Submittal Package

Entrances	Storefronts	Window Walls	Curtain Walls	Balcony Doors	Sun Controls
-----------	-------------	--------------	---------------	---------------	--------------

Submitted to:

Project:

VA Outpatient Mental Health Building Sioux Falls

Submitted by:

Heartland Glass Company Timothy Bronsteader June 27, 2019

YKK AP products Included:

YHC 300 OG, YFW 400 TUH

This submittal package is to assist in the specification and selection of YKK AP products. Basic product descriptions and technical data are included. For further information or technical assistance, please contact your local YKK AP representative.

visit our website at ykkap.com

YKK AP America's manufacturing facility located in Dublin, Georgia and has achieved ISO 14001 certification as a means to measure and continually improve environmental performance. YHC 300 OG

YHC 300 OG

Impact Resistant and Blast Mitigating, Outside Glazed Curtain Wall

Protection for Every Application

The YHC 300 OG is a high performance curtain wall system designed and tested to provide innovative impact and blast solutions for a wide range of applications and design pressures from 45 PSF all the way to 130 PSF. The 3" face dimension ensures recommended glass clearances are maintained. Dry glazing options (for all design pressure ranges) slash installation time for quicker building dry-in. This data sheet also shows the PSF differences for each variation of the YHC 300 OG.

Product Options & Features

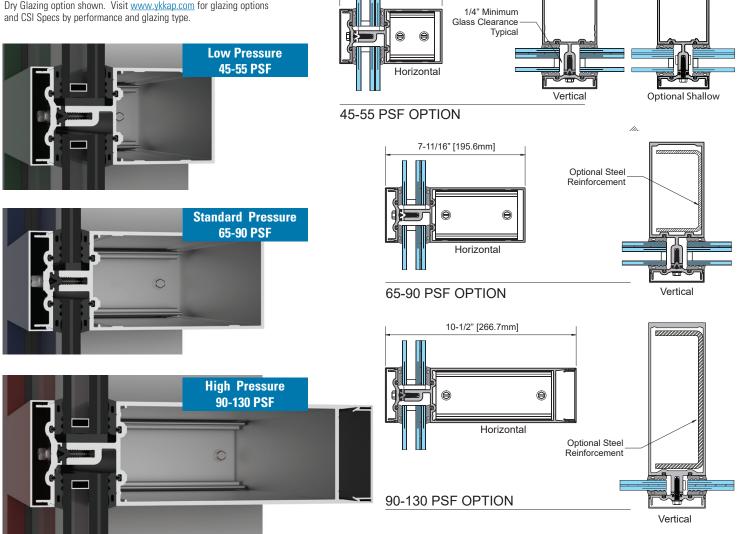
- Fully tested to ASTM 1886 / 1996 and TAS 201-203 standards
- Florida Product Approvals for large and small missile including HVHZ and Level E Protection
- Mullion options provide the most cost effective solutions across all pressures and designs
- 15/16" glass bites maintain GANA guidelines of 1/4" clearance to reduce glass breakage
- Designed for single and multispan applications
- Achieve 17' single spans at 90 PSF
- Accommodates monolithic and insulating glass
- Shallow mullion option available

YHC 300 0G

3" [76.2mm]

Syster Sightli		Glazing & Config	Glass	Air Infiltration	Water Infiltration	Thermal Performance	Acoustical Performance	
3"	7-1/16"	Outside & Front Set	9/16" Monolithic or 1-5/16" IGU with Low-E (C.O.G. U-factor: 0.29)	0.06 CFM/FT ² (1.10 m ³ /h·m ²)	Static: 20 PSF (958 Pa) Dynamic: 20 PSF (958 Pa)	U-factor: 0.42 BTU/HR•FT ² •°F* CRF: Minimum of 72 on frame**	Lam STC: 37 Lam OITC: 32	
Testing Standards			ASTM E 283	ASTM E 331 & AAMA 501	* NFRC 102 & ** AAMA 1503	ASTM E 90 & 1425		
Product Approvals				Missile Level A, D, E, Wind Zone 3 & HVHZ, ICC Florida Building Code, TDI Compliant				
Available Finishes				Factory Anodized (AAMA 612) and Organic Paints (AAMA 2605)				

