standard for Industrial Controls and Systems Enclosures
- E. Underwriters Laboratories, Inc. (UL): 20.....Standard for General-Use Snap Switches

773.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting 773ANonindustrial Photoelectric Switches for Lighting Control 98.....Enclosed and Dead-Front Switches 917....Clock Operated Switches

PART 2 - PRODUCTS

2.1 ELECTRONIC TIME SWITCHES

- A. Electronic, solid-state programmable units with alphanumeric display; complying with UL 917.
 - Astronomical Clock: Capable of switching a load on at sunset and off at sunrise, and automatically changing the settings each day in accordance with seasonal changes of sunset and sunrise. Additionally, it shall be programmable to a fixed on/off weekly schedule.
 - 2. Battery Backup: For schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Solid state, with SPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.
 - 1. Light-Level Monitoring Range: 1.5 to 10 fc [16.14 to 108 lx], with adjustable turn-on and turn-off levels.
 - 2. Time Delay: 15-second minimum.
 - 3. Surge Protection: Metal-oxide varistor.
 - 4. Mounting: Twist lock, with base-and-stem mounting or stem-andswivel mounting accessories as required.

2.3 TIMER SWITCHES

- A. Digital switches with backlit LCD display, 120/277 volt rated, fitting as a replacement for standard wall switches.
 - 1. Compatibility: Compatible with all ballasts.
 - Warning: Audible warning to sound during the last minute of "on" operation.
 - 3. Time-out: Adjustable from 5 minutes to 12 hours.
 - 4. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.4 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present.
 - Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm], and detect a person of average size and weight moving not less than 12 inches [305 mm] in either a horizontal or a vertical manner at an approximate speed of 12 inches/s [305 mm/s].
 - 3. Detection Coverage: as scheduled on drawings.

2.5 OUTDOOR MOTION SENSOR (PIR)

- A. Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F (minus 40 to plus 54 deg C).
 - Operation: Turn lights on when sensing infrared energy changes between background and moving body in area of coverage; with a 1 to 15 minute adjustable time delay for turning lights off.
 - 2. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outdoor junction box.
 - b. Relay: Internally mounted in a standard weatherproof electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 3. Bypass Switch: Override the on function in case of sensor failure.
 - 4. Automatic Light-Level Sensor: Adjustable from 1 to 20 fc [11 to 215 lx]; keep lighting off during daylight hours.
- B. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm].
- C. Detection Coverage: as scheduled on drawings.
 - D. Individually Mounted Sensor: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 1. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
 - 2. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.

2.9 LIGHTING CONTROL PANEL - RELAY TYPE

A. Controller: Comply with UL 508; programmable, solid-state, astronomic 365-day control unit with non-volatile memory, mounted in preassembled relay panel with low-voltage-controlled, latching-type, single-pole lighting circuit relays. Controller shall be capable of receiving inputs from sensors and other sources, and capable of timed overrides and/or blink-warning on a per-circuit basis.

Controller communication protocol shall be compatible with the building automation system specified in SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Where indicated, a limited number of digital or analog, low-voltage control-circuit outputs shall be supported by control unit and circuit boards associated with relays.

- B. Cabinet: Steel with hinged, locking door. Barriers separate lowvoltage and line-voltage components.
- C. Directory: Identifies each relay as to load controlled.
- D. Control Power Supply: Transformer and full-wave rectifier with filtered dc output.
- E. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125-V ac for tungsten filaments and 20 A, 277-V ac for ballasts, 50,000 cycles at rated capacity.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aim outdoor photocell switch according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle photocell turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.
- E. Locate light level sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the scheduled light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. In addition to NEC mandated markings, label controlled receptacles "AUTO-OFF".

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.

- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Program lighting control panels per schedule on drawings.
- F. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements.
- G. Upon completion of the lighting control system startup/commissioning, provide a two-hour session of on-site training to the building occupants and a four-hour session of on-site training to the building maintenance staff.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function.

- - - E N D - - -

SECTION 26 12 19 PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the pad-mounted, liquid-filled, medium-voltage transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for electrical equipment.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- F. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and ducts for underground raceway systems.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per IEEE Standards. Factory tests shall be certified. The following tests shall be performed:
 - Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
 - 2. Perform turns-ratio tests at all tap positions.

B. Furnish four (4) copies of certified manufacturer's factory test reports to the Resident Engineer prior to shipment of the transformers to ensure that the transformers have been successfully tested as specified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
 - c. Complete nameplate data, including manufacturer's name and catalog number.
 - 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - Approvals will be based on complete submissions of manuals, together with shop drawings.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Update the manual to include any information necessitated by shop drawing approval.
 - 2) Show all terminal identification.

26 12 19 - 2

- Include information for testing, repair, troubleshooting, assembly, disassembly, and recommended maintenance intervals.
- Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- B. Certifications:
 - Two weeks prior to the final inspection, submit the following certifications.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C37.47-00.....High Voltage Current-Limiting Type Distribution Class Fuses and Fuse Disconnecting Switches C57.12.00-00.....Liquid-Immersed Distribution, Power and Regulating Transformers C57.12.25-90.....Pad-Mounted, Compartmental-Type, Self-Cooled, Single-Phase Distribution-Transformers with Separable Insulated High Voltage Connectors; High Voltage, 34500 Grd Y/19920 Volts and Below; Low-Voltage 240/120 Volts; 167 kVA and Smaller Requirements C57.12.26-92.....Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers for Use with Separable Insulated High-Voltage Connectors (34500 Grd Y/19920 V and Below, 2500 kVA and Smaller) C57.12.28-05.....Pad-Mounted Equipment - Enclosure Integrity

VA Project 438-450 VAMC Sioux Falls, SD Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 C57.12.29-05.....Pad-Mounted Equipment - Enclosure Integrity for Coastal Environments C57.12.34-10.....Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers, 5 MVA and Smaller; High Voltage, 34.5 kV Nominal System Voltage and Below; Low Voltage, 15kV Nominal System Voltage and Below C. American Society for Testing and Materials (ASTM): D3487-08.....Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus D. Institute of Electrical and Electronic Engineers (IEEE): C2-07.....National Electrical Safety Code C57.12.10-11.....Liquid-Immersed Power Transformers C57.12.90-10.....Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers C62.11-06.....Metal-Oxide Surge Arresters for AC Power Circuits 48-09..... Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5kV Through 765kV or Extruded Insulation Rated 2.5kV Through 500kV 386-06.....Separable Insulated Connector Systems for Power Distribution Systems Above 600 V 592-07.....Exposed Semiconducting Shields on High-Voltage Cable Joints and Separable Connectors E. International Code Council (ICC): IBC-12.....International Building Code F. National Electrical Manufacturers Association (NEMA): LA 1-09.....Surge Arresters TP 1-02.....Guide for Determining Energy Efficiency for Distribution Transformers TR 1-00..... Transformers, Regulators, and Reactors G. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)

26 12 19 - 4

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

H. Underwriters Laboratories Inc. (UL): 467-07.....Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Transformers shall be in accordance with ANSI, ASTM, IEEE, NEMA, NFPA, UL, as shown on the drawings, and as specified herein. Each transformer shall be assembled as an integral unit by a single manufacturer.
- B. Transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and with liquid-immersed windings.
- C. Ratings shall not be less than shown on the drawings.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the project site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat, except where a different color is specified in Section 09 06 00, SCHEDULE FOR FINISHES. All surfaces of the transformer that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.
- F. Products by Square D (Schneider Electric) are the Basis of Design.

2.2 COMPARTMENTS

- A. Construction:
 - Enclosures shall be weatherproof and in accordance with ANSI C57.12.28.
 - The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.
 - 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing and with reinforcing gussets using jig welds to assure rectangular rigidity.
 - 4. All bolts, nuts, and washers shall be zinc-plated steel.
 - 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
 - 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration,

26 12 19 - 5

impedance, date of manufacture, and serial number shall be shown on the nameplate.

- B. Doors:
 - Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
 - The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

2.3 BIL RATING

A. 15 kV class equipment shall have a minimum 95 kV BIL rating.

2.4 TRANSFORMER FUSE ASSEMBLY

- A. The primary fuse assembly shall be load-break combination fuse and dry-well fuse holder rated for system voltage, rated for 10 load makes and 10 load breaks, with rated 200 amp load current at 75% power factor, 10,000 symmetrical A close-in on fault duty, and 95 kV BIL. The entire fuse assembly shall be removable through the use of hot stick.
 - The fuses shall be concealed, hot stick removable, 50,000 A symmetrical interrupting, non-expulsion, current-limiting primary distribution type, of the size and voltage class as shown on the drawings. The fuses shall operate within the fuse holder as a unit disconnecting means. Fuses shall be in accordance with ANSI C37.47.
 - 2. Transformers shall not have internal "weak link" fuses that require transformer tank cover removal for replacement.
 - 3. For units above 500 kVA using fusing above the 50 A 15 kV and 100 A 5 kV application, a clip-mounted arrangement of the current limiting fuses (i.e., live-front configuration) is required.

2.5 PRIMARY CONNECTIONS

- A. Primary connections shall be 600 A deadbreak wells and inserts for cable sizes shown on the drawings.
- B. Surge Arresters: Distribution class, one for each primary phase, complying with IEEE C62.11 and NEMA LA 1, supported from tank wall.

2.6 MEDIUM-VOLTAGE SWITCH

- A. The transformer primary disconnect switch shall be an oil-immersed, internal, gang-operated, load-interrupter type, rated at ampacity and system voltage as shown on the drawings, with a minimum momentary withstand rating of not less than the calculated available fault current shown on the drawings.
- B. For loop feeds, switch shall be a four-position, T-blade manual switch located in the medium-voltage compartment and hot-stick-operated.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium-voltage cables in the primary compartment with 200 A loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
- B. Ground metallic cable shield with a cable shield grounding adapter, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly, bleeder wire, and ground braid.

2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the low-voltage bushings, and hot stick in the low-voltage compartment.
- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement.
- C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the secondary neutral and ground pad.

2.9 TRANSFORMERS

- A. Transformer ratings shall be as shown on drawings. kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- B. Temperature rises shall not exceed the NEMA TR 1 standards of 65 $^\circ$ C (149 $^\circ$ F) by resistance.

26 12 19 - 7

- C. Transformer insulating material shall be mineral oil in accordance with ASTM D 3487.
- D. Transformer impedance shall be not less than 4-1/2% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
- E. Sound levels shall conform to NEMA TR 1 standards.
- F. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.
 - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- G. Primary windings shall have four 2-1/2% full-capacity voltage taps; two taps above and two taps below rated voltage.
- H. Core and Coil Assemblies:
 - Cores shall be grain-oriented, non-aging, silicon steel to minimize losses.
 - Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - 3. Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.
 - 6. Provide end fillers or tiedowns for coil windings.
- I. The transformer tank, cover, and radiator gauge thickness shall not be less than that required by ANSI.
- J. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer. Provide warning sign.
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - d. Pressure relief valve.

26 12 19 - 8

- e. Liquid level gauge and filling plug.
- f. A grounding pad in the medium- and low-voltage compartments.
- g. A diagrammatic nameplate.
- h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.
- i. Hot stick. Securely fasten hot stick within low-voltage compartment.
- 2. The accessories shall be made accessible within the compartments without disassembling trims and covers.
- K. Transformers shall meet the minimum energy efficiency values per NEMA TP 1:

KVA	(%)
75	98.7
112.5	98.8
150	98.9
225	99.0
300	99.0
500	99.1
750	99.2
1000	99.2
1500	99.3
2000	99.4
2500	99.4

2.10 CABLE FAULT INDICATORS (LOOP SYSTEM ONLY):

- A. Provide each incoming and outgoing cable within the medium-voltage compartment with a single-phase cable fault indicator with in-rush restraint. Mount the indicator on the cable support member.
 - The sensor assembly shall have a split-core for easy installation over the incoming and outgoing cable. The core shall be laminated, grain-oriented silicon steel, and encapsulated. Provide a clamp to secure the two coil halves around the cable.
 - 2. Select the coil to the pick-up at the current setting shown on the drawings.

- a. The coil setting shall be accurate to within 10% of the pick-up.
- b. The coil current-time curve shall coordinate with the primary current-limiting fuse.
- B. Upon restoration of the system to normal operating conditions, the cable fault indicator shall automatically reset to normal and be ready to operate.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers outdoors, as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Anchor transformers with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Mount transformers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12-1/2 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Grounding:
 - Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
 - Connect the ground rod to the ground pads in the medium- and lowvoltage compartments.
 - Install and connect the cable shield grounding adapter per the manufacturer's instructions. Connect the bleeder wire of the cable

26 12 19 - 10

shield grounding adapter to the loadbreak or deadbreak elbow grounding point with minimum No. 14 AWG wire, and connect the ground braid to the grounding system with minimum No. 6 AWG bare copper wire. Use soldered or mechanical grounding connectors listed for this purpose.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.
 - c. Verify that control and alarm settings on temperature indicators are as specified.
 - d. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, and perform thermographic survey after energization under load.
 - e. Vacuum-clean transformer interior. Clean transformer enclosure exterior.
 - f. Verify correct liquid level in transformer tank.
 - g. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - h. Verify the presence and connection of transformer surge arresters, if provided.
 - i. Verify that the tap-changer is set at rated system voltage.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the Resident Engineer two weeks prior to final inspection:1. Six insulated protective caps.
 - 26 12 19 11

- 2. One spare set of medium-voltage fuses for each size and type of fuse used in the project.
- 3. One spare set of three cable fault indicators.

3.5 INSTRUCTION

A. The Contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the Resident Engineer.

---END---

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of low-voltage dry-type general-purpose transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets and wiring diagrams.

- Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the transformers.
- Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. National Electrical Manufacturers Association (NEMA): TP1-02.....Guide for Determining Energy Efficiency for Distribution Transformers

TR1-00...... Transformers, Regulators, and Reactors

- E. Underwriters Laboratories, Inc. (UL):
 - UL 506-08.....Standard for Specialty Transformers
 - UL 1561-11.....Dry-Type General Purpose and Power Transformers
- F. United States Department of Energy
 - 10 CFR Part 431.....Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Products by Square D (Schneider Electric) are the Basis of Design, or approved equal.

2.2 TRANSFORMERS

- A. Unless otherwise specified, transformers shall be in accordance with NEMA, NEC, UL and as shown on the drawings.
- B. Transformers shall have the following features:
 - Self-cooled by natural convection, isolating windings, dry-type. Autotransformers will not be accepted, except as specifically allowed for buck-boost applications.
 - 2. Rating and winding connections shall be as shown on the drawings.
 - 3. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 4. Copper windings.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220 °C (428 °F) system with an average maximum rise by resistance of 150 °C (302 °F) in a maximum ambient of 40 °C (104 °F).
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 °C (365 °F) system with an average maximum rise by resistance of 115 °C (239 °F) in a maximum ambient of 40 °C (104 °F).
 - 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.

7. Certified sound levels, determined in accordance with NEMA, shall not exceed the following:

Transformer Rating	Sound Level Rating
0 – 9 KVA	40 dB
10 - 50 KVA	45 dB
51 - 150 KVA	50 dB
151 - 300 KVA	55 dB
301 - 500 KVA	60 dB

- 8. If not shown on drawings, nominal impedance shall be as permitted by NEMA.
- 9. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.
- 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 11. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Outdoor enclosures shall be NEMA 3R.
 - c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.
 - d. Ventilation openings shall prevent accidental access to live components.
 - e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated.
- Dimensions and configurations shall conform to the spaces designated for their installations.
- 14. Transformers shall meet the minimum energy efficiency values per NEMA TP1 as listed below:

VA Project 438-450 10-01-18 100% Bid Documents

	kVA Rating	Output efficienc (%)	У
	15	97	
	30	97.5	
	45	97.7	
	75	98	
	112.5	98.2	
	150	98.3	
	225	98.5	
	300	98.6	
	500	98.7	
	750	98.8	
Ηa	armonic	K-13 (%)	
'un	damental	100	
	3 rd	70	
	5^{th}	42	
	7 th	5	
	9^{th}	3	
	11^{th}	3	
	13^{th}	1	
	13 th 15 th	1 0.7	

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Anchor transformers with rustproof bolts, nuts, and washers, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 150 mm (6 inches).
- D. Install transformers on vibration pads designed to suppress transformer noise and vibrations.

26 22 00 - 5 LOW-VOLTAGE TRANSFORMERS

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
 - d. Perform specific inspections and mechanical tests as recommended by manufacturer.
 - e. Verify correct equipment grounding.
 - f. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition, and properly performing the intended function.

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 25 10 10, ADVANCED UTILITY METERING: Requirements for electrical metering.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- H. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.
- I. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

- b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):

PB 1-11.....Panelboards

250-08..... Enclosures for Electrical Equipment (1,000V Maximum)

D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)

70E-12.....Standard for Electrical Safety in the Workplace E. Underwriters Laboratories, Inc. (UL):

50-95.....Enclosures for Electrical Equipment 67-09.....Panelboards 489-09.....Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second

section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.

K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
 - 4. Inner and outer doors shall open left to right.
 - 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 277/480 V Panelboard: 14,000 A symmetrical.

- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.
 - An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Resident Engineer. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit

breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards

- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 WD 1-10.....General Color Requirements for Wiring Devices
 WD 6-08Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-11.....Surface Metal Raceways and Fittings
 - 20-10.....General-Use Snap Switches
 - 231-07.....Power Outlets
 - 467-07.....Grounding and Bonding Equipment
 - 498-07.....Attachment Plugs and Receptacles
 - 943-11.....Ground-Fault Circuit-Interrupters
 - 1449-07.....Surge Protective Devices

1472-96.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.

- Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be white in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing.
 - 4. Tamper Resistant Duplex Receptacles:
 - a. Bodies shall be white in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.

5. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the hospital grade listing and as follows.

a. Bodies shall be white nylon.

- C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be white in color unless otherwise specified or shown on the drawings.
 - Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 2. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the NEC and as shown as on the drawings.

- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- J. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right.
- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.

- b. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- c. Test GFCI receptacles.
- 2. Healthcare Occupancy Tests:
 - a. Test hospital grade receptacles for retention force per NFPA 99.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):
 IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-07.....Low Voltage Cartridge Fuses KS 1-06....Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL): 98-07.....Enclosed and Dead-Front Switches 248-00....Low Voltage Fuses

489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Products by Square D (Schneider Electric) are the Basis of Design, or approved equal.
- 2.2 FUSED SWITCHES RATED 600 AMPERES AND LESS
 - A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
 - B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
 - C. Shall be horsepower (HP) rated.
 - D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.3 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class RK1 or Class RK5, time delay.
- C. Other Branch Circuits: Class RK1, time delay, Class RK5, time delay, Class J, fast acting, or Class J, time delay.
- D. Control Circuits: Class CC, fast acting or time delay.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

VA Project 438-450 10-01-18 100% Bid Documents

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer.

---END---

SECTION 26 41 00 FACILITY LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing and installation of a complete UL master labeled lightning protection system.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Penetrations through the roof.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground faults.
- D. Section 26 42 00 CATHODIC PROTECTION: Requirements for protection of buried ferrous equipment from galvanic corrosion.
- E. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective device installed at the electrical service entrance.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Show locations of air terminals, connections to required metal surfaces, down conductors, and grounding means.
 - c. Show the mounting hardware and materials used to attach air terminals and conductors to the structure.
 - Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the lightning protection system conforms to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the lightning protection system has been properly installed and inspected.
- c. Certification that the lightning protection system has been inspected by a UL representative and has been approved by UL without variation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 780-11....Standard for the Installation of Lightning Protection Systems
- C. Underwriters Laboratories, Inc. (UL): 96-05......Lightning Protection Components 96A-07....Installation Requirements for Lightning Protection Systems

467-07.....Standard for Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Lightning protection components shall conform to NFPA 780 and UL 96, for use on Class Istructures. Aluminum materials are not allowed.
 - 1. Class Iconductors: Copper.
 - Class I air terminals: Solid copper, 460 mm (18 inches) long, not less than 9.5 mm (3/8 inch) diameter, with sharp bare copper points.
 - 3. Ground rods: Copper-clad steel, 0.75 in (19 mm) diameter by 3 m (10 feet) long.
 - 4. Ground plates: Solid copper, not less than 20 gauge.
 - 5. Bonding plates: Bronze, 50 square cm (8 square inches).
 - 6. Through roof connectors: Solid copper riser bar, length and type as required to accommodate roof structure and flashing requirements.

26 41 00 - 2 FACILITY LIGHTNING PROTECTION

- 7. Down conductor guards: Stiff copper or brass.
- 8. Anchors and fasteners: Bronze bolt and clamp type shall be used for all applications except for membrane roof. Adhesive type are allowed only for attachment to membrane roof materials, using adhesive that is compatible with the membrane material.
- Connectors: Bronze clamp-type connectors shall be used for roof conductor splices, and the connection of the roof conductor to air terminals and bonding plates. Crimp-type connectors are not allowed.
- 10. Exothermic welds: Exothermic welds shall be used for splicing the roof conductor to the down conductors, splices of the down conductors, and for connection of the down conductors to ground rods, ground plates, and the ground ring.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be coordinated with the roofing manufacturer and installer.
- B. Install the conductors as inconspicuously as practical.
- C. Install the down conductors within the concealed cavity of exterior walls where practical. Run the down conductors to the exterior at elevations below the finished grade.
- D. Where down conductors are subject to damage or are accessible near grade, protect with down conductor guards to 2.4 m (8 feet) above grade. Bond down conductors guards to down conductor at both ends.
- E. Make connections of dissimilar metal with bimetallic type fittings to prevent electrolytic action.
- F. Install ground rods and ground plates not less than 600 mm (2 feet) deep and a distance not less than 900 mm (3 feet) nor more than 2.5 m (8 feet) from the nearest point of the structure. Exothermically weld the down conductors to ground rods and ground plates in the presence of the Resident Engineer.
- G. Bond down conductors to metal main water piping where applicable.
- H. Bond down conductors to building structural steel.
- Connect roof conductors to all metallic projections and equipment above the roof as indicated on the drawings.

- J. Connect exterior metal surfaces, located within 900 mm (3 feet) of the conductors, to the conductors to prevent flashovers.
- K. Maintain horizontal or downward coursing of main conductor and insure that all bends have at least an 200 mm (8 inches) radius and do not exceed 90 degrees.
- L. Conductors shall be rigidly fastened every 900 mm (3 feet) along the roof and down to the building to ground.
- M. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure.
- N. Install air terminal bases, cable holders and other roof-system supporting means without piercing membrane or metal roofs.
- O. Use through-roof connectors for penetration of the roof system. Flashing shall be provided by roofing contractor in accordance with Section 07 60 00, FLASHING AND SHEET METAL.
- P. Down conductors coursed on or in reinforced concrete columns or on structural steel columns shall be connected to the reinforcing steel or the structural steel member at its upper and lower extremities. In the case of long vertical members an additional connection shall be made at intervals not exceeding 30 M (100 feet).
- Q. A counterpoise or ground ring, where shown, shall be of No. 1/0 copper cable having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 600 mm (2 feet) deep at a distance not less than 900 mm (3 feet) nor more than 2.5 M (8 feet) from the nearest point of the structure.
- R. On construction utilizing post tensioning systems to secure precast concrete sections, the post tension rods shall not be used as a path for lightning to ground.
- S. Where shown, use the structural steel framework or reinforcing steel as the down conductor.
 - Weld or bond the non-electrically-continuous sections together and make them electrically continuous.
 - Verify the electrical continuity by measuring the ground resistances to earth at the ground level, at the top of the building or stack,

and at intermediate points with a sensitive ohmmeter. Compare the resistance readings.

- Connect the air terminals together with an exterior conductor connected to the structural steel framework at not more than 18 m (60 foot) intervals.
- Install ground connections to earth at not more than 18 m (60 foot) intervals around the perimeter of the building.
- 5. Weld or braze bonding plates to cleaned sections of the steel and connect the conductors to the plates.
- 6. Do not pierce the structural steel in any manner. Connections to the structural steel shall conform to UL 96A.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Test the ground resistance to earth by standard methods, and conform to the ground resistance requirements specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. A UL representative shall inspect the lightning protection system. Obtain and install a UL numbered master label for each of the lightning protection systems at the location directed by the UL representative and the Resident Engineer.

---END---

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as Surge Protective Devices or SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 24 16, PANELBOARDS: For factory-installed SPD.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the SPD has been properly installed.

26 43 13 - 1 SURGE PROTECTIVE DEVICES

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits

IEEE C62.45-03.....Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits

- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - UL 1283-05..... Electromagnetic Interference Filters
 - UL 1449-06.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.

B. Surge Current per Phase: Minimum 120kA per phase.

2.2 ENCLOSURES

A. Enclosures: NEMA 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Factory-installed SPD: Switchgear, switchboard, or panelboard manufacturer shall install SPD at the factory.
- B. Do not perform insulation resistance tests on panelboards or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the Resident Engineer.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):
 - C78.1-91.....Fluorescent Lamps Rapid-Start Types -Dimensional and Electrical Characteristics C78.376-01.....Chromaticity of Fluorescent Lamps
- C. American Society for Testing and Materials (ASTM): C635-07.....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings

D. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste E. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment F. Illuminating Engineering Society (IES): LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-08..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature G. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Surge Voltages in Low Voltage AC Power Circuits H. International Code Council (ICC): IBC-12.....International Building Code I. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 101-12....Life Safety Code J. National Electrical Manufacturer's Association (NEMA): C82.1-04..... Lamp Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02......Method of Measurement of Fluorescent Lamp Ballasts C82.4-02.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-11..... Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL-9-09......Dimming of T8 Fluorescent Lighting Systems SSL-1-10.....Electronic Drivers for LED Devices, Arrays, or Systems K. Underwriters Laboratories, Inc. (UL): 496-08.....Lampholders

542-0599	Fluorescent Lamp Starters
844-12	Luminaires for Use in Hazardous (Classified)
	Locations
924-12	Emergency Lighting and Power Equipment
935-01	Fluorescent-Lamp Ballasts
1029-94	High-Intensity-Discharge Lamp Ballasts
1029A-06	Ignitors and Related Auxiliaries for HID Lamp
	Ballasts
1598-08	Luminaires
1574-04	Track Lighting Systems
2108-04	Low-Voltage Lighting Systems
8750-09	Light Emitting Diode (LED) Light Sources for
	Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- D. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.

- E. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- F. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- G. Light Transmitting Components for Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.

2.2 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps

shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.

- 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.3 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. $(-4^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3500° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - Housing, LED driver, and LED module shall be products of the same manufacturer.

- C. LED Troffers:
 - 1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
- E. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- F. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.

- b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
- 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the Resident Engineer. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of exterior luminaires, poles, and supports.

1.2 RELATED WORK

- A. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for exterior light poles and luminaires.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- F. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.
- G. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Clearly present sufficient information to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting, details, materials, required clearances, terminations, wiring and connection diagrams, photometric data, ballasts, poles, luminaires, and accessories.

- C. Manuals: Two weeks prior to final inspection, submit four copies of operating and maintenance manuals to the Resident Engineer. Include technical data sheets, wiring and connection diagrams, and information for ordering replacement ballasts and parts.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer:
 - Certification by the manufacturer that the materials are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Aluminum Association Inc. (AA): AAH35.1-06.....Alloy and Temper Designation Systems for Aluminum
- C. American Association of State Highway and Transportation Officials (AASHTO):

LTS-5-09Structural Supports for Highway Signs, Luminaires and Traffic Signals

- D. American Concrete Institute (ACI):
 318-05Building Code Requirements for Structural
 Concrete
- E. American National Standards Institute (ANSI): C81.61-09Electrical Lamp Bases - Specifications for Bases (Caps) for Electric Lamps
- F. American Society for Testing and Materials (ASTM): A123/A123M-09Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A153/A153M-09.....Zinc Coating (Hot-Dip) on Iron and Steel Hardware B108-03a-08Aluminum-Alloy Permanent Mold Castings C1089-06Spun Cast Prestressed Concrete Poles

26 56 00 - 2 EXTERIOR LIGHTING

G. Federal Aviation Administration (FAA): AC 70/7460-IK-07.....Obstruction Lighting and Marking AC 150/5345-43F-06.....Obstruction Lighting Equipment H. Illuminating Engineering Society of North America (IESNA) HB-9-00.....Lighting Handbook RP-8-05.....Roadway Lighting RP-20-98.....Lighting for Parking Facilities RP-33-99.....Lighting for Exterior Environments LM-5-96..... Photometric Measurements of Area and Sports Lighting Installations LM-50-99.....Photometric Measurements of Roadway Lighting Installations LM-52-99.....Photometric Measurements of Roadway Sign Installations LM-64-01..... Photometric Measurements of Parking Areas LM-72-97.....Directional Positioning of Photometric Data LM-79-08..... Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products LM-80-08..... Approved Method for Measuring Lumen Maintenance of LED Light Sources I. National Electrical Manufacturers Association (NEMA): C78.41-06.....Electric Lamps - Guidelines for Low-Pressure Sodium Lamps C78.42-07Electric Lamps - Guidelines for High-Pressure Sodium Lamps C78.43-07Electric Lamps - Single-Ended Metal-Halide Lamps C78.1381-98.....Electric Lamps - 70-Watt M85 Double-Ended Metal-Halide Lamps C82.4-02Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps (Multiple-Supply Type) C136.3-05For Roadway and Area Lighting Equipment -Luminaire Attachments

C136.17-05Roadway and Area Lighting Equipment - Enclosed Side-Mounted Luminaires for Horizontal-Burning High-Intensity-Discharge Lamps - Mechanical Interchangeability of Refractors ICS 2-00 (R2005)Controllers, Contactors and Overload Relays Rated 600 Volts ICS 6-93 (R2006)Enclosures J. National Fire Protection Association (NFPA): 70-08National Electrical Code (NEC) K. Underwriters Laboratories, Inc. (UL): 496-08Lampholders 773-95.....Plug-In, Locking Type Photocontrols for Use with Area Lighting 773A-06Nonindustrial Photoelectric Switches for Lighting Control 1029-94......High-Intensity-Discharge Lamp Ballasts 1598-08Luminaires 8750-08.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

A. Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 12 in [305 mm] above ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 POLES

- A. General:
 - Poles shall be as shown on the drawings, and as specified. Finish shall be as specified on the drawings.
 - The pole and arm assembly shall be designed for wind loading of 100 mph [161 km/hr], with an additional 30% gust factor, supporting

luminaire(s) and accessories such as shields, banner arms, and banners that have the effective projected areas indicated. The effective projected area of the pole shall be applied at the height of the pole base, as shown on the drawings.

- 3. Poles shall be anchor-bolt type designed for use with underground supply conductors. Poles shall have handhole having a minimum clear opening of 2.5 x 5 in [65 x 125 mm]. Handhole covers shall be secured by stainless steel captive screws.
- 4. Provide a steel-grounding stud opposite handhole openings, designed to prevent electrolysis when used with copper wire.
- 5. Provide a base cover that matches the pole in material and color to conceal the mounting hardware pole-base welds and anchor bolts.
- 6. Hardware and Accessories: All necessary hardware and specified accessories shall be the product of the pole manufacturer.
- Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Types:
 - Steel: Provide round (pedestrian) and square (parking/roadway) steel poles having minimum 11-gauge steel with minimum yield/strength of 48,000 psi and hot-dipped galvanized or iron-oxide primed factory finish. Galvanized steel poles shall comply with ASTM A123 and A153. New poles shall match existing.

2.3 FOUNDATIONS FOR POLES

- A. Foundations shall be cast-in-place concrete, having 3000 psi minimum 28-day compressive strength.
- B. Foundations shall support the effective projected area of the specified pole, arm(s), luminaire(s), and accessories, such as shields, banner arms, and banners, under wind conditions previously specified in this section.
- C. Place concrete in spirally-wrapped treated paper forms for round foundations, and construct forms for square foundations.
- D. Rub-finish and round all above-grade concrete edges to approximately 0.25 in [6 mm] radius.

- E. Anchor bolt assemblies and reinforcing of concrete foundations shall be as shown on the drawings. Anchor bolts shall be in a welded cage or properly positioned by the tiewire to stirrups.
- F. Prior to concrete pour, install electrode per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 LUMINAIRES

- A. Per UL 1598 and NEMA C136.17. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and ballast heat, and safe cleaning and relamping.
- B. Light distribution pattern types shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Pre-wire internal components to terminal strips at the factory.
- F. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.
- G. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.
- H. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- Luminaires shall carry factory labels, showing complete, specific ballast information.

2.5 LAMPS

- A. LED sources shall meet the following requirements:
 - 1. Operating temperature rating shall be between -40 $^{\circ}$ F [-40 $^{\circ}$ C] and 120 $^{\circ}$ F [50 $^{\circ}$ C].
 - 2. Correlated Color Temperature (CCT): 4000K.
 - 3. Color Rendering Index (CRI): \geq 70.

- 4. The manufacturer shall have performed JEDEC (Joint Electron Devices Engineering Council) reliability tests on the LEDs as follows: High Temperature Operating Life (HTOL), Room Temperature Operating Life (RTOL), Low Temperature Operating Life (LTOL), Powered Temperature Cycle (PTMCL), Non-Operating Thermal Shock (TMSK), Mechanical Shock Variable Vibration Frequency, and Solder Heat Resistance (SHR).
- B. Mercury vapor lamps shall not be used.

2.6 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40° F [-40° C].
 - 3. Input Voltage: 120 to 480 (±10%) V.
 - 4. Power Supplies: Class I or II output.
 - 5. Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: 6kV/1.2 x 50 μs, 10kA/8 x 20 μs) waveforms at 1minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
 - 6. Power Factor (PF): \geq 0.90.
 - 7. Total Harmonic Distortion (THD): \leq 20%.
 - 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
 - 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

2.7 EXISTING LIGHTING SYSTEMS

A. New poles and luminaires shall have approximately the same configurations and dimensions as the existing poles and luminaires, except where otherwise shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- B. Pole Foundations:
 - Excavate only as necessary to provide sufficient working clearance for installation of forms and proper use of tamper to the full depth of the excavation. Prevent surface water from flowing into the excavation. Thoroughly compact backfill with compacting arranged to

26 56 00 - 7 EXTERIOR LIGHTING prevent pressure between conductor, jacket, or sheath, and the end of conduit.

- 2. Set anchor bolts according to anchor-bolt templates furnished by the pole manufacturer.
- 3. Install poles as necessary to provide a permanent vertical position with the bracket arm in proper position for luminaire location.
- 4. After the poles have been installed, shimmed, and plumbed, grout the spaces between the pole bases and the concrete base with non-shrink concrete grout material. Provide a plastic or copper tube, of not less than 0.375 in [9 mm] inside diameter through the grout, tight to the top of the concrete base to prevent moisture weeping from the interior of the pole.
- C. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

A Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

A. Verify operation after installing luminaires and energizing circuits.

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere	
AC	Alternating Current	
AE	Architect and Engineer	
AFF	Above Finished Floor	
AHJ	Authority Having Jurisdiction	
ANSI	American National Standards Institute	
AWG	American Wire Gauge (refer to STP and UTP)	
AWS	Advanced Wireless Services	
BCT	Bonding Conductor for Telecommunications (also	
	Telecommunications Bonding Conductor (TBC))	
BDA	Bi-Directional Amplifier	
BICSI	Building Industry Consulting Service International	
BIM	Building Information Modeling	
BOM	Bill of Materials	
BTU	British Thermal Units	
BUCR	Back-up Computer Room	

BTS	Base Transceiver Station	
CAD	AutoCAD	
CBOPC	Community Based Out Patient Clinic	
CBC	Coupled Bonding Conductor	
CBOC	Community Based Out Patient Clinic (refer to CBOPC,	
	OPC, VAMC)	
CCS	TIP's Cross Connection System (refer to VCCS and	
	HCCS)	
CFE	Contractor Furnished Equipment	
CFM	US Department of Veterans Affairs Office of	
	Construction and Facilities Management	
CFR	Consolidated Federal Regulations	
CIO	Communication Information Officer (Facility, VISN or	
	Region)	
CM	Centimeters	
CO	Central Office	
COR	Contracting Officer Representative	
CPU	Central Processing Unit	
CSU	Customer Service Unit	
CUP	Conditional Use Permit(s) - Federal/GSA for VA	
dB	Decibel	
dBm	Decibel Measured	
dBmV	Decibel per milli-Volt	
DC	Direct Current	
DEA	United States Drug Enforcement Administration	
DSU	Data Service Unit	
EBC	Equipment Bonding Conductor	
ECC	Engineering Control Center (refer to DCR, EMCR)	
EDGE	Enhanced Data (Rates) for GSM Evolution	
EDM	Electrical Design Manual	
EMCR	Emergency Management Control Room (refer to DCR, ECC)	

EMSEmergency Medical ServiceEMTElectrical Metallic Tubing or thin wall conduitENTRUtilities Entrance Location (refer to DEMARC, POTS, LEC)EPBXElectronic Digital Private Branch ExchangeESRVendor's Engineering Service ReportFAFire AlarmFARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGSMGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Interface Cabinets (refer to HEIC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercomICRAInfectious Control Risk Assessment	EMI	Electromagnetic Interference (refer to RFI)
ENTRUtilities Entrance Location (refer to DEMARC, POTS, LEC)EPBXElectronic Digital Private Branch ExchangeESRVendor's Engineering Service ReportFAFire AlarmFARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Interface Cabinets (refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntercom	EMS	Emergency Medical Service
LEC)EPBXElectronic Digital Private Branch ExchangeESRVendor's Engineering Service ReportFAFire AlarmFARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntercom	EMT	Electrical Metallic Tubing or thin wall conduit
EPBXElectronic Digital Private Branch ExchangeESRVendor's Engineering Service ReportFAFire AlarmFARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Interface Cabinets(refer to HEIC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntercom	ENTR	Utilities Entrance Location (refer to DEMARC, POTS,
ESRVendor's Engineering Service ReportFAFire AlarmFARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Interface Cabinets (refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntercom		LEC)
FAFire AlarmFARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGPEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Interface Cabinets (refer to HEC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	EPBX	Electronic Digital Private Branch Exchange
FARFederal Acquisition Regulations in Chapter 1 of Title 48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	ESR	Vendor's Engineering Service Report
48 of Code of Federal RegulationsFMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Interface Cabinets (refer to HEIC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	FA	Fire Alarm
FMSVA's Headquarters or Medical Center Facility's Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets(refer to HEIC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	FAR	Federal Acquisition Regulations in Chapter 1 of Title
Management ServiceFRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom		48 of Code of Federal Regulations
FRFrequency (refer to RF)FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	FMS	VA's Headquarters or Medical Center Facility's
FTSFederal Telephone ServiceGFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets(refer to HEIC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom		Management Service
GFEGovernment Furnished EquipmentGPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets(refer to HEIC, PA)HEICHead End Interface Cabinets(refer to HEC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	FR	Frequency (refer to RF)
GPSGlobal Positioning SystemGRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	FTS	Federal Telephone Service
GRCGalvanized Rigid Metal ConduitGSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets(refer to HEIC, PA)HEICHead End Interface Cabinets(refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	GFE	Government Furnished Equipment
GSMGlobal System (Station) for MobileHCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	GPS	Global Positioning System
HCCSTIP's Horizontal Cross Connection System (refer to CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZIntersystem Bonding Termination (NEC 250.94)ICIntercom	GRC	Galvanized Rigid Metal Conduit
CCS & VCCS)HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	GSM	Global System (Station) for Mobile
HDPEHigh Density Polyethylene ConduitHDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets(refer to HEIC, PA)HEICHead End Interface Cabinets(refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	HCCS	TIP's Horizontal Cross Connection System (refer to
HDTVAdvanced Television Standards Committee High- Definition Digital TelevisionHECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom		CCS & VCCS)
Definition Digital TelevisionHECHead End Cabinets(refer to HEIC, PA)HEICHead End Interface Cabinets(refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	HDPE	High Density Polyethylene Conduit
HECHead End Cabinets (refer to HEIC, PA)HEICHead End Interface Cabinets (refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	HDTV	Advanced Television Standards Committee High-
HEICHead End Interface Cabinets(refer to HEC, PA)HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom		Definition Digital Television
HFHigh Frequency (Radio Band; Re FR, RF, VHF & UHF)HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	HEC	Head End Cabinets (refer to HEIC, PA)
HSPAHigh Speed Packet AccessHZHertzIBTIntersystem Bonding Termination (NEC 250.94)ICIntercom	HEIC	Head End Interface Cabinets (refer to HEC, PA)
HZ Hertz IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom	HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
IBT Intersystem Bonding Termination (NEC 250.94) IC Intercom	HSPA	High Speed Packet Access
IC Intercom	HZ	Hertz
	IBT	Intersystem Bonding Termination (NEC 250.94)
ICRA Infectious Control Risk Assessment	IC	Intercom
	ICRA	Infectious Control Risk Assessment

IDEN	Integrated Digital Enhanced Network	
IDC	Insulation Displacement Contact	
IDF	Intermediate Distribution Frame	
ILSM	Interim Life Safety Measures	
IMC	Rigid Intermediate Steel Conduit	
IRM	Department of Veterans Affairs Office of Information	
	Resources Management	
ISDN	Integrated Services Digital Network	
ISM	Industrial, Scientific, Medical	
IWS	Intra-Building Wireless System	
LAN	Local Area Network	
LBS	Location Based Services, Leased Based Systems	
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)	
LED	Light Emitting Diode	
LMR	Land Mobile Radio	
LTE	Long Term Evolution, or 4G Standard for Wireless Data	
	Communications Technology	
М	Meter	
MAS	Medical Administration Service	
MATV	Master Antenna Television	
MCR	Main Computer Room	
MCOR	Main Computer Operators Room	
MDF	Main Distribution Frame	
MH	Manholes or Maintenance Holes	
MHz	Megaherts (10 ⁶ Hz)	
mm	Millimeter	
MOU	Memorandum of Understanding	
MW	Microwave (RF Band, Equipment or Services)	
NID	Network Interface Device (refer to DEMARC)	
NEC	National Electric Code	
NOR	Network Operations Room	

NRTL	OSHA Nationally Recognized Testing Laboratory	
NS	Nurse Stations	
NTIA	U.S. Department of Commerce National	
	Telecommunications and Information Administration	
OEM	Original Equipment Manufacturer	
T&IO	Office of Information and Technology	
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)	
OSH	Department of Veterans Affairs Office of Occupational	
	Safety and Health	
OSHA	United States Department of Labor Occupational Safety	
	and Health Administration	
OTDR	Optical Time-Domain Reflectometer	
PA	Public Address System (refer to HE, HEIC, RPEC)	
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)	
PCR	Police Control Room (refer to SPCC, could be	
	designated SCC)	
PCS	Personal Communications Service (refer to UPCS)	
PE	Professional Engineer	
PM	Project Manager	
PoE	Power over Ethernet	
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,	
	PBX)	
PSTN	Public Switched Telephone Network	
PSRAS	Public Safety Radio Amplification Systems	
PTS	Pay Telephone Station	
PVC	Poly-Vinyl Chloride	
PWR	Power (in Watts)	
RAN	Radio Access Network	
RBB	Rack Bonding Busbar	
RE	Resident Engineer or Senior Resident Engineer	
RF	Radio Frequency (refer to FR)	

RFI	Radio Frequency Interference (refer to EMI)	
RFID	RF Identification (Equipment, System or Personnel)	
RMC	Rigid Metal Conduit	
RMU	Rack Mounting Unit	
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,	
	PA)	
RTLS	Real Time Location Service or System	
RUS	Rural Utilities Service	
SCC	Security Control Console (refer to PCR, SPCC)	
SMCS	Spectrum Management and Communications Security	
	(COMSEC)	
SFO	Solicitation for Offers	
SME	Subject Matter Experts (refer to AHJ)	
SMR	Specialized Mobile Radio	
SMS	Security Management System	
SNMP	Simple Network Management Protocol	
SPCC	Security Police Control Center (refer to PCR, SMS)	
STP	Shielded Balanced Twisted Pair (refer to UTP)	
STR	Stacked Telecommunications Room	
TAC	VA's Technology Acquisition Center, Austin, Texas	
ТСО	Telecommunications Outlet	
TER	Telephone Equipment Room	
TGB	Telecommunications Grounding Busbar (also Secondary	
	Bonding Busbar (SBB))	
TIP	Telecommunications Infrastructure Plant	
TMGB	Telecommunications Main Grounding Busbar (also	
	Primary Bonding Busbar (PBB))	
TMS	Traffic Management System	
TOR	Telephone Operators Room	
TP	Balanced Twisted Pair (refer to STP and UTP)	
TR	Telecommunications Room (refer to STR)	

TWP	Twisted Pair	
UHF	Ultra High Frequency (Radio)	
UMTS	Universal Mobile Telecommunications System	
UPCS	Unlicensed Personal Communications Service (refer to	
	PCS)	
UPS	Uninterruptible Power Supply	
USC	United States Code	
UTP	Unshielded Balanced Twisted Pair (refer to TP and	
	STP)	
UV	Ultraviolet	
V	Volts	
VAAR	Veterans Affairs Acquisition Regulation	
VACO	Veterans Affairs Central Office	
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)	
VCCS	TIP's Vertical Cross Connection System (refer to CCS	
	and HCCS)	
VHF	Very High Frequency (Radio)	
VISN	Veterans Integrated Services Network (refers to	
	geographical region)	
VSWR	Voltage Standing Wave Radio	
M	Watts	
WEB	World Electronic Broadcast	
WiMAX	Worldwide Interoperability (for MW Access)	
WI-FI	Wireless Fidelity	
WMTS	Wireless Medical Telemetry Service	
WSP	Wireless Service Providers	
Dofinit		

B. Definitions:

- Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and

two lugs preventing accidental disconnection from pulling forces on cable.

- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point.
- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions. Additional units are typically provided in facility's emergency

room, designated nurses stations, director's office, Disaster Control Center, SCC, ECC.

- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.

- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
 - Federal Communications Commission, (FCC) CFR, Title 47:
 Part 15
 Restrictions of use for Part 15 listed RF
 Equipment in Safety of Life Emergency Functions
 and Equipment Locations

Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration Chapter XXIII National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book'- Chapters 7, 8 & 9 $\,$ compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations

- 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design RUS Bull 1751F-815 Electrical Protection of Outside Plants, RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4) RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2) RUS Bull 345-50 Trunk Carrier Systems (PE-60) RUS Bull 345-65 Shield Bonding Connectors (PE-65)
 - RUS Bull 345-72 Filled Splice Closures (PE-74)
 - RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80)
- 3. US Department of Commerce/National Institute of Standards Technology, (NIST): FIPS PUB 1-1 Telecommunications Information Exchange FIPS PUB 100/1 Interface between Data Terminal Equipment (DTE) Circuit Terminating Equipment for operation with Packet Switched Networks, or Between Two DTEs, by Dedicated Circuit

FIPS	PUB 140/2	Telecommunications Information Security
		Algorithms
FIPS	PUB 143	General Purpose 37 Position Interface between
		DTE and Data Circuit Terminating Equipment
FIPS	160/2	Electronic Data Interchange (EDI),
FIPS	175	Federal Building Standard for
		Telecommunications Pathway and Spaces
FIPS	191	Guideline for the Analysis of Local Area
		Network Security
FIPS	197	Advanced Encryption Standard (AES)
FIPS	199	Standards for Security Categorization of
		Federal Information and Information Systems

4. US Department of Defense, (DoD):

MIL-STD-188-110	Interoperability and Performance Standards for
	Data Modems
MIL-STD-188-114	Electrical Characteristics of Digital Interface
	Circuits
MIL-STD-188-115	Communications Timing and Synchronizations
	Subsystems
MIL-C-28883	Advanced Narrowband Digital Voice Terminals
MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,
	Radio Frequency, (Series BNC (Uncabled), Socket
	Contact, Jam Nut Mounted, Class 2)

- 5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules
- US Department of Justice:
 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at

```
http://www.osha.gov/dts/otpca/nrtl/faq_nrtl.htm
1)
```

Subpart	35	Compliance with NFPA 101, Life Safety Code
Subpart	36	Design and Construction Requirements for Exit
		Routes
Subpart	268	Telecommunications
Subpart	305	Wiring Methods, Components, and Equipment for
		General Use
Subpart	508	Americans with Disabilities Act Accessibility
		Guidelines; technical requirement for
		accessibility to buildings and facilities by
		individuals with disabilities

- 8. US Department of Transportation, (DoT):
 - Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
 - f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special

Communications Projects (except Fire Alarm, Telephone and Data Systems)."

- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/dts/otpca/nrtl/index.html
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL):

5-2011Surface Metal Raceway and Fittings6-2007Rigid Metal Conduit44-010Thermoset-Insulated Wires and Cables50-1995Enclosures for Electrical Equipment65-2010Wired Cabinets83-2008Thermoplastic-Insulated Wires and Cables96-2005Lightning Protection Components96A-2007Installation Requirements for Lightning Protection Systems	1-2005	Flexible Metal Conduit
44-010Thermoset-Insulated Wires and Cables50-1995Enclosures for Electrical Equipment65-2010Wired Cabinets83-2008Thermoplastic-Insulated Wires and Cables96-2005Lightning Protection Components96A-2007Installation Requirements for Lightning	5-2011	Surface Metal Raceway and Fittings
50-1995Enclosures for Electrical Equipment65-2010Wired Cabinets83-2008Thermoplastic-Insulated Wires and Cables96-2005Lightning Protection Components96A-2007Installation Requirements for Lightning	6-2007	Rigid Metal Conduit
65-2010Wired Cabinets83-2008Thermoplastic-Insulated Wires and Cables96-2005Lightning Protection Components96A-2007Installation Requirements for Lightning	44-010	Thermoset-Insulated Wires and Cables
83-2008Thermoplastic-Insulated Wires and Cables96-2005Lightning Protection Components96A-2007Installation Requirements for Lightning	50-1995	Enclosures for Electrical Equipment
96-2005Lightning Protection Components96A-2007Installation Requirements for Lightning	65-2010	Wired Cabinets
96A-2007 Installation Requirements for Lightning	83-2008	Thermoplastic-Insulated Wires and Cables
	96-2005	Lightning Protection Components
Protection Systems	96A-2007	Installation Requirements for Lightning
		Protection Systems

VA Project 438-450 10-01-18 100% Bid Documents

360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests

1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety
D. Industry Standards:	
1. Advanced Television	n Systems Committee (ATSC):
A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
	Digital Television System
A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
	RF/Transmission System Characteristics
A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
	Service Multiplex and Transport System
	Characteristics
A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
	2 Video System Characteristics
A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
	Audio System Characteristics
A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
	Enhanced AC-3 Audio System Characteristics
2. American Institute	of Architects (AIA): 2006 Guidelines for Design $\&$
Construction of Hea	alth Care Facilities.
3. American Society of	E Mechanical Engineers (ASME):
A17.1 (2013)	Safety Code for Elevators and Escalators

Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material

		Lifts, and Dumbwaiters with Automatic Transfer
		Devices
	17.3 (2011)	Safety Code for Existing Elevators and
		Escalators
	17.4 (2009)	Guide for Emergency Personnel
	17.5 (2011)	Elevator and Escalator Electrical Equipment
4.	American Society for	Testing and Materials (ASTM):
	B1 (2001)	Standard Specification for Hard-Drawn Copper
		Wire
	B8 (2004)	Standard Specification for Concentric-Lay-
		Stranded Copper Conductors, Hard, Medium-Hard,
		or Soft
	D1557 (2012)	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)
	D2301 (2004)	Standard Specification for Vinyl Chloride
		Plastic Pressure Sensitive Electrical
		Insulating Tape
	B258-02 (2008)	Standard Specification for Standard Nominal
		Diameters and Cross-Sectional Areas of AWG
		Sizes of Solid Round Wires Used as Electrical
		Conductors
	D709-01(2007)	Standard Specification for Laminated
		Thermosetting Materials
	D4566 (2008)	Standard Test Methods for Electrical
		Performance Properties of Insulations and
		Jackets for Telecommunications Wire and Cable
5.	American Telephone an	nd Telegraph Corporation (AT&T) - Obtain
	following AT&T Public	cations at https://ebiznet.sbc.com/SBCNEBS/):
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
		Environmental, and Physical Design Requirements
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
		Requirements
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and
		Removal Requirements - Cable Racks and Raceways

	ATT-TP-76306	(2009)	Electrostatic Discharge Control
	ATT-TP-76400	(2012)	Detail Engineering Requirements
	ATT-TP-76402	(2013)	AT&T Raised Access Floor Engineering and
			Installation Requirements
	ATT-TP-76405	(2011)	Technical Requirements for Supplemental Cooling
			Systems in Network Equipment Environments
	ATT-TP-76416	(2011)	Grounding and Bonding Requirements for Network
			Facilities
	ATT-TP-76440	(2005)	Ethernet Specification
	ATT-TP-76450	(2013)	Common Systems Equipment Interconnection
			Standards for AT&T Network Equipment Spaces
	ATT-TP-76461	(2008)	Fiber Optic Cleaning
	ATT-TP-76900	(2010)	AT&T Installation Testing Requirement
	ATT-TP-76911	(1999)	AT&T LEC Technical Publication Notice
6.	British Stand	ards In	stitution (BSI):
	BS EN 50109-2		Hand Crimping Tools - Tools for The Crimp
			Termination of Electric Cables and Wires for
			Low Frequency and Radio Frequency Applications
			- All Parts & Sections. October 1997
7.	Building Indu	stry Co	nsulting Service International(BICSI):
7.	Building Indu ANSI/BICSI 00	-	nsulting Service International(BICSI): Data Center Design and Implementation Best
7.	-	-	-
7.	-	2-2011	Data Center Design and Implementation Best
7.	ANSI/BICSI 00	2-2011	Data Center Design and Implementation Best Practices
7.	ANSI/BICSI 00	2-2011	Data Center Design and Implementation Best Practices Information Technology Systems Design and
7.	ANSI/BICSI 00	2-2011 4-2012	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare
7.	ANSI/BICSI 00 ANSI/BICSI 00	2-2011 4-2012	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare
7.	ANSI/BICSI 00 ANSI/BICSI 00 ANSI/NECA/BIC	2-2011 4-2012	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities
7.	ANSI/BICSI 00 ANSI/BICSI 00 ANSI/NECA/BIC	2-2011 4-2012 SI	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities Standard for Installing Commercial Building
7.	ANSI/BICSI 00 ANSI/BICSI 00 ANSI/NECA/BIC 568-2006	2-2011 4-2012 SI	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities Standard for Installing Commercial Building Telecommunications Cabling
7.	ANSI/BICSI 00 ANSI/BICSI 00 ANSI/NECA/BIC 568-2006	2-2011 4-2012 SI	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities Standard for Installing Commercial Building Telecommunications Cabling Standard for Telecommunications Bonding and
7.	ANSI/BICSI 00 ANSI/BICSI 00 ANSI/NECA/BIC 568-2006	2-2011 4-2012 SI 7-2011	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities Standard for Installing Commercial Building Telecommunications Cabling Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for
7.	ANSI/BICSI 00 ANSI/BICSI 00 ANSI/NECA/BIC 568-2006 NECA/BICSI 60	2-2011 4-2012 SI 7-2011	Data Center Design and Implementation Best Practices Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities Standard for Installing Commercial Building Telecommunications Cabling Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings

ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices -Recommended Procedures for User Certification EIA/ECA 310-E (2005) Cabinets, and Associated Equipment 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities. 10. Insulated Cable Engineers Association (ICEA): ANSI/ICEA S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems ANSI/ICEA S-84-608-2010 Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber Outside Plant Communications Cable ANSI/ICEA S-90-661-2012 Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems S-98-688 (2012) Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors S-99-689 (2012) Broadband Twisted Pair Cable Filled, Polyolefin Insulated, Copper Conductors ICEA S-102-700 (2004)Category 6 Individually Unshielded Twisted Pair Indoor Cables (With or Without an Overall Shield) for use in Communications Wiring Systems Technical Requirements 11. Institute of Electrical and Electronics Engineers (IEEE): ISSN 0739-5175 March-April 2008 Engineering in Medicine and Biology Magazine, IEEE (Volume: 27, Issue:2) Medical Grade-Mission Critical-Wireless Networks IEEE C2-2012 National Electrical Safety Code (NESC)

C62.41.2-2002/

Cor 1-2012 IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits 4) C62.45-2002 IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits 81-2012 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System 100-1992 IEEE the New IEEE Standards Dictionary of Electrical and Electronics Terms 602-2007 IEEE Recommended Practice for Electric Systems in Health Care Facilities IEEE Recommended Practice for Powering and 1100-2005 Grounding Electronic Equipment 12. International Code Council: AC193 (2014) Mechanical Anchors in Concrete Elements 13. International Organization for Standardization (ISO): ISO/TR 21730 (2007) Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities -Recommendations for Electromagnetic Compatibility (Management of Unintentional Electromagnetic Interference) with Medical Devices 14. National Electrical Manufacturers Association (NEMA): NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum) ANSI C62.61 (1993) American National Standard for Gas Tube Surge Arresters on Wire Line Telephone Circuits ANSI/NEMA FB 1 (2012) Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable ANSI/NEMA OS 1 (2009) Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems

	TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with
		Rigid PVC Conduit and Tubing
	NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15.	National Fire Protec	tion Association (NFPA):
	70E-2015	Standard for Electrical Safety in the Workplace
	70-2014	National Electrical Code (NEC)
	72-2013	National Fire Alarm Code
	75-2013	Standard for the Fire Protection of Information
		Technological Equipment
	76-2012	Recommended Practice for the Fire Protection of
		Telecommunications Facilities
	77-2014	Recommended Practice on Static Electricity
	90A-2015	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	99-2015	Health Care Facilities Code
	101-2015	Life Safety Code
	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2006	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protecti	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Society of Cable Tel	ecommunications Engineers (SCTE):
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
		Distribution Coaxial Cable
18.	Telecommunications I	ndustry Association (TIA):

TIA-120 Series	Telecommunications Land Mobile communications
	(APCO/Project 25) (January 2014)
TIA TSB-140	Additional Guidelines for Field-Testing Length,
	Loss and Polarity of Optical Fiber Cabling
	Systems (2004)
TIA-155	Guidelines for the Assessment and Mitigation of
	Installed Category 6 Cabling to Support
	10GBASE-T (2010)
TIA TSB-162-A	Telecommunications Cabling Guidelines for
	Wireless Access Points (2013)
TIA-222-G	Structural Standard for Antenna Supporting
	Structures and Antennas (2014)
TIA/EIA-423-B	Electrical Characteristics of Unbalanced
	Voltage Digital Interface Circuits (2012)
TIA-455-C	General Requirements for Standard Test
	Procedures for Optical Fibers, Cables,
	Transducers, Sensors, Connecting and
	Terminating Devices, and other Fiber Optic
	Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-µ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009

TIA-492CAAA Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers (September 2002) Sectional Specification for Class IVd Nonzero-TIA-492E000 Dispersion Single-Mode Optical Fibers for the 1,550 nm Window (September 2002) Measurement of Optical Power Loss of Installed ТІА-526-7-В Single-Mode Fiber Cable Plant - OFSTP-7 (December 2008) TIA-526.14-A Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant - SFSTP-14 (August 1998) TIA-568 Revision/Edition: C Commercial Building Telecommunications Cabling Standard Set: (TIA-568-C.0-2 Generic Telecommunications Cabling for Customer Premises (2012), TIA-568-C.1-1 Commercial Building Telecommunications Cabling Standard Part 1: General Requirements (2012), TIA-568-C.2 Commercial Building Telecommunications Cabling Standard-Part 2: Balanced Twisted Pair Cabling Components (2009), TIA-568-C.3-1 Optical Fiber Cabling Components Standard, (2011) AND TIA-568-C.4 Broadband Coaxial Cabling and Components Standard (2011) with addendums and erratas TIA-569 Revision/Edition C Telecommunications Pathways and Spaces (March 2013) TIA-574 Position Non-Synchronous Interface between Data Terminal equipment and Data Circuit Terminating Equipment Employing Serial Binary Interchange (May 2003) TIA/EIA-590-A Standard for Physical Location and Protection of Below Ground Fiber Optic Cable Plant (July 2001) TIA-598-D Optical Fiber Cable Color Coding (January 2005)

TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

- 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
- 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
- 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
- Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
- 9. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
- 15. Lightning protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- 16. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

- 17. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 19. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 20. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 21. Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 22. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - Movement of materials: Unload materials and equipment delivered to site. Pay costs for rigging, hoisting, lowering and moving equipment on and around site, in building or on roof.
 - Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Plan for large equipment requiring positioning prior to closing in building.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service

27 05 11 - 26

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

companies, and controlling agencies; provide required connection for each service.

- 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.

- 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - Submit test equipment list including make and model number:
 a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.
 - 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
 - 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:

- Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Equipment rooms.
- Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.

- 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
- Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
- 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale

27 05 11 - 30 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).

- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .dwg or .rvt formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - One coupling, bushing and termination fitting for each type of conduit.

- 3. Samples of each hanger, clamp and supports for conduit and pathways.
- 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.

27 05 11 - 32

- d. Constituent parts which are similar must be product of a single manufacturer.
- Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.

27 05 11 - 34

- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES

- A. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound.
- B. Provide closure of adequate strength to protect splice and maintain cable shield electrical continuity in buried environment.
- C. Provide re-enterable encapsulating compound maintaining chemical stability of closure.
- D. Provide filled splice cases in accordance with RUS Bull 345-72.
- E. Provide gel filled cable meeting requirements of ICEA S-99-689 and RUS 1755.390.
- F. In Vault or Manhole:
 - Provide underground closure suitable to house a straight, butt, and branch splice in a protective housing into which can be poured an encapsulating compound
 - Closure must be suitable thermoplastic, thermo-set, or stainless steel material supplying structural strength to pass mechanical and electrical requirements in a vault or maintenance hole (manhole) environment.
- G. Re-Enterable Encapsulating Compound: Product maintaining chemical stability of closure.
- H. Provide gel-filled splice cases in accordance with RUS Bull 345-72.

2.7 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - 5. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
 - Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
 - Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
 - 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
 - Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
 - 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
 - 12. Do not support piping risers or conduit on sleeves.
 - 13. Identify unused sleeves and slots for future installation.
 - 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:

- 1. Avoid core drilling whenever possible.
- 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
- Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
- 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.

N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.

27 05 11 - 39

- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.

- 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.
 - Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
 - Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
 - 8. Review cable tray, conduit and path/wire way installation practice.
 - 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
 - b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.

- c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:

- a. Utility provider entrance.
- b. Buried conduit duct locations.
- c. Maintenance Holes (Manholes) and hand holes.
- d. ENTR or DEMARC.
- e. PBX interconnections.
- f. TER interconnections.
- g. TR interconnections.
- h. System interfaces in locations listed herein.
- i. HE interconnections.
- j. System and lightning ground interconnections.
- k. Communications circulating ground system.
- 1. Each general floor areas.
- m. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

I. Acceptance Test:

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:

27 05 11 - 43

- 1) Fire Marshal representative.
- 2) Disaster Coordinator representative.
- 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - 2. A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.

- Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
 - Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
 - 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (e.g. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.

- Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
- Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

- A. Requirements for a lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- B. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.

- Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Ground Rods:
 - Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
 - 2. Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
 - Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
 - b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
 - c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
 - d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole
 grounding lugs.

27 05 26 - 2

- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.

27 05 26 - 3

4. Listed as wire connectors.

I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- C. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- D. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- E. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- F. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.

- Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
- 5. Below-Grade Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with manufacturer's recommendations. After welds have been made and cooled, brush slag from weld area and thoroughly clean joint areas. Notify COR prior to backfilling at ground connections.
- 6. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
- 7. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
- 8. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
 - d. Slotted Channel Framing: Fasten bonding jumpers using zincplated, self-drill screws and Belleville washers or external tooth lock washers.
- G. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:

- a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
- b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
- c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
- d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
- 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:
 - Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
 - Install 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.
- H. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.

- d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- I. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- J. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- K. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- L. Communications Cable Tray Systems:
 - Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
 - 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is 0.010 ohms or less, as verified by measuring across splice plate connection.

- b. Install 16 mm² (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
- 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.
- M. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.
- N. Ground Resistance:
 - Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- C. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- D. Fabrications for deflection of water away from building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- F. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

A. Minimum Conduit Size: 19 mm (3/4 inch).

- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
 - Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
 - 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
 - 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
 - 8. Surface Metal Raceway: Conform to UL 5.
 - 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.

- e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:

- a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
- b. Provide clamp type, with insulated throat.
- c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- 7. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 9. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 10. Rigid Aluminum Fittings:

- a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
- f. Provide OEM approved fittings.
- 11. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

- G. Warning Tape: Standard, 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type, red with black letters, and imprinted with "CAUTION BURIED COMMUNICATIONS CABLE BELOW".
- H. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
 - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 - 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER. Innerduct connectors are not permitted between rooms.
 - 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- I. Outlet Boxes:

- Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- J. Cable Tray:
 - Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
 - 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
 - Provide continuous welded top side wire to protect cable insulation and installers.
 - 4. High strength steel wires formed into a 50 x 100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
 - 5. Wire Basket Sizes:
 - a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
 - b. Usable Loading Depth: As indicated on the Drawings.
 - c. Width: As indicated on the Drawings.
 - 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
 - 7. Provide accessories to protect, support and install wire basket tray system.
- K. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- L. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders

System	Specification Section	Installed Method
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Master Antenna Television Equipment and Systems	27 41 31	J-Hooks, Bridle Rings, conduit to Cable Tray, Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit
Intercommunications and Program systems	27 51 23	Conduit to Cable Tray, Partitioned Cable Tray
Nurse Call	27 52 23	Complete Conduit
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Miscellaneous Medical Systems	27 52 41	Complete Conduit
Distributed Radio Antenna Equipment and System	27 53 19	Conduit to Cable Tray, Partitioned Cable Tray
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Physical Access Control System and Database Management	28 13 16	Conduit to Cable Tray Partitioned Cable Tray
Security Access Detection	28 13 53	Complete Conduit
Intrusion Detection System	28 16 00	Conduit to Cable Tray, Partitioned Cable Tray
Video Surveillance	28 23 00	Complete Conduit
Electronic Personal Protection System	28 26 00	Conduit to Cable Tray, Partitioned Cable Tray
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.

27 05 33 - 8

- b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
- c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
- d. Waterproofing at Floor, Exterior Wall, and Roof Conduit
 Penetrations:
 - Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS or directed by waterproofing manufacturer.
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
 - Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.

27 05 33 - 9

 Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

	-
Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
	· · · · · · · · · · · · · · · · · · ·
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).

- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.

- Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
- Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
- e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - Rigid steel, or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:
 - 1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require

27 05 33 - 12

expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.

- Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
 - 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
 - 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
 - Bolts supported only by plaster or gypsum wallboard are not acceptable.

- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- I. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
 - 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - Install only in accessible spaces not subject to physical damage or corrosive influences.
 - Make bends manually to assure internal diameter of tubing is not effectively reduced.

27 05 33 - 14

5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes requirements for commissioning facility communications systems, related subsystems and related equipment. This Section supplements general requirements specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- B. Complete list of equipment and systems to be commissioned is specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Specification 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Commissioned Systems:
 - Commissioning of systems specified in Division 27 and 28 is part of project's construction process including documentation and proof of performance testing of these systems, as well as training of VA's Operation and Maintenance personnel in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Division 27, in cooperation with Government and Commissioning Agent.
 - 2. The facility exterior closure systems commissioning includes communications systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS and 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

1.2 RELATED WORK

- A. System tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Commissioning process requires review of selected submittals that pertain to systems to be commissioned: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Construction phase commissioning process and procedures including roles and responsibilities of commissioning team members and user training: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

1.3 COORDINATION

A. Commissioning Agent will provide a list of submittals that must be reviewed by Commissioning Agent simultaneously with engineering review; do not proceed with work of sections identified without engineering and Commissioning Agent's review completed.

B. Commissioning of communications systems require inspection of individual elements of communications system construction throughout construction period. Coordinate with Commissioning Agent in accordance with Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and commissioning plan to schedule communications systems inspections as required to support the commissioning process.

1.4 CLOSEOUT SUBMITTALS

- A. Refer to Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for pre-functional checklists, equipment startup reports, and other commissioning documents.
- B. Pre-Functional Checklists:
 - Complete pre-functional checklists provided by commissioning agent to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing.
 - 2. Submit completed checklists to COR and to Commissioning Agent. Commissioning Agent can spot check a sample of completed checklists. If Commissioning Agent determines that information provided on the checklist is not accurate, Commissioning Agent then returns the marked-up checklist to Contractor for correction and resubmission.
 - 3. If Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, Commissioning Agent can select a broader sample of checklists for review.
 - 4. If Commissioning Agent determines that a significant number of broader sample of checklists is also inaccurate, all checklists for the type of equipment will be returned to Contractor for correction and resubmission.
- C. Submit training agendas and trainer resumes in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Contractor's Tests:

- Scheduled tests required by other sections of Division 27 must be documented in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- Incorporate all testing into project schedule. Provide minimum seven calendar days' notice of testing for Commissioning Agent to witness selected Contractor tests at sole discretion of Commissioning Agent.
- 3. Complete tests prior to scheduling Systems Functional Performance Testing.
- B. Systems Functional Performance Testing:
 - Commissioning process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions.
 - 2. Commissioning Agent prepares detailed Systems Functional Performance Test procedures for review and acceptance by COR.
 - 3. Provide required labor, materials, and test equipment identified in test procedure to perform tests.
 - 4. Commissioning Agent must witness and document the testing.
 - a. Provide test reports to Commissioning Agent. Commissioning Agent will sign test reports to verify tests were performed.

3.2 TRAINING

- A. Training of Government's operation and maintenance personnel is required in cooperation with COR and Commissioning Agent.
- B. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning location, operation, and troubleshooting of installed systems.
- C. Schedule instruction in coordination with COR after submission and approval of formal training plans.

- - - E N D - - -

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

- A. Excavation and backfill for cables that are installed in conduit: Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.

- 2. Minimum size of doors for cable reel passage.
- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:
 - Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
 - 2. Provide certified OEM sweep test tags from each cable reel to COR.
 - 3. Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
 - Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
 - 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (e.g. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.

- 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
- Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
- 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:
 - 1) 18 AWG, minimum, Outside.
 - 2) 20 AWG, minimum, Inside.
 - d. Color Coding: Required, EIA industry standard.
 - e. Bend Radius: 10 times cable outside diameter.
 - f. Impedance: As required.
 - g. Shield Coverage: As required by OEM specification.
 - h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

- E. Distribution System Signal Wires and Cables:
 - Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
 - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.

- Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
- 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
 - Provide connectors for transmission lines, and signal extensions to maintain uninterupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
 - Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:

- 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.
 - 3) Equipment Racks.
 - 4) Equipment Cabinets.
 - 5) Conduits.
 - 6) Ducts.
 - 7) Cable Trays.
 - 8) Power Panels.
 - 9) Connector Panels.
 - 10) Grounding Blocks.
 - b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's

27 10 00 - 5 CONTROL, COMMUNICATION AND SIGNAL WIRING signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.

- a. Voice (or Telephone):
 - Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 6.
 - IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 6 and the size and type of cable used.
 - 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
 - 4) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 100.
 - b) Number of Terminals per Row: Minimum 4.
 - c) Terminal Protector: Required for each used or unused terminal.
 - d) Insulation Splicing: Required between each row of terminals.
- b. Digital or High Speed Data:
 - Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 6 RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
 - 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.
 - c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
 - d. Pull multiple cables into a single conduit together.
- B. Installation in Maintenance or Man holes:
 - 1. Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
 - 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
- C. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (e.g. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.

- 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
- 5. Concealed splices are not allowed.
- Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
- 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
- Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- 11. Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.

- d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
- e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
- f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.
- D. AC Power:
 - Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
 - 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
 - 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
 - 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.

- 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.
- B. Labeling:
 - 1. Industry Standard: ANSI/TIA-606-B.
 - Print lettering for voice and data circuits using /laser printers, thermal ink transfer process, or other method acceptable to Government; handwritten labels are not acceptable.
 - 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
 - Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
 - 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
 - Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

VA Project 438-450 10-01-18 100% Bid Documents

- - - E N D - - -

SECTION 27 11 00 TELECOMMUNICATIONS ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies equipment cabinets, interface enclosures, relay racks, and associated hardware in service provider DEMARC, computer and telecommunications rooms.
- B. Telephone system is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Adhere to Seismic reference standards for systems connecting to or extending telephone system and cabling.

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- E. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- F. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION.
- B. Separate submittal into sections for each subsystem containing the following:
 - Pictorial layouts of each Telecommunications Room and Cross Connection Space (VCCS, and HCCS termination cabinets), each distribution cabinet layout, and TCO as each is expected to be installed and configured.

- 2. Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.
- C. Environmental Requirements: Identify environmental specifications for housing system as initial and expanded system configurations.
 - 1. Floor loading for batteries and cabinets.
 - 2. Minimum floor space and ceiling height.
 - 3. Minimum door size for equipment passage.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. Provide components of cabinet system (cabinet, thermal, cable and power management accessories) from a single manufacturer.
- B. Basis of Design: Panduit Products, or approved equal.
- C. Equipment Standards and Testing:
 - Equipment must be listed by a NRTL where a UL standard is in existence; active and passive equipment must conform with each UL standard in effect for equipment, on the submittal date.
 - Each item of electronic equipment must be labeled by a NRTL that warrants equipment has been tested in accordance with, and conforms to specified standards.
- D. Equipment Cabinets (Enclosures):
 - 1. Fully enclose and physically secure internally mounted and connected, active and passive equipment.
 - Types of Equipment Enclosures accepted for specific VA Spectrum Management, FMS and OI&T applications in CFM and Facility Projects:

CABINET	FUNCTION
Communications	FMS Special Communications Equipment
Server / Router	OI&T Data/LAN/WAN Equipment

- 3. Each cabinet to be:
 - a. Provided in locations indicated on the Drawings.
 - b. Fabricated with minimum 1.59 mm (16 gauge) steel.
 - c. Provided with manufacturer's standard painted finish in a color accepted by COR with concurrence from FMS Service Chief.
 - d. Mounted on floor.
 - e. Lockable; tubular locks keyed alike. Provide six keys to COR for each cabinet.

- Provide equipment mounting shelves; attach to front and rear mounting rails and allowing equipment to be secured to respective mounting rails.
- 5. Each enclosure to include:
 - a. Floor mounting.
 - b. Knock out holes for conduit connections or cable entrance.
 - c. Front and rear locking doors.
 - d. Power outlet strips.
- 6. Provide quiet ventilation fan with non-disposable locally cleanable air filter.
- 7. Size each cabinet in order to contain and maintain internal mounted equipment items.
- 8. Provide OEM's fully assembled unit.
- 9. Provide OEM assembled side-by-side enclosures in a single unit, at locations requiring more than two enclosures.
- 10. Provide minimum one cabinet with blank rack space, for additional system expansion equipment.
- 11. Bond to communications circulating grounding system.
- 12. Technical Characteristics:
 - a. External:
 - 1) Overall Height:
 - a) Communications/Server: Maximum 2,184 mm (86 inches).
 - 2) Overall Depth:
 - a) Communications/Server: Maximum 914 mm (36 inches).
 - 3) Overall Width All: Maximum 864 mm (34 inches).
 - b. Front Panel Openings:
 - 1) Width:
 - a) Communications: 482.6 mm (19 inches), per EIA.
 - b) Server: 483 mm (19 inches), per EIA/ECA 310.
 - 2) Height:
 - a) Communications/Server: Maximum 2,000 mm (78-3/4 inches or 45 Rack Units [RU]), per EIA/ECA 310.
 - c. Heavy Duty Cycle: Maximum 544 kilograms (1,200 pounds) capacity.
 - d. Certification:
 - 1) NRTL (i.e. UL): For communications and server cabinets.

 Telcordia Technologies: #63-GR-CORE, (2012) for seismic cabinets.

13. Cabinet Internal Components:

- a. AC Power:
 - 1) Standard "Quad AC Box":
 - a) Power capacity: 20 Ampere, single phase, 120 VAC.
 - b) Wire gauge: #12 AWG, solid copper, connected to room's internal AC Power Panel, or as directed by COR.
 - c) Number of AC power outlets: Minimum 4 receptacles.
 - d) Enclosure: Fully self-contained, metal 102 mm (4 inch) x 102 mm (4 inches) x 64 mm (2-1/2 inches) with cover
 - e) Connection: Minimum 25.4 mm (1 inch) conduit connected to room's AC Power Panel, or as directed by COR
 - f) Number of boxes: One.
 - g) Compliance: NRTL (i.e. UL); NPFA 70 (NEC).

b. AC Outlet Strips:

- 1) Power Capacity: 15 Ampere, single phase, 120 VAC continuous duty.
- 2) Wire Gauge: Minimum #12 AWG, solid copper.
- 3) Number of AC Power Outlets: Minimum 10 "U" grounded.
- 4) Enclosure: Fully self-contained; typically metal.
- 5) Connecting Wire: Minimum 2 m (6 feet) long, with three prong self-grounding AC plug connected to cabinet's internal AC "Quad" box.
- 6) Number of Strips: 2.
- 7) Certification: NRTL (i.e. UL).
- c. AC Power Line Surge Protector and Filter Construction:
 - Input Voltage Range: 120 VAC + 15 percent at 50/60 Hz, single phase.
 - 2) Power Service Capacity: 20 AMP, 120 VAC.
 - Voltage Output Regulation: +5.0 percent, instantaneous of input.
 - 4) Circuit Breaker: 15 AMP; may be self-contained.
 - 5) AC Outlets: Minimum four duplex grounded NEMA 5-20R.
 - 6) Response Time: 5.0 nanosecond.

- 7) Suppression: Isolate and filter any noise, surge spikes
 - a) Surge: Minimum 20,000 AMP.
 - b) Noise:
 - 1) Common: -40 dB.
 - 2) Differential: -45 dB.
- 8) Clamping Voltage: Minimum 300 V.
- 9) Enclosure: One; self-contained.
- Mounting: Internal to cabinet floor or on internal mounting rail shelf, allowing two plugs from two plug strips.
- 11) AC Power Cord: Required; minimum 1,628 mm (6 feet), three wire (green ground); minimum #14 AWG stranded.
- 12) Compliance: NRTL (i.e. UL60950-1).
- 14. Ground Interconnection: Bond cabinet's common grounding lug to room's communications circulating ground busbar with a minimum #4 AWG stranded copper wire.
- 15. Blank Panels: Provide at every unused rack space.
 - a. Match cabinet color.
 - b. Provide panels of 3 mm (1/8 inch) thick aluminum with vertical dimensions in increments of one rack unit (RMU) or 45 mm (1-3/4 inch) with mounting holes spaced to correspond to EIA/ECA 310-E Standard 483 mm (19 inch) rack dimensions.
 - c. Fill large unused openings with single standard large panel instead of numerous types.
 - d. Leave one blank rack space (RMU), covered with a blank panel, between each item of equipment, for minimum internal air flow.
 - e. Leave 356 mm (14 inches)(8.0 RMU) open space, covered with blank cover panel, for additional expansion equipment.
 - f. Wire Management: System that connects each item of installed equipment to room wire management system.
 - g. Knock-out Holes: Provide for cable entrance/exits via conduits, cable duct/trays.
- 16. Trouble Annunciator Panel: Provide trouble annunciator panel in HE cabinet compatible with electrical and electronic supervising signals to continuously monitor operating condition for system HE equipment, remote equipment, and interconnecting trunks.

- a. When system's supervising system detects malfunctioning equipment or trunk line, system must generate an audible and visual signal; provide spare panel.
- b. Technical Characteristics:
 - Silence Button or Switch: Provide to silence audible signal.
 Visual signal will continue until supervisory circuit indicating a fault is corrected.
 - Visual Enunciators: Visually show system equipment and trunkline operating conditions via its supervisory circuit indicating fault condition.
 - 3) Connect each alarm function to report to PCS Console SMS.
- E. Wire Management Equipment:
 - Provide an orderly horizontal and vertical interface between outside and inside wires and cables, distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide an uniform connection media for system fire-retardant wires and cables and other subsystems.
 - Interface to each cable tray, duct, wireway, or conduit used in the system.
 - 3. Interconnection or distribution wires and cables must enter system at top via overhead protection system and be uniformly routed down both sides at same time, of the frames side protection system, then laterally for termination on rear of each respective terminating assembly.
 - Custom configure to meet 30 percent fill system design and user needs.
- F. Vertical Cable Managers:
 - Use same make, style and size of vertical cable manager on rack/frame or in between racks/frames when more than one cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color and cover style of racks/frames and cable managers.
- G. Horizontal Cable Managers:
 - Use same make and style of cable manager on rack/frame or racks/frames, when more than one horizontal cable manager is used on a rack/frame or group of racks/frames.

2. Match color of racks/frames and cable managers.

- H. Provide installation hardware when enclosures or racks are attached to structural floor.
- I. Provide noise filters and surge protectors for each equipment interface cabinet, switch equipment cabinet, control console, and local and remote active equipment locations to ensure protection from input primary AC power surges so as a consequence noise glitches are not induced into low voltage data circuits.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate cabinet installation such that doors fully close and lock, with active and passive equipment installed and connected.
- B. Verify equipment dimensions and brackets allow mounting with cabinet doors closed. Front door or rear door of any cabinet that does not close and lock may result in immediate cancellation of inspections or tests.

3.2 INSTALLATION

- A. Equipment Cabinets:
 - Install cabinets in a manner that complies with OEM instructions, requirements of this specification, and in a manner which does not constitute a safety hazard.
 - 2. Install equipment indoors in NEMA 4 rated metal cabinets with hinged doors and locks with two keys.
- B. Grounding:
 - Bond equipment, including identified Government furnished equipment, to ground so total ground resistance measures maximum 0.1 Ohm.
 - a. Install lightning arrestors and grounding in accordance with NFPA.
 - b. Install gas protection devices at nearest point of entrance in buildings where protection is required and on same circuits as MDF in telephone switch room.
 - c. Do not use AC neutral, including in power panel or receptacle outlet, for system control, subcarrier or audio reference ground.
 - d. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted.

- Connect each equipment grounding terminal to a separate mounting hole on equipment mounting rail, to right as one looks at it from rear, with a minimum #12 AWG stranded copper wire with protective green jacket.
- 3. Extend common ground bus of minimum #10 AWG solid copper wire throughout each equipment cabinet and bond to TMGB. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground buses together.
- 4. Bond equipment to cabinet bus with copper braid equivalent to #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.
- 5. Bond cable shields to cabinet ground bus with minimum #12 AWG stranded copper wire at only one end of cable run. Insulate cable shields from each other, faceplates, equipment racks, consoles, enclosures or cabinets, except at system common ground point. Bond coaxial and audio cables only at source; in all cases, keep cable shield ground connections to a minimum.
- C. Equipment Assembly:
 - 1. Cabinets:
 - a. Install and adjust cabinet/frame accessories to position, including thermal management accessories, vertical cable managers, vertical power managers and equipment-mounting rails, using manufacturer's installation instructions prior to baying or placing cabinet for attachment to building and before installing any rack-mount equipment into cabinet. Shelves, horizontal cable managers and filler panels (rack-mount accessories), if used, may be installed after cabinet is placed.
 - b. When used in a multi-cabinet bay, attach cabinets side-by-side using baying kits according to manufacturer's instructions.
 - c. Attach overhead ladder rack or cable tray to ceiling or top of cabinet. Maintain minimum 75 mm (3 inches) clearance between top of cabinet and bottom of ladder rack/cable tray. Position ladder rack/cable tray so that it does not interfere with hot air

exhaust through cabinet's top panel. Use radius drops where cable enters or exits ladder rack/cable tray.

- d. Install ladder rack with side stringers facing rack or cabinet so that ladder forms an inverted U-shape and so that welds between stringers (sides) and cross members (middle) face away from cables.
- e. Secure ladder rack to tops of equipment racks or cabinets using manufacturer's recommended supports and appropriate hardware.
- f. Attach bonding conductor sized per TIA-607-B between telecommunications grounding busbar and cabinet. Attach bonding conductor to cabinet using a ground terminal block according to manufacturer's installation instructions.
- g. Provide bonding conductor and other hardware required to make connections between cabinet and telecommunications grounding busbar.
- h. Install rack mounted equipment normally requiring adjustment or observation so operational adjustments can be conveniently made.
- i. Mount heavy equipment with rack slides or rails to allow servicing from front of enclosure. Provide support in addition to front panel mounting screws for heavy equipment.
- j. Provide with cable slack to permit servicing by removal of installed equipment from front of enclosure.
- k. Install color-matched blank panel spacer 44 mm (1.75 inches) high between each piece of active and passive equipment to ensure adequate air circulation for efficient equipment cooling and air ventilation.
- Provide quiet fans and non-disposable air filters at each console or cabinet.
- m. Install enclosures and racks plumb and square, permanently attached to building structure and held in place.
- n. Provide 381 mm (15 inches) of front vertical space opening for additional equipment.
- o. Install equipment located indoors in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.

- p. Cables must enter equipment racks or enclosures in such a manner to allow doors or access panels to open and close without disturbing or damaging cables.
- q. Mount distribution hardware in a manner that allows access to connections for testing and provides room for doors or access panels to open and close without disturbing the cables.
- 2. Racks:
 - a. Assemble racks according to manufacturer's instructions.
 - b. Verify that equipment mounting rails are sized properly for rackmount equipment before attaching rack to floor.
 - c. Attach assembled racks to floor in four places using appropriate floor mounting anchors. When placed over a raised floor, threaded rods should pass through raised floor tile and be secured in structural floor below.
 - d. Bond racks to telecommunications grounding busbar using appropriate hardware provided by contractor.
 - e. Ladder rack may be attached to top of rack to deliver cables to rack. Do not drill rack to attach; use appropriate hardware from rack manufacturer.
 - f. Provide radius drops to guide cable where cable exits or enters side of overhead ladder rack to access a rack, frame, cabinet or wall-mounted rack, cabinet or termination field.
 - g. Evenly distribute equipment load on rack. Place large and heavy equipment towards bottom of rack. Secure equipment to rack with equipment mounting screws.
- 3. Vertical Cable Managers:
 - Provide vertical managers so number of cables in each manager does not exceed OEM fill capacity.
 - b. Attach vertical cable managers to side of rack/frame using manufacturer's installation instructions and hardware.
 - c. Attach vertical cable manager to both racks/frames when a single vertical cable manager is used between two racks/frames.
 - d. Dress cables through openings in between T-shaped guides on manager so that cables make gradual bends as they exit or enter

cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.

- e. Attach doors to cable manager in closed position after cabling is complete.
- 4. Horizontal Cable Managers:
 - Attach horizontal cable managers to rack/frame with minimum four screws according to manufacturer's installation instructions.
 Center each cable manager within allocated rack-mount space (RMU).
 - b. Provide horizontal managers located so number of cables each manager supports is less than cable manager's cable fill capacity.
 - c. Dress cables through openings in between T-shaped guides on cable manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
 - Attach covers to cable manager in closed position after cabling is complete.
- D. Labeling: Permanently label each enclosure in accordance with TIA-606-B using laser printers, thermal ink transfer process, or another acceptable method to the Government; handwritten labels are not acceptable.
 - 1. Equipment: Label system equipment with contrasting plastic laminate or bakelite material on face of unit corresponding to its source.
 - Conduit, Cable Duct, and/or Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 m (10 feet), identifying system.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Out Patient Clinic here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- E. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- F. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- G. Emergency Service Public Address System (PAS) and associated equipment: Section 27 51 16, PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each telecommunications room showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract

maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.

- 2. Pre-acceptance Certification: Submit in accordance with test procedures.
- Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.

- Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
- 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6 requirements.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (e.g. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)
 - 3. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and videotele communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.

- H. Provide blue jacket for data cables and white jacket for phone cables. For all others, color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Basis of Design: Panduit Products, or approved equal.
- B. Where system connects to an existing voice (telephone) system, contact COR for specific voice (telephone) equipment and system operational performance standards.
- C. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
 - c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
 - 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP, fiber optic, coaxial and analog backbone cables, terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels.
 - b. Provide 24 port fiber optic modular patch panels with "LC" or OEM specified couplers dedicated for voice, data and FMS applications.

- c. Provide connecting cables required to extend backbone cables (e.g. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
- 3. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.
 - 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
 - 3) Label and test complete riser cabling system.
- 4. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6 requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 250 MHZ.
 - c. Provide four pair 0.205 mm2 (24 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- 5. Fiber Optics Backbone Cable:
 - a. Provide 50/125 micron OM4 multi-mode cable, containing at minimum
 24 strands of fiber, unless otherwise specified.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Provide tight buffered fiber cable or indoor/outdoor cables for indoor runs.

- d. Terminate multimode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 ft.) cable loop at each end.
- e. Provide single mode fiber optic cable 8.3 mm containing at minimum 12 strands of fiber, unless otherwise specified.
 Terminate single mode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 feet) cable loop at each end to allow for future movement.
- f. Install fiber optic cables in rack mounted fiber optic patch panels. Provide female LC couplers in appropriate panel for termination of each strand.
- g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53). Provide written results to COR for review and approval.
- D. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 M (1,000 feet).
 - 3. Fiber Optic Cables:
 - a. Provide fiber CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - b. Install fiber optic cable slack in protective enclosures.
- E. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic, coaxial and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.

- Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- F. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - Provide current arrester for each copper or coaxial cable that enters from outside of a building regardless if cable is installed underground or aerial.
 - 2. Provide a gas surge protector/module and bond to earth ground.
- G. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper and fiber optic backbone system cables, and connections to the voice (telephone) and data cable systems.
- H. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - 2. Provide the following for each Category 6 Cabling System termination.
 - a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
 - b. Provide removable designation strips or labels to allow for inspection of terminations.
 - c. Provide cable management system as a part of IDC.
 - Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
 - Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
 - 5. Provide inputs from FTS, Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A blocks with RJ45 connections are acceptable alternates to IDC) of MCCS.
 - Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS.

- Do not split pairs within cables between different jacks or connections.
- 8. Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- I. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- J. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber - these counts do not include 50 percent spare requirement. Provide cable management system for each panel.
 - Provide panels for minimum 24 female LC connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.
 - 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures.
 - 3. Provide patch panels with highest OEM approved density of fiber LC termination's (maximum of 72 each), while maintaining a high level

of manageability. Provide proper LC couplers installed for each pair of fiber optic cable LC connectors.

- a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
- b. Provide backbone cable connections on bottom row of connectors of same patch panel.
- c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
- 4. Provide field installable connectors that are pre-polished.
 - a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic LC female connector terminated with a fiber optic cable.
 - b. Install a terminating cap for each unused LC connector.
- K. Copper Outside Plant Cable: Minimum of UTP, 22 AWG solid conductors, solid PVC insulation, and filled core (flex gel - waterproof Rural Electric Association (REA) listed PE 39 code) between outer armor or jacket and inner conductors protective lining.
 - 1. Provide copper cable system as a Star Topology.
- L. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum four data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate.
 - Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.
 - 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit data multi- pin jacks and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches)

for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.

- Provide blue jacks for data outlets and white jacks for phone outlets.
- B. Backbone Distribution Cables:
 - Meet TIA transmission performance requirements of Voice Grade Category 6.
 - 2. Provide cable listed for environments where it is installed.
 - 3. Technical Characteristics:
 - a. Length: As required, in minimum 1 kilometer (3,000 ft.) reels.
 - b. Size:
 - 1) Minimum 0.326 mm2 (22 AWG) outside plant installation.
 - 2) Minimum 0.205 mm2 (24 AWG) interior installations.
 - c. Color Coding: American Telephone and Telegraph Company Standard; Bell System Practices Outside Plant Construction and Maintenance Section G50.607.3, Issue 2 February, 1959.
 - d. Minimum Bend Radius: 10X cable outside diameter.
 - e. Impedance: 120 Ohms + 15 percent.
 - f. DC Resistance: Maximum 8.00 ohms/100 m
 - g. Maximum attenuation for 100m at 20° C:

Frequency (MHz)	Category 6 (dB)
.772	_
1	2.0
4	3.8
8	5.3
10	6.0
16	7.6
20	8.5
25	9.5
31.25	10.7

Frequency (MHz)	Category 6 (dB)
62.5	15.4
100	19.8
200	29.0
250	32.8
300	
400	
500	

4. Data Multi-Conductor:

a. Unshielded cable with solid conductors.

- b. Able to handle the power and voltage used over the distance required.
- c. Meets TIA transmission performance requirements of Category 6.
- d. Technical Characteristics:
 - 1) 0.205 mm2 (24 AWG) 0.326 mm2 (22 AWG) cable
 - 2) Bend Radius: 10 times cable outside diameter.
 - 3) Impedance: 100 Ohms + 15%, BAL.
 - 4) Bandwidth: 250 MHZ.
 - 5) DC Resistance: Maximum 9.38 Ohms/100M (328 ft.) at 20 degrees C.
 - 6) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.).
 - 7) Shield Coverage:
 - a) Overall Outside (if OEM specified): 100 percent.
 - b) Individual Pairs (if OEM specified): 100 percent.

8)	Maximum	attenuation	for	100m	(328	ft.)	at	20°	С:	
----	---------	-------------	-----	------	------	------	----	-----	----	--

Frequency	Category 6
(MHz)	(dB)
1	2.0
4	3.8
8	5.3

VA Project 438-450 10-01-18 100% Bid Documents

Frequency	Category 6			
(MHz)	(dB)			
10	6.0			
16	7.6			
20	8.5			
25	9.5			
31.25	10.7			
62.5	15.4			
100	19.8			
200	29.0			
250	32.8			
300				
400				
500				

- 5. Fiber Optic:
 - a. Multimode Fiber:
 - Provide OM4 Type general purpose multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 50 microns.
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:
 - 1) 850 nanometer: Minimum 160 MHz.

27 15 00 - 12 COMMUNICATIONS STRUCTURED CABLING

- 2) 1,300 nanometer: Minimum 500 MHz.
- f) Connectors: Stainless steel.
- b. Single mode Fiber:
 - Provide OS1 Type general purpose single mode fiber optic cable installed in conduit for all system locations with loadbearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 100 mm (4 inches).
 - b) Outer Jacket: PVC.
 - c) Fiber Diameter: 8.7 microns.
 - d) Cladding: 125 microns.
 - e) Attenuation at 850 nanometer: 1.0 dBm per kilometer.
 - f) Connectors: Ceramic.

C. Outlet Connection Cables:

- 1. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - Cable: Data grade Category 5E or on a case-by-case basis Category 6.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.
- D. System Connectors:
 - Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.

b) RJ-11/45: Compatible with RJ-45.

- 2) Dielectric: Surge.
- 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
- 4) Current: 2.2A RMS at 30 Minutes or 7.0A RMS at 5.0 seconds.
- 5) Leakage: Maximum 100 µA.
- 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- E. Fiber Optic Terminators:
 - Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.
 - b. Power Blocking: As required.
 - c. Return Loss: 25 dB.
 - d. Connectors: LC.
 - e. Construction: Ceramic.
- F. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 e. Maximum 40 percent conduit fill for cable installation.
 - 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct,
 - cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - Bond to ground metallic cable sheaths, etc. (e.g. risers, underground, horizontal, etc.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - Print lettering of labels with laser printers, thermal ink transfer process, or other method acceptable to the Government; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
 - 2. Check each item of installed equipment to ensure appropriate NRTL label.
 - Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
 - Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
 - 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
 - Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
 - 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.

- Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.
 - Test utilizing approved test equipment to certify proof of performance.
 - 4. Verify that total system meets the requirements of this section.
 - 5. Include expected duration oftest time, with notification of the acceptance test.
- D. Verification Tests:
 - Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
 - Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
 - 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source. Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 6 tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- F. Total System Acceptance Test: Perform verification tests for UTP copper cabling systems and multi-mode and single mode fiber optic cabling

systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
 - 3. Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 27 51 16 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, training and services for, and incidental to, the complete installation of new and fully operating National Fire Protection Association (NFPA) - Life Safety Code 101.3-2 (a) Labeled and (b) Listed Emergency Service Public Address System (PAS) and associated equipment (here-in-after referred to as the System) in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting PAS communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 0050P3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE. *HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS,* SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's PM, RE and TVE-0050P3B. <u>The VA PM is the</u> only approving authority for other amendments to this document that may

27 51 16 - 1

be granted, on a case by case basis, in writhing with technical concurrencies by VA's RE, TVE-0050P3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure <u>that all</u> management, sales, engineering and installation personnel have read and understand the requirements of this specification <u>before</u> the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement attesting this requirement as a part of the technical submittal that includes each name and certification, including the OEMs.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 21 Low Voltage Electrical Power Conductors and Cables (600
 Volts and Below).
- D. 26 41 00 Facility Lightning Protection.
- E. 27 05 11 Requirements for Communications Installations.
- F. 27 05 26 Grounding and Bonding for Communications Systems.
- G. 27 05 33 Raceways and Boxes for Communications Systems.
- H. 27 10 00 Control, Communication and Signal Wiring.
- I. 27 11 00 Communications Cabling Interface and Equipment Rooms Fittings.
- J. 27 15 00 Horizontal and Vertical Communications Cabling Equipment and Systems.

1.3 DEFINITIONS

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.

D. Headquarters Technical Review, for National and VA communications and security, codes, frequency licensing, standards, guidelines compliance: Office of Telecommunications Special Communications Team (0050P2B) 1335 East West Highway - 3rd Floor Silver Spring, Maryland 20910 (0) 301-734-0350, (F) 301-734-0360 E. Contractor: Radio Contractor; you; successful bidder

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology (NIST - formerly the National Bureau of Standards). Under Section 5131 of the Information Technology Management Reform Act of 1996 and the Federal Information Security Management Act of 2002 (Public Law 107-347), NIST develops - Federal Information Processing Standards Publication (FIPS) 140-2-Security Requirements for Cryptographic Modules.
 - b) Chapter XXIII, National Telecommunications and Information Administration (NTIA - aka 'Red Book') Chapter 7.8 / 9;
 CFR, Title 47 Federal communications Commission (FCC) Part 15, Radio Frequency Restriction of Use and Compliance in "Safety of Life" Functions & Locations
 - 2) FCC Communications Act of 1934, as amended, CFR, Title 47 -Telecommunications, in addition to Part 15 - Restrictions of use for Part 15 listed Radio Equipment in Safety of Life /

Emergency Functions / Equipment/ Locations (also see CFR, Title 15 - Department of Commerce, Chapter XXIII - NTIA):

- a) Part 15 Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/Locations.
- b) Part 58 Television Broadcast Service.
- c) Part 90 Rules and Regulations, Appendix C.
- d) Form 854 Antenna Structure Registration.
- 3) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a)(b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the Medicare conditions of Participation by meeting Federal Directives:"
 - a) All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 4) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 c's, for complete list, contact (http://www.osha.gov/dts/otpca/nrtl/faq nrtl.html):
 - 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.

- h) 486D-02 Standard for Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
- i) 486E-00 Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
- j) 493-01 Standard for Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.
- k) 514B-02 Standard for Fittings for Cable and Conduit.
- 1) 1069 Hospital Signaling and Nurse Call Equipment.
- m) 1333 Vertical (Riser) Fire Rating.
- n) 1449 Standard for Transient Voltage Surge Suppressors.
- o) 1479-03 Standard for Fire Tests of Through-Penetration Fire Stops.
- p) 1863 Standard for Safety, Communications Circuits Accessories.
- q) 2024 Standard for Optical Fiber Raceways.
- r) 60950-1/2 Information Technology Equipment -Safety.
- Canadian Standards Association (CSA): same tests as for UL.
- Communications Certifications Laboratory (CCL): same tests as for UL.
- Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Laboratory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.
- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 5) Department of Transportation, CFR, Title 49 (Public Law 89-670), Part 1, Subpart C - Federal Aviation Administration (FAA):

27 51 16 - 5

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

- a) Standards AC 110/460-ID & AC 707 / 460-2E Advisory Circulars for Construction of Antenna Towers.
- b) Forms 7450 and 7460-2 Antenna Construction Registration.
- 6) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.
 - b) Special Communications Proof of Performance Testing, VACO Compliance and Life Safety Certification(s).
 - b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - Wireless and Handheld Device Security Guideline Version
 3.2, August 15, 2005.
 - c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
 - d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
 - e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).
 - 3) Equipment Guide List (PG-18-5.
 - Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
 - 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.

- Mission Critical Facilities Design Manual (Final Draft -2007).
- Life Safety Protected Design Manual (Final Draft -2007).
- Solicitation for Offerors (SFO) for Lease Based Clinics
 (05-2009).
- b. Federal Specifications (Fed. Specs.):
 - A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. United States National Codes:
 - American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
 - b. American National Standards Institute/Electronic Industries
 Association/Telecommunications Industry Association
 (ANSI/EIA/TIA):
 - 568-B Commercial Building Telecommunications Wiring Standards:
 - a) B-1 General Requirements.
 - b) B-2 Balanced twisted-pair cable systems.
 - c) B-3 Fiber optic cable systems.
 - 569 Commercial Building Standard for Telecommunications Pathways and Spaces.
 - 606 Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
 - 607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
 - 5) REC 127-49 Power Supplies.
 - 6) RS 160-51 Sound systems.
 - RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
 - 8) SE 101-A49 Amplifier for Sound Equipment
 - 9) SE 103-49 Speakers for Sound Equipment
 - c. American Society of Mechanical Engineers (ASME):
 - 1) Standard 17.4 Guide for Emergency Personnel.