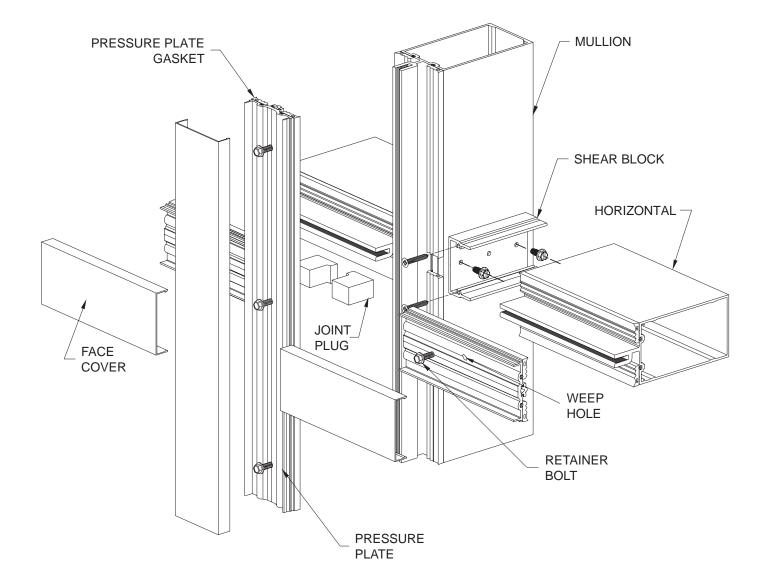
5-5/8" [142.9mm]


HURRICANE & BLAST PROTECTION

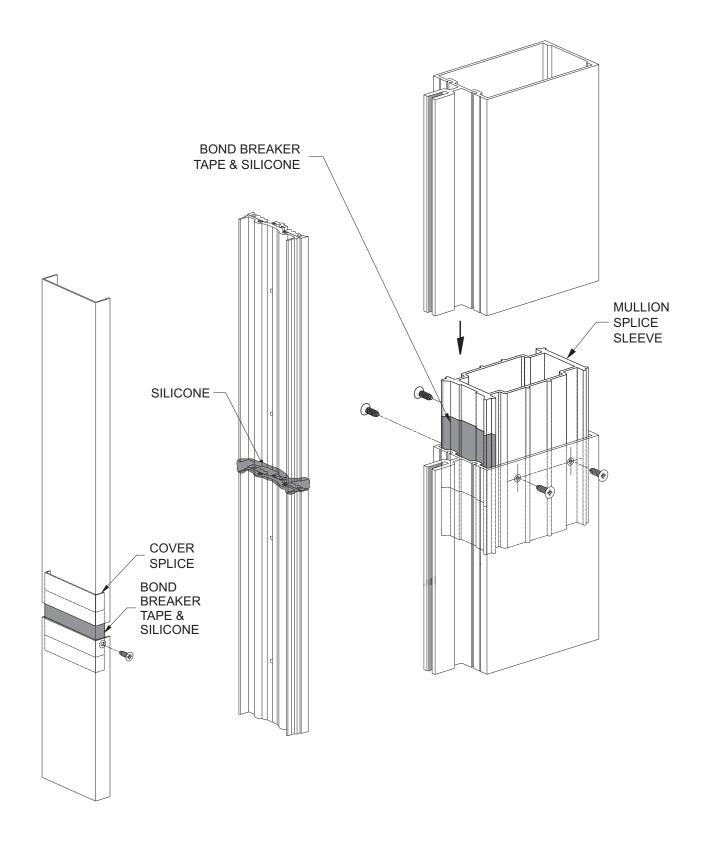
- ICC Compliant and FBC Statewide approvals HVHZ (High Velocity Hurricane Zone)
- Large Missile Level E Essential Facilities

SYSTEM SPECIFICATIONS

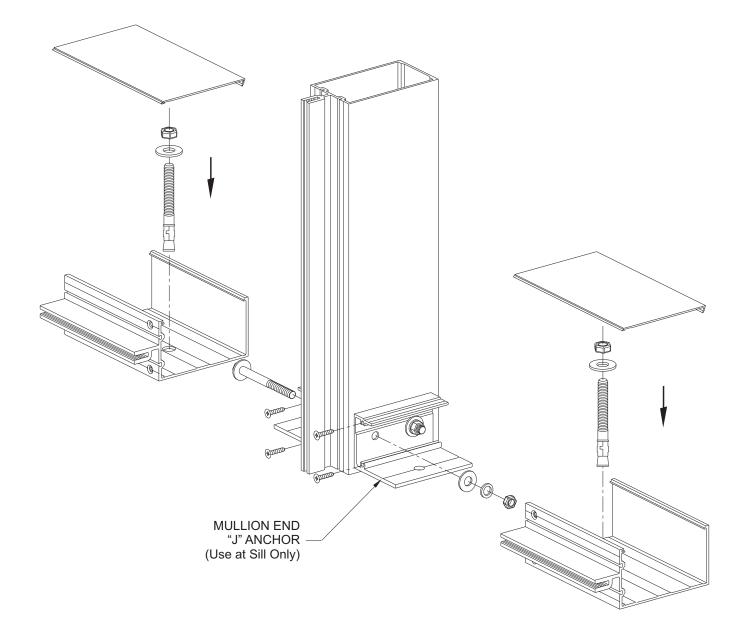
- Large Missile Level D & Small Missile Level A
- "Low Hazard" per ASTM F 1642 Test @ 6 psi / 41 psi-ms