- 2) Standard 17.5 Elevator & Escalator Equipment (prohibition of installing non-elevator equipment in Elevator Equipment Room / Mechanical Penthouse).
- d. American Society of Testing Material (ASTM):
 - D2301-04 Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
- e. Building Industries Communications Services Installation (BICSI):
 - All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.
 - 3) In consort with ANSI/EIA/TIA.
- f. Institute of Electrical and Electronics Engineers (IEEE):
 - SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
 - 2) 0739-5175/08/©2008 IEEE Medical Grade Mission Critical -Wireless Networks.
 - 3) C62.41 Surge Voltages in Low-Voltage AC Power Circuits.
- g. NFPA:
 - 70 National Electrical Code (current date of issue) -Articles 517, 645 & 800.
 - 75 Standard for Protection of Electronic Computer Data-Processing Equipment.
 - 3) 77 Recommended Practice on Static Electricity.
 - 4) 99 Healthcare Facilities.
 - 5) 101 Life Safety Code.
 - 6) 1600 Disaster Management, Chapter 5.9 Communications and Warning
- 3. State Hospital Code(s).
- 4. Local Town, City and/or County Codes.
- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization
 (JCAHO) Section VI, Part 3a Operating Features.

27 51 16 - 8

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

VA Project 438-450 10-01-18 100% Bid Documents

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of systems of comparable size and complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.
- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's PA equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.

C. The Contractor shall display all applicable national, state and local licenses and permits.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS

- (Note: The Contractor is encouraged, but not required, to submit separate technical submittal(s) outlining alternate technical approach(s) to the system requirements stated here-in as long as each alternate technical document(s) is complete, separate, and submitted in precisely the same manner as outlined herein. VA will review and rate each received alternate submittal, which follows this requirement, in exactly the same procedure as outlined herein. Partial, add-on, or addenda type alternates will not be accepted or reviewed.)
- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the

system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.

- D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
- E. Provide interconnection methods, conduit (where not already installed), junction boxes (J-Boxes), cable, interface fixtures and equipment lists for the: ENR(s) (aka DMARC), TER, TCR, MCR, MCOR, PCR, ECR, Stacked Telecommunications Rooms (STR), Nurses Stations (NS), Head End Room (HER), Head End Cabinet (HEC), Head End Interface Cabinet (HEIC) and approved TCO locations Telecommunications Infrastructure Plant (TIP) interface distribution layout drawing, as they are to be installed and interconnected to teach other (REFER TO APPENDIX B - SUGGESTED TELECOMMUNI-CAITONS ONE LINE TOPOLOGY pull-out drawing).
- F. Headend and each interface distribution cabinet layout drawing, as they are expected to be installed.
- G. Equipment OEM technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- H. Engineering drawings of the System, showing calculated of expected signal levels at the headend input and output, each input and output distribution point, and signal level at each telecommunications outlet.
- I. Surveys Required as a Part of The Technical Submittal:
 - 1. The Contractor shall provide the following System survey(s) that depict various system features and capacities required <u>in addition</u> <u>to</u> the on-site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal Survey requirements), as a minimum:
 - a. PA Cable System Design Plan:
 - An OEM and contractor designed functioning PA System cable plan to populate the entire TIP empty conduit/pathway distribution systems provided as a part of Specification 27 11

27 51 16 - 11

PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

00 shall be provided as a part of the technical proposal. A specific functioning PA: cable, interfaces, J-boxes and back boxes shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems' entire PA cable and accessory requirements and engineer a functioning PA distribution system and equipment requirement plan of the following paragraph(s), at a minimum: 2) The required PA Equipment Locations:

EQUIPPED ITEM	CAPACITY	GROWTH
Master Control Stations		
Telephone Operators Room		
Police Control Room		
Other		
Zone Amplifiers		
All Call (complete Zone 1)		
Admissions (Zone 2)		
Entrance (Zone 2a)		
Pharmacy Dispensing (Zone 2a)		
Agent Cashier (Zone 2a)		
Other (Zone 2a)		
Labs (Zone 3)		
Blood (Zone 3a)		
Dissecting (Zone 3a)		
Other (Zone 3a)		
Clinics (Zone 4)		
Dental (Zone 4a)		
Radiology (Zone 4a)		
Oncology (Zone 4a)		
Other (Zone 4a)		
// (Zone 5)		
(Zone 5a)		
(Zone 5a)		
Other (Zone 5a)		
Spare (Zones 6, 7 & 8)		

EQUIPPED ITEM	CAPACITY	GROWTH
Other (Zone _) //		
Supervisory Panel(s)		
Trouble Panel(s)		
Locations		
Speakers		
Overhead		
Locations		
Other		
Other		
Outside		
Locations		
Other		
Horn		
Locations		
Other		
Power Supply(s)		
Location		
Other		
UPS(s)		
Location		
Other		
Radio Paging Access (when pre- approved by TVE- 0050P3B)		
Wireless Access (when pre-approved by TVE-0050P3B)		
Maintenance/Programming Console		
Location(s)		
Other		

3) The required PA Cable Plant/Connections:

The Contractor shall clearly and fully indicate this category for each item identified herein as a part of the technical submittal. For this purpose, the following definitions and sample connections are provided to detail the system's capability:

EQUIPPED ITEM	CAPACITY	GROWTH
Central Control Cabinet/Equipment		
Location		
Power Supply(s)		
UPS(s)		
Essential Electrical Power Panel(s)		
Other		
Cable Plant		
Supply to Locations Identified herein		
Speaker Locations		
Remote Locations		
Telephone Operator Room		
Police Control Room		
Other		
Maintenance/Program Console		
Location(s)		
Other		
LAN (Local Facility) Access/Equipment/Location (when pre- approved by TVE-005OP3B)		
Wireless Access/Equipment/Location (when pre-approved by TVE-0050P3B)		
Other		

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floor plans shall be marked in pen to include the following:

- 1. All device locations with UL labels affixed.
- 2. Conduit locations.
- 3. Head-end equipment and specific location.
- 4. Each interface and equipment specific location.
- 5. Facility Entrance (aka DEMARC) Room(s) interface equipment and location(s).
- Telephone Equipment Room (TER) interface equipment and specific location.
- 7. Main Computer Room (MCR) interface equipment and specific location.
- 8. Police Control Room (PCR) interface equipment and specific location.
- 9. Engineering Control Room (ECR) interface equipment and specific location
- 10. Telecommunication Outlet (s -TCO) equipment and specific location
- 11. TIP Wiring diagram(s).
- 12. Warranty certificate.
- 13. System test results.
- 14. System Completion Document(s) or MOU.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to grantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.0 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. Furnish and install a complete and fully functional and operable Public Address and Mass Notification System for each location shown on the contract drawings and TCOs WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 05 33.
- B. Coordinate features and select interface components to form an integrated PA system. Match components and interconnections between the systems for optimum performance of specified functions.
- C. Expansion Capability: The PA equipment interfaces and cables shall be able to increase number of enunciation points in the future by a

27 51 16 - 16

minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.

- D. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz.
- E. Meet all FCC requirements regarding low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- F. Weather/Water Proof Equipment: Listed and labeled by an OSHA certified National Recognized Testing Laboratory (NRTL - i.e. UL) for duty outdoors or in damp locations.
- G. Deliver a fully functioning and operable PA in the specific locations shown on the drawings.

2.1 SYSTEM DESCRIPTION

- A. Furnish and install a complete and fully functional and operable PA System. Provide additional require conduit(s) according to Specification 27 11 00.
- B. The Contractor is responsible for interfacing associated systems with the PA System and shall be the interface points for connection of the radio interface cabling from the interface unit(s). The interface unit(s) shall be provided by the Contractor.
- C. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The total PA system shall be configured and installed so that the combination of equipment actually employed does not produce any undesirable visual or aural effects such as signal distortions, noise pulses, glitches, hum, transients, images, etc. The interface points must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- D. It is not acceptable to utilize the telephone cable system for the control of radio signals and equipment. The System Contractor shall connect the Telephone System Remote Control System to the Radio System

Paging Control Unit ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the Telephone System. The Owner shall arrange for the interconnection between the PA and Telephone Systems with the appropriate responsible parties.

- E. System hardware shall consist of a standalone (separate) PA communications network comprised of amplifiers, mixers, speakers, volume controls, test sets, telephone private branch exchange (PBX) interface equipment, equipment cabinets/racks, wiring and other options such as, sub zoning in addition to "all call" functions, computer interfaces, printer interfaces and wireless network interfaces, (when specifically approved by 0050P3B and VA Headquarters Spectrum Management 0050P2B herein after referred to as 0050P2B) as shown on drawings. All necessary equipment required to meet the intent of these specifications, whether or not enumerated within these specifications, shall be supplied and installed to provide a complete and operating nurse/patient communications network.
- F. Systems firmware shall be the product of a reputable firmware OEM of record with a proven history of product reliability and sole control over all source code. Manufacturer shall provide, free of charge, product firmware/software upgrades for a period of two (2) years from date of acceptance by VA for any product feature enhancements. System configuration programming changes shall not require any exchange of parts and shall be capable of being executed remotely via a modem connection (when specifically approved first by 0050P3B).
- G. The PA Head End Equipment shall be located in Telecommunications Room. The PA shall cover all areas within the new facility with the exception of private offices, conference rooms, treatment rooms, restrooms, storage rooms, and group therapy rooms. The PA shall provide zoned, one-way voice paging through distributed, ceiling mounted loudspeakers. Voice input into the PA shall be by zone using the telephone system.
- H. The System shall utilize microprocessor components for all signaling and programming circuits and functions. Self contained or on board

system program memory shall be non-volatile and protected from erasure from power outages for a minimum of 24 hours.

- I. The System is defined as Emergency Service by NFPA (re Part 1.1.A) and so evaluated by JCAHCO. Therefore, the system shall have a minimum of two (2) additional remote enunciation points in order to satisfy NFPA's Life Safety Code 101 where each enunciation point shall fully function independent of the Facility's PBX.
 - 1. These two (2) additional remote locations shall be fully manned:
 - a. As long as other identified VA Medical / Servicing Facilities are open for servicing patients.
 - b. The minimum remote enunciation locations shall be:
 - 1) The Telephone / PBX Operator Room.
 - 2) The Police Control / Operations Room.
 - 3) Other location(s) that is specifically approved by VA Headquarters TVE - 0050P3B DURING THE PROJECT DEVELOPMENT STAGES AND PRIOR TO EQUIPMENT PURCHASE.
 - c. One (1) global (aka "all call") hard wired zone shall be provided that connects to every system speaker.
 - d. The System shall have a minimum of three (3), unused zones.
 - 2. The System shall allow voice pages to be made within a single zone, across programmed multiple zones or a global page (all zones) by using preset codes entered into the keypad of any telephone instrument attached to the PBX.
- J. The System shall interface with the Facility's existing PAS so that a global page (aka "all call" page) is communicated to the existing PAS and the new System of this project. Arrangements for interconnection of the System and the telephone system(s) shall be coordinated with the owner and the PBX provider.
- K. The system shall be designed to provide continuous electrical supervision of the complete and entire system (e.g. light bulbs, wires, contact switch connections, master control stations, wall stations, circuit boards, data, audio, and communication busses, main and UPS power, etc.). All alarm initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and UPS power circuits shall be supervised for a change in state (e.g.

primary to backup, low battery, UPS on line, etc.). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the main supervisory panel, nurse control station and all remote amplifier locations.

- L. When the System is approved to connect to a separate communications system (e.g. LAN, WAN, Telephone, Nurse Call, radio raging, wireless systems, etc) the connection point shall be at one location and shall meet the following minimum requirements for each hard wired connection (note each wireless system connection MUST BE APPROVED PRIOR TO CONTRACT BID BY VA HEADQUARTERS 0050P3B AND 0050P2B):
 - 1. UL 60950-1/2.
 - 2. FIPS 142.
 - 3. FCC Part 15 Listed Radio Equipment is not allowed.
- M. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with screw type audio connectors.
- N. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- O. All trunk, branch, and interconnecting cables and unused equipment ports or taps shall be terminated with proper terminating resistors designed for RF, audio and digital cable systems without adapters.
- P. Noise filters and surge protectors shall be provided for each equipment interface cabinet, headend cabinet, control console and local and remote amplifier locations to insure protection from input primary AC power surges and to insure noise glitches are not induced into low voltage data circuits.
- Q. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and RF transmission line interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the system OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling

are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.

- R. Audio Level Processing: The control equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each sub-zone in the system and distribute them into the System's RF interfacing distribution trunks and amplification circuits. It is acceptable to use identified Telephone System cable pairs designated for Two-Way Radio interface and control use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor. The use of telephone cable to distribute RF signals, carrying system or sub-system AC or DC voltage is not acceptable and will not be approved. Additionally, each control location shall be provided with the equipment required to insure the system can produce its designed audio channel capacity at each speaker identified on the contract drawings. The Contractor shall provide: a spare set of telephone paging modules as recommended by the OEM (as a minimum provide one spare module for each installed module); one spare audio power amplifier, one spare audio mixer, one spare audio volume limiter and/or compressor, and one spare audio automatic gain adjusting device, and minimum RF equipment recommended by the OEM.
- S. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.

2.2 SYSTEM PRFORMANCE:

- A. At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's PA system voice and data service as follows:
 - Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface, interconnection and terminating locations in the TERs.

- Audio Input: The signal level of each audio input channel at each input point shall be a MINIMUM of zero decibels measured (dBm), +0.10 dBm across 150 Ohms, balanced.
- 3. Audio Output: The audio signal level at each speaker shall be a MINIMUM of +0.25 Watt (W) and a maximum of +20 W, 600 Ohms balanced impedance, on a 70.7 V audio distribution line Contractor to determine and set each speaker's proper audio signal level (top) based on speaker location and the ambient noise level in speaker coverage area.
- The system shall meet the following MINIMUM parameters at each speaker:
 - a. Cross Modulation: -46 dB
 - b. Hum Modulation: -55 dB
 - c. Isolation (outlet-outlet): 24 dB
 - d. Impedance:
 - 1) Distribution: 600 Ohm balanced @ 70.7 V audio line level.
 - 2) Speaker: Selectable, as required.
 - e. Audio Gain: 10 dB minimum @ mid-range measured with a sound pressure level meter (SPL)
 - f. Signal to noise (S/N) ratio: 35 dB, minimum
- B. Audio Level Processing: The head-end equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each zone or sub-zone in the system and distribute them into the system's distribution trunks. It is acceptable to use identified telephone system cable pairs designated for PA use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor.
 - 1. THE USE OF TELEPHONE CABLE TO DISTRIBUTE PA SIGNALS CARRYING AC OR DC VOLTAGE IS NOT ACCEPTABLE AND WILL NOT BE APPROVED.
 - Additionally, each remote location shall be provided with the equipment required to ensure the system supervision and designed audio channel capacity at each speaker identified on the contract drawings.

2.3 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,
 - Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
 - Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid (IFB).
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as an Emergency performing Public Safety Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Public and Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory (NRTL) where such standards have been established for the supplies, materials or equipment.
 - 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is

in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.

4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.4 PRODUCTS

- A. General.
 - Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
 - Each cabinet shall be provided with internal and external items to maintain a neat and orderly system of equipment, wire, cable and conduit connections and routing.
 - 3. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.
 - b. The following equipment items are the minimum requirements of VA to provide an acceptable system described herein:

CONTRACTOR NOTE: Select the required equipment items quantities that will satisfy the needs of the system and edit between the // - - //. Do not delete equipment items that are not required place a "0" in the appropriate Item location. The two color coded sections for the Mental Health and Blind Rehabilitation Units are provided for use when these units are a part of the project. If these units are not a part of the project - retain each unit's heading and place "0" in the respective

Item

"as required" column and delete the remaining system items. Quantity Unit

1.	//As required//	Interface Panel(s)
1.a	//As required//	Electrical Supervision
	1	Trouble Enunciator
1.a.1.	//As required//	Equipment Back Box(s)
	//As required//	Telephone Access Equipment
	//As required//	Radio Paging Access Equipment
	//As required//	Radio Pager Equipment
	//As required//	Wireless Access Equipment
1.a.5.		Personal Communicator
	±	Equipment
2.	//As required//	Lightning Arrestor
3.	//As required//	Head End Equipment Locations
3.a	//As required//	Cabinet(s)
3.a.1.	//As required//	AC Power Conditioner & Filter
3.a.2.		AC Power Strip
3.a.3.		UPS
	//As required//	Main Power Amplifiers
	//As required//	Remote Power Amplifiers
3.a.3.c	//As required//	Distributed Amplifiers (When
		Approved)
3.a.4.	//As required//	Interconnecting wire Cable(s)
3.a.4.a	//As required//	Wire Cable Connector(s)
3.a.4.b	//As required//	Wire Cable Terminator(s)
3.a.4.c	//As required//	Wire Management System
3.b.	//As required//	Head End Function(s)
4.	//As required//	Distribution System(s)
4.a	//As required//	Equipment Back Box(s)
4.a.1.	//As required//	Speakers
4.a.1.a	//As required//	Overhead
4.a.1.b	//As required//	Horn
	//As required//	Outside
4.a.1.d	//As required//	Speaker w/ Microphone
5.	2 (MIN)	Remote Station(s)
5.a.	//As required//	Spare Items
6.	//As required//	Mental Health Unit
6.a.	//As required//	Interface Panel(s)
6.b.	//As required//	Electrical Supervision
		Trouble Enunciator
6.C.	//As required//	Equipment Back Box(s)
6.d.	//As required//	Telephone Access Equipment
6.e.	1 1	Radio Paging Access Equipment
6.e.1.	-	Radio Pager Equipment
6.f.	-	Wireless Access Equipment
6.g.	//As required//	Personal Communicator
		Equipment
6.h.	//As required//	Lightning Arrestor
6.i.	//As required//	Head End Equipment
6 I I	//_	Location(s)
6.1.1.	//As required//	Cabinets

27 51 16 - 25

6.i.2.	//As required//	AC Power Conditioner & Filter
6.i.3.	//As required//	AC Power Strip
6.i.4.	//As required//	UPS
6.i.5.	//As required//	Main Power Amplifiers
0.1.0. 6.j.	//As required//	Remote Power Amplifiers
6.k.	//As required//	Distributed Amplifiers (When
	,, 1,,	Approved)
6.1.	//As required//	Interconnecting Wire Cable(s)
6.1.1.	//As required//	Wire Cable Connector(s)
	//As required//	Wire Cable Terminator(s)
	//As required//	Wire Management System
6.m.	//As required//	Head End Function(s)
6.n.	//As required//	Distribution System(s)
6.n.1	//As required//	Equipment Back Box(S)
6.n.2	//As required//	Speakers
6.n.2(a)	//As required//	Overhead
	//As required//	Horn
	//As required//	Outside
	//As required//	Speaker w/ Microphone
6.0	2 (MIN)	Remote Station(s)
6.p.	//As required//	Spare Items
//7.	//As required//	Blind Rehabilitation Unit//
7.a	//As required//	Interface Panel(s)
7.b	//As required//	Electrical Supervision
_		Trouble Enunciator
7.c	//As required//	Equipment Back Box(s)
7.d.	//As required//	Telephone Access Equipment
7.e. 7.e.1.	//As required//	Radio Paging Access Equipment
7.e.1. 7.f.	<pre>//As required// //As required//</pre>	Radio Pager Equipment Wireless Access Equipment
	//As required// //As required//	Personal. Communicator
7.g.	//As required//	Equipment
7.h.	//As required//	Lightning Arrestor
7.i.	//As required//	Head End Equipment
··	//110 ICquircu//	Location(s)
7.i.1.	//As required//	Cabinets
7.i.2.	//As required//	AC Power Conditioner & Filter
7.i.3.	//As required//	AC Power Strip
7.i.4.	//As required//	UPS
7.i.5.	//As required//	Main Power Amplifiers
7.j.	//As required//	Remote Power Amplifiers
-	-	_
7.k.	//As required//	Distributed Amplifiers (When
		Approved)
7.1.	//As required//	Interconnecting Wire Cable(s)
7.1.1.	//As required//	Wire Cable Connector(s)
	//As required//	Wire Cable Terminator(s)
	//As required//	Wire Management System
7.k.	//As required//	Head End Function(s)
7.m.	//As required//	Distribution System(s)
7.m.1.	//As required//	Equipment Back Box(s)
	//As required//	Speakers
7.m.2(a)	//As required//	Overhead

27 51 16 - 26 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

VA Project 438-450 10-01-18 100% Bid Documents

7.m.2(b) //As required// 7.m.2(c) //As required// 7.m.2(d) //As required// 7.n. 2 (MIN) 7.o. //As required// //8. //As required// Horn Outside Speaker w/ Microphone Remote Station(s) Spare Items Oncology, Radiology, Dialysis, Units (These units are treated the same as Blind Rehabilitation Unit EXCEPT it does contains a CODE BLUE Function. If these units are provided as a part of the project, AT A MINIMUM -DUPLI-CATE THE BLINE REHABILITATION UNIT'S EQUIPMETN LISTE AND EDIT AND RENUMBER ACCORD-INGLY) //

B. ENT (aka DEMARC) Room(s):

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

- C. TER, TCR, TR, SCC, PCR, STR, HER Rooms and Equipment: Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.
 - 1. Interface Equipment:
 - a. TER:
 - 1) Paging adaptor:
 - a) The Contractor shall coordinate the installation of the paging adapter(s) designed for use with the Facility's telephone system with the Facility Telephone Contractor or local telephone company.
 - b) The Contractor shall provide and install a paging adapter(s) for each zone and sub zone. The paging adapter(s) shall be accessible by dialing a telephone number provided by the Facility's Telephone Contractor. The Paging Adapter shall:
 - 1) Monitor each audio input and output on the unit.

27 51 16 - 27 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

- Be provided with an electrical supervision panel to provide both audio and visual trouble alarms.
- Be provided as part of the head end equipment and shall be located in the Telephone Switch Room
- 4) Be provided with Executive (aka emergency) Paging Override of all routine paging calls in progress or being accessed to allow system "all call" (aka global) and radio paging calls designated as (Code One Blue) functions.
- 5) Be capable of internal time out capability.
- 6) Function completely with the interface module.
- 7) Provide one spare adapter.
- c) Time Out Device: A time out device/capability shall be provided to prevent system "hang-up" due to an off-hook telephone. The device shall be able to be preset from 30 seconds to two (2) minutes. Its function shall not interfere with or override the required "all call" (aka global) operational capability.
 - 1) Central Processor Module:
 - Controls system operations and holds all programmed parameters.
 - 3) Data link connection to additional CPU modules.
- d) Power Module: Provides 12V DC @ 800mA to Central Processor Module.
- e) Minimum three (3) Zone Module:
 - Provides a minimum of three (3) paging zone outputs at 70V audio sound level.
 - 2) Background Music inhibit switch for each zone.
- 2) Audio Monitor Panel:
 - a) The panel shall be EIA/TIA standard for 483 mm (19") cabinet mounting.
 - b) It shall be provided in the upper portion of the head-end equipment cabinet.
 - c) Provide one (1) spare panel.
- 3) Trouble Annunciator Panel:

27 51 16 - 28

- a) A trouble annunciator panel shall be provided in the headend cabinet, and at locations as designated on the contract drawings. The panel(s) shall be compatible with or generate electrical and/or electronic supervising signals to continuously monitor the operating condition for the System head-end audio power amplifier(s), remote power amplifier(s), microphone consoles and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects an amplifier or trunk-line is malfunctioning.
- b) Provide one (1) spare panel.
- 4) Head-End Equipment
 - a) Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system listed herein. Headend components may be rack mounted or wall mounted in a metal enclosure.
 - b) Provide the head end equipment in the closed telecommunications closet where the PA system is installed to include the minimum equipment listed herein.
 - c) Provide minimum of 30 minute battery back-up to system components.
- 5) Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions
 - a) Vertical Equipment Rack, Wall Mounted (to be included inside of the Equipment Cabinet):
 - b) 74" (48RU) rack space, Welded Steel construction, Minimum 20" usable depth, Adjustable front mounting rails.
 - Install the following products in rack provided by same manufacturer or as specified:
 - 2) Security screws w/ nylon isolation bushings.
 - 3) Textured blank panels.

27 51 16 - 29

- 4) Custom mounts for components without rack mount kits.
- 5) Security covers.
- 6) Copper Bus Bar.
- 7) Power Sequencer rack mounted power conditioner and (provide as needed) delayed sequencer(s) with two (2) inswitched outlets each and contact closure control inputs.
- 8) Rack mounting: Provide rack mount kit.
- 6) Amplifier Equipment:
 - a) Paging (aka zone):
 - Inputs for 600-ohm balanced telephone line, LO-Z balanced microphone, and background music.
 - 2) Input Sensitivity: Compatible with master stations and central equipment so amplifier delivers full rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on master stations speaker microphones, or handset transmitters
 - Automatic Level Control (ALC) for pages, adjustable background music muting level during page, wall or rack mountable.
 - 4) 16-ohm, 25V, 25V center tapped (CT), and 70V outputs. Amplifier quantity and size (output power) as needed. Continuous amplifier power rating shall exceed loudspeaker load on amplifier by at least 25%.
 - 5) Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus an allowance for future stations.
 - 6) Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to quantity of stations connected in all-call mode of operation.
 - 7) Minimum Signal-to-Noise Ratio: 45 dB, at rated output.
 - Frequency Response: Within plus or minus 3 dB from 70 to 12,000 Hz.

- b) Output Regulation: Maintains output level within 2 dB from full to no load.
- c) Amplifier Protection: Prevents damage from shorted or open output.
- d) Be provided with electronic supervision function(s).
- e) Provide one spare amplifier.
- D. TIP DISTRIBUTION SYSTEM:
 - 1. System Speakers:
 - a. Ceiling Cone-Type:
 - 1) Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
 - 2) Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
 - 3) Minimum Dispersion Angle: 100 degrees.
 - 4) Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - 5) Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch steel and whole assembly rust proofed and factory primed; complete with mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.
 - 6) Baffle: For flush speakers, minimum thickness of 0.032-inch aluminum with textured white finish. Completely fill the baffle with fiberglass.
 - 7) Vandal-Proof, High-Strength Baffle: For flush-mounted speakers, self-aging cast aluminum with tensile strength of 44,000 psi, 0.025-inch minimum thickness; countersunk heattreated alloy mounting screws; and textured white epoxy finish.
 - Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
 - 9) Have a minimum of two (2) safety wires installed to a solid surface or use a flexible conduit from ceiling / wall back box to the speaker back box.

- 10) The speakers and mounting shall be self contained and wall mounted with flush back box at a minimum of 10 meter intervals and shall match (or contrast with, at the direction of the RE) the color of the adjacent surfaces.
- 11) Provide one spare speaker, mount, and back box for each 50 speakers or portion thereof.
- b. Wall Mounted Horne-Type:
 - Each horn speaker shall be provided with a means of adjusting the output level over the rated horn speaker range to an appropriate audio level in the area installed.
 - Provide horn speakers in equipment rooms, mechanical room, supply warehouse areas, loading dock, entrance and exit areas, and at other areas as indicated on the drawings.
 - Speakers shall be all-metal, weatherproof construction; complete with universal mounting brackets.
 - 4) Frequency Response: Within plus or minus 3 dB from 275 to 14,000 Hz.
 - 5) Minimum Power Rating of Driver: 15 W, continuous.
 - 6) Minimum Dispersion Angle: 110 degrees.
 - Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - Provide one spare speaker, mount, and back box for each 20 speakers or portion thereof.
- c. System Cables: In addition to the TIP provided under Specification Section 27 15 00 - TIP Horizontal and Vertical Communications Cabling, provide the following additional TIP installation and testing requirements, provide the following minimum System TIP cables & interconnections:
 - 1) Line Level Audio and Microphone Cable:
 - a) Line level audio and microphone cable for inside racks and conduit.
 - b) Shielded, twisted pair Minimum 22 American Wire Gauge (AWG), stranded conductors and 24 AWG drain wire with overall jacket.
 - 2) Speaker Level (Audio 70.7Volt [V]) Cable, Riser Rated:

27 51 16 - 32

- a) For use with 70.7 V audio speaker circuits.
- b) 18 AWG stranded pair, minimum.
- c) UL-1333 listed.
- 3) Speaker Level Audio Cable, Plenum Rated (70.7V):
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
- 4) All cabling shall be riser rated.
- Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.
- 2. Raceways, Back Boxes and conduit:
 - a. Raceways:
 - In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
 - 2) Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
 - 3) Intercommunication System cable infrastructure: EMT or in Jhooks above accessible ceilings, 24 inches on center.
 - Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
 - 5) Flexible metal conduit is prohibited unless specifically approved by 0050P3B.
 - b. System Conduit:
 - The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.

- The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
- 3) Conduit Sleeves:
 - a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
 - b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nursecall cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.
- 3. Device Back Boxes:
 - a. Furnish to the electrical contractor all back boxes required for the PA system devices.
 - b. The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
- 4. Telecommunication Outlets (TCO): Populate each TCO that is required to perform system operations in the locations that were provided and cabled as a part of Specifications Sections 27 11 00 and 27 15 00. Provide additional TCO equipment, interfaces and connections as required by System design. Provide secured pathway(s) and TCOs as required.
- E. Installation Kit:
 - 1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and

barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation subkits:

- 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields.
 - 2) Control Cable Shields.
 - 3) Data Cable Shields.
 - 4) Equipment Racks.
 - 5) Equipment Cabinets.
 - 6) Conduits.
 - 7) Duct.
 - 8) Cable Trays.
 - 9) Power Panels.
 - 10) Connector Panels.
 - 11) Grounding Blocks.
- 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.

- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P3B) at (301) 734-0350 to have a VA Certified Telecommunications COTR assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

- A. Coordinate with the cabling contractor the location of the PA system faceplate and the faceplate opening for the PA system back boxes.
- B. Coordinate with the cabling contractor the location of TIP equipment in the TER, TCR, PA, PCR, SCC, ECR, STRs, NSs, HER and TCOs in order to connect to the TIP cable network that was installed as a part of Section Specification 27 11 00. Contact the RE immediately, in

writing, if additional location(s) are discovered to be activated that was not previously provided.

- C. Before beginning work, verify the location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems, as required or recommended by the Systems Manufacturer.
 - 2. Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
- D. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies

3.3 NEEDS ASSESSMENT

Provide a one-on-one meeting with the particular manager of each unit affected by the installation of the new PA system. Review the floor plan drawing, educate the nursing manager with the functions of the equipment that is being provided and gather details specific to the individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that will affect system programming and training.

3.4 INSTALLATION

A. General

- Execute work in accordance with National, State and local codes, regulations and ordinances.
- 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
- 3. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
- Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.

- All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
- b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
- c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
- d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Locate overhead ceiling-mounted loudspeakers as shown on drawings, with changes as required to provide coverage defined in this specification.
 - a. Mount transformers securely to speaker brackets or enclosures using screws. Adjust torsion springs as needed to securely support speaker assembly.
 - b. Speaker back boxes shall be completely filled with fiberglass insulation.
 - c. Seal cone speakers to their enclosures to prevent air passing from one side of the speaker to the other.
- Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and 0050P3B.
- 7. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.
- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.
- 9. Color code all distribution wiring to conform to the PA Industry Standard, EIA/TIA, and this document, whichever is the more

27 51 16 - 38 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.

- 10.Connect the System's primary input AC power to the Facility' AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 11. Product Delivery, Storage and Handling:
 - a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
 - b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- 12.Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 13.Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- B. Equipment Racks:
 - Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks.
 - 2. Provide security covers for all devices not requiring routine operator control.
 - 3. Provide vent panels and cooling fans as required for the operation of equipment within the OEM' specified temperature limits. Provide adequate ventilation space between equipment for cooling. Follow manufacturer's recommendations regarding ventilation space between amplifiers.
 - 4. Provide insulated connections of the electrical raceway to equipment racks.
 - 5. Provide continuous raceway/conduit with no more than 40% fill between wire troughs and equipment racks for all non-plenum-rated

cable. Ensure each system is mechanically separated from each other in the wireway.

- 6. Ensure a minimum of 36 inches around each cabinet and/or rack to comply with OSHA Safety Standards. Cabinets and/or Racks installed side by side - the 36" rule applies to around the entire assembly
- C. Distribution Frames.
 - 1. A new stand-alone (i.e., self supporting, free standing) PA rack/frame may be provided in each TR to interconnect the PA, TER, TCR, PCR, SCC, STRs & ECRs. Rack/frames shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The PA riser cable shall be sized to satisfy all voice/digital requirements plus not less than 50% spare (growth) capacity in each TR which includes a fiber optic backbone.
 - 2. The frames/racks shall be connected to the $\ensuremath{\mathtt{TER}}\xspace/{\mathtt{MCR}}$ system ground.
- D. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:
 - Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
 - Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
 - 3. Wiring shall be classified according to the following low voltage signal types:
 - Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
 - 4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches.

Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.

- 5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
- Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
- Use wire pulling lubricants and pulling tensions as recommended by the OEM.
- 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 10.Do not use tape-based or glue-based cable anchors.
- 11.Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12.Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.
 - b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
 - c. If specified terminal blocks are not designed for rack mounting, utilize ¾" plywood or 1/8" thick aluminum plates/blank panels as a mounting surface. Do not mount on the bottom of the rack.
 - d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.

13.Use only balanced audio circuits unless noted otherwise 14.Make all connections as follows:

- a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
- b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
- c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
- d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 15.Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 16.Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- 17.Wires or cables **previously approved** to be installed outside of conduit, cable trays, wireways, cable duct, etc:
 - a. Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - b. Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - c. Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings,

27 51 16 - 42

remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.

- d. Wire or cable runs to system components installed in walls (e.g.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- e. Completely test all of the cables after installation and replace any defective cables.
- f. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- E. Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 -Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered too:
 - Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable tray, j-hooks, and bridal rings. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
 - 2. Run cables parallel to walls.

- 3. Install maximum of 10 cables in a single row of J-hooks. Provide necessary rows of J-hooks as required by the number of cables.
- Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
- 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
- Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
- 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
- Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10.Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11.Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12.Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13.Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring.

Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

- 14.Serve all cables as follows:
 - a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
 - b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.
 - c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for PA circuits shall be stenciled using laser printers, thermal ink transfer process, or other method acceptable to Government.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters

27 51 16 - 45

(10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

- 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
- 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
- 6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heatshrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
- Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked. SYSTEM EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.
- G. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.

- b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow PA cables to be installed in partitioned cable tray with voice cables may be granted in writing by the RE if requested). Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.
- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "interduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and

27 51 16 - 47 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.

d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.5 PROTECTION OF NETWORK DEVICES

Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the

location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

- A. Where PA wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.
- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.
- F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground PA cable shields and equipment to eliminate shock hazard and to minimize ground loops, commonmode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26
 - Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.

- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use "3rd or 4th" wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.
- H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

PART 4 - TESTING / GUARANTY / TRAINING

4.0 SYSTEM LISTING

The PA System is NFPA listed as an "Emergency / Public Safety" Communications system. Where Code Blue signals are transmitted, that listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and OEM.

4.1 PROOF OF PERFORMANCE TESTING

- A. Intermediate Testing:
 - After completion of 25 30% the installation of a head end cabinet(s) and equipment, one microphone console, local and remote enunciation stations, two (2) zones, two (2) sub zones prior to any further work, this portion of the system must be pretested, inspected, and certified. Each item of installed equipment shall be checked to ensure appropriate UL Listing and Certification Labels are affixed as required by NFPA -Life Safety Code 101-3.2 (a) & (b) and JCHCO evaluation guidelines, and proper installation practices are followed. The intermediate test shall include a full operational test.
 - 2. All inspections and tests shall be conducted by an OEM-certified contractor representative and witnessed by TVE-0050P3B if there is no local Government Representative that processes OEM and VA approved Credentials to inspect and certify the system. The results of the inspection will be officially recorded by the Government

Representative and maintained on file by the RE, until completion of the entire project. The results will be compared to the Acceptance Test results. An identical inspection may be conducted between the 65 - 75% of the system construction phase, at the direction of the RE.

- B. Pretesting:
 - Upon completing installation of the PA System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.
 - 2. Pretesting Procedure:
 - a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
 - b. The Contractor shall pretest and verify that all PA System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) Central Control Cabinets.
 - 2) Local Control Stations.
 - 3) Zone Equipment/Systems.
 - 4) Sub-Zone Equipment/Systems.
 - 5) Remote Control Panels.
 - a.)TCR.
 - b.)PCR/SCC.
 - 6) All Networked locations.
 - 7) System interface locations (e.g. TELCO, two way radio, etc.).
 - 8) System trouble reporting.
 - 9) System Electrical Supervision.
 - 10) UPS operation.
 - 11)STRs.
 - 12)NSs
 - 13) TCOs.

- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test:
 - 1. After the PA System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 day's written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of TVE 0050P3B and an OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Emergency / Public Safety compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
 - 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable. Retesting of the entire System shall be rescheduled at the convenience of the Government.
 - Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.
- D. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:

- a. The TVE 0050P3B Representative will tour all areas where the PA system and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
- b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
- c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
- 2. Operational Test:
 - a. After the Physical and Mechanical Inspection, the system head end equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
 - b. Following the head end equipment test, each speaker (or on board speaker) shall be inspected to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
 - c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last speaker in each leg to verify the PA distribution system meets all system performance standards.
 - d. If the RED system is a part of the system, each volume stepper switches shall be checked to insure proper operation of the pillow speaker, the volume stepper and the RED system (if installed).
 - e. Additionally, each installed head end equipment, microphone console; amplifier, mixer, distributed speaker/amplifier, monitor speaker, telephone interface, power supply and remote amplifiers shall be checked insuring they meet the requirements of this specification.

- f. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: "all call," three sub-zoned, minimum of 15 minutes of UPS operation, electrical supervision, trouble panel, corridor speakers and audio paging.
- h. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.
- 3. Test Conclusion:
 - a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
 - b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - 1. Spectrum Analyzer.
 - 2. Signal Level Meter.
 - 3. Volt-Ohm Meter.
 - 4. Sound Pressure Level (SPL) Meter.
 - 5. Oscilloscope.
 - 6. Random Noise Generator.
 - 7. Audio Amplifier with External Speaker.

4.2 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:

- The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of two (2) years from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building), that certifies each item of equipment installed conforms to OEM published specifications.
- 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
- 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
- C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor, contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render an official opinion in writing concerning the supplied information.

4.3 TRAINING

A. Provide thorough training of all biomed engineering and electronic technical staff assigned to those nursing units receiving new networked nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.

- B. Provide the following minimum training times and durations:
 - 24 hours prior to opening for BME / Electronic Staff (in 8-hour increments) - split evenly over 3 weeks and day and night shifts. Coordinate schedule with Owner.
 - 8 hours during the opening week for Telephone Staff both day and night shifts.
 - 3. 4 hours for supervisors and system administrators.

- - - E N D - - -

SECTION 27 51 19 SOUND MASKING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Local sound-masking systems.
 - 2. Wire and cable.

1.2 DEFINITIONS

- A. Covered Spaces: Spaces above which masking loudspeakers are installed.
- B. Loudspeaker Control Unit: Digital interface with a loudspeaker.
- C. Spatial Uniformity: A condition where the sound-pressure levels throughout a defined space do not vary significantly from the arithmetic mean sound-pressure level. The amount of allowable variation is specified by others, such as a consultant, designer, or owner.
- D. Temporal Uniformity: At a given position, a condition where the average sound-pressure level measured over a short time interval does not differ significantly from the average sound-pressure level measured over a long time interval. The amount of allowable variation is specified by others, such as a consultant, designer, or owner.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for loudspeakers.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Nationally recognized testing laboratory listing data for plenummounted equipment.
- B. Shop Drawings: For sound-masking systems.
 - 1. Include plans, elevations, sections, and mounting details.
 - Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1. Test and system calibration instrument list and instrument calibration documentation.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sound-masking equipment and components to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Sound-Masking Loudspeaker Assemblies: One for every 10 of each type of loudspeaker assembly, but no fewer than one.
 - 2. Fuses: One for each type used, but no fewer than one.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. Comply with NFPA 70.
- C. Comply with UL 813.

1.8 COORDINATION

A. Coordinate quantity and arrangement of loudspeaker assemblies with ceiling space configuration and with components occupying ceiling space, including structural members, pipes, air-distribution components, raceways, cable trays, luminaires, and other items.

1.9 WARRANTY

A. Manufacturer's Special Warranty: Manufacturer agrees to repair or replace sound-masking loudspeaker control units and loudspeakers that fail in materials or workmanship within specified warranty period.
1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOUND-MASKING SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Compliance Standard: Fabricate and label electronic components to comply with UL 60065 or UL 1419.

C. Wire, cable, devices, and assemblies installed in air-handling spaces shall be plenum rated, complying with NFPA 70 requirements for rate of heat-release and smoke-release characteristics. Tests for these requirements shall be according to UL 2043.

2.2 PERFORMANCE REQUIREMENTS

- A. Comply with UL 813.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Compliance Standard: Fabricate and label electronic components to comply with UL 60065 or UL 1419.
- D. Wire, cable, devices, and assemblies installed in air-handling spaces shall be plenum rated, complying with NFPA 70 requirements for rate of heat-release and smoke-release characteristics. Tests for these requirements shall be according to UL 2043.

2.3 LOCAL SOUND-MASKING SYSTEM

- A. Description: Local, single-zone sound-masking system, consisting of a control unit and loudspeakers.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Atlas Sound LP.
 - 2. Dynasound, Inc.
 - 3. Lencore.
 - 4. Moeller, K. R. Associates Ltd.
 - 5. Sound Management Group LLC.
- C. Standard: Comply with ASTM E 1374.
- D. Control Unit: Includes masking-sound generator, paging equipment, amplifiers, and constant 70.7-V cabling to the loudspeakers.
 - 1. Power Supply: NFPA 70, Class 2.
 - Masking Sound Generator: Digital, solid-state, random sequence noise generator, stable in sound spectrum and output level, and containing the following:
 - a. Electronic sound generator and equalizers for shaping the masking-sound spectrum.

27 51 19.11 - 3 SOUND MASKING SYSTEMS

- b. Masking Sound: 125 Hz to 8 kHz, with equalizers for adjusting the masking-sound spectrum at third-octave resolution.
- c. Masking-Sound Volume Adjustment: At least 10 steps at 1.5 dB each, or a continuous adjustment with that range.
- 3. Paging System: Preamplifiers and amplifier to distribute paging messages to sound-masking loudspeakers.
 - a. Controls:
 - 1) Volume control.
 - 2) Bass and treble controls.
 - b. Sources:
 - 1) Auxiliary:
 - a) Input Impedance: 100 kohms.
 - b) Input Level: 10 V maximum.
 - c) Input Sensitivity: 300 mV for maximum output.
 - d) Gain, Maximum: 20 dB, adjustable in 20 one-dB steps.
 - e) Frequency Response: 20 to 10,000 Hz.
- Amplifier shall have a 70.7-V constant voltage output to the loudspeakers. Size the amplifier to allow for 25 percent system expansion and transformer wattage tap adjustments.
- E. Sound-Masking Loudspeakers: Connected to the control unit.
 - For plenum mounting, arrange units for upward dispersion, suspended from the building structure above the ceiling; adjustable, not less than 20 inches.
 - For flush-with-ceiling mounting, arrange units for downward dispersion and equip with a perforated grill and accessories required for mounting in the suspended ceiling system.
 - Cone Type: 8 inches in diameter with 1-inch voice coil and minimum 5-oz. ceramic magnet, mounted in an acoustic enclosure.
 - 4. Impedance: 16 ohms.
 - 5. Rated Output Level: 10 W root mean square (rms).
 - 6. Dispersion Angle: 100 degrees.
 - Sensitivity: 90-dB sound-pressure level (SPL) at 1 W/m on the reference axis.
 - 8. Audio Output: 87 dBA, maximum.
 - 9. Frequency Response: Plus or minus 3 dB from 90 to 10,000 Hz.

27 51 19.11 - 4 SOUND MASKING SYSTEMS

10. Line-Matching Transformer: 70.7 V, with power taps for 0.5, 1, 2, and 5 watts.

2.4 WIRE AND CABLE

- A. Comply with Section 27 15 00 COMMUNICATIONS STRUCTURED CABLING for balanced twisted pair cabling.
- B. Loudspeaker Wire and Cables:
 - 1. Plenum-Rated Paired Cable: NFPA 70, Type CMP.
 - a. One pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 - b. PVC insulation.
 - c. Unshielded.
 - d. PVC jacket.
 - e. Flame Resistance: Comply with NFPA 262.
- C. Control-Circuit Conductors:
 - Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Loudspeaker Assemblies: Suspend with chains from building structure above ceilings, so bottom of assembly is 6 to 8 inches above upper plane of finished ceiling material. Use eyebolts on speaker assemblies for attachment. Suspend independently from structure, not to supports for components of other building systems.
- C. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Comply with requirements for raceways and boxes specified in Section 27 05 33 - RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
 - 3. Comply with requirements in Section 27 15 00 COMMUNICATIONS STRUCTURED CABLING.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's

limitations on bending radii. Provide and use lacing bars and distribution spools.

- E. Grounding: As recommended by manufacturers unless more stringent requirements are indicated. Ground equipment and conductors to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments with a maximum of 5 ohms to ground at main equipment location.
- F. Impedance Matching: For system components, including connecting cable, provide end-to-end level and impedance-matched signal paths. Use matching networks and balancing devices at connections where necessary to avoid mismatches.
- G. Splices, Taps, and Terminations: Make splices, taps, and terminations on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.2 IDENTIFICATION

A. Use color-coded conductors, and apply wire- and cable-marking tape to designate wires and cables, so media are identified in coordination with system wiring diagrams.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - Operational Test: Start system to confirm proper operation. Remove malfunctioning units, replace with new units, and retest. Make initial sound-spectrum and -level adjustments for each zone.
 - Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified.
 - 3. Pretesting: Tune, align, and adjust system, and pretest components, wiring, and functions to verify compliance with specified material, installation, and performance requirements. Correct deficiencies and retest until satisfactory performance and conditions are achieved.
- C. Final Acceptance Testing: Provide a minimum of 10 days' notice of acceptance test performance schedule. Schedule tests after pretesting has been successfully completed.

- Perform sound-masking evaluation tests according to ASTM E 1130, with measurements and calculations according to ANSI S3.5. Report test results in accordance with the requirements in ASTM E 1130.
- 2. Tests and Calibration Conditions: Spaces shall be completely furnished but unoccupied; lights and HVAC systems shall be on; HVAC system testing and balancing shall be completed; and electronic ballasts, lighting relay panels, and low-voltage transformers shall be in place.
- 3. Test Conditions: Complying with ASTM E 1130 and calculated according to ANSI S3.5.
- Instrumentation: Use a professional-quality, sound-level meter with octave-band filters and documentation of recent calibration against recognized standards. Comply with ANSI S1.4-1.
- 5. Record test observations, readings, and corrective actions.
- 6. System Tests: Include the following for each system zone:
 - a. Loudspeaker Circuit Impedance Test: Measure impedance at 1000 Hz with amplifier disconnected, using a professional impedance meter or bridge. Locate and correct faults denoted by abnormal readings.
 - b. Ambient Sound-Level Tests: With system off, measure ambient sound level in one-third octave bands. Also measure ambient sound level as a single, wide-band, A-weighted reading.
 - c. Amplifier Noise Test: Check for performance specified in "Sound-Masking System Description" Article with masking-noise generator off and amplifiers on.
 - d. System Noise Test: With masking-noise signal on and amplifiers adjusted at a working level 10 dB above ambient sound level, check for hum, buzz, rattle, or other operating deficiencies.
 - e. Spatial Uniformity Test: Measure sound level at locations no greater than 15 feet o.c. throughout covered spaces to determine compliance with specified performance level.
 - f. Frequency Response Adjustment and Test: Adjust one-third octave frequency bands and other unit filters to provide response. Adjust to meet requirement of space speech intelligibility and

quality of background sound. Comply with ANSI S3.2, CTA 426, and ASTM E 1110.

- 7. Adjust level of masking sound that is appropriate for the area and the overall volume.
- Walk-Through Test: People in covered spaces cannot discern loudspeaker locations.
- 9. Temporal Stability Test: Check for uniformity of time by measuring sound level in each of 14 octave bands at one-minute intervals over a 30-minute test period. Deviations must not exceed limits specified in "Sound-Masking System Description" Article.
- 10. Where required, space shall comply with HIPPA (45 CFR, Parts 160 and 164) for privacy.
- 11. Where required, space shall comply with the Gramm-Leach Bliley Act (15 U.S.C. ?? 6801-6809) to protect consumer personal and financial information in open office layouts.
- D. Retest: Correct deficiencies identified by tests and observations, and retest until compliance with specified requirements is achieved.
- E. Recording Control Settings and System Adjustments: Record final control settings and programming, and final tap setting of loudspeaker-matching transformers. Record final sound-level measurements and observations.

3.4 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain services.

- - - E N D - - -

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: physical access control, duress alarms, video assessment and surveillance, video recording and storage, delayed egress, personal protection system, intercommunication system, fire alarm interface, equipment cabinetry, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components.

Inspection, testing, demonstration, and acceptance of equipment, software, materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 51 13 ALUMINUM WINDOWS. Requirements for window installation.
- D. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- E. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- F. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Requirements for power cables.
- G. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- H. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.

- I. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- J. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- K. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- L. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- M. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for Commissioning.
- N. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). For physical access control integration.
- O. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- I. Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.

- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- T. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.
- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.

- HH. Open Cabling: Passing telecommunications cabling through open space
 (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- XX. UTP: Unshielded Twisted Pair
- YY. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to

support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.
- B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the

Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:

- 1. The Contractor shall schedule submittals in order to maintain the project schedule.
- The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.
- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential

information for communication of proper operation and/or maintenance of the component or system.

- Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
- b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
- c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - Inscribe the following identification on the cover: the words
 "MAINTENANCE AND OPERATION MANUAL," the name and location of

the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

- 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.

- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the

Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.

- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:

- Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
- Panel Details Provide security panel details identify general arrangement of the security system components, backboard size, wire through size and location, and power circuit requirements.
- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel

details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.

- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

14) Remarks column indicating special notes or door configurations

- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the Resident Engineer to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions

- d. Description of Camera Coverage
- e. Camera Location
- f. Floor Plan Sheet Number
- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number
 - 3) First Monitor Point Number

28 05 00 - 17 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

- 4) First Relay Number
- 5) DGP, input or output Location
- 6) DGP Chain Number
- 7) DGP Cabinet Tamper Input Number
- 8) DGP Power Fail Input Number
- 9) Number of Monitor Points Reserved For Expansion Boards
- 10) Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
 - 7) DGP or input module Input Location

- 8) Date Test
- 9) Date Passed
- 10) Cable Type
- 11) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including sensors, local processors and console equipment provided under this specification.
- 5. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:

- a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
- b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
- c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 6. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- G. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.
 - System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 - a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- H. Group III Technical Data Package

- Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.
- I. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the predelivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation, including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.
 - b. New Unit Control Room:
 - Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and

approved by the Resident Engineer. Instruction is not to begin until the system is operational as designed.

- 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
- 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
- 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
- 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.
- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be

established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:

- 1) Physical Access control system components,
- 2) All intrusion detection system components,
- 3) Video surveillance, control and recording systems,
- 4) Intercom systems components,
- 5) All other security subsystems shown in the contract documents.
- b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
- c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.
- J. Group V Technical Data Package: Final copies of the manuals shall be delivered to the Resident Engineer as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents

shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. Each item listed below shall be delivered as a part of final systems acceptance.

- Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.
- Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:

- a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the Resident Engineer a complete list of the manufacturer's recommended spare parts and components required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.
- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.

- i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
- j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the Resident Engineer or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the Resident Engineer for review and approval of all changes or modifications to the documents. Each sheet shall have Resident Engineer initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".
- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion

of the mark ups, the Contractor shall submit record Specifications to the COTR. As with master relines, Contractor shall maintain record specifications for Resident Engineer review and inspection at anytime.

- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later. Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COTR.
- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the Resident Engineer prior to development of Record construction documents. The Resident Engineer shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are

found suitable by the Resident Engineer, the Resident Engineer will initial and date each sheet and turn redlines over to the contractor for as built development.

- b. The Contractor shall provide the Resident Engineer a complete set of "as-built" drawings and original master redlined marked "asbuilt" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COTR. If, in the opinion of the COTR, any redlined notation is not legible, it shall be returned to the Contractor for re-submission at no extra cost to the Owner. The Contractor shall organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner
- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, sub-contractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COTR. The Contractor shall organize into bound and labeled sets for the COTR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).
- K. FIPS 201 Compliance Certificates
 - Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 a. Fingerprint Capture Station

- b. Card Readers
- c. Facial Image Capturing Camera
- d. PIV Middelware
- e. Template Matcher
- f. Electromagnetically Opaque Sleeve
- g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC):

VA Project 438-450 VAMC Sioux Falls, SD Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 A117.1.....Standard on Accessible and Usable Buildings and Facilities C. American National Standards Institute (ANSI) / Security Industry Association (SIA): AC-03...... Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards CP-01-00...... Control Panel Standard-Features for False Alarm Reduction PIR-01-00..... Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity TVAC-01.....CCTV to Access Control Standard - Message Set for System Integration D. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA): 330-09.....Electrical Performance Standards for CCTV Cameras 375A-76.....Electrical Performance Standards for CCTV Monitors E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems F. American Society for Testing and Materials (ASTM) B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07.....for Soft or Annealed Copper Wire B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape G. Architectural Barriers Act (ABA), 1968 H. Department of Justice: American Disability Act (ADA) 28 CFR Part 36-2010 ADA Standards for Accessible Design

28 05 00 - 30

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006 VA BIM Guide, V1.0 10 J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems K. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD): HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810.....Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics

7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443.....Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693.....Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794..... Information technology - Biometric data interchange formats Q. National Electrical Contractors Association 303-2005..... Installing Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable S. National Fire Protection Association (NFPA): 70-11..... National Electrical Code (NEC) 731-08.....Standards for the Installation of Electric Premises Security Systems 99-2005.....Health Care Facilities

T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1... DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL):

1-05	.Flexible Metal Conduit
5-04	Surface Metal Raceway and Fittings
6-07	Rigid Metal Conduit
44-05	.Thermoset-Insulated Wires and Cables
50-07	Enclosures for Electrical Equipment
83-08	Thermoplastic-Insulated Wires and Cables
294-99	.The Standard of Safety for Access Control System
	Units
305-08	Standard for Panic Hardware
360-09	Liquid-Tight Flexible Steel Conduit
444-08	Safety Communications Cables
464-09	Audible Signal Appliances
467-07	Electrical Grounding and Bonding Equipment
486A-03	Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
486C-04	.Splicing Wire Connectors
486D-05	Insulated Wire Connector Systems for Underground
	Use or in Damp or Wet Locations
486E-00	Equipment Wiring Terminals for Use with Aluminum
	and/or Copper Conductors
493-07	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
514A-04	Metallic Outlet Boxes
514B-04	.Fittings for Cable and Conduit
51-05	Schedule 40 and 80 Rigid PVC Conduit
609-96	Local Burglar Alarm Units and Systems
634-07	Standards for Connectors with Burglar-Alarm
	Systems
636-01	Standard for Holdup Alarm Units and Systems
639-97	Standard for Intrusion-Detection Units
651-05	Schedule 40 and 80 Rigid PVC Conduit
651A-07	.Type EB and A Rigid PVC Conduit and HDPE Conduit
752-05	Standard for Bullet-Resisting Equipment
797-07	Electrical Metallic Tubing
827-08	Central Station Alarm Services
1037-09	Standard for Anti-theft Alarms and Devices
1635-10	Digital Alarm Communicator System Units

1076-95.....Standards for Proprietary Burglar Alarm Units and Systems 1242-06.....Intermediate Metal Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1981-03....Central Station Automation System 2058-05....High Security Electronic Locks 60950....Safety of Information Technology Equipment 60950-1....Information Technology Equipment - Safety - Part 1: General Requirements

- Z. Uniform Federal Accessibility Standards (UFAS) 1984
- AA. United States Department of Commerce: Special Pub 500-101Care and Handling of Computer Magnetic Storage Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on

facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, physical access control equipment, facility interface, signal transmission equipment, and video equipment.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The Resident Engineer shall be advised in writing of the name of the designated service representative, and of any change in personnel. The Resident Engineer shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections
 - 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two(2) major inspections offset equally between the minor inspections
 - to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics

and correct all problems; and resolve any previous outstanding problems.

- F. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from arrival on site. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- G. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the

amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

- J. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the Resident Engineer. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the Resident Engineer. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- K. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

- During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
- Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
- Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - 3. Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except centralstation control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to

122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.

- 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
- 4. Hazardous Environment: System components located in areas where fire or explosion hazards may exist because of flammable gases or vapors, flammable liquids, combustible dust, or ignitable fibers shall be rated, listed, and installed according to NFPA 70.
- Corrosive Environment: For system components subjected to corrosive fumes, vapors, and wind-driven salt spray in coastal zones, provide NEMA 250, Type 4X enclosures.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment may be subject to damage.
- C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.

- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
 - When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

- A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.
- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for 8 hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Uninterruptible Power Supply (UPS)
 - a. The following 120VAC circuits shall be provided by others. The Security Contractor shall coordinate exact locations with the Electrical Contractor:
 - 1) Security System Monitors and Keyboards: Control Room
 - 2) CPU: Control Equipment Room

- Communications equipment: Control Equipment Room and various sites.
- 4) VASS Matrix Switcher: Control Equipment Room
- 5) VASS: Control Equipment Room
- 6) Digital Video Recorders, encoders & decoders: Control Room
- 7) All equipment Room racked equipment.
- 8) Network switches

1.15 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

- A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.
 - 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - 2. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
 - 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, under ground-fault conditions.
 - Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.

- 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
- Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
- 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
- 8. Protection should be provided at both ends of cabling.

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - 2. Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
 - 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.

- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- B. Consoles & Equipment Racks: All consoles and vertical equipment racks shall include a forced air-cooling system to be provided by others.
 - 1. Vertical Equipment Racks:
 - a. The forced air blowers shall be installed in the vented top of each cabinet and shall not reduce usable rack space.
 - b. The forced air fan shall consist of one fan rated at 105 CFM per rack bay and noise level shall not exceed 55 decibels.
 - c. d. Vertical equipment racks are to be provided with full sized clear plastic locking doors and vented top panels as shown on contract drawings.
 - 2. Console racks:
 - a. Forced air fans shall be installed in the top rear of each console bay. The forced air fan shall consist of one fan rated at 105 CFM mounted to a 133mm vented blank panel the noise level of each fan shall not exceed 55 decibels. The fans shall be installed so air is pulled from the bottom of the rack or cabinet and exhausted out the top.
 - b. Console racks are to be provided with flush mounted hinged rear doors with recessed locking latch on the bottom and middle sections of the consoles. Provide code access to support wiring for devices located on the work surfaces.
- C. Tamper Provisions and Tamper Switches:
 - Enclosures, cabinets, housings, boxes and fittings or every product description having hinged doors or removable covers and which contain circuits, or the integrated security system and its power supplies shall be provided with cover operated, corrosion-resistant tamper switches.
 - 2. Tamper switches shall be arranged to initiate an alarm signal that will report to the monitoring station when the door or cover is moved. Tamper switches shall be mechanically mounted to maximize the defeat time when enclosure covers are opened or removed. It shall take longer than 1 second to depress or defeat the tamper switch

after opening or removing the cover. The enclosure and tamper switch shall function together in such a manner as to prohibit direct line of sign to any internal component before the switch activates.

- 3. Tamper switches shall be inaccessible until the switch is activated. Have mounting hardware concealed so the location of the switch cannot be observed from the exterior of the enclosure. Be connected to circuits which are under electrical supervision at all times, irrespective of the protection mode in which the circuit is operating. Be spring-loaded and held in the closed position by the door or cover and be wired so they break the circuit when the door cover is disturbed. Tamper circuits shall be adjustable type screw sets and shall be adjusted by the contractor to eliminate nuisance alarms associated with incorrectly mounted tamper device shall annunciate prior to the enclosure door opening (within 1/4 " tolerance. The tamper device or its components shall not be visible or accessing with common tools to bypass when the enclosure is in the secured mode.
- 4. The single gang junction boxes for the portrait alarming and pull boxes with less than 102 square mm will not require tamper switches.
- 5. All enclosures over 305 square mm shall be hinged with an enclosure lock.
- 6. Control Enclosures: Maintenance/Safety switches on control enclosures, which must be opened to make routing maintenance adjustments to the system and to service the power supplies, shall be push/pull-set automatic reset type.
- 7. Provide one (1) enclosure tamper switch for each 609 linear mm of enclosure lock side opening evenly spaced.
- 8. All security screws shall be Torx-Post Security Screws.
- 9. The contractor shall provide the owner with two (2) torx-post screwdrivers.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The Resident Engineer shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the Resident Engineer stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - Identity of the material or devices specified for which there is a proposed substitution.
 - Description of the segment of the specification where the material or devices are referenced.
 - Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COTR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the Resident Engineer shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The Resident Engineer shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.

D. Response to Specification: The Contractor shall submit a point-by-point statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a point-bypoint statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COTR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COTR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COTR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COTR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 volts alternating current (VAC); 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 8 hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator providing identification of the system, nature of the alarm, and location of the alarm.
 - 3. Controlling devices shall be utilized to interface the SMS with all field devices.
 - The Security control room and security console will be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
 - 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:
 - a. Security Console Bays and Equipment Racks
 - b. Security Network Server and Workstation
 - c. CCTV Monitoring, Controlling, and Recording Equipment
 - d. PACS Monitoring and Controlling Equipment
 - e. IDS Monitoring and Controlling Equipment
 - f. Security Access Detection Monitoring Equipment
 - g. EPPS Monitoring and Controlling Equipment
 - h. Main Panels for all Security Systems
 - i. Power Supply Units (PSU) for all field devices
 - j. Life safety and power monitoring equipment
 - k. All other building systems deemed necessary by the VA to include, but not limited to, heating, ventilation and air conditioning (HVAC), elevator control, portable radio, fire alarm monitoring, and other potential systems.
 - 1. Police two-way radio control consoles/units.

- B. Security Console Bays shall be EIA 310D compliant and:
 - 1. Utilize stand-up, sit-down, and vertical equipment racks in any combination to monitor and control the security subsystems.
 - Shall be wide enough for equipment that requires a minimum 19 inch (47.5 cm) mounting area.
 - 3. Shall be made of metal, furnished with wire ways, a power strip, a thermostatic controlled bottom or top mounted fan units, a hinge mounted rear door, a hinge mounted front door made of Plexiglas, and a louvered top. When possible, pre-fabricated (standard off-theshelf) security console equipment shall be used in place of customized designed consoles.
 - 4. A wire management system shall be designed and installed so that all cables are mounted in a manner that they do not interfere with dayto-day operations, are labeled for quick identification, and so that high voltage power cables do not cause signal interference with low voltage and data carrying cables.
 - 5. Shall be mounted on lockable casters.
 - Shall be ergonomically designed so that all devices requiring repetitive interaction with by the operator can be easily accessed, observed, and accomplished.
 - 7. Controls and displays shall be located so that they are not obscured during normal operation. Control and display units installed with a work bench shall be a minimum of 3 in. (7.5 cm) from all edges of the work bench area.
 - 8. All security subsystem controls shall be installed within the same operating console bay of their associated equipment.
 - 9. Video monitors shall be mounted above all controls within a console bay and positioned in a manner that minimum strain is placed on the operator viewing them at the console.
 - 10. At least one workbench for every three (3) console bays shall be provided free of control equipment to allow for appropriate operator workspace.
 - 11. All console devices shall be labeled and marked with a minimum of quarter inch bold print.
 - 12. All non-security related equipment that is required to be monitored shall be installed in a console bay separate from the security subsystem equipment and clearing be identified as such.

28 05 00 - 50 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

- 13. Console bays and related equipment shall be arranged in priority order and sequenced based upon their pre-defined security subsystem operations criticality established by the Contracting Officer.
- 14. The following minimum console technical characteristics shall be taken into consideration when designing for and installing the security console and equipment racks:

	Stand-Up	Sit-Down	Vertical Equipment Rack
Workstation Height	No Greater than 84 in. (210 cm)	No greater than 72 in. (150 cm)	No greater than 96 in. (240 cm)
Bench board Slope	21 in. (52.5 cm)	25 in. (62.5 cm)	N/A
Bench board Angle	15 degrees	15 degrees	N/A
Depth of Console	24 in. (60 cm)	24 in. (60 cm)	N/A
Leg and Feet Clearance	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front	6 sq. ft. from center of Console Slope front
Distance Between Console Rows	96 in. (240 cm)	96 in. (240 cm)	96 in. (240 cm)
Distance Between Console and Wall	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack	36 in. (90 cm) from the rear and/or side of console or rack

- C. Security Console Configuration:
 - The size shall be defined by the number of console bays required to house and operate the security subsystems, as well as any other factors that may influence the overall design of the space. A small Access Control System and Database Management shall contain no more than four (4) security console bays. A large Access Control System and Database Management shall contain no less than five (5) and no more than eight (8) security console bays.
 - 2. Shall meet the following minimum spacing requirements to ensure that a Access Control System and Database Management is provided to house existing and future security subsystems and other equipment listed in paragraph 2.3.C:

- a. 500 square feet for a large Access Control System and Database Management.
- b. 300 square feet for a small Access Control System and Database Management.
- c. If office, training room and conference space, is a processing area as well as holding cell space is to be located adjacent to the Access Control System and Database Management, these space requirements also need to be considered.
- 3. Shall be located in an area within, at a minimum, the first level/line of security defense defined by the VA. If the Access Control System and Database Management is to be located outside the first level of security, then the area shall be constructed or retrofit to meet or exceed those requirements outlined in associated VA Master Specifications.
- 4. Shall not be located within or near an area with little to no blast mitigation standoff space protection, adjacent to an outside wall exposed to vehicle parking and traffic, within a basement or potential flood zone area, in close approximately to major utility areas, or near an exposed air intake(s).
- 5. Access shall meet UFAS and ADA accessibility requirements.
- 6. Construction shall be slab to slab and free of windows, with the exception of a service window. All penetrations into the room shall be sealed with fire stopping materials. This material shall apply in accordance with Section 07 84 00, FIRESTOPPING.
- 7. A service window shall be installed in the wall next to the main entrance of the Access Control System and Database Management or where it best can be monitored and accessed by the security console operator. The window shall meet all requirements set forth in UL 752, to include at a minimum, Class III ballistic level protection. The windows shall be set in a minimum or four (4) inches (100 mm) solid concrete units to ceiling height with either masonry or gypsum wall board to the underside of the slab above. It shall also contain a service tray constructed in a manner that only objects no larger than 3 inches (7.5 cm) in width may pass through it.
- 8. The walls making up or surrounding the Access Control System and Database Management shall be made of materials that at a minimum offer Class III ballistic level protection for the security console operator(s).

- 9. There will be a main power cut-off button/switch located inside the Access Control System and Database Management in the event of an electrical fire or related event occurs.
- 10. Shall have a fire alarm detection unit that is tied into the main building fire alarm system and have at least two fire extinguishers located within it.
- 11. Shall utilize a fire suppression system similar to that used by the VA's computer and telecommunications room operating areas.
- 12. The floor shall be raised a minimum of 4 inches (10 cm) from the concrete floor base. Wire ways shall be utilized under the raised floor for separation of signal and power wires and cables.
- 13. Access shall be monitored and controlled by the PACS via card reader and fixed camera that utilizes a wide angle lens. A 1 in. (2.5 cm) deadbolt shall be utilized as a mechanical override for the door in the event of electrical failure of the PACS, card reader, or locking mechanism.
- 14. There shall only be one point of ingress and egress to and from the Security Control Room. The door shall be made of solid core wood or better. If a window is required for the door, then the window shall be ballistic resistant with a Millar covering.
- 15. A two-way intercom shall be placed at the point of entry into the Security Control Room for access-communication control purposes.
- 16. A remote push-button door unlocking device shall not be installed for the electronic PACS locking mechanism providing access control into the Security Control Room.
- 17. All controlling equipment and power supplies that must be wall mounted shall be mounted in a manner that maximizes usability of the Security Control Room wall space. All equipment shall be mounted to three quarter inch fire retardant plywood. The plywood shall be fastened to the wall from slab to slab and fixed to the existing walls supports.
- D. Security Control Room Ventilation
 - Shall meet or exceed all requirements laid out in VA Master Specification listed in Division 23, HEATING, VENTILATION, AND AIR CONDITIONING.
 - Controls shall be via a separate air handling system that provides an isolated supply and return system. The Security Control Room shall have a dedicated thermostat control unit and cut-off switch to be

able to shut off ventilation to the control room in the event of a chemical, biological, or radiological (CBR) event or other related emergency.

- 3. There shall be a louver installed in the control room door to assist with ventilation of the room. The louver shall be exactly 12×12 inches (30 x 30 cm) and closeable.
- E. Security Control Room and Security Console Lighting:
 - 1. The following factors shall be taken into consideration for lighting of the Security Control Room and console area:
 - a. Shadows: To reduce eye strain and fatigue, shadows shall be avoided.
 - b. Glare: The readability of all display panels, labels, and equipment shall not be interfered with or create visibility problems.
 - The following table shall provide guidance on the amount of footcandles required per work area and type of task performed:

Work Area/Type of Task		Footcandles
Main Operating Panels		50
Secondary Display Panels		50
Seated Workstations		100
Reading	Handwriting	100
	Typed Documents	50
	Visual Display	10
	Units	
Logbook Recording		100
Maintenance Area		50
Emergency/Back-up Lighting		10

- F. Remote security console access: For facilities that have a remote, secondary back-up control console or workstation shall apply the following requirements:
 - The secondary stations shall the requirements outlined in Sections 2.2.A-G.
 - Installation of an intercom station or telephone line shall be installed and provide direct one touch call-up for communications between the primary Security Control Console and secondary Security Control Console.
 - Secondary stations shall not have priority over a primary Security Control Console.
 - 4. The primary Access Control System and Database Management shall have the ability to shut off power and a signal to a secondary control station in the event the area has been compromised.

- G. Wires and Cables:
 - 1. Shall meet or exceed the manufactures recommendation for power and signals.
 - 2. Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
 - 3. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
 - All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that will allow it to be distinguished from all other infrastructure conduit.
 - 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
 - 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
 - 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
 - 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.
 - 9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 FIBER OPTIC EQUIPMENT

- A. 8 Channel Fiber Optic Transcievers (Video&PTZ Control)
 - The field-located and central-located fiber optic transceivers shall utilize wave division multiplexing to transmit and receive video and data pan-tilt-zoom control signals over two standard 62.5/125 multimode fibers.
 - 2. The units shall be capable of operating over a range of 2 km.

```
3. The units shall be NTSC color compatible.
4. The units shall support data rates up to 64 Kbps.
5. The units shall be surface or rack mountable.
6. The units shall be UL listed.
7. The units shall meet or exceed the following specifications:
  a. Video
     1) Input/Output: 1 volt pk-pk (75 ohms)
     2) Input/Output Channels: 8
     3) Bandwidth: 10 Hz - 6.5 MHZ per channel
     4) Differential Gain: <2%
     5) Differential Phase: <0.7°
     6) Tilt: <1%
     7) Signal to Noise Ratio: 60 dB
  b. Data (Control)
     1) Data Channels:
                            2
     2) Data Format: RS-232, RS-422, 2 wire or 4 wire RS-485 with
        Tri-State Manchester Bi-Phase and Sensornet
     3) Data Rate: DC - 100 kbps (NRZ)
     4) Bit Error Rate: < 1 in 10-9 @ Maximum Optical Loss Budget
     5) Operating Mode: Simplex or Full-Duplex
     6) Wavelength: 1310/1550 nm, Multimode or Singlemode
     7) Optical Emitter: Laser Diode
     8) Number of Fibers:
                           1
  c. Connectors
     1) Optical: ST
     2) Power and Data: Terminal Block with Screw Clamps
     3) Video: BNC (Gold Plated Center-Pin)
  d. Electrical and Mechanical
     1) Power: 12 VDC @ 500 mA (stand-alone)
     3) Current Protection: Automatic Resettable Solid-State Current
       Limiters
  e. Environmental
     1) MTBF: > 100,000 hours
     2) Operating Temp: -40 to 74 deg C (-40 to 165 deg F)
     3) Storage Temp: -40 to 85 deg C (-40 to 185 deg F)
     4) Relative Humidity: 0% to 95% (non-condensing)
```

```
B. Fiber Optic Transmitters: The central-located fiber optic transmitters
  shall utilize wave division multiplexing to transmit video and signals
  over standard 62.5/125 multimode fibers.
  1. The units shall be capable of operating over a range of 4.8 km.
  2. The units shall be NTSC color compatible.
  3. The units shall support data rates up to 64 Kbps.
   4. The units shall be surface or rack mountable.
   5. The units shall be UL listed.
   6. The units shall meet or exceed the following specifications:
     a. Video
        1) Input: 1 volt pk-pk (75 ohms)
        2) Bandwidth: 5H2 - 10 MHZ
        3) Differential Gain: <5%
        4) Tilt: <1%
        5) Signal-Noise: 60db
        6) Wavelength: 850nm
        7) Number of Fibers:
                               1
        8) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
        9) Connectors:
           a) Power:
                       Female plug with screw clamps
           b) Video:
                         BNC
           c) Optical: ST
        10) Power: 12 VDC
C. Fiber Optic Receivers: The field-located fiber optic receivers shall
  utilize wave division multiplexing to receive video signals over
  standard 62.5/125 multimode fiber.
  1. The units shall be capable of operating over a range of 4.8 km.
   2. The units shall be NTSC color compatible.
   3. The units shall support data rates up to 64 Kbps.
   4. The units shall be surface or rack mountable.
   5. The units shall be UL listed.
   6. The units shall meet or exceed the following specifications:
     a. Video
        1) Output: 1 volt pk-pk (75 ohms)
        2) Bandwidth: 5H2 - 10 MHZ
        3) Differential Gain: <5%
        4) Tilt: <1%
        5) Signal-Noise: 60dB
```

- 6) Wavelength: 850nm
- 7) Number of Fibers: 1
- 8) Surface Mount: 106.7 x 88.9 x 25.4 mm (4.2 x 3.5 x 1 in)
- 9) Operating Temp: -20 to 70 deg C (-4 to 158 deg F)
- 10) Connectors:
- 11) Power: Female plug block with screw clamps
- 12) Video: BNC
- 13) Optical: ST
- 14) Power: 12 VAC8 Channel Fiber Optic Transcievers (Video&PTZ Control)
- D. Fiber Optic Sub Rack with Power Supply
 - The Card Cage Rack shall provide high-density racking for fiber-optic modules. The unit shall be designed to mount in standard 483 mm (19 in) instrument racks and to accommodate the equivalent of 15 1-inch modules.
 - a. Specifications
 - 1) Card Orientation: Vertical
 - 2) Construction: Aluminum
 - 3) Current Consumption: 0.99 A
 - 4) Humidity: 95.0 % RH
 - 5) Input Power: 100-240 VAC, 60/50 Hz
 - 6) Mounting: Mounts in standard 483 mm (19 in) rack using four (4) screws (optional wall brackets purchased separately)
 - 7) Number of Outputs: 1.0
 - 8) Number of Slots 15.0
 - 9) Operating Temperature: -40 to +75 deg C (-40.0 to 167.0 deg F)
 - 10) Ouput Voltage: 13.5 V
 - 11) Output Current 6.0 A
 - 12) Power Dissipation: 28.0 W
 - 13) Power Factor: 48.0
 - 14) Power Supply: (built-in)
 - 15) Rack Units: 3RU
 - 16) Redundant Capability: Yes
 - 17) Weight: 2.43 kg (5.35 lb)
 - 18) Width: 483 mm (19.0 in)

2.4 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

A. Transient Voltage Surge Suppression

- 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:
 - A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
 - d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, non-condensing.
- B. Physical Access Control Systems
 - Suppressors shall be installed on AC power at the point of service and shall meet the following criteria:
 - a. UL1449 2nd Edition, 2007, listed
 - b. UL1449 S.V.R. of 400 Volts or lower
 - c. Status Indicator Light(s)
 - d. Minimum Surge Current Capacity: 40,000 Amps (8 x 20 µsec)
 - e. Maximum Continuous Current: 15 Amps
 - f. MCOV: 125 VAC
 - g. Service Voltage: 110-120 VAC
 - Suppressors shall be installed on the Low Voltage circuit at both the point of entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. UL 497B
 - b. Minimum Surge Current Capacity: 2,000 Amps per pair

28 05 00 - 59

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

- c. Maximum Continuous Current: 5 Amps
- d. MCOV: 33 Volts
- e. Service Voltage: 24Volts
- 3. Suppressors shall be installed on the communication circuit between the access controller and card reader at both the entrance and exit of the building. Suppressors shall meet the following criteria:
 - a. Conforms with UL497B standards (where applicable)
 - b. Clamp level for 12 and 24V power: 18VDC / 38VDC
 - c. Clamp level for Data/LED: 6.8VDC
 - d. Service Voltage for Power: 12VDC/24VDC
 - e. Service Voltage for Data/LED: <5VDC
 - f. Clamp level PoE Access Power: 72V
 - g. Clamp level PoE Access Data: 7.9V
 - h. Service Voltage PoE Access: 48VAC 54VAC
 - i. Service Voltage PoE Data: <5VDC
- C. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- D. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps

- 3. Protection Modes: L N, L G, N G
- 4. Warranty: Ten Year Limited Warranty
- 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)
- 6. Weight: 2.88 g (0.18 lbs)
- 7. Housing: ABS

2.5 INSTALLATION KIT

A. General:

1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:

2. System Grounding:

- a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
- b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels

- Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISIONIN OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 -COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for eight hours to instruct VA personnel in operation and maintenance of units.

28 05 00 - 63

COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems (e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms). System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the Resident Engineer on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled

date the Contractor requires it. The Contractor shall not upload system programming until the Resident Engineer has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:

- a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with Resident Engineer for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss.
- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of Resident Engineer to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- The Contractor shall identify and request from the Resident Engineer, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and Resident Engineer coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by

28 05 00 - 65

contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks								
Descr iptio n of Syste ms	Develop System Loading Sheets	Coordinat ion	Initial Set-up Configura tion	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)		
SMS Setup & Confi gurat ion	e.g., program monitorin g stations, programmi ng networks, interconn ections between CCTV, intercoms , time synchroni zation	e.g., retrieve IP addresses , naming conventio ns, standard event descripti ons, programmi ng templates , coordinat e special system needs	e.g., Load system Operating System and Applicati on software, general system configura tions	e.g., develop naming convent ions, develop file folders , confirm ing accurac y of AutoCAD Floor Plans, convert file into jpeg file	e.g. prog ram moni tori ng stat ions prog ramm ing netw orks , inte rcon nect ions betw een CCTV , inte rcom s, time sync hron izat ions	e.g., check all system diagno stics (e.g., client s, panels)	Load and set-up 4-6 CDs and configure servers (to configure Loading and Configuring software Administrative account, audit log, Keystrokes, mouse clicks, multi-screen configuration		

							e.g., creating
							a door, door
					e.g.		configuration,
			0.07		/	0.0	adding request
		e.g., confirmi	e.g., enter		setu n of	e.g.,	to exit, door
			data			perfor	monitors and
	e.g.,	ng device	from			devi ming	relays, door
	setup of device,	configur	loading		ce, door	entry	timers, door
Elect	door	ations,	sheets;			grou g to ps & confir sche m dule correc s, t set-	related events
ronic					2		(e.g., access,
Entry Contr	groups & schedule	naming conventi	configur		-		access denied,
ol			е				forced open,
Syste ms	s, REX,	ons,	componen				held open), linkages,
	Locks,	event	ts, link				
	link	descript	events,		REX, up and	controlled	
	graphics	ion and	cameras,	Lock s,	config	areas,	
			and			uratio	advanced door
		graphics		link	n	monitoring,	
					grap		time zones,
					hics		sequence of
							operations

Intru sion Detec tion Syste ms	e.g., enter door groups & schedule s, link devices - REX, lock, & graphics	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics	e.g. , ente r door grou ps & sche dule s, link devi ces - REX, lock , & grap	e.g., walk test, device positi on, and maskin g	e.g., setting up monitoring and control points (e.g., motion sensors, glassbreaks, vibration sensor, strobes, sounders) creating intrusion zones, creating arm/disarm panel, timed sequences, time zones, icon placements on graphic maps, clearance levels, events
Syste	- REX, lock, &	event descript ion and narrativ	componen ts, link events, cameras, and	devi and ces maskin - g REX, lock , &	sequences, time zones, icon placements on graphic maps, clearance	

CCTV Syste ms	programm ing call-ups recordin g	device configur ations, naming conventi ons	naming conventi on, sequence		ramm ing call -ups reco rdin g	call- up per event genera ted and record ing rates	<pre>ratios (e.g., normal, alarm event) timed recording, linkages, maps placements, call-ups</pre>
			s, configur e componen ts)				
Inter coms Syste ms	e.g., programm ing events & call-ups	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	<pre>e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics</pre>		e.g. , prog ramm ing even ts & call -ups	e.g., confir m operat ion, SMS event genera tion and camera call- up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps
Conso le Monit oring Compo nents	N/A	per monitor	per monitor	per graphic map	N/A	per monito r	N/A
Note: Programming tasks are supported through the contractor's development of the Technical Data Package Submittals.							

 Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the Resident Engineer at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COTR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the Resident Engineer before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the Resident Engineer at the conclusion of each phase of testing and prior to Resident Engineer approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the Resident Engineer within seven (7) calendar days after completion of each test.
- B. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to Resident Engineer approval. CFT test documentation package shall conform to submittal

requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the Resident Engineer's acceptance testing procedures. The Contractor shall provide the Resident Engineer with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to theResident Engineer stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

- C. Performance Verification Test (PVT)
 - 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the Resident Engineer, then the Contractor shall schedule an acceptance test to date and give the Resident Engineer written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the Resident Engineer. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
 - 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for out-of-town personnel

28 05 00 - 71

required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and accepted.

- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the Resident Engineer or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the Resident Engineer prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory
 - 1) All Device equipment
 - 2) All Software
 - 3) All Logon and Passwords
 - 4) All Cabling System Matrices
 - 5) All Cable Testing Documents
 - 6) All System and Cabinet Keys
 - b. Inspection
 - Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for Resident Engineers approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.
- 6. Partial PVT At the discretion of Resident engineer, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.
- D. Endurance Test

- 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the Resident Engineer notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The Resident Engineer may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Resident Engineer prior to acceptance of the system.
- 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the Resident Engineer. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the Resident Engineer.
- 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the Resident Engineer. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the Resident Engineer. The meeting shall not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have

been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase I be repeated.

- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COTR.
- 5. Phase IV (Assessment):
 - After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COTR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COTR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COTR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the Resident Engineer receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the Resident Engineer will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the Resident Engineer may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.
- E. Exclusions
 - 1. The Contractor will not be held responsible for failures in system performance resulting from the following:

- a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
- b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
- c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.
- G. Section 31 20 11 EARTHWORK (SHORT FORM). For excavation and backfill for cables that are installed in conduit.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.

- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.

28 05 13 - 2

- 6. Project planning documents as specified in Part 3.
- 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM):

D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape

C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation)

D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - Test optical fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight or optical loss test set.
 - Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects,

28 05 13 - 3

splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.

3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. General: All cabling locations shall be in conduit systems as outlined in Division 28 unless a waiver is granted in writing or an exception is noted on the construction drawings.
- B. Cable Trays:
 - Cable Tray Materials: Metal, suitable for indoors, and protected against corrosion by electroplated zinc galvanizing, complying with ASTM B 633, Type 1, not less than 0.000472 inch (0.012 mm) thick or hot-dip galvanizing, complying with ASTM A 123/A 123M Grade 0.55, not less than 0.002165 inch (0.055 mm) thick.
 - Basket Cable Trays: Wire mesh spacing shall not exceed 2 by 4 inches (50 by 100 mm).
- C. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."
 - 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.

- 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.
 - e. Multipurpose: Type MP or MPG.
 - f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 - g. Multipurpose, Riser Rated: Type MPR, complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, 50/125-micrometer, 24-fiber, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA/EIA-492AAAA-B for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG.
 - e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
 - 5. Conductive cable shall be steel or aluminum armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
 - Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- B. Jacket:

- 1. Jacket Color: Aqua for 50/125-micrometer cable.
- 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
- 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Intermateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - 1. Quick-connect, simplex and duplex, Type SC connectors. Insertion loss shall be not more than 0.75 dB.
 - 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 COAXIAL CABLE

- A. General Coaxial Cable Requirements: Broadband type, recommended by cable manufacturer specifically for broadband data transmission applications. Coaxial cable and accessories shall have 75-ohm nominal impedance with a return loss of 20 dB maximum from 7 to 806 MHz.
- B. RG-11/U: NFPA 70, Type CATV.
 - 1. No. 14 AWG, solid, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - 3. Double shielded with 100 percent aluminum polyester tape and 60 percent aluminum braid.
 - 4. Jacketed with sunlight-resistant, black PVC or PE.
 - 5. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg C.
- C. RG59/U: NFPA 70, Type CATVR.
 - 1. No. 20 AWG, solid, silver-plated, copper-covered steel conductor.
 - 2. Gas-injected, foam-PE insulation.
 - Triple shielded with 100 percent aluminum polyester tape and 95 percent aluminum braid; covered by aluminum foil with grounding strip.
 - 4. Color-coded PVC jacket.
- D. RG-6/U: NFPA 70, Type CATV or CM.
 - No. 16 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 60 percent aluminum braid.

28 05 13 - 6

- 3. Jacketed with black PVC or PE.
- 4. Suitable for indoor installations.
- E. RG59/U: NFPA 70, Type CATV.
 - No. 20 AWG, solid, copper-covered steel conductor; gas-injected, foam-PE insulation.
 - Double shielded with 100 percent aluminum polyester tape and 40 percent aluminum braid.
 - 3. PVC jacket.
- F. RG59/U (Plenum Rated): NFPA 70, Type CMP.
 - 1. No. 20 AWG, solid, copper-covered steel conductor; foam fluorinated ethylene propylene insulation.
 - 2. Double shielded with 100 percent aluminum-foil shield and 65 percent aluminum braid.
 - 3. Copolymer jacket.
- G. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655, and with NFPA 70 "Radio and Television Equipment" and "Community Antenna Television and Radio Distribution" Articles. Types are as follows:
 - 1. CATV Cable: Type CATV.
 - 2. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
 - 3. CATV Riser Rated: Type CATVR, complying with UL 1666.
 - 4. CATV Limited Rating: Type CATVX.

2.8 COAXIAL CABLE HARDWARE

A. Coaxial-Cable Connectors: Type BNC, 75 ohms.

2.9 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.

28 05 13 - 7

- 2. Plastic insulation.
- 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
- 4. Plastic jacket.
- 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
- 6. Flame Resistance: Comply with NFPA 262.

2.10 RS-485 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.11 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.

- 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
- 2. PVC insulation.
- 3. Unshielded.
- 4. PVC jacket.
- 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.12 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.13 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.14 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.15 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.16 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - Do not install bruised, kinked, scored, deformed, or abraded cable.
 Do not splice cable between termination, tap, or junction points.

Remove and discard cable if damaged during installation and replace it with new cable.

- 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/COTR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.

- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1525 mm) apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Outdoor Coaxial Cable Installation:
 - Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 - Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).
- N. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).

$$28\ 05\ 13\ -\ 12$$ Conductors and cables for electronic safety and security

- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
- Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6
 inches (150 mm).
- Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.3 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.

3.4 FIRESTOPPING

- A. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical Fiber Cable Tests:

- a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.8 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 26 41 00 FACILITY LIGHTNING PROTECTION. Requirements for a lightning protection system.
- C. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- E. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.

28 05 26 - 1

- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer or COTR:
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....Standard Specification for Hard-Drawn Copper Wire

B3-07.....Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

of a Ground System

C2-07.....National Electrical Safety Code

D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)

99-2005.....Health Care Facilities

E. Underwriters Laboratories, Inc. (UL):

44-05 Thermoset-Insulated Wires and Cables

83-08Thermoplastic-Insulated Wires and Cables

467-07Grounding and Bonding Equipment

486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.2 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.

a) Pipe Connectors: Clamp type, sized for pipe.

 Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x } \frac{3}{4} \text{ inch})$.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.5 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.5 COMPUTER ROOM/SECURITY EQUIPMENT ROOM GROUNDING

- A. Conduit: Ground and bond metallic conduit systems as follows:
 - Ground metallic service conduit and any pipes entering or being routed within the computer room at each end using 16 mm² (6AWG) bonding jumpers.
 - 2. Bond at all intermediate metallic enclosures and across all joints using 16 $\rm mm^2$ (6 AWG) bonding jumpers.

3.6 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.7 GROUND ROD INSTALLATION

- A. Drive each rod vertically in the earth, not less than 3000 mm (10 feet) in depth.
- B. Where permanently concealed ground connections are required, make the connections by the exothermic process to form solid metal joints. Make accessible ground connections with mechanical pressure type ground connectors.

28 05 26 - 5

C. Where rock prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified resistance.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.

J. Section 31 20 11 - EARTHWORK (SHORT FORM). For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work. 1. Custom enclosures and cabinets.

- 2. Handholes and boxes for underground wiring, including the following:
 - a. Duct entry provisions, including locations and duct sizes.
 - b. Frame and cover design.
 - c. Grounding details.
 - d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
 - e. Joint details.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- H. Source quality-control test reports.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

```
TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing
```

- C. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

```
1-05.....Flexible Metal Conduit
```

- 5-04.....Surface Metal Raceway and Fittings
- 6-07.....Rigid Metal Conduit
- 50-07.....Enclosures for Electrical Equipment
- 360-09.....Liquid-Tight Flexible Steel Conduit
- 467-07.....Grounding and Bonding Equipment
- 514A-04.....Metallic Outlet Boxes
- 514B-04.....Fittings for Cable and Conduit

514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-05....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07....Electrical Metallic Tubing 1242-06....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where

28 05 28.33 - 4

conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.

- 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.

28 05 28.33 - 5

- F. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - 2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

2.10 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. Description: Comply with SCTE 77.
 - 1. Color of Frame and Cover: Gray.
 - Configuration: Units shall be designed for flush burial and have closed bottom, unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, as indicated for each service.
 - 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 - 7. Handholes 300 mm wide by 600 mm long (2 inches wide by 24 inches long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel or fiberglass or a combination of the two.
- C. Fiberglass Handholes and Boxes with Polymer-Concrete Frame and Cover: Sheet-molded, fiberglass-reinforced, polyester-resin enclosure joined to polymer-concrete top ring or frame.
- D. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with covers of polymer concrete, reinforced concrete, cast iron, hot-dip galvanized-steel diamond plate, or fiberglass.

2.11 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 84 00 "FIRESTOPPING."

2.12 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Plastic, Carbon steel, or Stainless steel. Include two for each sealing element.
 - Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.13 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.

- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
 - 12. Do not use aluminum conduits in wet locations.

- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.

- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.

- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.

- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

VA Project 438-450 10-01-18 100% Bid Documents

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent. B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the

28 08 00 - 2

Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent.

28 08 00 - 3

Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS, compatible with the existing Johnson Controls International (JCI) P2000 System on the VA campus.
- B. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- C. Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,
 - 2. Physical Access Control System and Database Management Software,
 - 3. Credential validation software/hardware,
 - 4. Field installed controllers,
 - 5. Card readers,
 - 6. PIV cards,
 - 7. Door locks and sensors,
 - 8. Power supplies,
 - 9. Interfaces with:
 - a. Automatic door operators,

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.

- G. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- H. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- I. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- J. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- K. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- L. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- M. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- N. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.
- O. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.4 SUBMITTALS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.5 APPLICABLE PUBLICATIONS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.6 DEFINITIONS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.7 COORDINATION

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.8 MAINTENANCE & SERVICE

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door

1.10 EQUIPMENT AND MATERIALS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.

28 13 00 - 3 PHYSICAL ACCESS CONTROL SYSTEM

- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Surge and Tamper Protection
 - 3. Card Readers
 - 4. Credential Cards
 - 5. System Sensors and Related Equipment
 - 6. Interfaces
 - 7. Door Hardware interface
 - 8. Cables
 - 9. Transformers

2.2 SURGE AND TAMPER PROTECTION

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

2.3 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be 800ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
 - Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.

- D. Display: LED or other type of visual indicator display shall provide visual status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design
- I. Shall contain read head electronics, and a sender to encode digital door control signals.
- J. LED's shall be utilized to indicate card reader status and access status.
- K. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- L. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied.

2.4 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.

2.5 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:

- 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (\pm 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.
- C. Delayed Egress (DE)
 - 1. General:
 - a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to

provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.

- The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode
 - 1) The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

2) Delayed egress doors will have bond sensors.

3) Delayed egress activation shall also trigger CCTV call -up.

- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.

- The delay egress device shall automatically reset upon fire alarm system reset.
- 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.
- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read: EMERGENCY EXIT. PUSH UNTIL ALARM SOUNDS DOOR CAN BE OPENED, IN 30 SECONDS.
 - Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
 - 3) Signs shall meet the current ADA requirements.

- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.
- D. Crash Bar:
 - 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one(1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.

- f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
- g. Normal Exit:
 - Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
 - 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
 - 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.
- E. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - Door closing force shall be adjustable to ensure adequate closing control.
 - Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.

- 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
- Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.
 - f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
 - g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
 - h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.
- F. Door Status Indicators:
 - 1. Shall monitor and report door status to the SMS.
 - 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.

28 13 00 - 11 Physical access control system

- c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.
- d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
- e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.6 INTERFACES

- A. Power Supplies:
 - 1. Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.

2.7 WIRES AND CABLES

A. Refer to section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported

solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.

- 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
- 7. Prepare and install alarm graphic maps.
- 8. Develop user-defined fields.
- 9. Develop screen layout formats.
- 10. Propose setups for guard tours and key control.
- 11. Discuss badge layout options; design badges.
- 12. Complete system diagnostics and operation verification.
- 13. Prepare a specific plan for system testing, startup, and demonstration.
- 14. Develop acceptance test concept and, on approval, develop specifics of the test.
- 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- E. Install cables without damaging conductors, shield, or jacket.
- F. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible

to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.

G. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet (75 m).
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet (8 m).

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:

- Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
- 2. Bus: Mount on wall of main equipment room with standoff insulators.
- 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- F. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall

be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- G. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- H. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- I. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.
 - Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.

J. Door Status Indicators:

- Install all signal input and output cables as well as all power cables.
- 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
- Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- K. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- L. System Start-Up:

- The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
 - b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - c. System wiring has been tested and verified as correctly connected as indicated.
 - d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- M. Supplemental Contractor Quality Control:
 - The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
 - 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

3.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

A. Provide and install complete Duress-Panic Alarms, Emergency Phones/ Call-Boxes, and Intercom Systems, data transmission wiring and a control station with its associated equipment, hereafter referred to as EPPS System.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- D. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Requirements for power cables.
- E. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- F. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- G. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- I. Section 28 05 28.33 CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- J. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for requirements for commissioning - systems readiness checklists, and training.
- K. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the EPPS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete

system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITALS

- A. Submit below items in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Master Specification Sections 01 33 23, SHOP DRAWING, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawings and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).

- e. Identify all pull box and conduit locations, sizes, and fill capacities.
- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.

- E. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- F. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

Speech over Communications Systems

- B. American National Standards Institute (ANSI): ANSI S3.2-09.....Method for measuring the Intelligibility of
- C. Department of Justice American Disability Act (ADA) 28 CFR Part 36.....2010 ADA Standards for Accessible Design
- D. Federal Communications Commision (FCC):
 (47 CFR 15) Part 15....Limitations on the Use of Wireless

Equipment/Systems

- E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code
- F. National Electrical Manufactures Association (NEMA) 250-08......Enclosures for Electrical Equipment (1000 Volts

Maximum)

- G. Underwriters Laboratories, Inc. (UL):
 - 305-08..... Standard for Panic Hardware
 - 444-08..... Cables
 - 636-01.....Standard for Holdup Alarm Units and Systems
- H. Uniform Federal Accessibility Standards (UFAS), 1984

1.6 COORDINATION

A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:

- To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.7 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, facility interface, and signal transmission equipment.
- C. Personnel
 - 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all

work promptly and satisfactorily. The COTR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COTR shall be provided copies of system manufacturer certification for the designated service representative.

- D. Schedule of Work
 - The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, check and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- E. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction

time not to exceed eight (8) hours from arrival on site. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.

- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- F. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- G. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- H. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- I. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COTR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COTR. Any modifications

made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.

- J. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.8 WARRANTY OF CONSTRUCTION.

- A. Warrant EPPS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.9 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. General requirements applicable to this section include:
 - 1. Performance Requirements,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Equipment and Materials,
 - 5. Electrical Power,
 - 6. Lightning, Power Surge Suppression, and Grounding,

- 7. Electronic Components,
- 8. Substitute Materials and Equipment, and
- 9. Like Items.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. General:
 - All equipment shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
 - 2. All equipment shall operate on a 120 volts alternating current (VAC); or 60 Hz Alternating Current (AC) power system unless documented otherwise in subsequent sections listed within this spec. All equipment shall have a battery back-up source of power that will provide 8 hours (hrs.) of run time in the event of a loss of primary power to the security systems.
 - 3. The EPPS systems shall be designed, installed, and programmed in a manner that will allow for easy of operation, programming, servicing, maintenance, testing, and upgrading of the system.
 - 4. The Contractor shall provide the Contracting Officer with written verification, that the type of wire/cable being provided is recommended and approved by the OEM. Cabling shall meet the interconnecting wiring requirements of NFPA 70, National Electrical Code. The Contractor is responsible for providing the correct protection cable duct and/or conduit and wiring.
 - 5. When interfacing with other communications or security subsystems the Contractor shall utilize interfacing methods that are approved by the Contracting Officer. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection; but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The interface point must adhere to all standards described herein.
 - Systems shall be scaleable, not vendor specific, and allow expansion as required.

- 7. Wireless systems shall use ultrasonic, infrared and radio frequency waves to link distributed transmitters and receivers. Specific characteristics of particular facility will determine best application. Contractor is responsible for determining best system using prediction program to determine where readable signals can be obtained and identify "dead spots".
- 8. All hardwired alarms, switches, and junction boxes shall be protected from tampering and include line supervision.

2.2 EQUIPMENT ITEMS

- A. All systems shall be designed to provide continuous electrical supervision of the complete and entire system.
- B. Noise filters and surge protectors shall be provided for all intercommunications equipment to ensure protection from primary AC power surges and to ensure noise interference is not induced into low voltage data circuits.
- C. All alarm and initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and Uninterrupted Power Supply (UPS) power circuits shall be supervised for any change in operating conditions (e.g. low battery, primary to back up battery, and UPS online). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the master control station and all remote locations.
- D. Control Unit: Shall consist of the components to constantly monitor and verify alarm activation; identify zone of activation and location of activation.
- E. Audible Signal Device for Duress-Panic: Provides alarm activation and audible sound for alarms, as well as supervisory and trouble signals that shall be distinctive.
- F. Assessment: This capability shall consist of electronic devices required to visually and audibly verify the validity of alarms. Assessment also includes providing indication of tampering, fail-safe, low battery, and power losses.
- G. Alarm Monitoring and Reporting: Shall annunciate information to at least two (2) separate locations. The alarms shall maintain the capability to respond with local and remote visible and audible signals

upon activation of an alarm. The alarms shall have the capability of operating in a silent mode, alerting personnel monitoring the system that the device has been activated.

- H. Duress-Panic Alarms:
 - Housing shall be a rugged corrosion-resistant housing of stainless steel or Acrylonitrile Butadiene Styrene (ABS) molded plastic or similar material that is weather and dust proof.
 - Actuating device shall include a minimum of a plunger button whose head is recessed from the face/front edge of the housing and be designed to avoid accidental activation using switch guard or multiple buttons (i.e., requires pressing two (2) buttons simultaneously)
 - Wireless stationary devices will meet the same specifications as Personal Duress/Panic Alarms.
 - 4. Alarm switch/button shall lock-in upon activation until manually reset with key or manufacture provided device.
 - 5. The switch shall be a positive-acting, double-pole, and double-throw switch.
 - Duress/Panic alarms shall meet UL 305 Standard for Panic Alarms. To reduce the possibility of false alarms and ensure installation functionality UL 636 Standard for Holdup Alarms standards shall be met.
 - 7. Alarms used for concealed application requires silent alarm notification to a monitoring station. They shall annunciate at the Physical Access Control System and Database Management, monitored by a central station or direct connect to campus police, depending on owner requirements.
 - 8. Shall be capable of being mounted for hand or foot use in a manner that is unable to be viewed by the public. Larger systems use a computer that intercepts and processes alarms and displays them on a monitor. The central computer can make an announcement over facility hand held radios, pagers or telephones, or at the Physical Access Control System and Database Management so that the other security personnel can be immediately notified. These systems shall be hardwired.

- 9. Components:
 - a. Transmitter
 - b. Locator subsystem
 - c. Receiver
 - d. Software
- 10. Wiring will be four (4) conductor #18 American Wire Gauge (AWG).
- 11. Duress-Panic Alarm Technical Characteristics:

Temperature Range	0° to 110°F (-17.8°C to 43.3°C)
Nominal Voltage	12 V DC @ 6 mA
Current	Max 8 mA
Operational Voltage	7 V DC to 15 V DC
Operational life	Rated for 10,000 activations
Battery Activations	500
Actuator	Dual button plunger with activation lock
LED	Bi-color - on and activated

- I. Personal Duress-Panic Alarm:
 - 1. These systems are wireless only and can be worn as a belt clip, with a neck lanyard or with a wrist band. These alarms can be either active (manually operated) or passive mode (if detached from body, or body position changes to a prone position) alarm activates. They also provide identification of individual and location.
 - 2. Components:
 - a. Transmitter
 - b. Repeaters (for wireless and increase distance)
 - c. Locator subsystem
 - d. Receiver
 - e. Software
 - 3. Wireless transmitters shall send a periodic check in signal to the main computer or processor. If the signal is not received according to a definable time window, a supervisory alert will be generated. Wireless devices shall report a low battery condition well in advance to the failure of the battery.