Dry Glazing option shown. Visit www.ykkap.com for glazing options

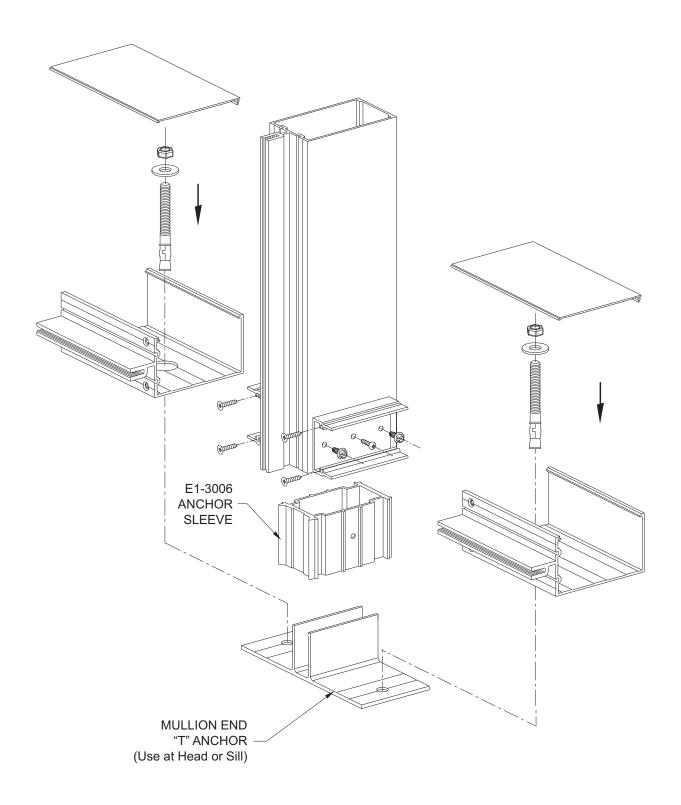
Additional information including CAD details, CSI specifications, Test Reports and Installation instructions are available online at: www.ykkap.com/commercial/product/curtain-walls/yhc-300-og/