- 4. Shall consist of a compact lightweight transmitter enclosed in a durable fire-retardant ABS plastic case that can be easily worn.
- 5. Transmitters may use ultrasonic, radio frequency (RF), or infrared (IR) to transmit signals. Each has advantages and disadvantages. Selection of system shall be dependent on defined usage and range of communications required.
- 6. Sensors shall be adjustable to activate automatically when mounted on a belt and the user is in a horizontal position for longer than one (1) to fifteen (15) minutes. Adjustment capability shall not be accessible to personnel wearing the panic alarm device.
- 7. Radio frequencies for transmitter will comply with Federal Communication Commission (FCC) regulations.
- Radio frequency transmitters will use frequency modulation signal hopping.

Temperature Range	0° to 110°F (-17.8°C to 43.3°C)
Nominal Voltage	12 V DC @ 6 mA
Current	Max 8 mA
Operational Voltage	7 V DC to 15 V DC
Battery Life	Regular battery 60 hour duration or Nickel-Metal Hydride (NiMH) rechargeable 12 hrs. 20 hr. per charge
Battery Lifespan	500 activations
Actuator	Plunger with activation lock
LED	Bi-color - on and activated
Passive Activation	Adjustable
	Prone position 1-15 minutes

9. Personal Duress-Panic Alarm Technical Characteristics:

2.3 INSTALLATION KIT

A. General: A kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, barrier strips, wiring blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, etc., required to accomplish a neat and secure

installation. Unfinished or unlabeled wire connections will not be allowed. Contractor shall turn over to the Contracting Officer all unused and partially opened installation kit boxes, coaxial cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, and physical installation hardware. This is an acceptable alternate to the individual spare equipment requirement as long as the minimum spare items are provided in this count. The following installation sub-kits are required as a minimum:

- B. System Grounding:
 - The grounding kit shall include all cable in accordance with UL 444 Communications Cables, and installation hardware required. All grounding will be according to the NEC.
 - 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields
 - b. Control Cable Shields
 - c. Data Cable Shields
 - d. Conduits
 - e. Cable Duct
 - f. Cable Trays
 - g. Power Panels
 - h. Connector Panels
- C. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- D. Wire And Cable: The wire and cable kit shall include all connectors and terminals, barrier straps, wiring blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- E. Equipment Interface: The equipment interface kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface Systems and Subsystems according to the OEM requirements and this specification.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this specification.

G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. System installation shall be installed in accordance with NFPA 731 Standards for the Installation of Electric Premises Security Systems and appropriate installation manual for each type of subsystem designed, engineered, and installed.
- B. The location and type of duress devices to be installed will be in accordance with physical security requirements unique to each VA facility.
- C. Concealed duress/panic devices shall be mounted in such a way that their location is only known by the person having knowledge of the activating device location. No wiring shall be exposed to identify the location of the activation device.
- D. Floor mounted duress alarms shall be attached to millwork on floor. When mounted under millwork, wiring shall be routed in millwork to conduit system via flexible conduit.
- E. Hard-wired switches shall be wired to individual alarm points within the Advanced Processing Controller (apC).
- F. Wall and post mounted stations shall be mounted to meet UFAS/ADA requirements and use tamper proof bolts and screws. Testing will be finished before installation of fasteners.
- G. Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
- H. Provisions shall be made for systems in high-noise areas or areas with electrical interference environments.
- Adjustment/Alignment/Synchronization: Contractor shall prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or programming. Prepare each component in

accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.

3.2 WIRELINE DATA TRANSMISSION

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
- C. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- D. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- E. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of

1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.

- F. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- G. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.3 WIRING

- A. Wiring Method: Install cables in raceways and as otherwise indicated. Conceal raceways and wiring except in unfinished spaces.
- B. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- C. Splices, Taps, and Terminations: For power and control wiring, use numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation and supervise pretesting, testing, and adjusting of video surveillance equipment.
- B. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.

- C. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days' notice of test schedule.
- D. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.
- E. Remove and replace malfunctioning items and retest as specified above.
- F. Record test results for each piece of equipment.
- G. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions and to optimize performance of the installed equipment. Tasks shall include, but are not limited to, the following:
 - 1. Check cable connections.
 - 2. Check proper operation of detectors.
 - 3. Provide a written report of adjustments and recommendations.

3.6 CLEANING

A. Clean installed items using methods and materials recommended in writing by manufacturer.

3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain electronic personal protection system (EPSS) equipment.
 - Train Owner's maintenance personnel on procedures and schedules for troubleshooting, servicing, and maintaining equipment.
 - Demonstrate methods of determining optimum alignment and adjustment of components and settings for system controls.
 - 3. Review equipment list and data in maintenance manuals.
 - 4. Conduct a minimum of four hours' training.

VA Project 438-450 10-01-18 100% Bid Documents

3.8 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.9 TESTS AND TRAINING

A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COTR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - 1. Not Used
 - 2. Building shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in the security office.
- E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digitally encoded by UL listed electronic device onto a multiplexed communication system.

VA Project 438-450 10-01-18 100% Bid Documents

1.2 SCOPE

- A. A fully addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. Not Used
- C. Not Used
- D. Not Used
- E. Not Used
- F. Basic Performance:
 - Alarm and trouble signals from building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Not Used
- D. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.

VA Project 438-450 10-01-18 100% Bid Documents

- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Not Used
- J. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- K. Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for integration with physical access control system.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors' information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed

devices on the floor plans. Show all interfaces for all fire safety functions.

- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.

- d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
- e. Complete listing of all digitized voice messages.
- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.

- d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
- e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
 - 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES - NOT USED

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable. VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2016 edition NFPA 70.....National Electrical Code (NEC), 2017 edition NFPA 72.....National Fire Alarm Code, 2016 edition NFPA 90A..... Standard for the Installation of Air Conditioning and Ventilating Systems, 2015 edition NFPA 101.....Life Safety Code, 2012 edition C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011 E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2012 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

- A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.
- B. New fire alarm system and devices shall fully integrate into existing JCI Fire Alarm system.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.

- B. Wire:
 - Wiring shall be in accordance with NEC article 760, Section 28 05

 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as
 recommended by the manufacturer of the fire alarm system. All wires
 shall be color coded. Number and size of conductors shall be as
 recommended by the fire alarm system manufacturer, but not less than
 18 AWG for initiating device circuits and 14 AWG for notification
 device circuits.
 - 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
 - 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. Covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. Each building shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.

28 31 00 - 8 FIRE DETECTION AND ALARM

- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch (380 mm) diagonal nonglare screen capable of displaying 24 lines of 80 characters each.
 - Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
 - 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.
- D. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
 - 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
 - Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.

VA Project 438-450 10-01-18 100% Bid Documents

- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.

- 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
- 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
- 8. Not Used
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- I. Remote Transmissions:
 - Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
 - Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.

28 31 00 - 11 FIRE DETECTION AND ALARM

- 4. Batteries shall be sealed, gel cell type.
- 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries:
 - Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 - 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
 - 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.
- C. Battery Charger:
 - Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
 - Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
 - 3. Shall have protection to prevent discharge through the charger.
 - 4. Shall have protection for overloads and short circuits on both AC and DC sides.
 - 5. A trouble condition shall actuate the fire alarm trouble signal.
 - 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
 - Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. The initial alarm received shall be indicated as such.
 - A selector switch shall be provided for viewing subsequent alarm messages.

VA Project 438-450 10-01-18 100% Bid Documents

- 5. The display shall be UL listed for fire alarm application.
- Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COTR.
- B. Printers:
 - System printers shall be high reliability digital input devices, UL approved, for fire alarm applications. The printers shall operate at a minimum speed of 30 characters per second. The printer shall be continually supervised.
 - 2. Printers shall be programmable to either alarm only or event logging output.
 - a. Alarm printers shall provide a permanent (printed) record of all alarm information that occurs within the fire alarm system. Alarm information shall include the date, time, building number, floor, zone, device type, device address, and condition.
 - b. Event logging printers shall provide a permanent (printed) record of every change of status that occurs within the fire alarm system. Status information shall include date, time, building number, floor, zone, device type, device address and change of status (alarm, trouble, supervisory, reset/return to normal).
 - System printers shall provide tractor drive feed pins for conventional fan fold 8-1/2" x 11" (213 mm x 275 mm) paper.
 - 4. The printers shall provide a printing and non-printing self test feature.
 - 5. Power supply for printers shall be taken from and coordinated with the building emergency service.
 - 6. Each printer shall be provided with a stand for the printer and paper.
 - 7. Spare paper and ribbons for printers shall be stocked and maintained as part of the one year guarantee period services in addition to the one installed after the approval of the final acceptance test.

2.6 VOICE COMMUNICATION SYSTEM (VCS) - NOT USED

2.7 ALARM NOTIFICATION APPLIANCES

- A. Bells:
 - Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.

- Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
- 3. Mount on removable adapter plates on outlet boxes.
- Bells located outdoors shall be weatherproof type with metal housing and protective grille.
- 5. Each bell circuit shall have a minimum of 20 percent spare capacity.
- B. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- C. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.
 - 5. Ceiling mounted devices shall be white finish. Wall mounted devices shall be red finish.
- D. Fire Alarm Horns:
 - Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.

28 31 00 - 14 FIRE DETECTION AND ALARM

VA Project 438-450 10-01-18 100% Bid Documents

- 5. Each horn circuit shall have a minimum of 20 percent spare capacity.
- 6. Ceiling mounted devices shall be white finish. Wall mounted devices shall be red finish.

2.8 ALARM INITIATING DEVICES

A. Manual Fire Alarm Stations:

- 1. Shall be non-break glass, address reporting type.
- Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- 6. Not Used
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - 4. All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.

VA Project 438-450 10-01-18 100% Bid Documents

- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- C. Not Used
- D. Water Flow and Pressure Switches:
 - Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
 - All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
 - 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.
- E. Not Used

2.9 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - 1. Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve

shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.

- 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
- 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
- 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
- 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.
- 7. Not Used

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall

28 31 00 - 17 FIRE DETECTION AND ALARM when in the full open position, an extension post shall be added to the door bracket.

- 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.13 SPARE AND REPLACEMENT PARTS - NOT USED

2.14 INSTRUCTION CHART:

- Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.
- PART 3 (B) PRODUCTS NOT USED
- PART 4 (C) PRODUCTS NOT USED

PART 5 - EXECUTION

5.1 INSTALLATION:

A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05

> 28 31 00 - 18 FIRE DETECTION AND ALARM

13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.

- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. Not Used
- E. Not Used
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
- G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.

M. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

5.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector or smoke detector shall cause the following operations to occur:
 - 1. Not Used
 - 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building.
 - 3. Release only the magnetic door holders in the smoke zone after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Not Used
- C. Not Used
- D. Not Used
- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders in that smoke zone.
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch or high/low air pressure switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

5.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following

tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.

- Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
- 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
- Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

5.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

5.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion

of installation and 2 sessions 3 months after the completion of installation.

- Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.
- PART 6 SCHEDULES NOT USED

- - END - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1:DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - 2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from reference borings and design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698.
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.

31 20 11 - 1 EARTHWORK (SHORT FORM)

VA Project 438-450 10-01-18 100% Bid Documents

- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

A. Measurement: Cross section and measure the uncovered and separated materials, and compute quantities by the Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00,

> 31 20 11 - 2 Earthwork (Short form)

VA Project 438-450 10-01-18 100% Bid Documents

GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:

- 1. 300 mm (12 inches) outside of the perimeter of formed footings.
- 600 mm (24 inches) outside the face of concrete work for which forms are required, except for footings.
- 3. 150 mm (6 inches) below the bottom of pipe and not more than the pipe diameter plus 600 mm (24 inches) in width for pipe trenches.
- The outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevations.
- C. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- D. Furnish to Resident Engineer, soil samples, suitable for laboratory tests, of proposed off site or on site fill material.
- E. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

VA Project 438-450 10-01-18 100% Bid Documents

1.8 APPLICABLE PUBLICATIONS:

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. B. American Nursery and Landscape Association (ANLA): 2004..... American Standard for Nursery Stock C. American Association of State Highway and Transportation Officials (AASHTO): T99-10..... Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg [10 lb] Rammer and a 457 mm (18 inch) Drop D. American Society for Testing and Materials (ASTM): C33-03.....Concrete Aggregate D698-e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort D1140-00.....Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve D1556-00.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method D1557-09.....Laboratory Compaction Characteristics of Soil Using Modified Effort D2167-94 (2001).....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method D2487-06.....Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) D6938-10.....Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) E. Standard Specifications of South Dakota State Department of Transportation, latest revision.

PART 2 - PRODUCTS

2.1 MATERIALS:

VA Project 438-450 10-01-18 100% Bid Documents

- A. Fills: Materials approved from on site and off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.
- B. Granular Fill:
 - 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, 75 micrometers (No. 200) sieve and no more than 2 percent by weight passing the 4.75 mm (No. 4)size sieve.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No. 4).
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends
- F. Requirements For Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite

31 20 11 - 5 Earthwork (Short form)

VA Project 438-450 10-01-18 100% Bid Documents

sample of material from the borrow site, with at least one test from each borrow site. Material shall not be brought on site until tests have been approved by the Resident Engineer.

G. Buried Warning and Identification Tape: acid and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:	Electric		
Yellow:	Gas, Oil, Dangerous Materials		
Orange:	Telephone and Other Communications		
White:	Steam Systems		

- H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastictape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG. Color BLUE for water and GREEN for sanitary.

VA Project 438-450 10-01-18 100% Bid Documents

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inches) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inches) diameter, and nonperishable solid objects which will be a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 4500 mm (15 feet) of new construction and 2250 mm (7'-6'') of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Medical Center. Trees and shrubs, shown to be transplanted, shall be dug with a ball of earth and burlapped in accordance with the latest issue of the, "American Standard for Nursery Stock", of the American Association of Nurserymen, Inc. Transplant trees and shrubs to a permanent or temporary position within two hours after digging. Maintain trees and shrubs held in temporary locations by watering as necessary and feeding semi-annually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus and 5 percent potash. Maintain plants moved to permanent positions as specified for plants in temporary locations until the conclusion of the contract. // Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.
- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or

31 20 11 - 7 Earthwork (Short form)

VA Project 438-450 10-01-18 100% Bid Documents

otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.

- 2. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to it's angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.

VA Project 438-450 10-01-18 100% Bid Documents

- 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill support under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 1 m (3 feet) below the working level.
- C. Blasting: Blasting shall not be permitted.
- D. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete, poured separately from the footings.

31 20 11 - 9 Earthwork (short form)

VA Project 438-450 10-01-18 100% Bid Documents

- Do not tamp earth for backfilling in footing bottoms, except as specified.
- E. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
 - g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be

31 20 11 - 10 EARTHWORK (SHORT FORM)

VA Project 438-450 10-01-18 100% Bid Documents

taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

- Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.
- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of the pipe shall be 600 mm (24 inches) for up to and including 300 mm (12 inches) diameter and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - b. The bottom quadrant of the pipe shall be bedded on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one-sixth of pipe diameter below the pipe of 300

31 20 11 - 11 Earthwork (short form)

VA Project 438-450 10-01-18 100% Bid Documents

mm (12 inches) above top of pipe. Place and tamp fill material by hand.

- c. Place and compact as specified the remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

 Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional

31 20 11 - 12 EARTHWORK (SHORT FORM)

VA Project 438-450 10-01-18 100% Bid Documents

significance such as coral, slag, cinders, crushed stone, and crushed shells.

- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not.

G. Finished elevation of subgrade shall be as follows:

- Pavement Areas bottom of the pavement or base course as applicable.
- Planting and Lawn Areas 100 mm (4 inches) below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable

31 20 11 - 13 Earthwork (Short form)

VA Project 438-450 10-01-18 100% Bid Documents

subgrade. Operate the truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 4 to 5.5 km/hour (2 1/2 to 3 1/2 mph). Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer. Replace undercut with select material.

- C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer to not less than 95 percent of the maximum density determined in accordance with the following test method ASTM D698. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent ulaboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.
- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas within the limits of the project site, selected by the Contractoror from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Governmentcontrolled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing,

31 20 11 - 14 EARTHWORK (SHORT FORM)

VA Project 438-450 10-01-18 100% Bid Documents

grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.

F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 3048 mm (10 feet)at a minimum five percent (5%) slope.
- D. The finished grade shall be 150 mm (6 inches) below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the

31 20 11 - 15 Earthwork (Short form)

VA Project 438-450 10-01-18 100% Bid Documents

subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather. G. Grading for Paved Areas: Provide final grades for both subgrade and

base course to +/- 6 mm (0.25 inches) of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 100 mm (4 inches). Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 100 mm (4 inches) of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.
- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 100 mm (4 inches) at a rate of 12 kg/100 m2 (25 pounds per 1000 square feet).
- D. Seeding: Seed at a rate of 2 kg/100 m2 (4 pounds per 1000 square feet) and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 225 kg/m (150 pounds per foot) of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure

31 20 11 - 16 Earthwork (Short form)

VA Project 438-450 10-01-18 100% Bid Documents

sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.

F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Subbase for concrete pavements.
 - 2. Curbs and gutters.
 - 3. Pedestrian Pavement: Walks, grade slabs, steps.
 - 4. Vehicular Pavement: Driveways and parking lots.
 - 5. Equipment Pads: transformers.

1.2 RELATED REQUIREMENTS

- A. Field Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Step Nosings and Railings: Section 05 50 00, METAL FABRICATIONS.
- C. Subgrade Preparation and Subbase Compaction: Section 31 20 11, EARTHWORK.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 - M147-65-UL-04 Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 - M233-86 Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 - 1. 305R-10 Guide to Hot Weather Concreting.
 - 2. 306R-10 Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 - B101.3 Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 - A615/A615M-16 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.

32 05 23 - 1

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

- A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.
- A1064/A1064M-16 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
- 4. C33/C33M-16 Concrete Aggregates.
- 5. C94/C94M-16 Ready Mixed Concrete.
- 6. C143/C143M-15a Slump of Hydraulic Cement Concrete.
- 7. C150/C150M-16 Portland Cement.
- 8. C171-16 Sheet Materials for Curing Concrete.
- 9. C260/C260M-10a Air Entraining Admixtures for Concrete.
- 10. C309-11 Liquid Membrane Forming Compounds for Curing Concrete.
- 11. C494/C494M-15a Chemical Admixtures for Concrete.
- 12. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 13. C979/C979M-16 Pigments for Integrally Colored Concrete.
- 14. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 15. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 16. D1751-04(2013)e1 Preformed Expansion Joint Filler for Concrete
 Paving and Structural Construction (Nonextruding and Resilient
 Bituminous Types).
- 17. D5893/D5893M-10 Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
- 18. D6690-15 Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect/Engineer.
 - c. Inspection and Testing Agency.
 - d. Contractor.
 - e. Installer.

VA Project 438-450 10-01-18 100% Bid Documents

- f. Other installers responsible for adjacent and intersecting work, including excavation, plantings, traffic markings, and retaining walls.
- Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show reinforcing.
 - 3. Include jointing plan for concrete pavements, curbs and gutters.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Test reports: Certify products comply with specifications.
 - 1. Concrete materials.
 - 2. Select subbase materials.
 - 3. Field test reports.
- E. Certificates: Certify products comply with specifications.
 - 1. Expansion joint filler.
 - 2. Reinforcement.
 - 3. Curing materials.
 - 4. Concrete protective coating.

32 05 23 - 3

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

- F. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer.
 - 2. Land surveyor.
- G. Concrete mix design.
- H. Select subbase job-mix design.
- I. Proposed hot and cold weather concreting methods.
- J. Land surveyor's construction staking notes, before placing concrete.
 - 1. Identify discrepancies between field conditions and Drawings.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations.
 - Project Experience List: Provide contact names and addresses for completed projects.
- B. Land Surveyor: Professional land surveyor or engineer registered to provide land surveys in jurisdiction where project is located.
- C. Preconstruction Testing:
 - Engage independent testing laboratory to perform tests and submit reports.
 - Deliver samples to laboratory in number and quantity required for testing.
 - 2. Concrete mix design.
 - 3. Select subbase job-mix design. Report the following:
 - a. Material sources.
 - b. Gradation.
 - c. Plasticity index.
 - d. Liquid limit.
 - e. Laboratory compaction curves indicating maximum density at optimum moisture content.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.

32 05 23 - 4 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

C. Bulk Products: Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Hot Weather Concreting Procedures: ACI 305R.
- B. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Slag: ASTM C989/C989M; Grade 80, grade 100, or Grade 120.
 - 3. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33/C33M; size to suit application.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: ASTM C494/C494M.
- H. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M, Grade 420 (60) deformed.
- I. Expansion Joint Filler: ASTM D1751.
- J. Sheet Materials for Curing Concrete: ASTM C171.

32 05 23 - 5

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

2.2 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - Plywood: Exterior grade, free of defects and patches on contact surface.
 - Lumber: Sound, grade-marked, S4S stress graded softwood, minimum
 50 mm (2 inches) thick, free from warp, twist, loose knots, splits, or other defects.
 - 3. Form Coating: As recommended by Architect/Engineer.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - Do not use forms varying from straight line more than 3 mm in 3000 mm (1/8 inch in 10 feet), horizontally and vertically.
- C. Provide flexible or curved forms for forming radii.

2.3 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Burlap: Minimum 233 g/sq. m (7 ounces/sq. yd.) dry.
 - 2. Sheet Materials for Curing Concrete: ASTM C171.
 - Curing Compound: ASTM C309, Type 2; liquid membrane forming type, without paraffin or petroleum.

2.4 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option A and B.
- B. Concrete Type: Air-entrained. See Table I.

TABLE I - CONCRETE TYPES						
Concrete	Minimum 28 Day	Non-Air-Entrained		Air-Entrained		
Туре	Compressive	Min. Cement	Max.	Min. Cement	Max.	
	Strength f'c	kg/cu. m	Water	kg/cu. m	Water	
	MPa (psi)	(lbs./cu. yd.)	Cement	(lbs./cu. yd.)	Cement	
			Ratio		Ratio	
A	35 (5000)1,3	375 (630)	0.45	385 (650)	0.40	
В	30 (4000)1,3	325 (550)	0.55	340 (570)	0.50	
С	25 (3000)1,3	280 (470)	0.65	290 (490)	0.55	
D	25 (3000)1,2	300 (500)	*	310 (520)	*	

32 05 23 - 6 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP			
APPLICATION	MAXIMUM SLUMP		
Curb & Gutter	75 mm (3 inches)		
Pedestrian Pavement	75 mm (3 inches)		
Vehicular Pavement	50 mm (2 inches) Machine Finished 100 mm (4 inches) Hand Finished		
Equipment Pad	75 to 100 mm (3 to 4 inches)		

2.5 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.
- C. Sealants:
 - Concrete Paving Expansion Joints: ASTM D5893/D5893M, Type SL, single component, self-leveling, silicone joint sealant.
 - Concrete Paving Joints: ASTM D6690, Type IV, hot-applied, single component joint sealant.
- D. Concrete Protective Coating: AASHTO M233 linseed oil mixture.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Prepare, construct, and finish subgrade. See Section 31 20 11, EARTHWORK.
- D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

A. Placing:

VA Project 438-450 10-01-18 100% Bid Documents

- Place subbase material on prepared subgrade in uniform layer to required contour and grades, and to maximum 200 mm (8 inches) loose depth.
- When required compacted thickness exceeds 150 mm (6 inches), place subbase material in equal thickness layers.
- 3. When subbase elevation is 13 mm (1/2 inch) or more below required grade, excavate subbase minimum 75 mm (3 inches) deep. Place and compact subbase to required grade.
- B. Compaction:
 - Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
 - 2. Maintain subbase at optimum moisture content for compaction.
 - Compact each subbase layer to minimum 95 percent or 100 percent of maximum density as specified in Section 31 20 00, EARTHWORK.
- C. Subbase Tolerances:
 - 1. Variation from Indicated Grade: Maximum 9 mm (3/8 inch).
 - 2. Variation from Indicated Thickness: Maximum 13 mm (1/2 inch).
- D. Protection:
 - 1. Protect subbase from damage until concrete is placed.
 - 2. Reconstruct damaged subbase before placing concrete.

3.3 SETTING FORMS

- A. Form Substrate:
 - Compact form substrate to uniformly support forms along entire length.
 - Correct substrate imperfections and variations by cutting, filling, and compacting.
- B. Form Setting:
 - Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
 - 2. Remove forms when removal will not damage concrete and when required for finishing.
 - 3. Clean and oil forms before each use.
 - 4. Correct forms, when required, immediately before placing concrete.

32 05 23 - 8

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

- C. Land Surveyor: Establish control, alignment, and grade for forms and slip forming machine operations.
 - Notify Contracting Officer's Representative immediately when discrepancies exist between field conditions and drawings.
 - 2. Correct discrepancies greater than 25 mm (1 inch) before placing concrete.
- D. Form Tolerances:
 - 1. Variation from Indicated Line: Maximum 6 mm (1/4 inch).
 - Variation from Indicated Grade: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 - 1. Conform to details shown.
 - 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on approved submittal Drawings.
- B. Place transverse construction joints of type shown, where indicated, and whenever concrete placement is suspended for more than 30 minutes.
- C. Provide butt-type joint with dowels in curb and gutter at planned joint locations.
- D. Provide keyed joints with tie bars when joint occurs in middle third of planned curb and gutter joint interval.

VA Project 438-450 10-01-18 100% Bid Documents

3.7 CONTRACTION JOINTS

- A. Tool or cut joints to width, depth, and radius edge shown on drawings using grooving tool, jointer, or saw.
- B. Construct joints in curbs and gutters by inserting 3 mm (1/8 inch) steel plates conforming to curb and gutter cross sections.
 - 1. Keep plates in place until concrete can hold its shape.
- C. Finish joint edges with edging tool.
- D. Score pedestrian pavement with grooving tool or jointer.

3.8 EXPANSION JOINTS

- A. Form expansion joints with expansion joint filler of thickness shown on drawings.
 - Locate joints around perimeter of structures and features abutting site work concrete.
 - Create complete, uniform separation between structure and site work concrete.
- B. Extend expansion joint material full depth of concrete with top edge of joint filler below finished concrete surface where sealant is indicated on Drawings.
- C. Cut and shape material matching cross section.
- D. Anchor with approved devices to prevent displacing during placing and finishing operations.
- E. Round joint edges with edging tool.

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 - 1. Obtain Contracting Officer's Representative approval.
 - 2. Remove debris and other foreign material.
 - 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 - 1. Vibrate concrete against forms and along joints.
 - 2. Avoid excess vibration and handling causing segregation.
- D. Place concrete continuously between joints without bulkheads.

32 05 23 - 10 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.
- 3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EOUIPMENT PADS
 - A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.
 - B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
 - C. Strike concrete surface to proper section ready for consolidation.
 - D. Consolidate concrete with approved mechanical finishing equipment.
 - E. Finish concrete surface with wood or metal float.
 - F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 PLACING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete as close as possible to its final position.
- B. Place concrete continuously between construction joints without cold joints.
- C. Strike and consolidate concrete with finishing machine, vibrating screed, or by hand-finishing.
- D. Finish concrete surface to elevation and crown shown on drawings.
- E. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- F. Obtain Contracting Officer's Representative's approval before placing adjacent lanes.
- G. Curb-Forming Machines: Curb-forming machines for constructing integral curbs, curbs and gutter will be approved based on trial use on the project. When equipment produces unsatisfactory results, discontinue use of the equipment at any time during construction and accomplish work by hand method construction. Remove unsatisfactory work and reconstruct full length between regularly scheduled joints. Dispose of removed portions off the project site.

32 05 23 - 11 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

3.12 FORM REMOVAL

- A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.
- B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.13 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below, unless otherwise indicated on Drawings:
 - Consolidating, floating, striking, troweling, texturing, and joint edging.
- B. Use edging tool with 6 mm (1/4 inch) radius.
- C. Keep finishing equipment and tools clean and suitable for use.

3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs,:
 - Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 - 2. Finish slab edges and formed transverse joints with edger.
 - 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1.5 mm (1/16 inch) deep profile.
 - 4. Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 - 5. Paving Tolerances:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).
 - b. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
 - Replace paving within joint boundary when paving exceeds specified tolerances.
- B. Step Treads, Risers and Sidewalls: Finish as specified for pedestrian pavement, except as follows:
 - 1. Remove riser forms sequentially, starting with top riser.
 - Rub riser face with wood or concrete rubbing block and water. Remove blemishes, form marks, and tool marks. Use outside edger to round nosing; use inside edger to finish bottom of riser.

32 05 23 - 12

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

- 3. Apply uniform brush finish to treads, risers, and sidewall.
 - a. Apply stiff brush finish to treads to provide slip resistant surface complying with ANSI B101.3.
- 4. Step Tolerance:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).

3.15 CONCRETE FINISHING - VEHICULAR PAVEMENT

- A. Align finish surfaces where new and existing pavements abut.
- B. Longitudinally float pavement surface to profile and grade indicated on drawings.
- C. Straighten surface removing irregularities and maintaining specified tolerances while concrete is plastic.
- D. Finish pavement edges and joints with edging tool.
- E. Broom finish concrete surface after bleed water dissipates and before concrete hardens.
 - 1. Broom surface transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 3 mm (1/8 inch) deep profile.

F. Pavement Tolerances:

- Variation from Indicated Plane: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet) tested parallel and perpendicular to traffic direction at maximum 1500 mm (5 feet) intervals.
- 2. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- G. Replace paving within joint boundary when paving exceeds specified tolerances.

3.16 CONCRETE FINISHING - CURBS AND GUTTERS

- A. Round edges of gutter and top of curb with edging tool.
- B. Gutter and Curb Top:
 - Float surfaces and finish with smooth wood or metal float until true to grade and section and uniform color.
 - 2. Finish surfaces, while still plastic, longitudinally with bristle brush.
- C. Curb Face:

VA Project 438-450 10-01-18 100% Bid Documents

- Remove curb form and immediately rub curb face with wood or concrete rubbing block removing blemishes, form marks, and tool marks and providing uniform color.
- 2. Brush curb face, while still plastic, matching gutter and curb top.
- D. Curb and Gutter Tolerances: Except at grade changes or curves.
 - 1. Variation from Indicated Plane and Grade:
 - a. Gutter: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
 - b. Curb Top and Face: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet).
- E. Replace curbs and gutters within joint boundary when curbs and gutters exceed specified tolerances.
- F. Correct depressions causing standing water.

3.17 CONCRETE FINISHING - EQUIPMENT PADS

- A. Strike pad surface to elevation shown on Drawings.
- B. Provide smooth, dense float finish, free from depressions or irregularities.
- C. Finish pad edges with edger.
- D. After removing forms, rub pad edge faces with wood or concrete rubbing block, removing blemishes, form marks, and tool marks and providing uniform color.
- E. Pad Tolerances:
 - Variation from Indicated Plane: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
 - 2. Variation from Indicated Elevation: Maximum 6 mm (1/4 inch).
 - 3. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- F. Replace pads when pads exceed specified tolerances.

3.18 CONCRETE CURING

- A. Concrete Protection:
 - 1. Protect unhardened concrete from rain and flowing water.
 - Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
 - 3. Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.

32 05 23 - 14

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

G.

VA Project 438-450 10-01-18 100% Bid Documents

- a. Replace pavement damaged by curing method allowing concrete cracking.
- Employ another curing method as directed by Contracting Officer's Representative.
- B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:
 - Burlap Mat: Provide minimum two layers kept saturated with water during curing period. Overlap Mats at least 150 mm (6 inches).
 - 2. Sheet Materials:
 - a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
 - b. Overlap sheets minimum 300 mm (12 inches).
 - c. Securely anchor sheet materials preventing displacement.
 - 3. Curing Compound:
 - a. Protect joints indicated to receive sealants preventing contamination from curing compound.
 - Insert moistened paper or fiber rope into joint or cover joint with waterproof paper.
 - c. Apply curing compound before concrete dries.
 - Apply curing compound in two coats at right angles to each other.
 - e. Application Rate: Maximum 5 sq. m/L (200 sq. ft./gallon), both coats.
 - Immediately reapply curing compound to surfaces damaged during curing period.

3.19 CONCRETE PROTECTIVE COATING

- A. Apply protective coating of linseed oil mixture to exposed-to-view concrete surfaces, drainage structures, and features that project through, into, or against concrete exterior improvements to protect the concrete against deicing materials.
- B. Complete backfilling and curing operation before applying protective coating.
- C. Dry and thoroughly clean concrete before each application.

32 05 23 - 15 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

- D. Apply two coats, with maximum coverage of 11 sq. m/L (50 sq. yds./gal.); first coat, and maximum 16 sq. m/L (70 sq. yds./gal.); second coat, except apply commercially prepared mixture according to manufacturer's instructions.
- E. Protect coated surfaces from vehicular and pedestrian traffic until dry.
- F. Do not heat protective coating, and do not expose protective coating to open flame, sparks, or fire adjacent to open containers or applicators. Do not apply material at temperatures lower than 10 degrees C (50 degrees F).

3.20 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
 - 1. Compaction.
 - a. Pavement subgrade.
 - b. Curb, gutter, and sidewalk.
 - 2. Concrete:
 - a. Delivery samples.
 - b. Field samples.
 - 3. Slip Resistance: Steps and pedestrian paving.

3.21 CLEANING

A. After completing curing:

- 1. Remove burlap and sheet curing materials.
- 2. Sweep concrete clean, removing foreign matter from the joints.
- 3. Seal joints as specified.

3.22 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.
 - Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by

32 05 23 - 16 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -

32 05 23 - 17 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 32 17 23 PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Paint on pavement surfaces, in form of traffic lanes, parking bays, areas restricted to handicapped persons, crosswalks, and other detail pavement markings.

1.2 RELATED REQUIREMENTS

A. Paint Color: See drawing details.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. Federal Specifications (Fed. Spec.):
 - 1. TT-B-1325D Beads (Glass Spheres) Retro-Reflective.
 - 2. TT-P-1952F Paint, Traffic and Airfield Marking, Waterborne.
- C. Master Painters Institute (MPI):
 - 1. No. 97 Traffic Marking Paint, Latex.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show pavement marking configuration and dimensions.
 - 2. Show international symbol of accessibility at designated parking spaces.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Application instructions.
- D. Samples:
 - 1. Paint: 200 mm (8 inches) square, each type and color.
- E. Certificates: Certify products comply with specifications.
- F. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list.

32 17 23 - 1 PAVEMENT MARKINGS

VA Project 438-450 10-01-18 100% Bid Documents

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 13 degrees C (55 degrees F) for minimum 48 hours before installation.
 - a. Surface to be painted and ambient temperature: Minimum
 10 degrees C (50 degrees F) and maximum 35 degrees C
 (95 degrees F).
- B. Field Measurements: Verify field conditions affecting traffic marking installation. Show field measurements on Submittal Drawings.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design paint complying with specified performance:
 - 1. Application: Fed. Spec. TT-P-1952.

32 17 23 - 2 PAVEMENT MARKINGS

VA Project 438-450 10-01-18 100% Bid Documents

2.2 PRODUCTS - GENERAL

- A. Basis of Design or approved equal: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run.
 - Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Paints and coatings.

2.3 SANDBLASTING EQUIPMENT

A. Air compressor, hoses, and nozzles of proper size and capacity as required for cleaning painted surfaces. Compressor to provide minimum 0.08 cu. m/s (150 cfm) of air at pressure of minimum 625 kPa (90 psi) at each nozzle used.

2.4 PAINT APPLICATOR

A. Apply marking paint with approved mechanical equipment. Provide equipment with constant agitation of paint and travel at controlled speeds. Synchronize one or more paint "guns" to automatically begin and cut off paint flow in case of skip lines. Equipment to have manual control to apply continuous lines of varying length and marking widths as indicated on Drawings. Provide pneumatic spray guns for hand application of paint in areas where mobile paint applicator cannot be used.

2.5 PAINT

A. Paint: MPI No. 97. For obliterating existing markings comply with Fed. Spec. TT-P-1952. Provide minimum 18 L (5 gallons) containers.

2.6 REFLECTIVE GLASS BEADS

A. Beads: Comply with Fed. Spec. TT-B-1325, Type I, Gradation A. In regions of high humidity, coat beads with silicone or other suitable waterproofing material to ensure free flow. Provide glass beads in containers suitable for handling and strong enough to prevent loss during shipment.

VA Project 438-450 10-01-18 100% Bid Documents

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - Allow new pavement surfaces to cure for period of minimum 14 days before application of marking materials.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or combination of these methods.
 - Completely remove rubber deposits, existing paint markings, and other coatings adhering to pavement with scrapers, wire brushings, sandblasting, mechanical abrasion, or approved chemicals as directed by Contracting Officer's Representative.
 - 3. As an option, comply with Fed. Spec. TT-P-1952 for removal of existing paint markings on asphalt pavement. Apply black paint in as many coats as necessary to completely obliterate existing markings.
 - 4. Scrub affected areas with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinse thoroughly after each application, Where oil or grease are present on old pavements to be marked, .
 - a. After cleaning, seal oil-soaked areas with cut shellac to prevent bleeding through new paint.
 - Clean and dry surface before pavement marking.Do not begin any marking until Contracting Officer's Representative inspected surface and gives permission to proceed.
- D.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

VA Project 438-450 10-01-18 100% Bid Documents

3.3 PAINT APPLICATION

- A. Apply uniformly painted pavement marking of required colors, length, and width with true, sharp edges and ends on properly cured, prepared, and dried surfaces.
- B. Comply with details as indicated on drawings and established control points.
- C. Apply paint at wet film thickness of 0.4 mm (0.015 inch). Apply paint in one coat. When directed by Contracting Officer's Representative, apply additional coats at markings showing light spots. Comply with paint manufacturer's maximum drying time requirements to prevent undue softening of asphalt, and pick-up, displacement, or discoloration by tires of traffic.
- D. When deficiency in marking drying occurs, discontinue paint operations until cause of slow drying is determined and corrected.
- E. Remove and replace marking applied less than minimum material rates, deviates from true alignment, exceeds stipulated length and width tolerances, or shows light spots, smears, or other deficiencies or irregularities.
- F. Remove marking by carefully controlled sandblasting, approved grinding equipment, or other approve method to prevent damage on applied surface.

3.4 DETAIL PAVEMENT MARKING APPLICATION

- A. Apply Detail Pavement Markings, exclusive of actual traffic lane marking as follows:
 - 1. At exit and entrance islands and turnouts.
 - 2. On curbs.
 - 3. At crosswalks.
 - 4. At parking bays.
 - 5. Other locations as indicated on drawings.
- B. Apply International Handicapped Symbol at indicated parking spaces. Color as shown on drawings. Apply paint for symbol using suitable template that will provide pavement marking with true, sharp edges and ends.
- C. Install detail pavement markings of colors, widths and lengths, and design pattern at locations indicated on drawings.

VA Project 438-450 10-01-18 100% Bid Documents

3.5 TOLERANCES

- A. Length and Width of Lines: Plus or minus 75 mm (3 inches) and plus or minus 3 mm (1/8 inch), respectively, in case of skip markings.
- B. Length of intervals exceeding line length tolerance are not acceptable.

3.6 CLEANING

A. Remove excess paint before paint sets.

3.7 PROTECTION

- A. Protect pavement markings from traffic and construction operations.
 - Protect newly painted markings from vehicular traffic until paint is dry and track free.
 - Place warning signs at beginning of wet line, and at points well in advance of marking equipment for alerting approaching traffic from both directions.
 - Place small flags or other similarly effective small objects near freshly applied markings at frequent intervals to reduce crossing by traffic.
- B. Repair damage.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 32 31 40 SECURITY FENCES AND GATES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. High security fences, gates and accessories.

1.2 RELATED REQUIREMENTS

- A. Temporary Construction Fence: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Concrete Footings: Section 03 30 00, CAST-IN-PLACE CONCRETE.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - A653/A653M-15e1 Steel Sheet, Zinc-Coated (Galvanized) or Zinc Alloy-Coated (Galvannealed) by Hot-Dip Process.
 - A924/A924M-14e1 General Requirements for Steel Sheet, Metallic Coated by the Hot-dip Process.
 - D2794-93(2010) Test Method for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact).
 - F2408-16 Ornamental Fences Employing Galvanized Steel Tubular Pickets.
- C. Master Painters Institute (MPI):
 - 1. No. 18 Primer, Zinc Rich, Organic.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES..
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
- D. Certificates: Certify products comply with specifications.
 - 1. Fence alignment.
 - 2. Zinc-coating complies with specifications.
 - Structural characteristics comply with indicated and criteria on Drawings.

32 31 40 - 1 SECURITY FENCE AND GATES

VA Project 438-450 10-01-18 100% Bid Documents

- E. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Manufacturer with project experience list.
 - 2. Installer with project experience list.
 - 3. Welders and welding procedures.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - Manufactured specified products with satisfactory service on five similar installations for minimum five years.
- B. Installer Qualifications: Manufacturer authorized installer.
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
- C. Welders and Welding Procedures Qualifications: AWS D1.1/D1.1M.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoor in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Field Measurements: Verify field conditions affecting high security fence fabrication and installation. Show field measurements on Submittal Drawings.
 - Coordinate field measurement and fabrication schedule to avoid delay.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

> 32 31 40 - 2 SECURITY FENCE AND GATES

VA Project 438-450 10-01-18 100% Bid Documents

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. System components includes pickets, pales, mesh, fabric, rails, posts, gates and hardware required with following performance requirements:
 - 1. Steel Yield Strength: ASTM A924, minimum 310 MPa (45,000 psi).
 - Impact Resistance: ASTM D2794, over 6.8 Nm (60 in-lb.) when using 0.625 ball forward impact.
- B. Gates: Design to meet same forced entry and anti-climb characteristics as other portions of fence.

2.2 MATERIALS

- A. Zinc-Coated Steel: ASTM A653, G90 coating designation ASTM A924 .
- B. Tubular Steel: ASTM F2408.
- C. Concrete: As specified in Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS
- D. All fasteners shall be stainless steel. Bracket to rail attachments shall be made using specially designed one-way tamperproof security bolts with inverted "t-nuts". Bracket to post connections shall be made using self-drilling hex-head screws.
- E. Aluminum castings shall be used for all rings, post caps, finials, and miscellaneous adornments.

2.3 PRODUCTS - GENERAL

- A. Provide fence components from one manufacturer.
 - 1. Steel Recycled Content: 30 percent total recycled content, minimum.

2.4 HIGH SECURITY FENCE/GATE

A. Gate Posts: Tubular steel, nominal 100 mm (4 inch) square.1. Provide manually operated gates for vehicle access.

2.5 FABRICATION

- A. Fabricate fence and gate to profile and dimensions indicated on Drawings.
- B. Fabricate components with joints tightly fitted and secured.
- C. Pickets, rails and posts shall be pre-cut to specified lengths. Manufacturers'' concealed design system rails shall be pre-punched to accept pickets.

32 31 40 - 3 SECURITY FENCE AND GATES

VA Project 438-450 10-01-18 100% Bid Documents

D. The rail inner slide shall be fully inserted into the rail outer channel to form the raceway for the internal retaining rod. Grommets shall be inserted into the pre-punched holes in the rails, and pickets shall be inserted through the grommets so that pre-drilled picket holes align with the internal raceway of the two-part concealed design system rails. (Note: This can best be accomplished by using an alignment template). Retaining rods shall be inserted into each concealed design system rail so that they pass through the pre-drilled holes in each picket, thus completing the panel assembly.

Completed panels shall be capable of supporting a 300 lb. load (applied at midspan) without permanent deformation. Panels shall be biasable to a 25% change in grade.

2.6 FINISHES

- A. Steel Paint Finish:
 - Powder-Coat Finish: Manufacturer's standard two-coat finish system as follows:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: As selected by Architect.
- B. Finish exposed surfaces after fabrication.

2.7 ACCESSORIES

- A. Accessories: Manufacturer's required accessories for complete installation.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Fasteners: Fasteners as recommended by manufacturer.
- E. Gate Hardware: Fence manufacturers standard hardware for manually operated gates.
- F. Galvanizing Repair Paint: MPI No. 18.
- G. Touch-Up Paint: Match shop finish.

PART 3 - EXECUTION

3.1 PREPARATION

A. Examine and verify substrate suitability for product installation.

32 31 40 - 4 SECURITY FENCE AND GATES

VA Project 438-450 10-01-18 100% Bid Documents

- B. Protect existing construction and completed work from damage.
- C. Remove existing gate..
 - 1. Dispose of removed materials.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Excavate for concrete-embedded items.
- C. Set posts in concrete foundation with a minimum depth of 914 mm (36 inches).
- D. Attached fence panel to the line and end posts with manufacturer's standard fasteners.
- E. Install gate to gate posts spaced as indicated on Drawings. Install required hardware and adjust for smooth operation.
- F. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.3 CLEANING

A. Clean exposed high security fence and gate surfaces. Remove contaminants and stains.

3.4 PROTECTION

- A. Protect high security fences and gates from traffic and construction operations.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 32 32 23

MODULAR BLOCK RETAINING WALL

PART 1 - GENERAL

1.1 SUMMARY

- A. Segmental retaining walls made of modular concrete units without soil reinforcement.
- B. Contractor to design retaining wall(s).
- C. All retaining wall blocks to be salt resistant

1.2 RELATED REQUIREMENTS

- A. Section 02 41 00 Demolition
- B. Section 31 20 11 Earthwork

1.3 REFERENCE STANDARDS

- A. AASHTO M 288 Standard Specification for Geotextiles; American Association of State Highway and Transportation Officials; 2006.
- B. ASTM C 920 Standard Specification for Elastomeric Joint Sealants; 2005.
- C. ASTM C 1372 Standard Specification for Dry-Cast Segmental Retaining Wall Units; 2004.
- D. ASTM D 698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lb/ft3 (600 kN-m/m3)); 2007.
- E. ASTM D 2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); 2006.
- F. ASTM D 4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; 2005.
- G. ASTM D 4491 Standard Test Methods for Water Permeability of Geotextiles by Permittivity;1999a (Reapproved 2004).
- H. ASTM D 4751 Standard Test Method for Determining Apparent Opening Size of a Geotextile; 2004.
- I. ASTM F 405 Standard Specification for Corrugated Polyethylene (PE)
 Pipe and Fittings; 2005.

VA Project 438-450 10-01-18 100% Bid Documents

J. NCMA TR-127 - Design Manual for Segmental Retaining Walls; National Concrete Masonry Association; Most current edition.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Pre-installation Meeting: Prior to erection of retaining walls, hold a meeting at the site with the retaining walls installer, and the Design Engineer to review the retaining wall requirements.
 - Notify the Owner and Architect at least seven days in advance of the time of the meeting.

1.5 SUBMITTALS

- A. See Division 1 for Administrative Requirements and submittal procedures.
- B. Concrete Units:
 - 1. Manufacturer's product data.
 - 2. Color samples of block for Owner review and selection.
 - 3. Test data on unit strength and shear resistance between units.
 - 4. Manufacturer's certification that units meet requirements of specification.
 - 5. Storage and handling requirements and recommendations.
 - 6. Installation methods.
 - 7. Product must be salt resistant.
 - C. Shop Drawings: Engineering drawings for installation, including elevations, large-scale details of elevations, typical sections, details, and connections, soil reinforcement, and drainage provisions.
 - Include marked up contract drawings showing any required minor revisions to wall alignments, heights, etc.
 - Include design data: Detailed design calculations showing compliance with specified design criteria and material evaluations performed in accordance with specified design standard, signed and sealed by Design Engineer.
- D. Global stability analyses.
- E. Preconstruction Soil Test Reports (if additional soil tests are performed by the Design Engineer).

VA Project 438-450 10-01-18 100% Bid Documents

F. Design Engineer's Qualifications.

1.6 QUALITY ASSURANCE

- A. Design Engineer Qualifications: Provide design by or under direct supervision of Professional Engineer experienced in the work of this section and licensed in the State of Iowa.
- B. Preconstruction Soil Testing: Engage a qualified independent testing agency to test soil reinforcement and backfill materials for compliance with design criteria.
- C. Product Testing: Performed by qualified independent testing agency or by manufacturer and witnessed by qualified independent testing agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Segmental Concrete Units:
 - 1. Anchor Diamond Pro or equal.
 - 2. Substitutions: See Division 1 Product Requirements.

2.2 RETAINING WALLS

- A. Contractor is responsible for design of the retaining walls.
- B. Design Standard: Design retaining walls to be capable of withstanding the effects of gravity loads due to soil pressures resulting from grades indicated, determined in accordance with NCMA TR 127 Design Manual for Segmental Retaining Walls; perform all stability analyses specified in this standard.
 - In addition, comply with applicable local, state, and federal codes and regulations.
 - 2. This design method considers potential failure modes categorized by external, internal, local, compound, and global stability.
 - Provide engineering services as required for analysis for all modes of stability.
 - 4. Use of design software for calculations is permitted.
 - 5. Submit complete shop drawings showing all features of the design.
 - 6. Utilize block units with reduced wall batter (setback) where

VA Project 438-450 10-01-18 100% Bid Documents

required due to site constraints. Design Engineer shall note areas where varying block designs are utilized.

- C. Shear Resistance: Design the wall not to exceed the capacity of materials and soils to resist shear:
 - 1. Shear Resistance Between Units: Determine in accordance with NCMA SRWU-2.
- D. Soil Reinforcement: Only as needed by engineered design.
 - Do not use more than one type of reinforcement attached to units within the same wall; do not use products made by different manufacturers in the same wall; minimize the number of different reinforcement and filter products to avoid confusion in placement.
- E. Drainage: Design to prevent water accumulation in retained soil; use drainage fill and drainage pipe as required; provide outlets at 5 foot intervals along length of wall, minimum, for walls over 4ft tall. Utilize wall manufacturer's designs for walls adjacent to pond areas, and containing pipe penetrations through the wall system. Design Engineer to address these details in their design submittals.

2.3 MATERIALS

- A. Retaining Wall Units: Machine-formed concrete blocks of shapes and sizes suitable for the retaining wall configuration required and complying with ASTM C 1372 and the following:
 - 1. Products: Anchor Diamond Pro or equal.
 - Face Color: To be submitted for review and selection by the owner, from Manufacturer's standard color pallet; all units from the same production run.
 - 3. Texture: Sculptured rock texture, on all exposed surfaces.
 - 4. Face Shape: Textured
 - 5. Height: per Manufacturer specifications for block used.
 - 6. Width (Depth from Face): per Manufacturer specifications for block used.
 - 7. Moisture Absorption: 8 percent, maximum.
- B. Cap Units: Portland cement concrete machine-formed solid blocks, matching segmental concrete units, complying with ASTM C 1372, with abutting edges saw cut or formed to provide tight fitting, flush endto-end joints.

VA Project 438-450 10-01-18 100% Bid Documents

- 1. Height: per Manufacturer specifications for block used.
- 2. Width: Same as wall units.
- 3. Depth: To fully cover wall units.
- 4. Masonry Adhesive: To secure cap units as top course of wall.
 - a. Expected Life Span: 30 years.
 - b. Provide adhesive conforming to ASTM C 920, Type S, Grade NS, Class 25, and as manufacturer.
- C. Shear Connectors: Connection method to withstand design stresses and prevent movement of segmental units, and to hold soil reinforcement in proper design position during grid pre-tensioning and backfilling.
 - Maintain strength over design temperature range of minus 10 degrees F to plus 100 degrees F.
- D. Drainage Filter: Geotextile Fabric.
 - Apparent Opening Size: 70 to 100 U.S. Sieve size, when tested in accordance with ASTM D 4751.
 - Permittivity: 0.5 per second, minimum, when tested in accordance with ASTM D 4491.
 - Durability: Comply with minimum requirements of AASHTO M 288 Class
 1; minimum mass of 8 oz/sq yard.
- E. Aggregate for Leveling Pad: Compacted, gravel, or crushed rock complying with one of the following:
 - Meeting requirements of Crushed stone road base or 3/8" 3/4" crushed stone.
 - 2. Do not use pea gravel or sand.
- F. Drainage Fill: Clean, freely draining aggregate placed within, between, or immediately behind segmental units; do not use pea gravel; use one of the following:
 - 1. Crushed stone or coarse gravel, 1/2" to 3/4". 12" behind units.
- G. Backfill: Compacted soil placed behind drainage fill; do not use heavy clay or organic soils; comply with the Design Engineer's requirements, and as follows:
 - 1. Use site-excavated or other soil approved by Engineer.
 - 2. Granular soil with less than 5 percent passing No. 200 sieve.

3. Inorganic ASTM D 2487 soil types GP, GW, SP, or SM, free of debris.

VA Project 438-450 10-01-18 100% Bid Documents

- a. Maximum Size: 3/4 inch, unless approved by Design Engineer, and design strength reduced to account for additional installation damage.
- b. Plasticity of Fines: Less than 10. Liquid Limit: Less than 40, when tested in accordance with ASTM D 4318.
- H. Drainage Pipe: Perforated PVC, complying with ASTM D 3034; or corrugated HDPE complying with ASTM F 405.
- I. Geosynthetic Reinforcement: Polyester fiber geogrid or geotextile, or polypropylene woven geotextile, as required.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify location of existing structures and utilities prior to excavation.
- B. Protect adjacent structures from the effects of excavation.
- C. Verify that layout dimensions are correct and substrate is in proper condition for installation.
- D. Notify COR of unsatisfactory conditions.
- E. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Excavation:
 - 1. Excavate to lines and grades shown on drawings.
 - Do not disturb embankment or foundation beyond lines. Minimize overexcavation; fill over-excavated areas with compacted reinforced backfill or leveling pad material at Contractor's expense.
 - 3. Replace unsuitable bearing soil as directed by Geotechnical Engineer.
- B. Leveling Pad:
 - 1. Depth: 6 inches, minimum.
 - 2. Width: 6 inches minimum extension beyond front and back faces of units unless engineering determined otherwise.
 - Location: Top of pad at 1 inch below grade for each 8 inches that wall extends above grade.

VA Project 438-450 10-01-18 100% Bid Documents

- 4. Compact aggregate to lines and grades on drawings, in lifts 6 inches thick, maximum.
- Compact aggregate to a minimum of 95 percent standard Proctor density, when determined in accordance with ASTM D 698 at moisture content within 2 percent of optimum.
- 6. Use only hand-operated compaction equipment within 36 inches of back of wall.
- C. Verify level grade before proceeding.
- D. Install drainage collection pipe with a continuous fall in the direction of flow. Cap open ends as necessary to prevent soil and debris from entering.

3.3 INSTALLATION

- A. Install in accordance with drawings, manufacturer instructions, and applicable codes and regulations.
- B. Segmental Concrete Units:
 - Place first course of units on leveling pad; check alignment and level. Check for full contact with base and for stability.
 - 2. Place units side by side for full length of wall, aligning back face of straight walls using string line or offset from base line and back face of curved walls using flexible pipe, or other method recommended by manufacturer
 - 3. Do not leave gaps between units.
 - Lay out corners and curves in accordance with manufacturer's instructions. Do not leave gaps to produce wall batter or curvature.
 - 5. Cut blocks with saw; do not split units.
 - Sweep excess material from tops of units before laying succeeding courses.
 - 7. Place succeeding courses. Check for proper alignment and batter.
 - Where top of wall changes elevation, step units to match grade or turn top course into embankment.
 - 9. Where bottom of wall changes elevation, step base leveling pad and extend lowest course a minimum of two units into slope.
- C. Drainage Fill: Place drainage fill in, between, and behind units.
 - Compact to lines and grades on drawings, in lifts 6 inches thick, maximum; decrease lift thickness where necessary to achieve required

VA Project 438-450 10-01-18 100% Bid Documents

density.

- 2. Extend drainage fill 6 inches beyond back face of units.
- D. Backfill: Place, spread, and compact backfill from behind drainage fill to undisturbed soil.
 - Use only lightweight hand-operated compaction equipment within 3 ft from back wall face, or one half of wall height, whichever is greater.
 - 2. Place backfill in lifts of maximum 6 inches to 8 inches loose thickness where hand compaction is used and 8 inches to 10 inches
 - Compact backfill to 95 percent of maximum density, standard Proctor, as determined in accordance with ASTM D 698, or as recommended by Geotechnical Engineer.
 - Moisture content of backfill prior to and during compaction to be within plus 1 or minus 3 percentage points dry of optimum and uniform throughout each layer.
 - 5. Do not operate tracked construction equipment directly upon soil reinforcement.
 - At end of each day, slope top of backfill away from wall to direct runoff away from wall face. Prevent runoff from adjacent areas from entering wall site.
 - 7. At completion, if other work adjacent to wall is not to be done immediately (paving, landscaping, etc), grade top of backfill and provide temporary drainage to prevent water runoff toward the wall. Immediately grade for drainage away from the wall base.
- E. Cap Units: Install with masonry adhesive.
 - Clear cap units and top course of segmental concrete units of debris and standing water before applying adhesive.
 - Apply masonry adhesive to top surface of top unit and place cap into position over projecting pins. Protect wall face from masonry adhesive.

3.4 TOLERANCES

A. Top of Wall:

- 1. Plan Location: Maximum of plus/minus 1 inch from plan location.
- Elevation: Maximum of plus/minus 1-1/2 inch from elevations shown on drawings. (Unless conformance to typical details can be

VA Project 438-450 10-01-18 100% Bid Documents

demonstrated).

- B. Face of Wall Flatness: Measured as deviation from a straight edge.
 - 1. In the Vertical Dimension: Plus/minus 1-1/2 inch per 10 foot section.
 - In the Horizontal Dimension of Straight Walls: Plus/minus 1-1/2 inch per 10 foot section.
- C. Overall Wall Batter: Within 2 degrees of design, measured from the vertical.
- D. Gap Between Adjacent Units: 1/8 inch, maximum, or as specified by the manufacturer.

3.5 FIELD QUALITY CONTROL

- A. Owner will engage inspection and testing services, including independent laboratories, to provide quality assurance and testing services during construction. Contractor will secure necessary construction control testing during construction.
- B. Correct work found deficient and not in accordance with drawings and specifications.

3.6 CLEANING

- A. Clean wall face to remove debris and stains.
- B. Leave adjacent paved areas broom clean.

3.7 PROTECTION

- A. Prevent damage to wall and earthwork by subsequent construction and uncontrolled runoff until substantial completion; repair damage due to failure to protect wall or earthwork.
- B. Do not operate heavy paving or grading equipment within 36 inches from the back of the wall face.
- C. Do not operate equipment with wheel loads in excess of 150 psf live load within 10 feet from the wall face.
- D. Do not place temporary soil or fill stockpiles adjacent to wall.
- E. Replace damaged units prior to substantial completion.

END OF SECTION

SECTION 32 90 00 PLANTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. The work in this section consists of furnishing and installing plant, soils, edging turf, grasses and landscape materials required as specified in locations shown.

1.2 RELATED WORK

- A. Topsoil Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- C. Stripping Topsoil, Stock Piling and Topsoil Materials: Section 31 20 00, EARTH MOVING.
- D. Section 32 84 00, PLANTING IRRIGATION.

1.3 DEFINITIONS

- A. Backfill: The earth used to replace earth in an excavation.
- B. Balled and Burlapped Stock: ANSI Z60.1. Plants dug with firm, natural balls of earth in which they were grown, with ball size not less than diameter and depth recommended by ANSI Z60.1 for type and size of plant required wrapped with burlap, tied, rigidly supported, and drum laced with twine with the root flare visible at the surface of the ball.
- C. Balled and Potted Stock: ANSI Z60.1. Plants dug with firm, natural balls of earth in which they are grown and placed, unbroken, in a container. Ball size is not less than diameter and depth recommended by ANSI Z60.1 for type and size of plant required.
- D. Bare-Root Stock: Plants with a well-branched, fibrous-root system developed by transplanting or root pruning, with soil or growing medium removed, and with not less than minimum root spread according to ANSI Z60.1 for type and size of plant required.
- E. Container-Grown Stock: Healthy, vigorous, well-rooted plants grown in a container, with a well-established root system reaching sides of container and maintaining a firm ball when removed from container. Container shall be rigid enough to hold ball shape and protect root mass during shipping and be sized according to ANSI Z60.1 for type and size of plant required.
- F. Fabric Bag-Grown Stock: Healthy, vigorous, well-rooted plants established and grown in-ground in a porous fabric bag with wellestablished root system reaching sides of fabric bag. Fabric bag size is

not less than diameter, depth, and volume required by ANSI Z60.1 for type and size of plant.

- G. Finish Grade: Elevation of finished surface of planting soil.
- H. Manufactured Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.
- I. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
- J. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
- K. Plant Material: These terms refer to vegetation in general, including trees, shrubs, vines, ground covers, turf and grasses, ornamental grasses, bulbs, corms, tubers, or herbaceous vegetation.
- L.Root Flare: Also called "trunk flare." The area at the base of the plant's stem or trunk where the stem or trunk broadens to form roots; the area of transition between the root system and the stem or trunk.
- M. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.
- N. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.
- 1.4 DELIVERY, STORAGE AND HANDLING
 - A. Notify the Contracting Officer's Representative of the delivery schedule in advance so the plant material may be inspected upon arrival at the job site. Remove unacceptable plant and landscape materials from the job site immediately.
 - B. Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of conformance with state and federal laws, as applicable. Keep seed and other packaged materials in dry storage away from contaminants.
 - C. Bulk Materials:

- Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants. Keep bulk materials in dry storage away from contaminants.
- Provide erosion control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
- 3. Accompany each delivery of soil amendments with appropriate certificates.
- D. Deliver bare-root stock plants freshly dug. Immediately after digging up bare-root stock, pack root system in wet straw, hay, or other suitable material to keep root system moist until planting.
- E. Do not prune trees and shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.
- F. Handle planting stock by root ball.
- G. The use of equipment such as "tree spades" is permitted provided the plant balls are sized in accordance with ANSI Z60.1 and tops are protected from damage.
- H. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than 6 hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.
 - Heel-in bare-root stock: Soak roots that are in dry condition in water for two hours. Reject dried-out plants.
 - 2. Set balled stock on ground and cover ball with soil, peat moss, sawdust, or other acceptable material.
 - 3. Do not remove container-grown stock from containers before time of planting.
 - 4. Water root systems of plants stored on-site deeply and thoroughly with a fine-mist spray. Water as often as necessary to maintain root systems in a moist, but not overly-wet, condition.

- I. Harvest, deliver, store, and handle sod according to requirements in TPI's "Guideline Specifications to Turfgrass Sodding". Deliver sod in time for planting within 24 hours of harvesting. Protect sod from breakage, seed contamination and drying.
- J. Deliver sprigs in air tight bags to keep from drying out. Sprigs delivered unwrapped, shall be kept moist in burlap or other accepted material until planting.
- K. All pesticides and herbicides shall be properly labeled and registered with the U.S. Department of Agriculture. Deliver materials in original, unopened containers showing, certified analysis, name and address of manufacturer, product label, manufacturer's application instructions specific to the project and indication of conformance with state and federal laws, as applicable.

1.5 PROJECT CONDITIONS

- A. Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work.
- B. Coordinate planting periods with maintenance periods to provide required maintenance from date of Substantial Completion. Plant during one of the following periods:
 - 1. Spring Planting: May 15 to June 15.
 - 2. Fall Planting: August 15 to September 15.
- C. Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions and warranty requirements.
- D. Plant trees, shrubs, and other plants after finish grades are established and before planting turf areas unless otherwise indicated.
 - When planting trees, shrubs, and other plants after planting turf areas, protect turf areas, and promptly repair damage caused by planting operations.
- E. Plant trees, shrubs, and other plants after finish grades and irrigation system components are established but not before irrigation system components are installed, tested and approved.

32 90 00 - 4

 When planting trees, shrubs, and other plants, protect irrigation system components and promptly repair damage caused by planting operations.

1.6 QUALITY ASSURANCE:

A. Products Criteria:

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Installer Qualifications: A qualified landscape installer whose work has resulted in successful establishment of plants.
 - Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association with 5 years experience in landscape installation.
 - Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
 - 3. Installer's field supervisor shall have certification in one of the following categories from the Professional Landcare Network and submit one copy of certificate to the Contracting Officer's Representative:
 - a.Certified Landscape Technician (CLT) Exterior, with installation specialty area(s), designated CLT-Exterior.
 - b. Certified Ornamental Landscape Professional, designated COLP.
 - 4. Pesticide Applicator: Licensed in state of project, commercial.
- C. A qualified Arborist shall be licensed and required to submit one copy of license to the Contracting Officer's Representative.
- D. Include an independent or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.
- E. For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange

capacity; deleterious material; pH; and mineral and plant-nutrient content of the soil.

- Testing methods and written recommendations shall comply with USDA's Handbook No. 60, "Diagnosis and Improvement of Saline and Alkali Soils".
- 2. The soil-testing laboratory shall oversee soil sampling; with depth, location, and number of samples to be taken per instructions from Contracting Officer's Representative. A minimum of 3 Insert representative samples shall be taken from varied locations for each soil to be used or amended for planting purposes.
- 3. Report suitability of tested soil for plant growth.
 - a. Based upon the test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1000 sq. ft. (92.9 sq. m) or volume per cu. yd (0.76 cu. m) for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
 - b. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.
- F. Provide quality, size, genus, species, variety and sources of plants indicated, complying with applicable requirements in ANSI Z60.1.
- G. Measure according to ANSI Z60.1. Do not prune to obtain required sizes.
 - 1. Measure trees and shrubs with branches and trunks or canes in their normal position. Take height measurements from or near the top of the root flare for field-grown stock and container grown stock. Measure main body of tree or shrub for height and spread; do not measure branches or roots tip to tip. Take caliper measurements 6 inches (150 mm) above the root flare for trees up to 4 inch (100 mm) caliper size, and 12 inches (300 mm) above the root flare for larger sizes.
 - 2. Measure other plants with stems, petioles, and foliage in their normal position.
- H. Contracting Officer's Representative may observe plant material either at place of growth or at site before planting for compliance with requirements for genus, species, variety, cultivar, size, and quality. Contracting Officer's Representative retains right to observe trees and

VA Project 438-450 10-01-18 100% Bid Documents

shrubs further for size and condition of balls and root systems, pests, disease symptoms, injuries, and latent defects and to reject unsatisfactory or defective material at any time during progress of work. Remove rejected trees or shrubs immediately from Project site. 1. Notify Contracting Officer's Representative of plant material sources seven days in advance of delivery to site.

- I. Include product label and manufacturer's literature and data for pesticides and herbicides.
- J. Conduct a pre-installation conference at Project site.

1.7 SUBMITTALS

- A. Submit product data for each type of product indicated, including soils:
 - 1. Include quantities, sizes, quality, and sources for plant materials.
 - 2. Include EPA approved product label, MSDS (Material Safety Data Sheet) and manufacturer's application instructions specific to the Project.
 - 3. Include color photographs in digital format of each required species and size of plant material as it will be furnished to the Project. Take photographs from an angle depicting true size and condition of the typical plant to be furnished. Include a scale rod or other measuring device in each photograph. Identify each photograph with the full scientific name of the plant, plant size, and name of the growing nursery.
- B. Submit samples and manufacturer's literature for each of the following for approval before work is started.
 - Trees and Shrubs: 3 samples of each variety and size delivered to the site for review. Maintain approved samples on-site as a standard for comparison.
 - 2. Organic and Compost Mulch: 1-pint (0.5-liter) volume of each organic and compost mulch required; in sealed plastic bags labeled with composition of materials by percentage of weight and source of mulch. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of color, texture, and organic makeup.
 - 3. Mineral Mulch: 2 lb of each mineral mulch required, in sealed plastic bags labeled with source of mulch. Sample shall be typical of the lot of material to be delivered and installed on the site; provide an accurate indication of color, texture, and makeup of the material. a. Weed Control Barrier: 12 by 12 inches (300 by 300 mm).

VA Project 438-450 10-01-18 100% Bid Documents

- 4. Submit edging materials and accessories in manufacturer's standard size, to verify color selected.
- 5. Erosion Control Materials: 12 by 12 inches (300 by 300 mm).
- 6. Landscape Membranes: 12 by 12 inches (300 by 300 mm).
- C. Qualification data for qualified landscape Installer. Include list of similar projects completed by Installer demonstrating Installer's capabilities and experience. Include project names, addresses, and year completed, and include names and addresses of owners' contact persons.
- D. Prior to delivery, provide notarized certificates attesting that each type of manufactured product, from the manufacturer, meet the requirements specified and shall be submitted to the Contracting Officer's Representative for approval:
 - Plant Materials (Department of Agriculture certification by State Nursery Inspector declaring material to be free from insects and disease).
 - 2. Seed and Turf Materials notarized certificate of product analysis.
 - 3. Manufacturer's certified analysis of standard products.
 - 4. Analysis of other materials by a recognized laboratory made according to methods established by the Association of Official Analytical Chemists, where applicable.
- E. Material Test Reports: For standardized ASTM D5268 topsoil and imported or manufactured topsoil.
- F. Maintenance Instructions: Recommended procedures to be established by Owner for maintenance of plants during a calendar year. Submit before start of required maintenance periods.

1.8 PLANT AND TURF ESTABLISHMENT PERIOD

A. The establishment period for plants and turf shall begin immediately after installation, with the approval of the Contracting Officer's Representative, and continue until the date that the Government accepts the project or phase for beneficial use and occupancy. During the Establishment Period the Contractor shall maintain the plants and turf as required in Part 3.

1.9 PLANT AND TURF MAINTENANCE SERVICE

A. Provide initial maintenance service for trees, shrubs, ground cover and other plants by skilled employees of landscape Installer. Begin maintenance immediately after plants are installed and continue until plantings are acceptably healthy and well established but for not less than maintenance period below.

 Maintenance Period: 12 months from date of Substantial Completion.
 Obtain continuing maintenance proposal from Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below, form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American National Standards Institute (ANSI):
 - 1. Z60.1-2014 Nursery Stock.
- C. Association of Official Seed Analysts (AOSA): Rules for Testing Seed.
- D. American Society for Testing And Materials (ASTM):
 - B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 3. C33/C33M-16 Concrete Aggregates.
 - 4. C516-08 Vermiculite Loose Fill Thermal Insulation
 - 5. C136/C136M-14 Sieve Analysis of Fine and Coarse Aggregates.
 - 6. C602-13a Agricultural Liming Materials.
 - 7. D977-13e1 Emulsified Asphalt.
 - 8. D5268-13 Topsoil Used for Landscaping Purposes.
- E. Hortus Third: Concise Dictionary of Plants Cultivated in United States and Canada.
- F. Tree Care Industry Association (TCIA):
 - A300P1-2008 Tree Care Operations Trees, Shrubs and Other Woody Plant Maintenance Standard Practices (Pruning).
 - 2. Z133.1-2012 Arboricultural Operations Safety Requirements.
- G. Turfgrass Producers International (TPI):
 - 1. 2006 Guideline Specifications to Turfgrass Sodding.
- H. United States Department of Agriculture (USDA):
 - 1. DOA SSIR 42-2014 Soil Survey Laboratory Methods Manual.

 Handbook No. 60 - Diagnosis and Improvement of Saline and Alkali Soils.

1.11 WARRANTY

- A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance, unless noted otherwise below. Further, the Contractor will provide all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.
 - Plant and Turf Warranty Periods will begin from the date of Government acceptance of the project or phase for beneficial use and occupancy.
 - a. Trees, Shrubs, Vines, and Ornamental Grasses: 12 months.
 - b. Ground Covers, Biennials, Perennials, Turf, and Other Plants: 12 months.
 - 2. The Contractor shall have completed, located, and installed all plants and turf according to the plans and specifications. All plants and turf are expected to be living and in a healthy condition at the time of final inspection.
 - 3. The Contractor will replace any dead plant material and any areas void of turf immediately, unless required to plant in the succeeding planting season. Provide extended warranty for period equal to original warranty period for replacement plant materials. Replacement plant and turf warranty will begin on the day the work is completed.
 - 4. Replacement of relocated plants, that the Contractor did not supply, is not required unless plant failure is due to improper handling and care during transplanting. Loss through Contractor negligence requires replacement in plant type and size.
 - 5. The Government will reinspect all plants and turf at the end of the Warranty Period. The Contractor will replace any dead, missing, or defective plant material and turf immediately. The Warranty Period will end on the date of this inspection provided the Contractor has complied with the warranty work required by this specification. The Contractor shall also comply with the following requirements: a. Replace plants that are more than 25 percent dead, missing or defective plant material prior to final inspection.

VA Project 438-450 10-01-18 100% Bid Documents

- b. A limit of one replacement of each plant will be required except for losses or replacements due to failure to comply with requirements.
- c. Mulch and weed plant beds and saucers. Just prior to final inspection, treat these areas to a second application of approved pre-emergent herbicide.
- d. Complete remedial measures directed by the Contracting Officer's Representative to ensure plant and turf survival.
- e. Repair damage caused while making plant or turf replacements.
- B. Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner, or incidents that are beyond Contractor's control.
 - b. Structural failures including plantings falling or blowing over.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Provide each product from one source or manufacturer.
- B. Sustainable Construction Requirements:
 - Select products with recycled content to achieve overall Project recycled content requirement.
 - a. Fertilizer.
 - b. Weed control fabric.
 - c. Root control barrier.
 - 2. Biobased Content:
 - a. Organic Mulch: 100 percent.
 - b. Peat: 100 percent.

2.2 PLANT MATERIALS

A. Plant Materials: ANSI Z60.1, conforming to varieties specified and be true to scientific name as listed in Hortus Third; nursery-grown plants and turf material true to genus, species, variety, cultivar, stem form, shearing, and other features indicated on Drawings. Well-branched, well-formed, sound, vigorous, healthy planting stock free from disease, sunscald, windburn, abrasion, and harmful insects or insect eggs and having healthy, normal, and undamaged root system.

- 1. Trees-Deciduous and Evergreen: Single trunked with single leader, unless otherwise indicated; symmetrically developed deciduous trees and shrubs of uniform habit of growth; straight boles or stems; free from objectionable disfigurements; evergreen trees and shrubs with well-developed symmetrical tops, with typical spread of branches for each particular species or variety. Trees with damaged, crooked, or multiple leaders; tight vertical branches where bark is squeezed between two branches or between branch and trunk; crossing trunks; cut-off limbs more than 19 mm (3/4 inch) in diameter; or with stem girdling roots will be rejected.
- 2. Ground Cover and Vine Plants: Provide number and length of runners for size specified on drawings, together with proper age for grade of plants specified. Provide vines and ground cover plants well established in removable containers, integral containers, or formed homogeneous soil sections. Provide plants grown under climatic conditions similar to those in locality of project. Spray all plants budding into leaf or having soft growth with an anti-desiccant at nursery before digging.
- 3. Provide plants of sizes indicated, measured before pruning with branches in normal position. Plants larger in size than specified is acceptable with approval of Contracting Officer's Representative, with no change in contract price. When larger plants are used, increase ball of earth or spread of roots according to ANSI Z60.1.
- 4. Provide nursery grown plant material conforming to requirements and recommendations of ANSI Z60.1. Dig and prepare plants for shipment in manner that will not cause damage to branches, shape, and future development after planting.
- Balled and burlapped (B&B) plant ball sizes and ratios will conform to ANSI Z60.1, consisting of firm, natural balls of soil wrapped firmly with burlap or strong cloth and tied.
- Bare root (BR) plants to have root system substantially intact, but with earth carefully removed. Cover roots with thick coating of mud by "puddling" after plants are dug.

VA Project 438-450 10-01-18 100% Bid Documents

- 7. Container grown plants to have sufficient root growth to hold earth intact when removed from containers, but not be root bound.
- 8. Make substitutions only when plant (or alternates as specified) is not obtainable and Contracting Officer's Representative authorizes change order providing for use of nearest equivalent obtainable size or variety of plant with same essential characteristics and an equitable adjustment of contract price.
- Existing plants to be relocated: Ball sizes to conform to requirements for collected plants in ANSI Z60.1, and plants dug, handled, and replanted according to applicable articles of this Section.
- 10. Do not use plants harvested from the wild, from native stands, from an established landscape planting, or not grown in a nursery unless otherwise indicated.
- B. Label plants with durable, waterproof labels in weather-resistant ink. Provide labels with the correct designation of common name and full scientific name, including genus and species. Include nomenclature for hybrid, variety, or cultivar, if applicable for the plant as indicated in the Plant Schedule or Plant Legend shown on the Drawings. Labels shall be securely attached and not be removed. Groups of plants may be labels by tagging one plant. Labels to be legible for minimum 60 days after delivery to planting site.

2.3 SOD

- C. Sod: Certified Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding". Furnish viable sod of uniform density, color, and texture, strongly rooted, and capable of vigorous growth and development when planted.
- D.Sod Species: Grass species as follows, with not less than 95 and not more than 0.5 percent weed seed:
 - 1. Variety shall match existing seed types currently used by VA maintenance staff and approved by the COR.

2.4 SEED

A.Grass Seed: Fresh, clean, dry, new-crop seed complying with "AOSA, Rules for Testing Seed" for purity and germination tolerances. Seed shall be

labeled in conformance with U. S. Department of Agriculture rules and regulations under the Federal Seed Act and applicable state seed laws. Wet, moldy, or otherwise damaged seed will not be acceptable.

- B.Seed Species: Not less than 95 percent pure seed, and not more than 0.5 percent weed seed.
 - 1. Variety shall match existing seed types currently used by VA maintenance staff and approved by the COR.

2.5 TURF SELECTIONS

- A. Grasses for Cool Regions shall be:
 - 1. Sod or Turfgrass variety shall match existing seed types currently used by VAMC maintenance staff and approved by the COR.

2.6 PLANTING SOILS

- A. Planting Soil: ASTM D5268 topsoil, with pH range of 5.5 to 7, a minimum of 6 percent organic material content; free of stones 1 inch (25 mm) or larger in any dimension and other extraneous materials harmful to plant growth. Mix ASTM D5268 topsoil with the following soil amendments as recommended by the soils analysis.
- B. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process and stockpiled onsite. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 - 1. Supplement with planting soil when quantities are insufficient.
 - 2. Mix existing, native surface topsoil with the following soil amendments as recommended by the soils analysis.
- C. Imported Planting Soil: Imported topsoil or manufactured topsoil from off-site sources can be used if sufficient topsoil is not available on site to meet the depth as specified herein. The Contractor shall furnish imported topsoil. At least 10 days prior to topsoil delivery, notify the Contracting Officer's Representative of the source(s) from which topsoil is to be furnished. Obtain imported topsoil displaced from naturally well-drained construction or mining sites where topsoil occurs at least 4 inches (100 mm) deep; do not obtain from agricultural land, bogs, or marshes.

VA Project 438-450 10-01-18 100% Bid Documents

2.7 INORGANIC SOIL AMENDMENTS

- A.Lime: ASTM C602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 - Class: T, with a minimum of 99 percent passing through No. 8 (2.36 mm) sieve and a minimum of 75 percent passing through No. 60 (0.25 mm) sieve.
 - 2. Class: O, with a minimum of 95 percent passing through No. 8 (2.36 mm) sieve and a minimum of 55 percent passing through No. 60 (0.25 mm) sieve.
 - 3. Provide lime in form of ground dolomitic limestone.
- B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent sulfur, with a minimum of 99 percent passing through No. 6 (3.35 mm) sieve and a maximum of 10 percent passing through No. 40 (0.425 mm) sieve.
- C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.
- D. Aluminum Sulfate: Commercial grade, unadulterated.
- E. Perlite: ASTM C549, horticultural perlite, soil amendment grade.
- F. Agricultural Gypsum: Coarsely ground from recycled scrap gypsum board comprised of calcium sulfate dehydrate 91 percent, calcium 22 percent, sulfur 17 percent, minimum 96 percent passing through No. 20 (0.850 mm) sieve, 100 percent passing through No. 16 (0.970 mm) sieve.
- G.Coarse Sand: ASTM C33/C33M, clean and free of materials harmful to plants.
- H. Vermiculite: ASTM C516, horticultural grade and free of any toxic materials.
- I. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.
- J.Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.8 ORGANIC SOIL AMENDMENTS

A. Organic Matter: Commercially prepared compost. Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1/2 inch (13 mm) sieve; soluble salt content of 5 to 10 not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

VA Project 438-450 10-01-18 100% Bid Documents

- 1. Organic Matter Content: 50 to 60 percent of dry weight.
- Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.
- B. Peat: Natural product of sphagnum moss peat derived from fresh-water site, conforming to ASTM D4427 and containing no invasive species, including seeds. Shred and granulate peat to pass 1/2 inch (12.5 mm) mesh screen and condition in storage pile for minimum 6 months after excavation. Biobased content minimum 100 percent.
- C. Wood derivatives: Decomposed, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials.
 - In lieu of decomposed wood derivatives, mix partially decomposed wood derivatives with ammonium nitrate at a minimum rate of 0.15 lb/cu. ft. (2.4 kg/cu. m) of loose sawdust or ground bark, or with ammonium sulfate at a minimum rate of 0.25 lb/cu. ft. (4 kg/cu. m) of loose sawdust or ground bark.
- D. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, debris, and material harmful to plant growth.

2.9 PLANT FERTILIZERS

A. Soil Test: Evaluate existing soil conditions and requirements before fertilizer selection and application to minimize use of all fertilizers and chemical products. Obtain approval of Contracting Officer's Representative for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements. Fertilizers to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer applicable to specific areas as required for Project conditions and application. Provide commercial grade plant and turf fertilizers, free flowing, uniform in composition and conforms to applicable state and federal regulations.

- B. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
 - 1. Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
- C.Slow-Release Fertilizer: Granular or pellet fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 - 1. Composition shall be nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
- D. Plant Tablets: Tightly compressed chip type, long-lasting, slow-release, commercial-grade planting fertilizer in tablet form. Tablets shall break down with soil bacteria, converting nutrients into a form that can be absorbed by plant roots.
 - 1. Size: 5-gram tablets.
 - Nutrient Composition shall be 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

2.10 WEED CONTROL FABRIC

- A. Roll Type Polypropylene or Polyester Mats: Woven, needle punched, or non-woven fabric treated for protection against deterioration due to ultraviolet radiation. Minimum 99 percent opaque to prevent photosynthesis and seed germination, fabric allows air, water, and nutrients to pass through to plant roots.
 - 1. Minimum weight: 0.11 kg per square meter (5 ounces per square yard).
 - 2. Minimum thickness: 0.50 mm (20 mils).

2.11 MULCH

- A. Organic Mulch: Free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of one of the following:
 - Shredded hardwood to match existing wood mulch found onsite and as approved by Contracting Officer's Representative.
 - a. Straw for Lawn Seed Bed Mulch: Stalks from oats, wheat, rye, barley, or rice free of noxious weeds, mold or other objectionable material. Air dried and suitable for placing with blower equipment.

VA Project 438-450 10-01-18 100% Bid Documents

- b. Wood cellulose fiber for hydraulic application of grass seed and fertilizer: Specially prepared wood cellulose fiber, processed to contain no growth or germination inhibiting factors, and dyed an appropriate color to facilitate visual metering of application of materials. Maximum 12 percent moisture dry weight, plus or minus 3 percent at time of manufacture. pH range from 3.5 to 5.0. Manufacturer wood cellulose fiber for application as follows:
 - After addition and agitation in slurry tanks with fertilizers, grass seeds, water, and other approved additives, fibers will become uniformly suspended to form a homogeneous slurry.
 - When hydraulically sprayed, material will form blotter-like cover impregnated uniformly with grass seed.
 - Cover will allow absorption of moisture and allow rainfall or applied water to percolate to underlying soil.
- 2. Color: Natural.
- B. Compost Mulch: Decomposed organic matter with low carbon to nitrogen ratio.
- C. Mineral Mulch: Coarse, clean stone of following type, size, and color:
 - 1. Type: Washed River Rock.
 - 2. Size: 1-1/2 in (38 mm).
 - 3. Color: Acceptable to Contracting Officer's Representative.

2.12 EDGING

- A. Poly-Edging: Standard commercial grade poly-edging, fabricated in sections of standard lengths.
 - 1. Material: Medium density polyethylene with UV inhibitor
 - 2. Edging Size: 5 inches deep
 - 3. Stakes: Tapered steel, a minimum of 12 inches (300 mm) long.
 - 4. Accessories: Standard corners, and splicers.
 - 5. Color: Black

2.13 ANTIDESICCANT

A. Antidesiccant: An emulsion specifically manufactured for agricultural use that will provide protective film over plant surfaces permeable enough to permit transpiration.

VA Project 438-450 10-01-18 100% Bid Documents

2.14 EROSION CONTROL

- A. Erosion control blankets: Biodegradable wood excelsior, straw, or coconut fiber mat enclosed in a photodegradable plastic mesh. Include manufacturer's recommended biodegradable staples, 6 inches (150 mm) long.
- B. Erosion control fiber mesh: Biodegradable burlap or spun-coir mesh, a minimum of 0.92 lb/sq. yd. (0.5 kg/sq. m), with 50 to 65 percent open area. Include manufacturer's recommended biodegradable staples, 6 inches (150 mm) long.
- C. Erosion control mats: Cellular, non-biodegradable slope stabilization mats designed to isolate and contain small areas of soil over steeply sloped surface, 6 inch (150 mm) nominal mat thickness. Include manufacturer's recommended biodegradable anchorage system for slope conditions.

2.15 BIOSTIMULANTS

A. Biostimulants: Formulation containing soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions.

2.16 STAKING AND GUYING MATERIALS

- A. Staking Material:
 - Tree Support Stakes: Rough sawn hardwood free of knots, rot, cross grain, bark, long slivers, or other defects that impair strength. Minimum 50 mm (2 inches) square by 2.4 m (8 feet) long, pointed at one end.
 - Ground Stakes: 50 mm (2 inches) square by 0.91 m (3 feet) long wood or plastic, pointed at one end.
- B. Guying Material:
 - 1. Guying Wire: ASTM A580/A580M, galvanized steel wire.
 - Guying Cable: Minimum five-strand, 5 mm (3/16 inch) galvanized steel cable.
- C. Hose Chafing Guards: New or used 2 ply 19 mm (3/4 inch) reinforced rubber or plastic hose, black or dark green, all of same color.
- D. Flags: White surveyor's plastic tape 150 mm (6 inches) long, fastened to guying wires or cables.
- E. Turnbuckles: Galvanized or cadmium-plated steel with minimum 75 mm(3 inch) long openings fitted with screw eyes and galvanized or

cadmium-plated steel eye bolts with 25 mm (1 inch) diameter eyes and 38 mm (1-1/2 inches) minimum screw length.

2.17 TACKIFIERS AND ADHESIVES

- A. Nonasphalt Tackifier: Colloidal liquid fixative recommended by fiber mulch manufacturer for hydroseeding.
- B. Asphalt emulsion: ASTM D977, Grade SS-1.

2.18 WATER

A. Water: Source approved by Contracting Officer's Representative and suitable quality for irrigation, containing no elements toxic to plant life, including acids, alkalis, salts, chemical pollutants, and organic matter. Use collected storm water or graywater when available.

2.19 PESTICIDES

A. Consider IPM (Integrated Pest Management) practices to minimize use of all pesticides and chemical products. Obtain Contracting Officer's Representative's approval for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.
 - Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
 - Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
 - Suspend soil spreading, grading, and tilling operations if soil moisture becomes excessive. Resume soil preparations when moisture content returns to acceptable level.
 - If soil is excessively dry, not workable, and too dusty, moisten uniformly.

VA Project 438-450 10-01-18 100% Bid Documents

- 5. Special conditions may exist that warrant variance in the specified planting dates or conditions. Submit written request to the Contracting Officer's Representative stating special conditions and proposed variance.
- B. Proceed with planting operations only after unsatisfactory conditions have been corrected.
- C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Contracting Officer's Representative and replace with new planting soil.

3.2 PREPARATION

- A. Protect existing and proposed landscape features, elements, and site construction and completed work from damage. Protect trees, vegetation, and other designated features by erecting high-visibility, reusable construction fencing. Locate fence no closer to trees than drip line. Plan equipment and vehicle access to minimize and confine soil disturbance and compaction to areas indicated on drawings.
- B. Install erosion control materials at all areas inside or outside limits of construction that are disturbed by planting operations. Provide erosion control and seeding with native plant species to protect slopes.
- C. Lay out approved plant material locations and planter bed outlines on project site before digging plant pits or beds. Contracting Officer's Representative reserves right to adjust plant material locations to meet field conditions. Provide on-site locations for excavated rock, soil, and vegetation.
- D. Apply antidesiccant to trees and shrubs using power spray to provide an adequate film over trunks (before wrapping), branches, stems, twigs, and foliage to protect during digging, handling, and transportation.
 - If deciduous trees or shrubs are moved in full leaf, spray with antidesiccant at nursery before moving and again two weeks after planting.
- E. Wrap trees and shrubs with burlap fabric over trunks, branches, stems, twigs, and foliage to protect from wind and other damage during digging, handling, and transportation.

VA Project 438-450 10-01-18 100% Bid Documents

3.3 PLANT BED PREPARATION

- A. Verify location of underground utilities before excavation. Protect existing adjacent turf before excavations are made. Do not disturb topsoil and vegetation in areas outside those indicated on Drawings. Where planting beds occur in existing turf areas, remove turf to depth that will ensure removal of entire roof system. Measure depth of plant pits from finished grade. Provide depth of plant pit excavation and relation of top of root ball and finish grade as indicated on drawings. Install plant materials as specified in Article 3.8. Do not plant trees within 10 feet (3 m) of any utility lines or building walls.
- B. For newly graded subgrades, loosen subgrade to minimum 12 inches (300 mm) deep. Remove stones larger than 1 inch (25 mm) in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 - Apply fertilizer directly to subgrade before loosening, at rates recommended by soils analysis.
 - Spread planting soil to a depth of 12 inches (300 mm) but not less than required to meet finish grades after natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 - a. Spread approximately one-half the thickness of planting soil over loosened subgrade. Mix thoroughly into top 4 inches (100 mm) of subgrade. Spread remainder of planting soil.
- C. Finish grade planting areas to smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch (13 mm) of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in immediate future.
- D. Before planting, obtain Contracting Officer's Representative acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 GROUND COVER AND PLANT INSTALLATION

- A. Set out and space ground cover and plants other than trees, shrubs, and vines as indicated in even rows with triangular spacing.
- B. Use planting soil for backfill.
- C. Dig holes large enough to allow spreading of roots.

VA Project 438-450 10-01-18 100% Bid Documents

- D. For rooted cutting plants supplied in flats, plant each in a manner that will minimally disturb the root system but to a depth not less than two nodes.
- E. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water.
- F. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.
- G. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.
- H. Plant ground cover in areas to receive erosion control materials through the material after erosion control materials are in place.

3.5 TREE, SHRUB, AND VINE PLANTING

- A. Prior to planting, verify that root flare is visible at top of root ball according to ANSI Z60.1. If root flare is not visible, remove soil in a level manner from the root ball to where the top-most root emerges from the trunk. After soil removal to expose the root flare, verify that root ball still meets size requirements.
- B. Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.
- C. Move plant materials only by supporting root ball or container. Set plants on hand compacted layer of prepared backfill soil mixture 6 inches (150 mm) thick and hold plumb in center of pit until soil has been tamped firmly around root ball.
- D. Set balled and burlapped stock plumb and in center of planting pit or trench with root flare 1 inch (25 mm) above adjacent finish grades.
 - 1. Use planting soil for backfill.
 - 2. After placing some backfill around root ball to stabilize plant, carefully cut and remove burlap, rope, and wire baskets from tops of root balls and from sides, but do not remove from under root balls. Remove pallets, if any, before setting. Do not use planting stock if root ball is cracked or broken before or during planting operation.
 - 3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half full, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.

VA Project 438-450 10-01-18 100% Bid Documents

- 4. Place planting tablets in each planting pit when pit is approximately one-half filled; in amounts recommended in soil reports from soil-testing laboratory. Place tablets beside soilcovered roots about 1 inch (25 mm) from root tips; do not place tablets in bottom of the hole or touching the roots.
- 5. Continue backfilling process. Water again after placing and tamping final layer of soil.
- E. Set container-grown stock plumb and in center of planting pit or trench with root flare 1 inch (25 mm) above adjacent finish grades.
 - 1. Use planting soil for backfill.
 - Carefully remove root ball from container without damaging root ball or plant. Do not use planting stock if root ball is cracked or broken before or during planting operation.
 - 3. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half full, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
 - 4. Place planting tablets in each planting pit when pit is approximately one-half filled; in amounts recommended in soil reports from soil-testing laboratory. Place tablets beside soilcovered roots about 1 inch (25 mm) from root tips; do not place tablets in bottom of the hole or touching the roots.
 - 5. Continue backfilling process. Water again after placing and tamping final layer of soil
- F. When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.6 TREE AND SHRUB PRUNING

- A. Remove dead and broken branches. Prune only to correct structural defects.
- B. Prune, thin, and shape trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Contracting Officer's Representative, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.

C. Do not apply tree wound dressing to cuts.

3.7 STAKING AND GUYING

- A. Staking: Stake plants with number of stakes indicated on drawings with double strand of guy wire. Attach guy wire at half tree trunk height but maximum 1.5 m (5 feet) high. Drive stakes to depth of 2-1/2 to 3 feet (0.80 to 0.91 m) into the ground outside plant pit. Do not injure root ball. Install hose chafer guards where wire is in contact with tree trunk.
- B. Guying: Guy plants as indicated on drawings. Attach two strands of guying cable around tree trunk at 0.785 rad (45 degrees) at half tree trunk height. Install hose chafer guards where cable is in contact with tree trunk. Anchor guys to ground stakes. Fasten flags to each guying cable at 2/3 of the distance above ground level. Provide turnbuckles as indicated on drawings.

3.8 MULCH INSTALLATION

- A. Install weed-control barriers before mulching according to manufacturer's written instructions. Completely cover area to be mulched, overlapping edges a minimum of 12 inches (300 mm) and secure seams with galvanized pins.
- B. Mulch backfilled surfaces of planting areas and other areas indicated. Keep mulch out of plant crowns and off buildings, pavements, utility standards/pedestals, and other structures.
 - Trees and Tree-like Shrubs in Turf Areas: Apply organic mulch ring of 3 inch (75 mm) average thickness, with 36 inch (900 mm) radius around trunks or stems. Do not place mulch within 3 inches (75 mm) of trunks or stems.
 - Organic Mulch in Planting Areas: Apply 3 inch (75 mm) average thickness of organic mulch over whole surface of planting area, and finish level with adjacent finish grades. Do not place mulch within 3 inches (75 mm) of trunks or stems.
 - 3. Mineral Mulch in Planting Areas: Apply 3 inch (75 mm) average thickness of mineral mulch and finish level with adjacent finish grades. Do not place mulch within 3 inches (75 mm) of trunks or stems.

VA Project 438-450 10-01-18 100% Bid Documents

3.9 EDGING INSTALLATION

- A. Uniformly edge beds of plants to provide clear cut division line between planted area and adjacent lawn. Construct bed shapes as indicated on drawings.
- B. Poly Edging: Install poly edging material according to manufacturer's instructions.

3.10 SODDING

- A. Place sod maximum 24 hours after initial harvesting according to TPI GSS, except as modified herein.
- B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.
 - 1. Lay sod across angle of slopes exceeding 1:3.
 - 2. Anchor sod on slopes exceeding 1:6 with biodegradable staples spaced as recommended by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage. No anchors shall be installed within the perimeter wall of the outdoor recreation area.
- C. Finishing: After sodding, blend edges of sodded area smoothly into surrounding area. Eliminate air pockets and provide true and even surface. Trim frayed areas and patch holes and missing areas with sod.
- D. Watering: Saturate sod with fine water spray within two hours of planting. Water at rate sufficient to ensure thorough wetting of soil to minimum 6 inches (150 mm) deep. Prevent run-off, puddling, and wilting. Do not drive watering trucks over turf areas, unless otherwise directed. Prevent watering of other adjacent areas or plant materials.

3.11 SEEDING

- A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph (8 km/h). Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 - 1. Do not use wet seed or seed that is moldy or otherwise damaged.

- Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
- B. Sow seed at total rate of 4 lb/1000 sq. ft. (1.4 to 1.8 kg/92.9 sq. m)
- C. Rake seed lightly into top 1/8 inch (3 mm) of soil, roll lightly, and water with fine spray.
- D. Protect seeded areas with slopes exceeding 1:4 with erosion-control blankets installed and fastened with biodegradable materials according to manufacturer's written instructions.
- E. Protect seeded areas with erosion control mats where shown on Drawings; install and anchor with biodegradable materials according to manufacturer's written instructions.
- F. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre (42 kg/92.9 sq. m) to form a continuous blanket 1-1/2 inches (38 mm) in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment.
 - Anchor straw mulch by crimping into soil with suitable mechanical equipment.
 - Bond straw mulch by spraying with asphalt emulsion at a rate of 10 to 13 gal./1000 sq. ft. (38 to 49 L/92.9 sq. m). Take precautions to prevent damage or staining of structures or other plantings adjacent to mulched areas. Immediately clean damaged or stained areas.
- G. Protect seeded areas from hot, dry weather or drying winds by applying planting soil within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a thickness of 3/16 inch (4.8 mm), and roll surface smooth

3.12 HYDROSEEDING

- A. Mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.
 - 1. Mix slurry with fiber-mulch manufacturer's recommended tackifier.
 - Apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre (15.6-kg/92.9 sq. m) dry weight, and

seed component is deposited at not less than the specified seedsowing rate.

3. Apply slurry uniformly to all areas to be seeded in a two-step process. Apply first slurry coat at a rate so that mulch component is deposited at not less than 500-lb/acre (5.2-kg/92.9 sq. m) dry weight, and seed component is deposited at not less than the specified seed-sowing rate. Apply slurry cover coat of fiber mulch (hydromulching) at a rate of 1000 lb/acre (10.4 kg/92.9 sq. m).

3.13 TURF RENOVATION

- A. General: Restore to original condition existing turf areas damaged during turf installation and construction operations. Keep at least one paved pedestrian access route and one paved vehicular access route to each building clean at all times. Clean other paving when work in adjacent areas is complete.
- B. Renovate existing turf damaged by Contractor's operations, such as storage of materials or equipment and movement of vehicles.
 - 1. Reestablish turf where settlement or washouts occur or where minor regrading is required.
 - 2. Install new planting soil as required.
- C. Remove sod and vegetation from diseased or unsatisfactory turf areas; do not bury in soil.
- D. Remove topsoil containing foreign materials such as oil drippings, fuel spills, stones, gravel, and other construction materials resulting from Contractor's operations, and replace with new planting soil.
- E. Mow, dethatch, core aerate, and rake existing turf.
- F. Remove weeds before seeding. Where weeds are extensive, apply selective herbicides as required. Do not use pre-emergence herbicides.
- G. Remove waste and foreign materials, including weeds, soil cores, grass, vegetation, and turf, and legally dispose of them off Owner's property.
- H. Till stripped, bare, and compacted areas thoroughly to a soil depth of6 inches (150 mm).
- I. Apply soil amendments and initial fertilizers required for establishing new turf and mix thoroughly into top 4 inches (100 mm) of existing soil. Install new planting soil to fill low spots and meet finish grades.
- J. Apply sod as required for new turf.

VA Project 438-450 10-01-18 100% Bid Documents

K. Water newly planted areas and keep moist until new turf is established.

3.14 PLANT MAINTENANCE

- A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring plant saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings. Spray or treat as required to keep trees and shrubs free of insects and disease.
- B. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.
- C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use IPM (Integrated Pest Management) practices whenever possible to minimize the use of pesticides and reduce hazards. Treatments include physical controls such as hosing off foliage, mechanical controls such as traps, and biological control agents.
- D. Planter Beds: Weed, fertilize, and irrigate planter beds and keep pest free, pruned, and mulch levels maintained. Do not permit planter beds encroach into turf areas. Maintain edging breaks between turf areas and planter beds. Fertilize plant materials to promote healthy growth without encouraging excessive top foliar growth. Remove noxious weeds common to area from planter beds by mechanical means.
- E. Shrubs: In addition to planter bed maintenance requirements, selectively prune and shape shrubs for health and safety when following conditions exist:
 - Remove growth in front of windows, over entrance ways or walks, and any growth which will obstruct vision at street intersections or of security personnel.
 - Remove dead, damaged, or diseased branches or limbs where shrub growth obstructs pedestrian walkways, where shrub growth is growing against or over structures, and where shrub growth permits concealment of unauthorized persons.
 - 3. Properly dispose of all pruning debris.
- F. Trees: Adjust stakes, ties, guy supports and turnbuckles and water, fertilize, control pests, mulch, and prune for health and safety and provide fall leaf cleanup.

- Fertilize trees to promote healthy plant growth without encouraging excessive top foliar growth. Inspect and adjust stakes, ties, guy supports and turnbuckles to avoid girdling and promote natural development.
- 2. Selectively prune all trees within project boundaries, regardless of caliper, for safety and health reasons, including, but not limited to, removal of dead and broken branches and correction of structural defects. Prune trees according to their natural growth characteristics leaving trees well shaped and balanced.
- 3. All pruning, including palm tree pruning, must be by or in presence of certified member of International Society of Arboriculture and according to TCIA Z133.1.
- 4. Properly dispose of all pruning debris.