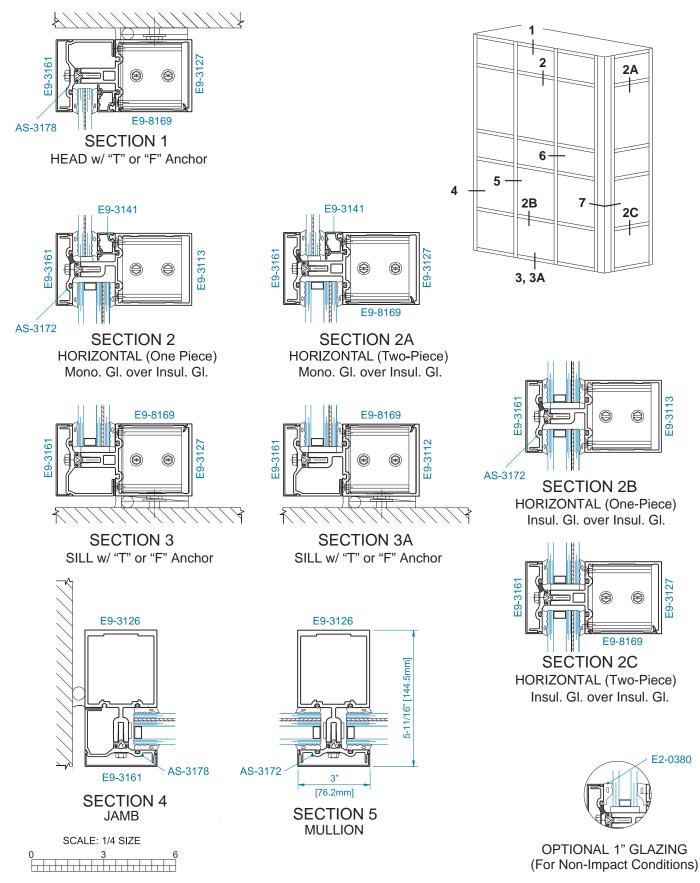


YHC 300 OG OUTSIDE GLAZED HURRICANE RESISTANT CURTAIN WALL SYSTEM

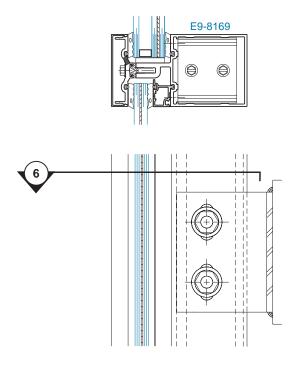


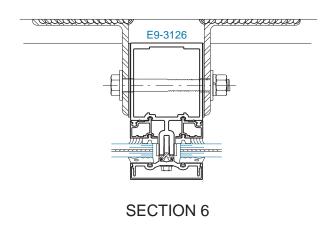
TYPICAL SPLICE CONDITION

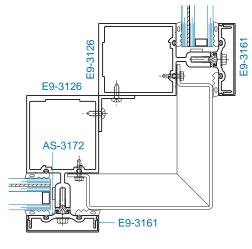

MULLION END "J" ANCHOR

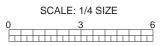

ap Ykk

MULLION END "T" ANCHOR




FOR DESIGN PRESSURES OF 45-55 PSF

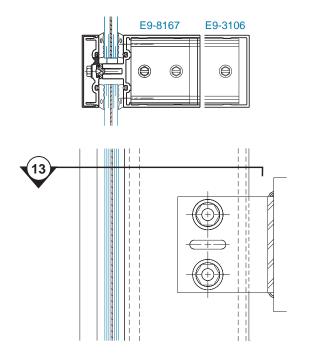


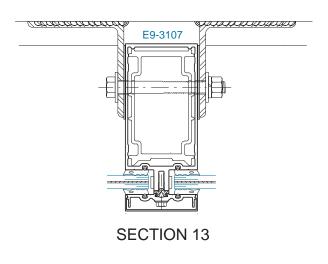

TYPICAL WINDLOAD ANCHOR

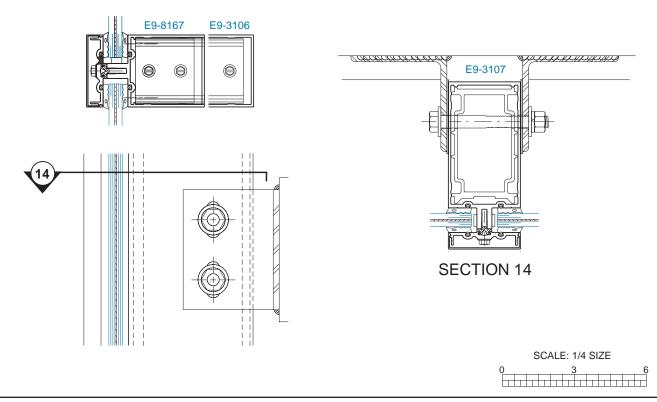


SECTION 7 90° OUTSIDE CORNER SINGLE GLAZING

FOR DESIGN PRESSURES OF 45-55 PSF

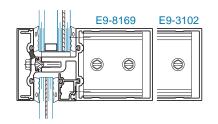


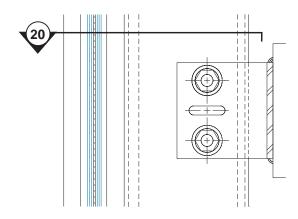

Effective Date: August 16, 2018 | 04-1009-07

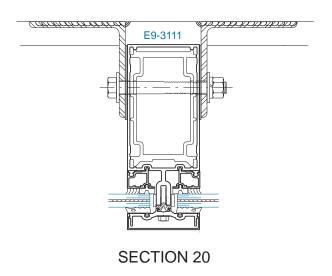

FOR DESIGN PRESSURES OF 45-55 PSF