3.15 REMOVAL OF DYING OR DEAD PLANTS

- A. Remove dead and dying plants and provide new plants immediately upon commencement of specified planting season and replace stakes, guys, mulch, and eroded earth mound water basins. No additional correction period will be required for replacement plants beyond original warranty period. Plants will be considered dead or dying as follows:
 - 1. Tree: Main leader died back or minimum 20 percent of crown died.
 - 2. Shrub and Ground Cover: Minimum 20 percent of plant died.
 - Determination: Scrape on maximum 1/16 inch (2 mm) square branch area to determine dying plant material cause and provide recommendations for replacement.

3.16 TURF MAINTENANCE

- A. Mow turf to uniform finished height measured from soil. Perform mowing in manner that prevents scalping, rutting, bruising, uneven and rough cutting. Before mowing, remove and dispose of all rubbish, debris, trash, leaves, rocks, paper, and limbs or branches on turf areas. Sweep or vacuum clean adjacent paved areas.
- B. Apply fertilizer in manner that promotes health, growth, vigor, color and appearance of cultivated turf areas. Determine method of application, fertilizer type and frequencies by results of laboratory soil analysis. Provide organic fertilizer. If organic fertilizer does not produce desired effect, contact Contracting Officer's Representative for approval before applying synthetic fertilizer. Apply

VA Project 438-450 10-01-18 100% Bid Documents

fertilizer by approved methods and according to manufacturer's instructions.

C. Watering: Perform irrigation in manner that promotes health, growth, color, and appearance of cultivated vegetation, complying with Federal, State, and local water agency and authority directives. Prevent overwatering, water run-off, erosion, and ponding due to excessive quantities or rate of application.

3.17 CLEANING

A. Remove and legally dispose of all excess soil and planting debris.

3.18 PROTECTION

- A. Protect plants from traffic and construction operations.
- B. Provide temporary fences or enclosures and signage, at planted areas.
 Maintain fences and enclosures during maintenance period.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 33 10 00 WATER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of underground water distribution for domestic and/or fire supply systems outside the building that are complete and ready for operation. This includes piping, structures, appurtenances and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTH MOVING.
- B. Concrete: Section 03 30 00, CAST IN-PLACE CONCRETE.
- C. Fire Protection System connection
- D. General plumbing
- E. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- F. Metering
- G. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

- A. Water distribution system: Pipelines and appurtenances which are part of the distribution system outside the building for potable water and fire supply.
- B. Water service line: Pipeline from main line to 5 feet outside of building.

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic.
- B. DI: Ductile iron pipe.
- C.WOG: Water, Oil and Gas.

1.5 DELIVERY, STORAGE AND HANDLING

A. Ensure that valves are dry and internally protected against rust and corrosion. Protect valves against damage to threaded ends and flange faces.

33 10 00-1

WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- B. Use a sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- C. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- D. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.
- E. Store plastic piping protected from direct sunlight and support to prevent sagging and bending.
- F. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.

1.6 COORDINATION

A. Coordinate connection to water main with Public Utility company.

B. Coordinate water service lines with building contractor.

1.7 QUALITY ASSURANCE:

A. Products Criteria:

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least three years. Digital electronic devices, software and systems such as controls, instruments or computer work stations shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.

33 10 00-2 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- C. Regulatory requirements:
 - Comply with the rules and regulations of the public utility company having jurisdiction over the connection to public water lines and the extension and/or modifications to public utility systems.
 - 2. Comply with the rules and regulations of the Local Health Department having jurisdiction for potable water-service.
 - 3. Comply with rules and regulations of Local authorities having jurisdiction for fire-suppression water-service piping including materials, hose threads, installation and testing.
- D. Provide certification of factory hydrostatic testing of not less than 500 psi (3.5 MPa) in accordance with AWWA C151. Piping materials shall bear the label, stamp or other markings of the specified testing agency.
- E. Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- F. Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation.
- G. Applicable codes:
 - 1. Plumbing Systems: IPC, International Plumbing Code.
 - Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction and marked for intended use.

33 10 00-3 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

3. Fire-service main products shall be listed in the FM Global "Approval Guide" or Underwriters Laboratories (UL) "Fire Protection Equipment Directory".

1.8 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American National Standards Institute (ANSI):

MSS SP-60-2004Connecting Flange Joint Between Tapping Sleeves and Tapping Valves

MSS SP-108-2002.....Resilient-Seated Cast Iron, Eccentric Plug Valves

MSS SP-123-1998(R2006)..Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube

C. American Society of Mechanical Engineers (ASME):

A112.1.2-2004.....Air Gaps in Plumbing Systems (for Plumbing Fixtures and Water-Connected Receptors))

A112.6.3-2001.....Floor Drains

B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250

B16.18-2001....Cast Copper Alloy Solder Joint Pressure Fittings

B16.22-2001.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings; Classes 150, 300, 600, 900, 1500 and 2500

B31.....Code for Pressure Piping Standards

D. American Society for Testing and Materials (ASTM):

A36/A36M-08.....Carbon Structural Steel

33 10 00-4

WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

A48/A48M-08(2008)....Gray Iron Castings A536-84(2009).....Ductile Iron Castings A674-10.....Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids B61-08.....Steam or Valve Bronze Castings B62-09..... Composition Bronze or Ounce Metal Castings B88/B88M-09.....Seamless Copper Water Tube C651-05.....Disinfecting Water Mains C858-10e1......Underground Precast Utility Structures D1785-06.....Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2239-03.....Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter D2464-06.....Threaded Poly (Vinyl Chloride) PVC Pipe Fittings, Schedule 80 D2466-06.....Poly (Vinyl Chloride) (PVC) Pipe Fittings, Schedule 40 D2467-06.....Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80 D2609-02(2008).....Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe D3350-10a.....Polyethylene Plastics Pipe and Fittings Materials F714-10.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F1267-07.....Metal, Expanded, Steel E. American Water Works Association (AWWA): B300-10.....Hypochlorites 33 10 00-5

WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

B301-10.....Liquid Chlorine C104-08.....Cement-Mortar Lining for Ductile Iron Pipe and Fittings C105/A21.5-10.....Polyethylene Encasement for Ductile Iron Pipe Systems C110-08..... Ductile Iron and Gray-Iron Fittings C111/A21.11-07.....Rubber-Gasket Joints for Ductile Iron Pressure Pipe and Fittings C115/A21.11-11.....Flanged Ductile Iron Pipe with Ductile Iron or Gray-Iron Threaded Flanges C151/A21.51-09.....Ductile Iron Pipe, Centrifugally Cast C153/A21.53-11.....Ductile Iron Compact Fittings for Water Service C502-05.....Dry-Barrel Fire Hydrants C503-05.....Wet-Barrel Fire Hydrants C504-10.....Rubber-Seated Butterfly Valves C508-09.....Swing-Check Valves for Waterworks Service, 2-In. Through 24-In. (50-mm Through 600-mm) NPS C509-09.....Resilient-Seated Gate Valves for Water Supply Service C510-07.....Double Check Valve Backflow Prevention Assembly C511-07.....Reduced-Pressure Principle Backflow Prevention Assembly C512-07.....Air Release, Air/Vacuum and Combination Air Valves C550-05.....Protective Interior Coatings for Valves and Hydrants C600-10..... Installation of Ductile Iron Mains and Their Appurtenances

> 33 10 00-6 WATER UTILITIES

C605-11......Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water C606-11.....Grooved and Shouldered Joints C651-05.....Disinfecting Water Mains C700-09.....Cold-Water Meters, "Displacement Type," Bronze Main Case C800-05.....Underground Service Line Valves and Fittings C900-09.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution C906-07.....Polyethylene (PE) Pressure Pipe and Fittings, 4 In. (100 mm) Through 64 In. (1,600 mm), for Water Distribution and Transmission C907-04.....Injection-Molded PVC Pressure Fittings, 4 Inch through 12 Inch (100 mm through 300 mm), for Water Distribution M23-2nd Ed.....PVC Pipe, Design and Installation M44-2nd Ed.....Distribution Valves: Selection, Installation, Field Testing and Maintenance F. National Fire Protection Association (NFPA): NFPA 24-2010 Ed.....Installation of Private Fire Service Mains and Their Appurtenances NFPA 1963-2009 Ed.....Fire Hose Connections G.NSF International (NSF): NSF/ANSI 14 (2013).....Plastics Piping System Components and Related Materials NSF/ANSI 61-2012.....Drinking Water System Components - Health Effects

> 33 10 00-7 WATER UTILITIES

VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 NSF/ANSI 372-2011.....Drinking Water System Components - Lead Content H. American Welding Society (AWS): A5.8/A5.8M-2004Filler Metals for Brazing and Braze Welding I. American Society of Safety Engineers (ASSE): 1003-2009Water Pressure Reducing Valves 1015-2009......Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies 1020-2004.....Pressure Vacuum Breaker Assembly 1047-2009.....Performance Requirements for Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies 1048-2009..... Performance Requirements for Double Check Detector Fire Protection Backflow Prevention Assemblies 1060-2006..... Performance Requirements for Outdoor Enclosures for Fluid Conveying Components J. Underwriters' Laboratories (UL): 246.....Hydrants for Fire-Protection Service 262.....Gate Valves for Fire-Protection Service 312.....Check Valves for Fire-Protection Service 405..... Fire Department Connection Devices 753.....Alarm Accessories for Automatic Water-Supply Control Valves for Fire Protection Service 789.....Indicator Posts for Fire-Protection Service 1091.....Butterfly Valves for Fire-Protection Service

> 33 10 00-8 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

1285.....Pipe and Couplings, Polyvinyl Chloride (PVC), and Oriented Polyvinyl Chloride (PVCO) for Underground Fire Service

1.9 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will furnish all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF/ANSI 61 or NSF 372.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF/ANSI 14 and shall be NSF listed for the service intended.

2.2 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.3 SAFETY GUARDS

A. All equipment shall have moving parts protected to prevent personal injury. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4 inch (6 mm) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.

33 10 00-9 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

2.4 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 DUCTILE IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi (2400 kPa).
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi (2400 kPa).
 - Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern.
 Gaskets: AWWA C111, rubber.
- C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, round-grooved ends.
 - Grooved-End, Ductile-Iron Pipe Appurtenances: ASTM A47, malleableiron castings or ASTM A536, ductile-iron castings with dimensions matching pipe, 350 psi (3400 kPa).
 - Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductileiron-pipe dimensions, Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
 - 3. Gaskets: AWWA C111.
- D. Flanged Ductile Iron Pipe: AWWA C115/A21.11, with factory applied screwed long hub flanges.
 - 1. Flanges: ASME B16.1 for 250 psi (1725 kPa) pressure ratings, as necessary.

33 10 00-10 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- 2. Wall Sleeve Castings, size and types shown on the drawings, shall be hot dipped galvanized per ASTM A123.
- 3. Pipe and fittings exposed to view in the finished work are to be painted in accordance with Section 09 91 00, PAINTING. Pipe shall be shop primed with one coat of rust inhibitive primer. Final paint color shall match the final wall color.
- E. Cement Mortar Internal Lining: Cement mortar lining and bituminous seal coat as per AWWA C104.

2.6 COPPER TUBE AND FITTINGS

A. Soft Copper Tubing: ASTM B88, Type K water tube, annealed temper.

- B. Hard Copper Tubing: ASTM B88, Type K water tube, drawn temper.
- C. Fittings: ASME B16.18, cast copper alloy, solder joint pressure fittings.
- D. Copper Unions: ANSI MSS SP-123, cast copper alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces and solder-joint or threaded ends.

2.7 VALVES

- A.Gate Valves: AWWA C509, Non-rising Stem, Resilient Seat, 200 psi (1380 kPa).
 - Valves 3 inches (75 mm) and larger: Resilient seat valve with grayor ductile iron body and bonnet; cast iron or bronze double-disc gate; bronze gate rings; non-rising bronze stem and stem nut.
 - 2. Interior and exterior coating: AWWA C550, thermo-setting or fusion epoxy.
 - Underground valve nut: Furnish valves with 2 inch (50 mm) nut for socket wrench operation.
 - 4. Aboveground and pit operation: Furnish valves with hand wheels.
 - 5. End connections shall be mechanical joint match main line pipe.
- B.Gate Valve Accessories and Specialties
 - 1. Tapping-Sleeve Assembly: ANSI MSS SP-60; sleeve and valve to be compatible with the drilling matching.
 - a. Tapping Sleeve: Ductile Iron, two-piece bolted sleeve. Sleeve to match the size and type of pipe material being tapped.

33 10 00-11 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- b. Valve shall include one raised face flange mating tapping-sleeve flange.
- 2. Valve Boxes: AWWA M44 with top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel.
- 3. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut. (Provide two wrenches for Project.)
- 4. Indicator Posts: UL 789, FMG approved, vertical-type, cast iron body with operating wrench, extension rod, and adjustable cast iron barrel of length required for depth of burial of valve.
- C. Swing Check Valves:
 - Valves smaller than 2 inches (25 mm): ASTM B61, resilient seat, bronze body and bonnet, pressure rating of 200 psi (1380 kPa). Ends to match main line piping.
 - 2. Valves 2 inches (25 mm) or larger: AWWA 508, resilient seat valve with iron body and bonnet, pressure rating of 200 psi (1380 kPa).
 - 3. Coating: AWWA C550, fusion epoxy coated.
- D. Detector Check Valves
 - Galvanized cast iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 - a. Standards: UL 312 and FMG approved, 175 psi (1207 kPa).
 - b. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
- E. Corporation Valves and Curb Valves
 - 1. Service-Saddle Assemblies: AWWA C800.
 - a. Service Saddle: Copper alloy with seal and threaded outlet for corporation valve.

33 10 00-12 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- b. Corporation Valve: Bronze body and ground-key plug, with threaded inlet and outlet matching service piping material.
- c. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.
- 2. Curb Valves: AWWA C800, bronze body, ground-key plug or ball, wide tee head, with inlet and outlet matching service piping material, minimum pressure of 200 psi (1375 kPa).
- 3. Service Boxes for Curb Valves: AWWA M44, cast iron telescoping top section; plug shall include lettering "WATER"; bottom section with base that fits over curb valve.
- 4. Shutoff Rods: Steel, tee-handle with one pointed end. Stem length shall extend 2 feet (600 mm) above top of valve box for operation of deepest buried valve, with slotted end matching curb valve.
- F. Post-Indicator: NFPA 24 and be fully compatible with the valve and supervisory switches.
- G. Water Meter: See plumbing.
- H. Backflow Preventer
 - 1. Backflow Preventer shall not be located in any area containing fumes that are toxic, poisonous or corrosive.
 - Direct connections between potable water piping and sewer connected wastes shall not exist under any condition with or without backflow protection.
 - 3. Backflow Preventer shall be accessed and have clearances for the required testing, maintenance and repair. Access and clearances shall maintain a minimum of 1 foot (305 mm) between the lowest portion of the assembly and grace, floor or platform. Installations elevated more than 5 feet (1524 mm) above the floor or grade shall be provided with a permanent platform capable of supporting a tester or maintenance person.
- I. Backflow Preventer Test Kits

33 10 00-13 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

1. Provide factory calibrated test kit with gauges, fittings, hoses and carrying case with test-procedure instructions.

2.8 FIRE HYDRANTS

- A. All hydrants shall have removable interiors capable of replacement without digging up the hydrant and be packable under pressure. Threaded joints or spindles shall be bronze and upper and lower barrels shall be of equal diameter. Upper barrel shall be of sufficient length to permit setting hydrant with barrel flange not more than 4 inches (100 mm) above finished grade. All fire hydrants shall have 6 inch (150 mm) bottom connection. Provide (2) hydrant wrenches not less than 14 inches (350 mm) long. Pressure Rating: 150 psi (1035 kPa) minimum. Hydrant valve shall open by turning operating nut to left or counterclockwise. Exterior finish shall be red alkyd-gloss enamel paint, unless otherwise indicated. Outlet threads shall meet NFPA 1963, with external hose thread used by local fire department. Include cast iron caps with steel chains and Pentagon, 1-1/2 inch (38 mm) point to flat operating and cap nuts.
- B. Dry-Barrel Fire Hydrants:
 - 1. AWWA C502, freestanding, one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, 5-1/4 inch (133 mm) main valve, drain valve, and NPS 6 (DN 150) mechanical-joint inlet; interior coating according to AWWA C550; cast iron body, compression-type valve opening against pressure and closing.
 - 2. UL 246, freestanding, one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, 5-1/4 inch (133 mm) main valve, drain valve, and NPS 6 (DN 150) mechanical-joint inlet; cast iron body, compression-type valve opening against pressure and closing.

2.9 FIRE DEPARTMENT CONNECTIONS

A. Fire system base water supply must provide a minimum of 1000 gpm (3785 l/m) at 150 psi (1035 kPa) and 700 gpm (2650 l/m) at 200 psi (1380 kPa) at the Fire Department connection. For hydraulic calculations, the calculated demand shall not fall less than 10 percent below the water supply curve.

33 10 00-14 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

B. Fire Department connections: UL 405, NFPA 1963, freestanding, cast bronze body, thread inlets, and matching local fire department hose threads, threaded bottom outlet, lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18 inch (460 mm) high brass sleeve; round escutcheon plate, meeting the requirements of UL 405.

2.10 ALARM DEVICES

- A. Alarm Devices-General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.
- B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psi (1725-kPa) working pressure; designed for horizontal or vertical installation; 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
- C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.
- D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

2.11 DISINFECTION CHLORINE

A. Liquid chlorine: AWWA B301.

- B. Sodium Hypochlorite: AWWA B300 with 5 percent to 15 percent available chlorine.
- C.Calcium hypochlorite: AWWA B300 supplied in granular form of 5 g. tablets, and shall contain 65 percent chlorine by weight.

2.12 WARNING TAPE

A. Warning tape shall be standard, 4 mil. Polyethylene, 3 inch (76 mm) wide tape, detectable type, blue with black letters and imprinted with "CAUTION BURIED WATER LINE BELOW".

33 10 00-15 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

B. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG. Color BLUE for water and GREEN for sanitary.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Use pipe, fittings, and joining methods for piping systems according to the following applications.
 - Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
 - 2. Do not use flanges or unions for underground piping.
 - 3. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
- B. Underground water-service piping NPS 2 to NPS 8 shall be any of the following:
 - Soft copper tube with, solder-joint fittings; and pressure-sealed joints.
- C. Underground water-service piping NPS 2 to NPS 8 (DN 20 to DN 200) shall be any of the following:
 - Soft copper tube with wrought-copper, solder-joint fittings; and brazed joints.
 - Ductile iron, push-on-joint pipe; ductile iron, mechanical-joint fittings; and mechanical ductile iron-pipe appurtenances; and joints.
- D. Underground Fire-Service-Main Piping NPS 4 to NPS 12 (DN 100 to DN 300) shall be the following:
 - Ductile iron, push-on-joint pipe; ductile iron, mechanical-joint fittings; ductile iron-pipe appurtenances; and joints.

33 10 00-16 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

3.2 VALVE APPLICATIONS

- A. Use mechanical-joint-end valves for NPS 3 (DN 80) and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, non-rising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 (DN 50) and smaller installation.
- B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - Underground Valves, NPS 3 (DN 80) and Larger: AWWA, cast iron, nonrising-stem, high-pressure, resilient seated gate valves with valve box.
 - Underground Valves, NPS 4 (DN 100) and Larger, for Indicator Posts: UL/FMG, cast iron, non-rising-stem gate valves with indicator post.
 - Use the following for valves in vaults and aboveground: No vaults.
 a.

3.3 DUCTILE IRON PIPE

- A. Install Ductile Iron, water-service piping according to AWWA C600 and AWWA M41-3rd Edition.
 - 1. Install PE corrosion-protection encasement according to ASTM A674 or AWWA C105/A21.5.
- B. Pipe shall be sound and clean before laying. When laying is not in progress, the open ends of the pipe shall be closed by watertight plug or other approved means.
- C. When cutting pipe is required, the cutting shall be done by machine, leaving a smooth cut at right angles to the axis of the pipe. Bevel cut ends of pipe to be used with push-on bell to conform to the manufactured spigot end. Cement lining shall be undamaged.
- D. Push on joints shall be made in strict accordance with the manufacturer's instruction. Pipe shall be laid with bell ends looking ahead.

3.4 COPPER PIPE

- A. Copper piping shall be installed in accordance with the Copper Development Association's Copper Tube Handbook and manufacturer's recommendations.
- B.Copper piping shall be bedded in 6 inches (150 mm) of sand.

33 10 00-17

WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

3.5 VALVE INSTALLATION

- A. AWWA Valves: Install each underground valve with stem pointing up and with valve box.
- B. UL/FMG, Valves: Install each underground valve and valves in vaults with stem pointing up and with vertical cast iron indicator post.
- C. MSS Valves: Install as component of connected piping system.
- D. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- E. Raise or lower existing valve and curb stop boxes and fire hydrants to finish grade in areas being graded.

3.6 WATER METER INSTALLATION

A. Install water meters, piping, and specialties according to utility company's written instructions.

3.7 VACUUM BREAKER ASSEMBLY INSTALLATION

- A. Install pressure vacuum breaker assemblies of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install pressure vacuum breaker assemblies in vault or other space subject to flooding.

3.8 BACKFLOW PREVENTER INSTALLATION

- A. Install backflow Preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install backflow Preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow Preventers.

3.9 FIRE DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire department connection to mains.

3.10 FIRE HYDRANT INSTALLATION

A. Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.

> 33 10 00-18 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

B. Install Wet-Barrel Fire Hydrants with valve below frost line. Provide for drainage.

3.11 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Install water service lines to a point of connection within approximately 5 feet (1500 mm) outside of building(s) to which service is to be connected and make connections thereto. If building services have not been installed provide temporary caps and mark for future connection.

3.12 FIELD QUALITY CONTROL

- A. Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- C. Perform hydrostatic tests at not less than one-and-one-half times working pressure for two hours.
 - 1. Increase pressure in 50-psi (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psi (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- D. Prepare reports of testing activities.

3.13 IDENTIFICATION

A. Install continuous underground warning tape 12 inches (300 mm) directly over piping.

3.14 CLEANING

- A. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
- B. Use purging and disinfecting procedure prescribed by local utility provider or other authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:

33 10 00-19 WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- 1. Fill the water system with a water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
- 2. Drain the system of the previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow system to stand for 3 hours.
- 3. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
- Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- C. Prepare reports of purging and disinfecting activities.

---- E N D ----

33 10 00-20

WATER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 33 30 00

SANITARY SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of outside, underground sanitary sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- C. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- D. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

A. PVC: Polyvinyl chloride plastic

1.5 DELIVERY, STORAGE AND HANDLING

- A. Store plastic piping protected from direct sunlight and support to prevent sagging and bending. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.
- B. Handle manholes according to manufacturer's written rigging instructions.

1.6 COORDINATION

A. Coordinate connection to sanitary sewer main with Public Utility company. (Approval from public utility has been obtained indicating that the downstream sanitary systems have sufficient capacity to handle the sanitary discharge from the facility.)

VA Project 438-450 10-01-18 100% Bid Documents

- B. Contractor to obtain approval from the Public Agency that the existing sanitary sewer systems have the capacity to handle the discharge from the facility.
- C. Coordinate exterior utility lines and connections to building lines up to 5 feet of building wall.
- D. Coordinate connection to public sewer system with Public Utility Company.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Utility having jurisdiction over the connection to Public Sanitary Sewer lines and the extension, and/or modifications to Public Utility Systems.

1.8 SUBMITTALS:

- A. Manufacturers' Literature and Data shall be submitted for the following as one package:
 - 1. Pipe, Fittings, and, Appurtenances.
 - 2. Jointing Material.
 - 3. Manhole and Structure Material.
 - 4. Frames and Covers.
 - 5. Steps and Ladders.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A74-09.....Cast Iron Soil Pipe and Fittings

33 30 00-2 SANITARY SEWER UTILITIES VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete A615/A615M-09b.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement A746-99.....Ductile-Iron Gravity Sewer Pipe C478-09.....Precast Reinforced Concrete Manhole Sections C857-11..... Minimum Structural Design Loading for Underground Precast Concrete Utility Structures C890-11..... Minimum Structural Design Loading for Monolithic or Sectional Precast Concrete Water and Wastewater Structures C913-08..... Precast Concrete Water and Wastewater Structures C923-08.....Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals C924-02(2009).....Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method C990-09.....Joints for Concrete Pipe, Manholes, and precast Box Sections using Preformed Flexible Joint Sealants C1173-10.....Flexible Transition Couplings for Underground Piping Systems C1440-08..... Thermoplastic Elastomeric (TPE) Gasket Materials for Drain, Waste and Vent (DWV), Sewer, Sanitary and Storm Plumbing Systems C1460-08.....Shielded Transition Couplings for Use With Dissimilar DWV Pipe and Fittings Above Ground

> 33 30 00-3 SANITARY SEWER UTILITIES

VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 C1461-08.....Mechanical Couplings Using Thermoplastic Elastomeric (TPE) Gaskets for Joining Drain, Waste and Vent (DWV), Sewer, Sanitary and Storm Plumbing systems for Above and below Ground Use D2321-11.....Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D3034-08.....Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings F477-10.....Elastomeric Seals (Gaskets) for Joining Plastic Pipe F679-08.....Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings F891-10.....Coextruded Poly(vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F949-10.....Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11.....Standard Test Method for Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08.....Construction Procedures for Buried Plastic Pipe C. American Water Works Association (AWWA): C105/A21.5-10.....Polyethylene Encasement for Ductile-Iron Pipe Systems C110-08..... Ductile-Iron and Gray-Iron Fittings C111/A21.11-06.....Rubber Gasket Joints for Ductile Iron Pressure Pipe and Fittings C151/A21.51-09.....Ductile Iron Pipe, Centrifugally Cast C153/A21.53-06.....Ductile Iron Compact Fittings for Water Service C219-11.....Bolted, Sleeve-Type Couplings for Plain-End Pipe 33 30 00-4

VA Project 438-450 10-01-18 100% Bid Documents

C512-07.....Air Release, Air/Vacuum and Combination Air Valves for Water Works Service

C600-10.....Installation of Ductile-Iron Mains and Their Appurtenances

C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

D. American Society of Mechanical Engineers:

A112.14.1-2003.....Backwater Valves

A112.36.2M-1991....Cleanouts

1.10 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will provide all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. All pipe and fittings used in the construction of force mains shall be rated to meet the system maximum operating pressure with a minimum of 150 psi (1035 kPa).
- C. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 PVC, GRAVITY SEWER PIPE AND FITTINGS

A. PVC Gravity Sewer Piping:

1. Pipe and Fittings shall conform to ASTM D3034 SDR 35.

33 30 00-5

VA Project 438-450 10-01-18 100% Bid Documents

2. Gaskets: ASTM F477.

2.3 NONPRESSURE-TYPE TRANSITION COUPLINGS

- A. Comply with ASTM C1173, elastomeric, sleeve type, reducing or transition coupling, for joining underground nonpressure piping. Include ends to match same sizes of main line piping and install corrosion-resistant metal tension bands and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Plastic Pipes: ASTM F477, elastomeric seal.
 - 2. For Dissimilar Pipes: PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings:
 - Couplings shall be elastomeric sleeve with stainless steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, Flexible Couplings:
 - Couplings shall meet ASTM C1460 with elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield with corrosionresistant-metal tension band and tightening mechanism on each end.
- E. Ring-Type, Flexible Couplings:
 - Couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger mainline pipe and for spigot of smaller main line pipe to fit inside ring.
- F. Nonpressure-Type, Rigid Couplings:
 - Coupling shall be ASTM C1461, sleeve-type, transition-type mechanical coupling, molded from ASTM C1440, TPE material; with corrosionresistant-metal tension band and tightening mechanism on each end.

2.4 CLEANOUTS

A. Cast-Iron Cleanouts:

- Cleanouts shall be as per ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
- Top-Loading Classification(s): Valve loadings shall be designed for Medium Duty .

33 30 00-6 SANITARY SEWER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- 3. Cleanout Riser: Sewer pipe fitting on main line pipe and riser shall be as per ASTM A74, service class.
- B. PVC Cleanouts:
 - PVC body with PVC threaded plug: Cleanout shall be as per ASTM D3034.
 PVC sewer pipe fitting and riser to cleanout.
 - Cleanout Riser: Sewer pipe fitting on main line sewer and riser shall match main line piping.

2.5 MANHOLES

- A. Standard precast concrete manholes and vaults shall be constructed of precast concrete segmental blocks, precast reinforced concrete rings, precast reinforced sections or cast-in-place concrete.
 - Precast Concrete Manholes: Material shall be as per ASTM C478, precast, reinforced concrete, of depth indicated, with sealed joints.
 - 2. Concrete Base: Concrete for base of manhole shall have a minimum compressive strength of 5000 psi (35 MPa) at 28 days. Thickness to be 8 inches (200 mm), minimum.
 - 3. Riser Section: 4 inch (100 mm) minimum thickness, of lengths to provide the total depth of manhole.
 - 4. Top Section: Eccentric-cone type unless otherwise indicated. Top section to match adjustment ring configurations.
 - 5. Joint Sealant: ASTM C990.
 - 6. Resilient Pipe Connectors: ASTM C923.
 - 7. Steps: If over 60 inches (1500 mm) in depth, individual FRP steps ASTM A615 deformed, 1/2 inch (13 mm) steel reinforcing rods encased in precast concrete sections, with 16 inch (400 mm) minimum width, 12 to 16 inches (300 to 400 mm) center-to-center from top to bottom.
 - 8. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch (150 to 225 mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Concrete Manholes:

- Description: ASTM C913; designed according to ASTM C890 for AASHTO HS20-44, heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
- 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.

33 30 00-7

VA Project 438-450 10-01-18 100% Bid Documents

3. Joint Sealant: ASTM C990, bitumen or butyl rubber.

- Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
- 5. Steps: If over 60 inches (1500 mm) in depth, individual FRP steps individual FRP steps, or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in // Insert material //; width 16 inches (400 mm) minimum, 12 to 16 inches (300 to 400 mm) center-to-center from top to bottom.
- 6. Adjusting Rings: HDPE rings; 6 to 9 inch (150 to 225 mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Manhole Base Channels: Manhole channels shall be main line pipe material. Lay main pipe through manhole and cut top of pipe out to be three-fourths of pipe diameter. Slope through manhole to match run slopes of the main pipe.

2.6 CONCRETE

- A. Cast-in-place concrete shall be 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
- B. Reinforcement
 - 1. Reinforcing fabric shall be ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing bars shall be ASTM A615, Grade 60 (420 MPa) deformed steel.
- C. Benches shall be concrete, sloped to drain into the channel. Provide 6 inches (150 mm) from the cut section of top of pipe to edge of manhole.
- D. Ballast and Pipe Supports shall be Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.

2.7 WARNING TAPE

A. Warning tape shall be standard, 4 mil (0.1 mm) polyethylene 3 inch (76 mm) wide tape detectable type, green with black letters and imprinted with "CAUTION BURIED SEWER LINE BELOW".

33 30 00-8 SANITARY SEWER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans and details indicate the general location and arrangement of underground sanitary sewer piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at the low point, true to grades and alignment indicated on the drawings, with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
- D. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
- E. Inspect pipes and fittings for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
- F. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
- G. Do not walk on pipe in trenches until covered by layers of bedding or backfill material to a depth of 12 inches (300 mm) over the crown of the pipe.
- H. Warning tape shall be continuously placed 12 inches (300 mm) above sewer pipe
- I. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- J. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- K. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process or microtunneling.

33 30 00-9 SANITARY SEWER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- L. Install gravity-flow, non-pressure, drainage piping according to the following:
 - Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 - Install piping with 36 inch (915 mm) minimum cover or as shown on Drawings.
 - 3. Install ductile iron, gravity sewer piping according to AWWA C600.
 - 4. Install PVC cellular-core, PVC corrugated sewer, PSM sewer and PVC gravity sewer according to ASTM D2321 and ASTM F1668.
- M. Install force-main, pressure piping according to the following:
 - Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fittings, or cast-in-place-concrete supports or anchors. Pressure (force) mains shall have the bells facing the direction of flow.
 - 2. Sections of piping listed on the drawings shall be fully restrained. For devices with twist off nuts, the twist off nuts shall be placed on top of the fitting for the Resident Engineer's inspection. The Contractor shall torque test all bolts, set screws, identified by the Resident Engineer.
 - 3. Thrust blocks shall not be permitted.
- N. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.
- O. Gravity Flow Lines with Secondary Containment (Encasement Pipe):
 - Install per manufacturer's recommendations. Install all pipe centering devices to maintain an interstitial space below the invert of the carrier pipe. Both the carrier and containment pipe shall be tested for leaks.

3.2 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, non-pressure, drainage piping according to the following:
 - Join ductile iron, gravity sewer piping according to AWWA C600 for push-on joints.

33 30 00-10

VA Project 438-450 10-01-18 100% Bid Documents

- 2. Join PVC piping according to ASTM D2321.
- 3. Join dissimilar pipe materials with nonpressure-type, flexible couplings.
- B. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use non-pressure flexible couplings where required to join gravityflow, non-pressure sewer piping unless otherwise indicated.
 - a. Shielded Flexible couplings for pipes of same or slightly different OD.
 - b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.3 SEWER AND MANHOLE SUPPORTS, CONCRETE CRADLES WITHIN VAULTS

A. Install reinforced concrete as detailed on the drawings. The concrete shall not restrict access for future maintenance of the joints within the piping system.

3.4 BUILDING SERVICE LINES

A. Install sanitary sewer service lines to point of connection within approximately 5 feet (1500 mm) outside of building(s) where service is required and make connections. Coordinate the invert and location of the service line with the Contractor installing the building lines.

3.5 MANHOLE INSTALLATION

A. Install manholes complete with appurtenances and accessories indicated.

- Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch (15 mm) or cement mortar applied with a trowel and finished to an even glazed surface.
- 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top, shall be sealed as per manufacturer's recommendations. Adjust the length of the rings so that the top section will be at the required elevation. Cutting the top section is not acceptable.

33 30 00-11

VA Project 438-450 10-01-18 100% Bid Documents

3. Concrete manhole risers and tops: Install as specified.

- B. Designed Concrete Structures:
 - Concrete structures shall be installed in accordance with Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. Do not build structures when air temperature is 32 deg F (0 deg C), or below.
- D. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
- E. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- F. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. In unpaved areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade.
- G. Install manhole frames and covers on a mortar bed, such that frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. Install an 8 inches (200 mm) thick, by 12 inches (300 mm) wide concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.6 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Cleanouts should be 6 inches (150 mm) in diameter and consist of a ductile iron 45 degree fitting on end of run, or combination Y fitting and 1/8 bend in the run with ductile iron pipe extension, water tight plug or cap and cast frame and cover flush with finished grade. Install piping so cleanouts open in direction of flow in sewer pipe.
 - Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification cleanouts in paved foottraffic areas.
 - 3. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.

33 30 00-12 SANITARY SEWER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- B. Set cleanout frames and covers in earth in cast-in-place-concrete, 18 by 18 by 12 inches (450 by 450 by 300 mm) 1 inch (25 mm) above surrounding grade.
- C. Where cleanout is in force main, provide a blind flange top connection. The center of the flange shall be equipped with a 2 inches (50 mm) base valve to allow the pressure in the line to be relieved prior to removal of the blind flange. Frames and covers for pressure (force) mains shall be 24 inches (600 mm) in diameter.
- D. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
- E. The top of the cleanout assembly shall be 2 inches (50 mm) below the bottom of the cover to prevent loads being transferred from the frame and cover to the piping.

3.7 CONNECTIONS

- A. Make connections to existing piping and underground manholes by coring and installing the pipe at the design invert. Install an elastomeric gasket around the pipe, and grout the interstitial space between the pipe and the core.
- B. Connection to an existing manhole: The bench of the manhole shall be cleaned and reshaped to provide a smooth flowline for all new pipes connected to the manhole.
- C. Use commercially manufactured wye fittings for piping branch connections. Encase entire wye fitting plus 6-inch (150-mm) overlap with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 - Make branch connections from the side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500), by removing a section of the existing pipe.
 - 2. Make branch connections from the side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes by cutting an opening into existing unit large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in concrete to provide additional support of collar from connection to undisturbed ground. 33 30 00-13

VA Project 438-450 10-01-18 100% Bid Documents

3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.8 REGRADING

- A. Raise or lower existing manholes and structures frames and covers, cleanout frames and covers and valve boxes in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Adjust the elevation of the cleanout pipe riser, and reinstall the cap or plug. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.9 CLOSING ABANDONED SANITARY SEWER SYSTEMS

- A. Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed.
 - 1. Piping under and within 5 feet (1500 mm) of building areas shall be completely removed.
 - 2. Piping outside of building areas shall be completely removed to next structure. Cap pipe at structure. No sanitary sewer pipes shall be abandoned in place. .
- B. Excavate around manholes as required and use either procedure below:
 - Manholes and structures outside of building areas: Remove frame and cover, cut and remove the top of an elevation of 2 feet (600 mm) below finished grade. Fill the remaining portion with compacted gravel or crushed rock or concrete.
 - 2. Manholes and structures with building areas: Remove frame and cover and remove the entire structure and the base.

33 30 00-14 SANITARY SEWER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

- C. Backfill to grade according to Division 31 Section 31 20 11, EARTH MOVING.
- D. When the limit of the abandonment terminates in an existing manhole to remain, the flow line in the bench of the manhole to the abandoned line shall be filled with concrete and shaped to maintain the flowline of the lines to remain.

3.10 PIPE SEPARATION

- A. Horizontal Separation Water Mains and Sewers:
 - Existing and proposed water mains shall be at least 10 feet (3 m) horizontally from any proposed gravity flow and pressure (force main) sanitary sewer or sewer service connection.
 - 2. Gravity flow mains and pressure (force) mains may be located closer than 10 feet (3 m) but not closer than 6 feet (1.8 m) to a water main when:
 - a.Local conditions prevent a lateral separation of 10 feet (3 m);
 and
 - b. The water main invert is at least 18 inches (450 mm) above the crown of the gravity sewer or 24 inches (600 mm) above the crown of the pressure (force) main; and the water main is in a separate trench separated by undisturbed earth.
 - 3. When it is impossible to meet (1) or (2) above, both the water main and sanitary sewer main shall be constructed of push-on or mechanical joint ductile iron pipe.

B. Vertical Separation - Water Mains and Sewers at Crossings:

- Water mains shall be separated from sewer mains so that the invert of the water main is a minimum of 24 inches (600 mm) above the crown of gravity flow sewer or 48 inches (1200 mm) above the crown of pressure (force) mains. The vertical separation shall be maintained within 10 feet (3 m) horizontally of the sewer and water crossing. When these vertical separations are met, no additional protection is required.
- In no case shall pressure (force) sanitary main cross above, or within 24 inches (600 mm) of water lines.
- 3. When it is impossible to meet (1) above, the gravity flow sewer may be installed 18 inches (450 mm) above or 12 inches (300 mm) below the water main, provided that both the water main and sewer shall be constructed of push-on or mechanical ductile pipe. Pressure (Force) 33 30 00-15

VA Project 438-450 10-01-18 100% Bid Documents

sewers may be installed 24 inches (600 mm) below the water line provided both the water line and sewer line are constructed of ductile iron pipe.

4. The required vertical separation between the sewer and the water main shall extend on each side of the crossing until the perpendicular distance from the water main to the sewer line is at least 10 feet (3 m).

3.11 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edges of underground manholes.

3.12 FIELD QUALITY CONTROL

- A. All systems shall be inspected and obtain the Resident Engineer's approval. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- B. To inspect, thoroughly flush out the lines and manholes before inspection. Lamp test between structures and show full bore indicating sewer is true to line and grade. Lips at joints on the inside of gravity sewer lines are not acceptable.
 - 1. Submit separate report for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Re-inspect and repeat procedure until results are satisfactory.
- C. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - 1. Test plastic gravity sewer piping according to ASTM F1417.
 - 2. Test concrete gravity sewer piping according to ASTM C924.

33 30 00-16

VA Project 438-450 10-01-18 100% Bid Documents

- 3. Clean and isolate the section of sewer line to be tested. Plug or cap the ends of all branches, laterals, tees, wyes, and stubs to be included in the test to prevent air leakage. The line shall be pressurized to 4 psi (28 kPa) and allowed to stabilize. After pressure stabilization, the pressure shall be dropped to 3.5 psi (24 kPa) greater than the average back-pressure of any groundwater above the sewer.
- 4. For force mains, perform testing after supports and anchors are installed. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psi (1035 kPa).
- 5. Testing of Fiberglass Sewage Holding Tanks shall show no leakage during a 5 psi (35 kPa) air pressure test with 5:1 safety factor.
- 6. Testing of Concrete Wet Well shall show no leakage with the wet well completely filled with water for a duration of 4 hours.

3.13 CLEANING

A. Clean dirt and superfluous material from interior of piping.

--- E N D ---

33 30 00-17 SANITARY SEWER UTILITIES

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 33 40 00

STORM SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Fabrication of Steel Ladders: Section 05 50 00, METAL FABRICATIONS.
- E. Materials and Testing Report Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- F. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

- A. HDPE: High-density polyethylene
- B. PE: Polyethylene

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Handle manholes, catch basins and stormwater inlets according to manufacturer's written rigging instructions.

1.6 COORDINATION

- A. Coordinate connection to storm sewer main with the Public Agency providing storm sewer off-site drainage.
- B. Coordinate exterior utility lines and connections to building services up to the actual extent of building wall.

1.7 QUALITY ASSURANCE:

A. Products Criteria:

33 40 00-1 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

1.8 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185/A185M-07.....Steel Welded Wire Reinforcement, Plain, for Concrete

A242/A242M-04(2009).....High-Strength Low-Alloy Structural Steel

A536-84(2009).....Ductile Iron Castings

A615/A615M-09b.....Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

A760/A760M-10.....Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains

A798/A798M-07.....Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications

A849-10.....Post-Applied Coatings, Paving, and Linings for Corrugated Steel Sewer and Drainage Pipe

A929/A929M-01(2007)....Steel Sheet, Metallic-Coated by the Hot-Dip Process for Corrugated Steel Pipe

B745/B745M-97(2005).....Corrugated Aluminum Pipe for Sewers and Drains

33 40 00-2 STORM SEWER VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 B788/B788M-09.....Installing Factory-Made Corrugated Aluminum Culverts and Storm Sewer Pipe C14-07..... Non-reinforced Concrete Sewer, Storm Drain, and Culvert Pipe C33/C33M-08.....Concrete Aggregates C76-11.....Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe C139-10.....Concrete Masonry Units for Construction of Catch Basins and Manholes C150/C150M-11.....Portland Cement C443-10.....Joints for Concrete Pipe and Manholes, Using Rubber Gaskets C478-09.....Precast Reinforced Concrete Manhole Sections C506-10b.....Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe C507-10b.....Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe C655-09......Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe C857-07......Minimum Structural Design Loading for Underground Precast Concrete Utility Structures C891-09..... Installation of Underground Precast Concrete Utility Structures C913-08..... Precast Concrete Water and Wastewater Structures C923-08.....Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals C924-02(2009).....Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method

> 33 40 00-3 STORM SEWER

VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 C990-09.....Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants C1103-03(2009).....Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines C1173-08.....Flexible Transition Couplings for Underground Piping Systems C1433-10.....Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers C1479-10.....Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations D448-08.....Sizes of Aggregate for Road and Bridge Construction D698-07e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)) D1056-07.....Flexible Cellular Materials-Sponge or Expanded Rubber D1785-06.....Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2321-11.....Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2751-05......Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings D2774-08......Underground Installation of Thermoplastic Pressure Piping D3034-08.....Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings D3350-10.....Polyethylene Plastics Pipe and Fittings Materials

> 33 40 00-4 STORM SEWER

VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 D3753-05e1.....Glass-Fiber-Reinforced Polyester Manholes and Wetwells D4101-11.....Polypropylene Injection and Extrusion Materials D5926-09.....Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems F477-10.....Elastomeric Seals (Gaskets) for Joining Plastic Pipe F679-08.....Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings F714-10.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F794-03(2009).....Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter F891-10..... Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F894-07.....Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10.....Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11.....Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08.....Construction Procedures for Buried Plastic Pipe C. American Association of State Highway and Transportation Officials (AASHTO): M190-04.....Bituminous-Coated Corrugated Metal Culvert Pipe and Pipe Arches M198-10.....Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants

> 33 40 00-5 STORM SEWER

VAMC Sioux Falls, SD VA Project 438-450 Construct Outpatient Mental Health 10-01-18 2501 West 22nd St. 100% Bid Documents Sioux Falls, SD 57105 M252-09.....Corrugated Polyethylene Drainage Pipe M294-10.....Corrugated Polyethylene Pipe, 12 to 60 In. (300 to 1500 mm) Diameter D. American Water Works Association (AWWA): C105/A21.5-10.....Polyethylene Encasement for Ductile iron Pipe Systems C110-08..... Ductile-Iron and Gray-Iron Fittings C219-11.....Bolted, Sleeve-Type Couplings for Plain-End Pipe C600-10..... Installation of Ductile iron Mains and Their Appurtenances C900-07.....Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution M23-2nd ed.....PVC Pipe "Design And Installation" E. American Society of Mechanical Engineers (ASME): A112.6.3-2001.....Floor and Trench Drains A112.14.1-2003.....Backwater Valves A112.36.2M-1991....Cleanouts F. American Concrete Institute (ACI): 318-05..... And Commentary and Commentary 350/350M-06.....Environmental Engineering Concrete Structures and Commentary G. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control 1.10 WARRANTY The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written 33 40 00-6 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 PE PIPE AND FITTINGS

- A. Corrugated PE drainage pipe and fittings, NPS 3 to NPS 10 (DN 80 to DN 250); ASTM F714, SDR 21 with smooth waterway for coupling joints.
- B. Corrugated PE pipe and fittings, NPS 12 to NPS 60 (DN 300 to DN 1500); ASTM F714, SDR 21 for pipes 3 to 24 inches (300 to 600 mm) with smooth waterway for coupling joints. Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.
 - Water tight joints shall be made using a PVC or PE coupling and rubber gaskets as recommended by the pipe manufacturer. Rubber gaskets shall conform to ASTM F477. Soil tight joints shall conform to requirements in AASHTO HB-17, Division II, for soil tightness and shall be as recommended by the manufacturer.
- C. Profile Wall PE Pipe: Pipe shall comply with ASTM F894, Class 160.

 Profile Wall PE Plastic Pipe Joints: Joints shall be as per ASTM F894, gasket type with integral bell.

2.3 EXPANSION JOINTS AND DEFLECTION FITTINGS

2.4 MANHOLES AND CATCH BASINS

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C478 (ASTM C478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.

33 40 00-7 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

- 4. Base Section: 6 inch (150 mm) minimum thickness for floor slab and 4inch (102 mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
- 5. Riser Sections: 4 inch (102 mm) minimum thickness, and lengths to provide depth indicated.
- 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slabtop type is indicated, and top of cone of size that matches grade rings.
- 7. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
- Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
- 9. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps; FRP ladder; or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.
- 10. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Precast Concrete Manholes:
 - Description: ASTM C913; designed for A-16 (AASHTO HS20-44), heavytraffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
 - 4. Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
 - 5. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps; FRP ladder; or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.
 - 6. Adjusting Rings: HDPE rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height

33 40 00-8 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

as required to adjust manhole frame and cover to indicated elevation and slope.

Manhole Frames and Covers:

- 7. Description: Ferrous; 24 inch (610 mm) ID by 7 to 9 inch (175 to 225 mm) riser with 4 inch (102 mm) minimum width flange and 26-inch (600 mm) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
- 8. Material: ASTM A536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.5 CONCRETE FOR MANHOLES AND CATCH BASINS

- A.General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C150, Type II.
 - 2. Fine Aggregate: ASTM C33, sand.
 - 3. Coarse Aggregate: ASTM C33, crushed gravel.
 - 4. Water: Potable.
- B. Concrete Design Mix: 4000 psi (27.6 MPa) minimum, compressive strength in 28 days.
 - 1. Reinforcing Fabric: ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A615, Grade 60 (420 MPa) deformed steel.
- C. Manhole Channels and Benches: Channels shall be the main line pipe material. Include benches in all manholes and catch basins.
 - 1. Channels: Main line pipe material or concrete invert. Height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope. Invert Slope: Same slope as the main line pipe. Bench to be concrete, sloped to drain into channel. Minimum of 6 inch slope from main line pipe to wall sides.

2.6 STORMWATER DISPOSAL SYSTEMS

A. Chamber Systems: See specification section 33 40 10 - Stormwater Chambers

33 40 00-9 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

PART 3 - EXECUTION

3.1 PIPE BEDDING

A. The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class I or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.2 PIPING INSTALLATION

- A. Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping with 36 inch (915 mm) minimum cover or as shown on the Drawings.
- C. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 1. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
 - Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
 - 3. Inspect pipes and fittings, for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.

33 40 00-10 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

- 4. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
- 5. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
- Do not walk on pipe in trenches until covered by layers of shading to a depth of 12 inches (300 mm) over the crown of the pipe.
- 7. Warning tape shall be continuously placed 12 inches (300 mm) above storm sewer piping.
- D. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- E. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- F. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- G. Install gravity-flow, nonpressure drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install PE corrugated sewer piping according to ASTM D2321 with gasketed joints.
 - 1)

3.3 REGRADING

- A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover

33 40 00-11 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.4 CONNECTIONS TO EXISTING VA-OWNED MANHOLES

A. Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.5 CONNECTIONS TO EXISTING PUBLIC UTILITY MANHOLES

A. Comply with all rules and regulations of the public utility.

3.6 MANHOLE INSTALLATION

- A. Install manholes, complete with appurtenances and accessories indicated. Install precast concrete manhole sections with sealants according to ASTM C891.
- B. Set tops of frames and covers 1.2" (0.10 ft)below finished surface of manholes that occur in pavements. Set tops flush with finished surface elsewhere unless otherwise indicated.

3.7 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.8 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edge of underground structures.

3.9 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.

VA Project 438-450 10-01-18 100% Bid Documents

- b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
- c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
- d. Infiltration: Water leakage into piping.
- e. Exfiltration: Water leakage from or around piping.
- 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
- 4. Reinspect and repeat procedure until results are satisfactory.