TYPICAL DEADLOAD ANCHOR

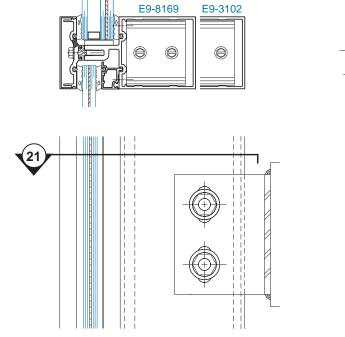
TYPICAL WINDLOAD ANCHOR

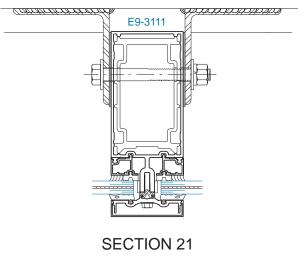

FOR DESIGN PRESSURES OF 45-55 PSF 15 15A Y E9-3104 E9-3104 E9-3161 丰 4 4 e 2 2A 19A 20 E9-3162 E9-3162 AS-3178 **SECTION 15** SECTION 15A 18 19 HEAD w/ "F" Anchor HEAD w/ "T" Anchor 23 E9-3102 E9-3162 ·21 E9-3104 16 16A 19 0 A 18A 23A OPP. **SECTION 16 SECTION 16A** 17 **OPTIONAL HORIZONTAL** 17A **OPTIONAL HORIZONTAL** (One Piece) E9-3162 E9-3162 E9-3161 E9-3104 E9-3104 (\clubsuit) Q 4 dth **SECTION 17 SECTION 17A** SILL w/ "J" Anchor SILL w/ "T" Anchor E9-3111 E9-3111 E9-3111 7-11/16" [195.3mm] AS-3172 AS-3178 (Two-Piece) E2-0380 Ī E9-3161 E9-3161 3" [76.2mm] **SECTION 18 SECTION 19A SECTION 19** JAMB MULLION @ SPLICE MULLION SCALE: 1/4 SIZE **OPTIONAL 1" GLAZING** (For Non-Impact Conditions)