3.10 TESTING OF STORM SEWERS:

- A. Submit separate report for each test.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - Do not enclose, cover, or put into service before inspection and approval.
 - Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours advance notice.
 - 4. Submit separate report for each test.
 - 5. Air test gravity sewers. Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.
- C. Leaks and loss in test pressure constitute defects that must be repaired. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.11 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

--- E N D ---

33 40 00-13 STORM SEWER

VA Project 438-450 10-01-18 100% Bid Documents

SECTION 33 40 10

STORM CHAMBERS

PART 1 - GENERAL

Stormwater Chamber Specifications:

- Chambers shall conform to the requirements of ASTM F 2418, "Standard Specification for Polypropylene (PP) Corrugated Wall Stormwater Collection Chambers".
- 2. The Chamber shall have both of its ends open to allow for unimpeded hydraulic flows and visual inspections down a row's entire length.
- 3. The manufacturer of the sediment containment row shall provide documented TSS (Total Suspended Solids), TP (Total Phosphorus) documentation for filtration efficiency.
- 4. The manufacturer will supply an installation certification during construction if applicable.
- 5. The manufacturer will supply maintenance instructions current with local governing authority.
- 6. The structural design of the chambers, the structural backfill and the installation requirements shall ensure that the safety factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met for: 1) long-duration dead loads and 2) short-duration live loads, based on the AASHTO Design Truck with consideration for impact and multiple vehicle presences.
- 7. The allowable burial depths for chambers shall be based on the design method specified in ASTM F 2787 "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers".
- 8. Only chambers that are approved by the engineer 2 weeks prior to bid will be allowed. The contractor shall submit (3 sets) of the following to the engineer for approval before delivering chambers to the project site:
 - A structural evaluation by a registered structural engineer that demonstrates that the safety factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met. The test

33 40 10-1 STORM CHAMBERS

VA Project 438-450 10-01-18 100% Bid Documents

derived 50-year creep modulus data specified in ASTM F 2418 must be used as part of the AASHTO structural evaluation to verify long-term performance.

- 9. Chambers and end caps shall be produced at an ISO 9001 certified manufacturing facility.
- 10. All design specifications for chambers shall be in accordance with the manufacturer's latest design manual.
- 11. The installation of chambers shall be in accordance with the manufacturer's latest installation instructions.
- 12. The Chambers shall be injection molded of Polypropylene resin to be inherently resistant to environmental stress cracking (ESCR), and to maintain adequate stiffness through higher temperatures experienced during installation.
- 13. The Chamber shall have a continuously curved section profile.
- 14. The Chamber shall be open-bottomed.
- 15. The Chamber shall incorporate an overlapping corrugation joint system to allow chamber rows of almost any length to be created. The overlapping corrugation joint system shall be effective while allowing a chamber to be trimmed to shorten its overall length.
- 16. The end cap shall be designed to fit into any corrugation of a chamber, which allows: capping a chamber that has its length trimmed; segmenting rows into storage basins of various lengths.
- 17. The primary face of an end cap shall be curved outward to resist horizontal loads generated near the edges of beds.

--- E N D ---

33 40 10-2

STORM CHAMBERS

SECTION 34 71 13 VEHICLE BARRIERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Stationary anti-ram rated vehicle barriers near building entrances.

1.2 RELATED REQUIREMENTS

- A. Concrete Curbs: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.
- B. Pipe Bollards: Section 05 50 00, METAL FABRICATIONS.
- C. Concrete Driveway and Approach Paving: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. F2656/F2656M-15 Crash Testing of Vehicle Security Barriers.
- C. United States Department of State (DS):
 - SD-STD02.01-Revision A Vehicle Crash Testing of Perimeter Barriers and Gates.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show dimensions and clearances between barriers and other adjacent permanent construction.
- C. Delegated Design Drawings and Calculations: Signed and sealed by responsible design professional.

1.5 QUALITY ASSURANCE

1. Test mockups verifying compliance with specified performance.

1.6 FIELD CONDITIONS

A. Field Measurements: Verify field conditions affecting vehicle barrier installation. Show field measurements on Submittal Drawings.

34 71 13 - 1 VEHICLE BARRIERS

1.7 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Structural Vehicle Barriers:
 - Bollards: Steel pipe, concrete filled. See Section 05 50 00, METAL FABRICATIONS.

2.2 SYSTEM PERFORMANCE

- A. Delegated Design: Prepare submittal documents including design calculations and drawings signed and sealed by registered design professional, licensed in state where work is located.
- B. Design stationary barriers complying with specified performance:
 - Ram Resistance: ASTM F2656 or DS SD-STD02.01 rated to stop 1,800 kg (4,000 lb.) vehicle traveling 48 km/hr. (30 mph) on impact.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify foundation suitability for product installation.
- B. Coordinate delivery and installation of anchors, sleeves, and other items embedded in concrete foundations.

3.2 INSTALLATION

1. Bollard Installation: See Section 05 50 00, METAL FABRICATIONS.

- - - E N D - - -

GEOTEK ENGINEERING & TESTING SERVICES, INC.

909 East 50th Street North Sioux Falls, South Dakota 57104 Phone 605-335-5512 Fax 605-335-0773

January 5, 2018

Anderson Engineering of Minnesota, LLC 13605 1st Avenue N., Suite 100 Plymouth, Minnesota 55441

Attn: Tom Olesak, RA

Subj: Geotechnical Exploration Proposed Mental Health Clinic Sioux Falls VA Health Care System 2501 W. 22nd Street Sioux Falls, South Dakota GeoTek #17-F93

This correspondence presents our written report of the geotechnical exploration program for the referenced project. Our work was performed in accordance with your authorization. We are transmitting an electronic copy of our report for your use.

We thank you for the opportunity of providing our services on this project and look forward to continued participation during the design and construction phases. If you have any questions regarding this report, please contact our office at (605) 335-5512.

Respectfully Submitted, GeoTek Engineering & Testing Services, Inc.

Jared Haskins

Jared Haskins, PE Geotechnical Manager

TABLE OF CONTENTS

INTRODUCTION	.4
PROJECT INFORMATION	. 4
SCOPE OF SERVICES	
SITE & SUBSURFACE CONDITIONS	5
SITE LOCATION & DESCRIPTION	
GROUND SURFACE ELEVATIONS	
TEST BORING LOCATIONS	
SUBSURFACE CONDITIONS	
WATER LEVELS	. 6
ENGINEERING REVIEW & RECOMMENDATIONS	. 6
PROJECT DESIGN DATA	. 6
PROPOSED CLINIC	. 7
Discussion	. 7
Site Preparation – Footing Areas	. 8
Site Preparation – Floor Slab Areas	. 8
Time Delay	. 8
Excavation – Clinic	. 9
Groundwater or Saturated Soils	
Laterally Oversized Footing Excavations	
Foundation Loads & Settlement	. 9
Floor Slab	
Retaining Walls	
Coefficient of Friction	
Drain Tile Recommendations	
Seismic Site Classification	
PAVEMENT AREAS	
Discussion	
Subgrade Preparation	
Pavement Section Thicknesses	
Excavation – Pavement Areas	
FROST PROTECTION	
Footings	
Surface Improvements	
MATERIAL TYPES & COMPACTION LEVELS	
STORM WATER INFILTRATION SYSTEM	
SOIL DISTURBANCE	
DRAINAGE	
CONSTRUCTION CONSIDERATIONS	18
GROUNDWATER & SURFACE WATER	18
DISTURBANCE OF SOILS	18
COLD WEATHER PRECAUTIONS	18

EXCAVATION SI	DESLOPES	
OBSERVATIONS	& Testing	
EXCAVATION		
TESTING		19
SUBSURFACE E	EXPLORATION PROCEDURES	
TEST BORINGS		
	ATION	
WATER LEVEL N	MEASUREMENTS	
LABORATORY T	ESTS	
LIMITATIONS		
STANDARD OF	CARE	
APPENDIX A	FIGURE 1 – SITE MAP	
	BORING LOGS	
	SOILS CLASSIFICATION	
	Symbols & Descriptive Terminology	

GEOTECHNICAL EXPLORATION PROPOSED MENTAL HEALTH CLINIC SIOUX FALLS VA HEALTH CARE SYSTEM 2501 W. 22ND STREET SIOUX FALLS, SOUTH DAKOTA GEOTEK #17-F93

INTRODUCTION

Project Information

This report presents the results of the recent geotechnical exploration program for the proposed mental health clinic for the Sioux Falls VA Health Care System in Sioux Falls, South Dakota.

Scope of Services

Our work was performed in accordance with the authorization of Tom Olesak with Anderson Engineering of Minnesota, LLC. The scope of work as presented in this report is limited to the following:

- 1. To perform seven (7) standard penetration test (SPT) borings to gather data on the subsurface conditions at the project site.
- 2. To perform laboratory tests that include moisture content, dry density, Atterberg limits (liquid and plastic limits), sieve analysis (#200 sieve wash) and unconfined compressive strength.
- 3. To prepare an engineering report that includes the results of the field and laboratory tests as well as our earthwork and foundation recommendations for design and construction.

The scope of our work was intended for geotechnical purposes only. This scope of work did not include determining the presence or extent of environmental contamination at the site or to characterize the site relative to wetlands status.

SITE & SUBSURFACE CONDITIONS

Site Location & Description

The project site is located at 2501 W. 22nd Street in Sioux Falls, South Dakota. The clinic will be located in the northwest portion of the property. The current site features in the northwest portion of the property include the following: several existing buildings (Buildings 1, 15, 16, 17, 18 and 22), pavement areas (parking areas and a drive area), sidewalks, a few light poles, grass areas and numerous trees.

Ground Surface Elevations

The ground surface elevations at the test boring locations were determined by using the finished floor of Building 15 as a benchmark. An elevation of 1,496.0 feet was used for the benchmark. Based on the benchmark datum, the ground surface elevations at the test boring locations varied from 1,490.6 feet at test boring 2 to 1,499.7 feet at test boring 3.

Test Boring Locations

A site map is attached at the conclusion of this report showing the relative location of the test borings. We would like to point out that test borings 5, 6 and 7 were moved from their original locations. The new location of test borings 5, 6 and 7 are shown on the site map.

Subsurface Conditions

Seven (7) test borings were performed at the project site on December 28, 2017. Of the seven (7) test borings, five (5) test borings (test borings 1, 2, 3, 4 and 5) were performed for the new clinic and two (2) test borings (test borings 6 and 7) were performed for the new pavement areas. The subsurface conditions encountered at the test boring locations are illustrated by means of the boring logs included in Appendix A.

The subsurface profile consisted of the following layers: existing fill materials, topsoil materials, loess soils and glacial till soils. The existing fill materials were only encountered at test borings 4, 6 and 7. The topsoil materials were only encountered at test borings 1, 2, 3 and 5. The loess

soils were the predominant soil type encountered. The glacial till soils were only encountered at test borings 1 and 4. The test borings indicated that frozen soils extended to a depth of approximately 6 inches. The existing fill materials, topsoil materials and loess soils consisted of lean clay soils. The glacial till soils consisted of lean clay with sand soils.

The consistency or relative density of the soils is indicated by the standard penetration resistance ("N") values as shown on the boring logs. A description of the soil consistency or relative density based on the "N" values can be found on the attached Soil Boring Symbols and Descriptive Terminology data sheet.

We wish to point out that the subsurface conditions at other times and locations at the site may differ from those found at our test boring locations. If different conditions are encountered during construction, then it is important that you contact us so that our recommendations can be reviewed.

Water Levels

Measurements to record the groundwater levels were made at the test boring locations. The time and level of the groundwater readings are recorded on the boring logs. Groundwater was measured at depths varying from 13 feet (elevation 1,482.7 feet) to 18 feet (elevation 1,477.6 feet) at test borings 2, 3, 4 and 5. Groundwater did not enter the boreholes at test borings 1, 6 or 7 at the time of our measurements.

ENGINEERING REVIEW & RECOMMENDATIONS

Project Design Data

We understand that the project will consist of constructing a new mental health clinic for the Sioux Falls VA Health Care System in Sioux Falls, South Dakota. Buildings 15 and 18 will be demolished in preparation for the new clinic. A drive area (off of W. 22nd Street) will also be demolished. The clinic will be a one-story slab-on-grade structure with a penthouse for mechanical equipment. No vertical expansion is anticipated for the clinic. The clinic will have an approximate footprint area of 15,500 square feet. We understand that the finished floor of the

clinic will be at elevation 1,496.0 feet. Based on the finished floor elevation, cutting (up to 5 feet) and filling (up to 6 feet) will likely be needed to achieve the finished floor elevation. We anticipate that foundation support for the clinic will be provided by perimeter footings resting below frost depth and interior footings resting at or slightly below the floor slab. Maximum column loads of approximately 120 kips are expected. Light floor loads are anticipated for the clinic. New pavement areas will also be constructed. Minimal grade changes are expected in the pavement areas. Also, a retaining wall will likely be constructed south of the clinic.

The information/assumptions detailed in the project design data section are important factors in our review and recommendations. If there are any corrections or additions to the information detailed in this section, then it is important that you contact us so that we can review our recommendations with regards to the revised plans.

Proposed Clinic

Discussion

In our opinion, a spread footing foundation system can be used for support of the proposed clinic after the recommended site preparation has been performed.

The test borings performed for the clinic (test borings 1, 2, 3, 4 and 5) encountered 2 feet of existing fill materials (test boring 4) or 6 inches of topsoil materials (test borings 1, 2, 3 and 5) overlying loess soils. It is our opinion that the existing fill materials and topsoil materials are not suitable for support of the footings. Regarding the loess soils, the field and laboratory tests generally indicate that the loess soils have low strength characteristics and are not suitable for direct support of the footings. With this said, we recommend that additional site preparation (overexcavation and backfill with granular structural fill) be performed beneath the footings. The additional site preparation will assist in providing uniform support over the loess soils and provide a stable working surface for footing construction. In regards to the floor slab, it is our opinion that the existing fill materials and topsoil materials are not suitable for support of the floor slab.

<u>Site Preparation – Footing Areas</u>

The initial site preparation in the footing areas (interior and exterior) should consist of removing the existing fill materials and topsoil materials in order to expose the loess soils. Any debris from the previous buildings and any existing pavement should also be removed. Following the removals, we recommend that an overexcavation be performed to a minimum depth of 12 inches below the bottom-of-footing elevation. The overexcavated areas should be backfilled with a minimum of 12 inches of granular structural fill. The thickness of the granular structural fill will exceed 12 inches in areas where the existing fill materials or topsoil materials extend more than 12 inches below the bottom-of-footing elevation or in areas where the existing surface grade is more than 12 inches below the bottom-of-footing elevation. Additional granular structural fill should be expected below some of the interior footings that rest at or slightly below the floor slab.

<u>Site Preparation – Floor Slab Areas</u>

The site preparation in the floor slab areas of the clinic should consist of removing the existing fill materials and topsoil materials or excavating to a minimum depth of 6 inches below the bottom-of-floor elevation, whichever is greater. Any debris from the previous buildings and any existing pavement should also be removed. Once the subgrade is approved, granular structural fill should be placed and compacted up to the design elevation. We expect that up to 4 feet of granular structural fill will be needed in areas of the clinic. We recommend that the final 6 inches of granular structural fill beneath the floor slab consist of select granular fill.

Time Delay

If more than 4 feet of fill (from the existing surface grade) is required to achieve the finished floor elevation of the clinic, then we recommend that a time delay be incorporated into the project. The time delay will allow the underlying soils to compress/settle under the weight of the newly placed fill. We recommend waiting one (1) to two (2) weeks to allow the majority of the settlement to take place in the areas requiring 4 or more feet of fill. The site filling should extend up to a level near the design elevation. The footings and floor slab in areas requiring more than 4 feet of fill should not be placed until the majority of the settlement has occurred. Several

settlement plates or rods could be installed at the beginning stages of earthwork activities to monitor the rate of settlement after the fill has been in place.

Excavation – Clinic

All excavations within the footprint of the clinic should be performed with a track backhoe with a smooth edge bucket. The subgrade within the footprint of the clinic should not be exposed to heavy construction traffic from rubber tire vehicles.

Groundwater or Saturated Soils

If groundwater or saturated soils are encountered at the bottom of the excavation, then we recommend placing a layer (6 inches to 12 inches) of drainage rock at the bottom of the excavation prior to the placement of the granular structural fill or select granular fill. In our opinion, drainage rock may be needed in areas where large cuts are performed.

Laterally Oversized Footing Excavations

Where granular structural fill or drainage rock is needed below the footings, the bottom of the excavation should be laterally oversized 1 foot beyond the edges of the footings for each vertical foot of granular structural fill or drainage rock required below the footings (1 horizontal : 1 vertical).

Foundation Loads & Settlement

If our recommendations are followed during site preparations, then it is our opinion that the footings of the clinic can be sized for a net allowable soil bearing pressure of up to 2,000 pounds per square foot (psf). With the net allowable soil bearing pressure and our site preparation recommendations, we recommend limiting the wall loads to 4 kips per lineal foot (klf) and the column loads to 120 kips. If a higher net allowable soil bearing pressure is desired or the load limits are exceeded, then we recommend that we be contacted to provide additional recommendations.

With the load limits and net allowable soil bearing pressure above, total settlement of the footings should be less than 1 inch and differential settlement should be less than $\frac{1}{2}$ inch over 50

feet. Unknown soil conditions at the site that are different from those depicted at the test boring locations could increase the amount of expected settlement.

Floor Slab

If our recommendations are followed during site preparations, then it is our opinion that the floor slab of the clinic can be designed using a soil modulus of subgrade reaction (k value) of 100 psi/inch.

Retaining Walls

We recommend backfilling any retaining walls with free-draining sand. The active lateral earth pressures may be employed only if movement of the walls can be tolerated to reach the active state. A horizontal movement of approximately 1/500 of the height of the wall would be required to develop the active state for granular soils. If the above movement cannot be tolerated, then we recommend using the at-rest lateral earth pressures to design the walls. The zone of the sand backfill should extend a minimum of 2 feet outside the bottom of the foundation and then extend upward and outward at a slope no steeper than 1:1 (horizontal to vertical). Also, we recommend capping the sand backfill section with 1 foot to 2 feet of clayey soil in areas that will not have asphalt or concrete surfacing to minimize infiltration of surface waters. Table 1 shows the equivalent fluid unit weight values for the various soil types anticipated for this project.

Soil Type	At-F	Rest, pcf	Act	ive, pcf	Pass	sive, pcf
Son Type	Drained	Submerged	Drained	Submerged	Drained	Submerged
Clay	-	-	-	-	220*	115*
Free-Draining Sand (SP)	50	90	35	80	460*	230*

Table 1. Equivalent Fluid Unit Weight Values

*Value below frost depth -0 pcf above frost depth.

The passive resistance in front of a retaining wall should not be used in an analysis unless the wall extends well below the depth of frost penetration due to loss of strength upon thawing. In addition, development of passive lateral earth pressure in the soil in front of a wall requires a relatively large rotation or outward displacement of the wall. Therefore, we do not recommend using passive resistance in front of the wall for the analysis.

During backfill operations, bracing and/or shoring of the walls may be needed. Only handoperated compaction equipment should be used directly adjacent to the walls.

Coefficient of Friction

It is our opinion that a friction factor of 0.35 can be used between the clay soils and the bottom of the concrete. A friction factor of 0.45 can be used between the granular structural fill or drainage rock and the bottom of the concrete. The friction values are considered ultimate values. We recommend applying a theoretical safety factor of at least 2.0.

Drain Tile Recommendations

Since the clinic will be slab-on-grade, it is our opinion that drain tile is not needed along the perimeter of the clinic.

Seismic Site Classification

Based on the 2012 International Building Code (IBC), it is our opinion that the site, as a whole, corresponds to a Site Class E (soft soil). Also, the ground acceleration values are as follows: $S_S = 0.090 \text{ g}$, $S_1 = 0.035 \text{ g}$, $S_{MS} = 0.225 \text{ g}$, $S_{M1} = 0.123 \text{ g}$, $S_{DS} = 0.150 \text{ g}$, $S_{D1} = 0.082 \text{ g}$. Therefore, the seismic design category is "B". The ground acceleration values are also based on the 2012 IBC with Risk Category I/II/III. If needed, we can provide ground acceleration values for a different design code or Risk Category. Regarding liquefaction and lateral spreading, it is our opinion that the potential is low.

Pavement Areas

Discussion

Test borings 6 and 7 were performed in the new pavement areas. In general, the existing fill materials and loess soils have low strength characteristics and are prone to instability during freeze-thaw cycles. With that said, we recommend placing a geotextile fabric beneath the aggregate base course.

Subgrade Preparation

We recommend that the subgrade preparation in the new pavement areas consist of removing any vegetation, highly organic materials, existing pavement and debris from the previous buildings. Following the removals, the subgrade should be prepared by cutting or placing subgrade fill to the design elevations. Once the design elevations have been achieved, we recommend that the exposed subgrade be scarified (with a disc harrow) to a minimum depth of 8 inches and adjusted to a moisture level that is 1 percent to 4 percent below the optimum moisture content as determined by standard Proctor (ASTM:D698). The moisture-conditioned soils should then be compacted.

Prior to the placement of the geotextile fabric, we recommend that a proof roll be performed on the exposed subgrade with a truck weighing 20 tons to 30 tons. Once the design subgrade elevations have been achieved, we recommend that a proof roll be performed on the exposed subgrade with a truck weighing 20 tons to 30 tons. During the proof roll, unstable areas in the subgrade should be delineated from stable areas. An unstable area would be considered a location with at least 1 inch of rutting or deflection. Unstable areas will need additional subgrade preparation in order to provide a uniform and stable subgrade condition. The additional subgrade preparation may include the following: moisture conditioning the soils (e.g. drying the soils by scarification), an overexcavation to remove and replace the unstable subgrade soils or the placement of a granular subbase at the subgrade surface. The type of correction performed should be determined after observing the performance of the subgrade during the proof roll test. We expect that stable conditions will be encountered during drier periods of the year, while some unstable conditions may be encountered during wetter periods of the year.

Pavement Section Thicknesses

Table 2 shows the recommended pavement section thicknesses based on the subsurface conditions and anticipated traffic loads. We expect that the vehicle traffic will likely vary from automobiles to occasional trucks.

Pavement Description	Pavement Surfacing, in	Aggregate Base Course, in	Subgrade Reinforcement
Car Only Areas			
Asphalt:	4	8	Geotextile Fabric
PC Concrete:	5	8	Geotextile Fabric
Heavy Duty Areas			
Asphalt:	5	10	Geotextile Fabric
PC Concrete:	7	8	Geotextile Fabric

Note: A stable subgrade condition should be achieved prior to the placement of the geotextile fabric.

The asphalt pavement should meet the requirements of sections 320 and 321 for Class G. We recommend that routine maintenance such as crack filling, localized patching and seal coating be performed. The design sections could be reduced if the owner is willing to assume additional maintenance costs or potentially shorter pavement life. For the geotextile fabric, we recommend using Mirafi HP 370, Propex Geotex 3x3 HF, Huesker Comtrac P 45/45 or a product that has similar strength properties as the products listed above.

It should be noted that routine maintenance such as crack filling, localized patching, and seal coating should be expected with all pavements in our recommendations. The design sections could be reduced if the owner is willing to assume additional maintenance costs or potentially shorter pavement life.

Excavation – Pavement Areas

Low-ground-pressure construction equipment or excavators with smooth-edged buckets should be used for the removals in areas where soft/wet soils are present.

Frost Protection

Footings

We recommend that all footings be placed at a sufficient depth for frost protection. The perimeter footings for heated buildings should be placed such that the bottom of the footing is a minimum of 4 feet below the finished exterior grade. Interior footings in heated buildings can be placed beneath the floor slab. Footings for unheated areas and canopies, or footings that are not

protected from frost during freezing temperatures, should be placed such that the bottom of the footing is a minimum of 5 feet below the finished exterior grade.

Surface Improvements

It is our opinion that the on-site soils have moderate to high frost susceptibility. Surface improvements, such as pavements, patios and sidewalks, constructed on these clay soils are potentially subject to both cosmetic and structural damage caused by frost heaving. We anticipate the heave for the on-site soils to potentially be on the order of 0.2 inch to 0.3 inch for each foot of frost penetration within the soil, which would translate to 1 inch to 1 $\frac{1}{2}$ inches of total movement. The heave could be even greater if free water is available, resulting in a buildup of ice lenses. The surface improvements should be designed to accommodate the potential frost movements, or non-frost susceptible drainage fill should be placed beneath the surface improvements. If movement cannot be tolerated, then we recommend placing non-frost susceptible drainage fill beneath the surface improvements. The non-frost susceptible drainage fill should extend to a depth of 5 feet below the finished exterior grade. If it is desired to reduce (but not eliminate) the amount of potential frost heave, then we recommend consideration be given to placing approximately 2 feet of non-frost susceptible drainage fill beneath the surface improvements.

Material Types & Compaction Levels

Granular Structural Fill – The granular structural fill should consist of a pit-run or processed sand or gravel having a maximum particle size of 3 inches with less than 10 percent by weight passing the #200 sieve. The granular structural fill should be placed in lifts of up to 1 foot in thickness.

Select Granular Fill – The select granular fill should consist of a medium to coarse grained, free-draining sand or rock having a maximum particle size of 1 inch with less than 5 percent by weight passing the #200 sieve. The select granular fill should be placed in lifts of up to 1 foot in thickness.

Drainage Rock – The drainage rock should be crushed, washed and meet the gradation specifications shown in Table 3.

Table 5. Drailiage K	ock Gradation Specifications
Sieve Size	Percent Passing
1-inch	100
¹ / ₂ -inch	25-60
#8	0-5

 Table 3. Drainage Rock Gradation Specifications

Free-Draining Sand – The free-draining sand should have a maximum particle size of 1 inch with less than 5 percent by weight passing the #200 sieve. The free-draining sand should be placed in lifts of up to 1 foot in thickness.

Non-Frost Susceptible Drainage Fill – The non-frost susceptible drainage fill should have a maximum particle size of 1 inch, less than 40 percent by weight passing the #40 sieve and less than 5 percent by weight passing the #200 sieve. The non-frost susceptible drainage fill should be placed in lifts of up to 1 foot in thickness.

Subgrade Fill – The subgrade fill should consist of either a granular or clay material. Debris, organic material, or over-sized material should not be used as subgrade fill. If a granular material is used, then it should consist of a pit-run or processed sand or gravel having a maximum particle size of 3 inches. The granular material can be placed in lifts of up to 1 foot in thickness. If a clay material is selected, then it should consist of a non-organic clay having a liquid limit less than 45. Scrutiny on the clay material's moisture content should be made prior to the acceptance and use. The clay fill should be placed in lifts of up to 6 inches in thickness. The majority of the onsist soils can be used as subgrade fill.

Exterior Foundation Wall Backfill for Slab-on-Grade Structures – The exterior foundation wall backfill for slab-on-grade structures should consist of a similar material as described for the subgrade fill. If granular soils are used in areas that will not have asphalt or concrete surfacing, then we recommend capping the granular soils with at least 1 foot to 2 feet of clay soils to minimize infiltration of surface water. The exterior backfill should be placed in lifts of up to 1 foot in thickness.

Aggregate Base Course Material – We recommend that the aggregate base course materials meet the requirements of Sections 260 and 882 of the SDDOT Standard Specifications.

Granular Subbase – The granular subbase should consist of crushed quartzite, recycled concrete or a crushed pit-run material meeting the gradation specifications shown in Table 4.

Table 4. Orallular Subl	Jase Gradation Specifications
Sieve Size	Percent Passing
4-inch	100
1-inch	40 - 80
#4	10 - 50
#40	5 - 20
#200	0-5

 Table 4. Granular Subbase Gradation Specifications

Recommended Compaction Levels – The recommended compaction levels listed in Table 5 are based on a material's maximum dry density value, as determined by a standard Proctor (ASTM: D698) test.

Table 5. Recommended Compaction Levels

Placement Location	Compaction Specifications
Below Footings	95%
Below Floor Slabs	95%
Exterior Foundation Wall Backfill for Slab-on-Grade Structures	95%
Behind Retaining Walls	95% - 98%
Subgrade in Pavement Areas	95%
Base Course in Pavement Areas	97%
Granular Subbase in Pavement Areas	97%
Non-Structural Areas	90%

Notes: Compaction specifications are not applicable with the drainage rock. Compaction testing may not be practical for the granular subbase due to the large aggregate.

Recommended Moisture Levels – The moisture content of the clay backfill materials, when used as backfill around the exterior of a foundation should be maintained within a range of plus 1

percent to minus 4 percent of the materials' optimum moisture content. When the clay backfill materials are used below a vehicle area, or as site grading, the materials' moisture content should be maintained within a range of minus 1 percent to minus 4 percent of the materials' optimum moisture content. The optimum moisture content should be determined using a standard Proctor (ASTM: D698) test.

The moisture content of the granular backfill materials should be maintained at a level that will be conducive for vibratory compaction.

Storm Water Infiltration System

We understand that a storm water infiltration system will be installed for the project. With that said, we estimate an infiltration rate of 0.10 inches/hour for the loess soils.

Soil Disturbance

The loess soils are highly susceptible to disturbance and can experience strength loss caused by construction traffic and/or additional moisture. The loess soils should also be considered highly erodible. Precautions will be required during earthwork activities in order to reduce the risk of soil disturbance.

<u>Drainage</u>

Proper drainage should be maintained during and after construction. The general site grading should direct surface run-off waters away from the excavation. Water which accumulates in the excavation should be removed in a timely manner.

Finished grades around the perimeter of the structure should be sloped such that positive drainage away from the structure is provided. Also, a system to collect and channel roof run-off waters away from the structure is suggested.

CONSTRUCTION CONSIDERATIONS

Groundwater & Surface Water

Water may enter the excavations due to subsurface water, precipitation or surface run off. Any water that accumulates in the bottom of the excavation should be immediately removed and surface drainage away from the excavation should be provided during construction.

Disturbance of Soils

The soils encountered at the test boring locations are susceptible to disturbance and can experience strength loss caused by construction traffic and/or additional moisture. Precautions will be required during earthwork activities in order to reduce the risk of soil disturbance.

Cold Weather Precautions

If site preparation and construction is anticipated during cold weather, then we recommend all foundations, slabs and other improvements that may be affected by frost movements be insulated from frost penetration during freezing temperatures. If filling is performed during freezing temperatures, then all frozen soils, snow and ice should be removed from the areas to be filled prior to placing the new fill. The new fill should not be allowed to freeze during transit, placement and compaction. Concrete should not be placed on frozen subgrades. Frost should not be allowed to penetrate below the footings. If floor slab subgrades freeze, then we recommend the frozen soils be removed and replaced, or completely thawed, prior to placement of the floor slab. The subgrade soils will likely require reworking and recompacting due to the loss of density caused by the freeze/thaw process.

Excavation Sideslopes

The excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P, "Excavations and Trenches". This document states that the excavation safety is the responsibility of the contractor. Reference to this OSHA requirement should be included in the project specifications.

Observations & Testing

This report was prepared using a limited amount of information for the project and a number of assumptions were necessary to help us develop our conclusions and recommendations. It is recommended that our firm be retained to review the geotechnical aspects of the final design plans and specifications to check that our recommendations have been properly incorporated into the design documents.

The recommendations submitted in this report have been made based on the subsurface conditions encountered at the test boring locations. It is possible that there are subsurface conditions at the site that are different from those represented by the test borings. As a result, on-site observation during construction is considered integral to the successful implementation of the recommendations. We believe that qualified field personnel need to be on-site at the following times to observe the site conditions and effectiveness of the construction.

Excavation

We recommend that a geotechnical engineer or geotechnical engineering technician working under the direct supervision of a geotechnical engineer observe all excavations for foundations, slabs and pavements. These observations are recommended to determine if the exposed soils are similar to those encountered at the test boring locations, if unsuitable soils have been adequately removed and if the exposed soils are suitable for support of the proposed construction. These observations should be performed prior to placement of fill or foundations.

Testing

After the subgrade is observed by a geotechnical engineer/technician and approved, we recommend a representative number of compaction tests be taken during the placement of the structural fill and backfill placed below foundations, slabs and pavements, beside foundation walls and behind retaining walls. The tests should be performed to determine if the required compaction has been achieved. As a general guideline, we recommend at least one (1) test be taken for every 2,000 square feet of structural fill placed in building and pavement areas, at least one (1) test for every 75 feet to 100 feet in trench fill, and for every 2-foot thickness of fill or

backfill placed. The actual number of tests should be left to the discretion of the geotechnical engineer. Samples of proposed fill and backfill materials should be submitted to our laboratory for testing to determine their compliance with our recommendations and project specifications.

SUBSURFACE EXPLORATION PROCEDURES

Test Borings

We performed seven (7) SPT borings on December 28, 2017 with a truck rig equipped with hollow-stem auger. Soil sampling was performed in accordance with the procedures described in ASTM:D1586. Using this procedure, a 2-inch O.D. split barrel sampler is driven into the soil by a 140-pound weight falling 30 inches. After an initial set of 6 inches, the number of blows required to drive the sampler an additional 12 inches is known as the penetration resistance, or "N" value. The "N" value is an index of the relative density of cohesionless soils and the consistency of cohesive soils. In addition, thin walled tube samples were obtained according to ASTM:D1587, where indicated by the appropriate symbol on the boring logs.

The test borings were backfilled with on-site materials and some settlement of these materials can be expected to occur. Final closure of the holes is the responsibility of the client or property owner.

The soil samples collected from the test boring locations will be retained in our office for a period of one (1) month after the date of this report and will then be discarded unless we are notified otherwise.

Soil Classification

As the samples were obtained in the field, they were visually and manually classified by the crew chief according to ASTM:D2488. Representative portions of all samples were then sealed and returned to the laboratory for further examination and for verification of the field classification. In addition, select samples were then submitted to a program of laboratory tests. Where laboratory classification tests (sieve analysis and Atterberg limits) have been performed, classifications according to ASTM:D2487 are possible. Logs of the test borings indicating the

depth and identification of the various strata, the "N" value, the laboratory test data, water level information and pertinent information regarding the method of maintaining and advancing the drill holes are also attached in Appendix A. Charts illustrating the soil classification procedures, the descriptive terminology and the symbols used on the boring logs are also attached in Appendix A.

Water Level Measurements

The water levels indicated on the boring logs may or may not be an accurate indication of the depth or lack of subsurface groundwater. The limited length of observation restricts the accuracy of the measurements. Long term groundwater monitoring was not included in our scope of work.

Subsurface groundwater levels should be expected to fluctuate seasonally and yearly from the groundwater readings recorded at the test boring locations. Fluctuations occur due to varying seasonal and yearly rainfall amounts and snowmelt, as well as other factors. It is possible that the subsurface groundwater levels during or after construction could be significantly different than the time the test borings were performed.

Laboratory Tests

Laboratory tests were performed on select samples to aid in determining the index and strength properties of the soils. The index tests consisted of moisture content, dry density, Atterberg limits (liquid and plastic limits) and sieve analysis (#200 sieve wash). The strength tests consisted of unconfined compressive strength. The laboratory tests were performed in accordance with the appropriate ASTM procedures. The results of the laboratory tests are shown on the boring logs opposite the samples upon which the tests were performed or on the data sheets included in the Appendix.

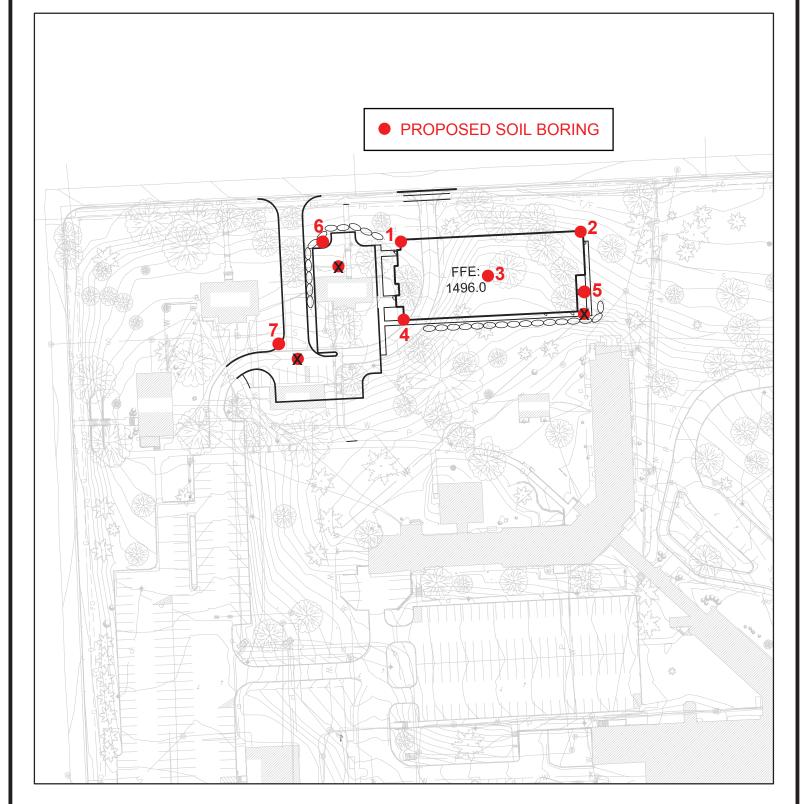
LIMITATIONS

The recommendations and professional opinions submitted in this report were based upon the data obtained through the sampling and testing program at the test boring locations. We wish to point out that because no exploration program can totally reveal the exact subsurface conditions

for the entire site, conditions between test borings and between samples and at other times may differ from those described in our report. Our exploration program identified subsurface conditions only at those points where samples were retrieved or where water was observed. It is not standard engineering practice to continuously retrieve samples for the full depth of the borings. Therefore, strata boundaries and thicknesses must be inferred to some extent. Additionally, some soils layers present in the ground may not be observed between sampling intervals. If the subsurface conditions encountered at the time of construction differ from those represented by our test borings, it is necessary to contact us so that our recommendations can be reviewed. The variations may result in altering our conclusions or recommendations regarding site preparation or construction procedures, thus, potentially affecting construction costs.

This report is for the exclusive use of the addressee and its representatives for use in design of the proposed project described herein and preparation of construction documents. Without written approval, we assume no responsibility to other parties regarding this report. Our conclusions, opinions and recommendations may not be appropriate for other parties or projects.


STANDARD OF CARE


The recommendations submitted in this report represent our professional opinions. Our services for your project were performed in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering profession currently practicing at this time and area.

This report was prepared by: GeoTek Engineering & Testing Services, Inc.

ins. PE

Geotechnical Manager

Drawing Title SOIL BORING LOCATION MAP	VA Sioux Fa Mental Hea			Project N Building N			
Approved: Project Director	2501 W 22nd St Sioux Falls, SD 5710	5		Drawing I	Numk	ber	
	Date 9/5/2017	Scale: 1" = 100'	Drawn PSH				
	5/5/2017			Dwg.	1	of	1

Г

PROJEC	СТ	Proposed Me	ental Health (Clinic, Sioux	Falls VA Healt	h Care Syste	n, 250	01 W. 22	2nd S	treet,	Sic	oux Fa	lls, SD			1 of 1)			
DEPTH		DESCRIPTION OF MATERIAL GEOLOGIC					SA	SAMPLE			ABOR	ATOF		STS					
in FEET	_		LEVATION				ORIGIN				WL	NO.	T	YPE	wc	D	LL	PL	QL
-	fro	ozen to 6" th	mottled brow nen moist, so clay soils) at	oft to firm, 6	6" of	LOES	6	_		1		HSA							
-								_ 6		2	X	SPT	21						
-								7		3	X	SPT	25						
-								_ 6		4	X	SPT							
-								4		5	X	SPT	30	92			40		
-								- _ 5 -		6	X	SPT							
15½ 16			VITH SAND n and gray, i			GLACI/ TILL	AL /	7		7	X	SPT							
-			m of boreho					-											
-								_											
I		WA	TER LEVE	L MEASUR	EMENTS			STAR	ѓ	12-28-	-17	_ C(DMPLE	TE _	12-28-	-17 12	:15 p		
DATE		TIME	SAMPLED DEPTH	CASING DEPTH	CAVE-IN DEPTH	WATER LEVEL		METH						_					
12-28-1	7	12:15 pm	16		14	none		3.25"	ח חו	UIIOW	<u> </u>	<u>em A</u>	uger						

		* <u>17-F93</u>				-141	Come Durate and	NA 144 C	ond C				NO.		2 (*	ı of 1)	
						alth	Care System, 250	01 W. 22	2nd S			PLE			ATOR	Y TES	STS
DEPTH in			RIPTION O		AL.		GEOLOGIC ORIGIN	N	1.0/1	NO.	TYPE		wc	D	LL	PL	Q
FEET			LEVATION			1////			VVL	NO.	'	1	000			ГС	Q
	fro	<u>EAN CLAY</u> : Dzen to 6" th	mottled brov nen moist, s	wn and gray oft to firm, 6	/, 6" of		LOESS										
-	to	psoil (lean d	clav soils) at	t the surface	Э.			-		1		HSA					
_	pe (C	ercent passi C)	ing the #200) sieve = 97	% (at 5')			_			Ļ						
	(-	_,						4		2	V	SPT	19				
-								- '			\square						
_								_									
-								6		3	XI	SPT					
-								-									
											$\langle $						
-								_ 8		4	Ŵ	SPT	21				
								_		ĺĺ							
-								6		5	XI	SPT					
_								_									
12																	
14 -	LE	EAN CLAY:	grayish brov	wn, wet, firm	ι, (CL)		LOESS	_									
-								_ 7	▼	6	Å	SPT					
								_		ĺ							
-								- 5		7	XI	SPT					
16		Datta		la at 40 fa a	1	¥//			4		/\						<u> </u>
		Botto	m of boreho	ole at 16 fee	t.												
-								-									
-								-									
-								-									
_								_									
I		WA	ATER LEVE	L MEASUR	EMENTS	1		STAR	Г	12-28-	17	_ CC	OMPLE	TE _	12-28	-17 9:	51 a
DATE		TIME	SAMPLED DEPTH	CASING DEPTH	CAVE-IN DEPTH		WATER LEVEL	METH			~						
12-28-1	7	9:51 am	16		14	Ţ		3.25"	<u>ID H</u>	ollow	St	em A	uger				
						_											
										IIEF			anson				

Г

	CT Proposed M					oure eystern, zet			SA		LABORATORY TESTS					
DEPTH in		DESCRIPTION OF MATERIAL SURFACE ELEVATION <u>1499.7 ft</u>				GEOLOGIC ORIGIN	N		NO.	TY		WC			PL	
FEET								VVL	INO.	11	PE	VVC		LL		QL
_	LEAN CLAY frozen to 6"	: mottled bro then moist, s	wn and gray oft to firm, (′, CL)		LOESS	_		1		ISA					
-							_ 3		2		SPT					
_							- - 3 -		3		SPT	18		35	20	
_							6 		4		SPT	18				
_							6 		5		SPT	19				
-							_ 7 _ 7		6		SPT	21				
14½ _	LEAN CLAY	: grayish brov	wn, wet, firm	ı, (CL)		LOESS	8		7		SPT					
_							_	Ţ								
- 21 _	D <i>-</i> #	om of borehc	lo at 21 fac	4			- 		8		SPT					
	W						STAR		12-28	-17	_ CC	OMPLE	TE _	12-28-	-17 11	:20 a
DATE	TIME	SAMPLED DEPTH	CASING DEPTH	CAVE-IN DEPTH		WATER LEVEL	METH 3.25"		ollow	Ste	<u>em A</u> i	uger				
12-28-1		21		18	Ţ	17						0				
					+		CRE					anson				

Г

DEPTH			RIPTION O				Care System, 250					PLE			ATOF	RY TES	STS
in FEET			LEVATION		1		GEOLOGIC ORIGIN	Ν	WL	NO.	т	YPE	wc	D	LL	PL	QL
-	<u>FI</u> da	LL, MOSTL ark brown, fr	Y LEAN CLA rozen to 6" t	<u>AY</u>: brown a hen moist	ind		FILL	_		1		HSA					
2 _	LE	EAN CLAY:	brown, mois	st, firm, (CL))		LOESS	- _ 6 -		2		SPT	20				
_								6		3	X	SPT	24				
-								_ 5 _		4	X	SPT	26	94			
91⁄2 -	LE sc	EAN CLAY: oft, (CL)	mottled brow	wn and gray	/, wet,		LOESS	4 		5	X	SPT	28				
-								- _ 4 _	Ţ	6	X	SPT	28	98			60
14½ - 16 _	<u>L</u> E m	EAN CLAY V	NITH SAND: n and gray, r	: a little grav moist, firm,	vel, (CL)		GLACIAL TILL	8		7	X	SPT					
-		Botto	m of boreho	le at 16 fee	t.			-									
-			ATER LEVE		PEMENITS			_ 		12-28-	_17		OMPLE		12 20	 	50 p
	.		SAMPLED	CASING	CAVE-IN		WATER	METH		12-20	-1/				12-20	-17 13	oa h
DATE		TIME	DEPTH	DEPTH	DEPTH		LEVEL			ollow	<u>st</u>	tem A	uger				
12-28-1	17	11:20 am 	16 		14	<u> </u>	14 										
					l	+											

٢

DEPTH			RIPTION O				Care System, 250					PLE			ATOF	Y TES	STS
in FEET			LEVATION .		1		GEOLOGIC ORIGIN	Ν	WL	NO.	Т	YPE	wc	D	LL	PL	QI
	LE SC	AN CLAY:	brown, froze " of topsoil (en to 6" ther	n moist, iils) at		LOESS	_		1		HSA					
_	-							3		2		SPT	19				
_								5 		3	X	SPT	18				
_	-							- _ 7		4	X	SPT					
_	-							- 8 -		5	X	SPT	21				
12 _	to	EAN CLAY: wet, soft to	mottled brov firm, (CL)	wn and gray	v, moist		LOESS	_ 8		6	X	SPT					
_								7		7	$\left \right\rangle$	SPT	26				
-	-							-	Ţ								
_ 21 _		Botto	m of boreho	le at 21 fee	t.			4		8	X	SPT					
		WA	ATER LEVE	L MEASUR	EMENTS			STAR	<u> </u>	12-28-	-17		MPLE	TE	12-28	 -17 9:	59 a
DATE	=	TIME	SAMPLED	CASING DEPTH	CAVE-IN DEPTH		WATER LEVEL	METH	HOD					·	0		
12-28-1	17	9:59 am	21		18	Ţ	18	3.25"			51	tem Ai	uger				
	I																

Г

FROJE	СТ	Proposed M	ental Health G	Sinic, Sloux	Falls VA He	alth	Care System, 25	01 \	N. 22	ndS								
DEPTH		DESC	RIPTION O	F MATERIA	L		GEOLOGIC				SA	MF	PLE	L	ABOR I	ATOR	RY TES	STS
in FEET	╎┎╴		LEVATION .				ORIGIN		N	WL	NO.	Т	YPE	wc	D	LL	PL	Q
-	FI ar	<u>LL, MOSTL</u> nd brown, fro	Y LEAN CLA	∆Y : dark bro ien moist	wn		FILL	_	4		1 2	X	SPT SPT	30 25	88 98			
6	-	Botto	om of boreho	ole at 6 feet				_	4		3		SPT					
-	-							_										
-	-							-										
	-							_										
-	-							_										
	-							_										
-	-							_										
-		WA	ATER LEVE	LMEASUR	EMENTS			51	ART	- ,	12-28-	-17	C			12-28	-17 2:	36 p
DAT	E	TIME	SAMPLED	CASING	CAVE-IN		WATER	Μ	ETH	OD						20		P
12-28-		2:36 pm	DEPTH 6	DEPTH 	DEPTH 4	_	LEVEL	3.	<u>25" </u>	DH	ollow	<u>/ St</u>	tem A	uger				
									REV					anson				

Г

	ст	Proposed M	ental Health (Clinic Siour	Falle VA Ho	alth	Care System, 25	01 W ว	2nd 9	treet	Siz	NIX Fo					
						aiui	-	01 W. 2				PLE			ATOR	RY TES	STS
DEPTH in			RIPTION O		AL .		GEOLOGIC	N									
FEET	√	SURFACE E	LEVATION	1497.3 ft			ORIGIN		WL	NO.	T	YPE	wc	D	LL	PL	QI
	FI	LL, MOSTL	Y LEAN CL	AY: dark bro	own	\bigotimes	FILL				Λ						
-	ar	ia brown, tro	ozen to 6" tł	ien moist				- 5		1	IXI	SPT	20	96			
											$ \rangle $						
-								-			\square						
-								_ 4		2	IXI	SPT	24				
											Щ						
-								-									
_											\square						
								4		3	X	SPT					
6 _		Botto	om of boreho	ole at 6 feet					-		$\left(\right)$		<u> </u>				
								L									
-								-									
_																	
								-									
-								-									
_								_									
-								-									
_								L									
-								-									
_																	
-								-									
_								L									
-								-									
								L									
_																	
-								_									
		WA	ATER LEVE	L MEASUR	EMENTS			STAR	т	12-28	-17	C	OMPLE	TE _	12-28	-17 3:	34 p
DATE		TIME	SAMPLED DEPTH	CASING DEPTH	CAVE-IN DEPTH		WATER LEVEL	METI		مالح		^					
12-28-1	17	3:34 pm	6		4		none	3.25"	<u>IU H</u>	OIIOW	/ 51	em A	uger				

SOIL CLASSIFICATION CHART

R.A.			SYME	BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	GHLY ORGANIC S	SOILS		РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

SYMBOLS FOR DRILLING AND SAMPLING

Symbol	Definition
Bag	Bag sample
CS	Continuous split-spoon sampling
DM	Drilling mud
FA	Flight auger; number indicates outside diameter in inches
HA	Hand auger; number indicates outside diameter in inches
HSA	Hollow stem auger; number indicates inside diameter in inches
LS	Liner sample; number indicates outside diameter of liner sample
Ν	Standard penetration resistance (N-value) in blows per foot
NMR	No water level measurement recorded, primarily due to presence of drilling fluid
NSR	No sample retrieved; classification is based on action of drilling equipment and/or
	material noted in drilling fluid or on sampling bit
SH	Shelby tube sample; 3-inch outside diameter
SPT	Standard penetration test (N-value) using standard split-spoon sampler
SS	Split-spoon sample; 2-inch outside diameter unless otherwise noted
WL	Water level directly measured in boring
	Water level symbol

SYMBOLS FOR LABORATORY TESTS

<u>Symbol</u>	Definition
WC	Water content, percent of dry weight; ASTM:D2216
D	Dry density, pounds per cubic foot
LL	Liquid limit; ASTM:D4318
PL	Plastic limit; ASTM:D4318
QU	Unconfined compressive strength, pounds per square foot; ASTM:D2166

DENSITY/CONSISTENCY TERMINOLOGY

Density Term	N-Value	Consistency Term
Very Loose	0-4	Soft
Loose	5-8	Firm
Medium Dense	9-15	Stiff
Dense	16-30	Very Stiff
Very Dense	Over 30	Hard

PARTICLE SIZES

Term	Particle Size
Boulder	Over 12"
Cobble	3" – 12"
Gravel	#4 – 3"
Coarse Sand	#10 – #4
Medium Sand	#40 – #10
Fine Sand	#200 – #40
Silt and Clay	passes #200 sieve

DESCRIPTIVE TERMINOLOGY

Dry Absence of moisture, powdery
Absence of moisture, powdery
Frozen Frozen soil
Moist Damp, below saturation
Waterbearing Pervious soil below water
Wet Saturated, above liquid limit
Lamination Up to ½" thick stratum
Layer ¹ / ₂ " to 6" thick stratum
Lens ½" to 6" discontinuous stratum

GRAVEL PERCENTAGES

Term	Range
A trace of gravel	2-4%
A little gravel	5-15%
With gravel	16-50%