Effective Date: August 16, 2018 | 04-1009-07

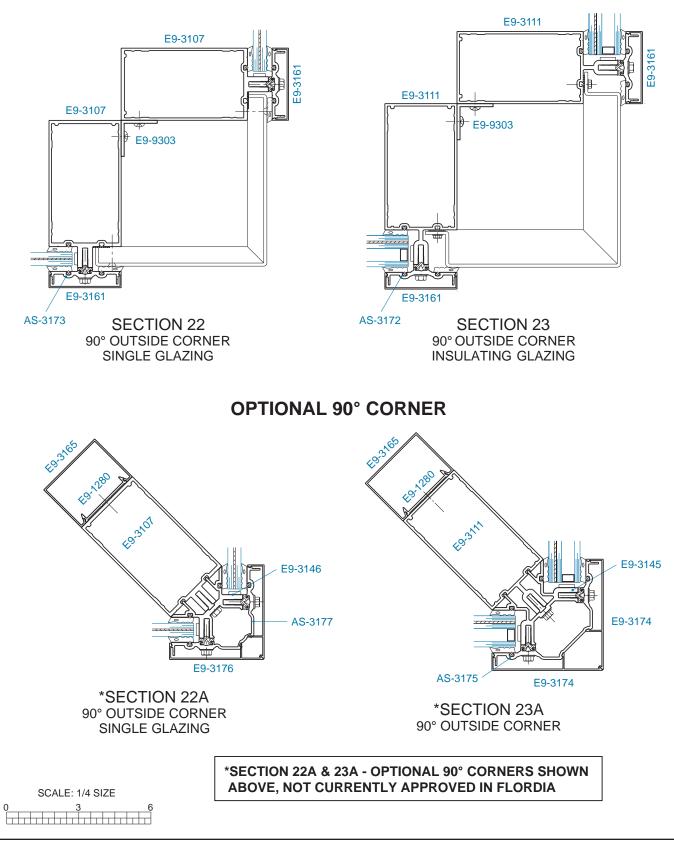


FOR DESIGN PRESSURES OF 45-55 PSF

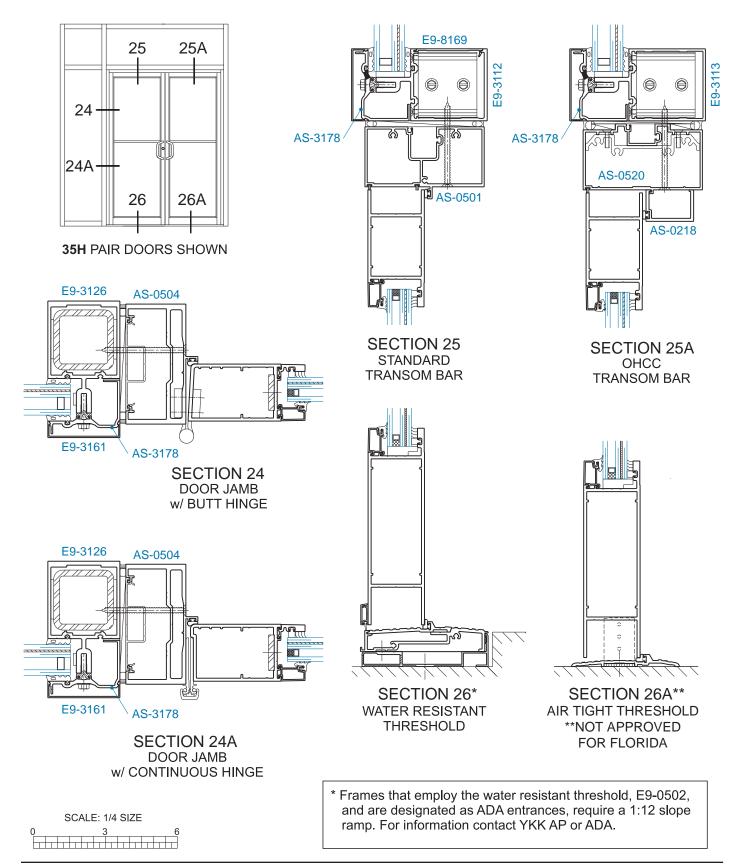

TYPICAL DEADLOAD ANCHOR

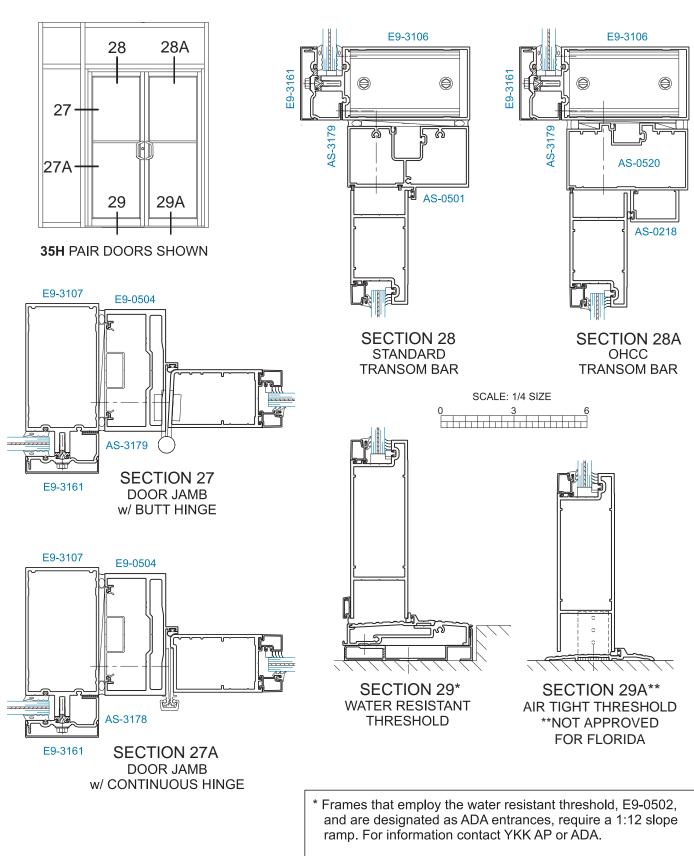


TYPICAL WINDLOAD ANCHOR

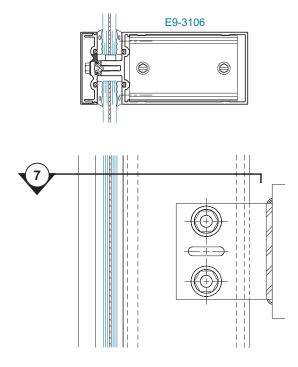


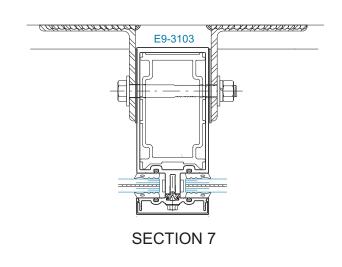
SCALE: 1/4 SIZE


FOR DESIGN PRESSURES OF 45-55 PSF

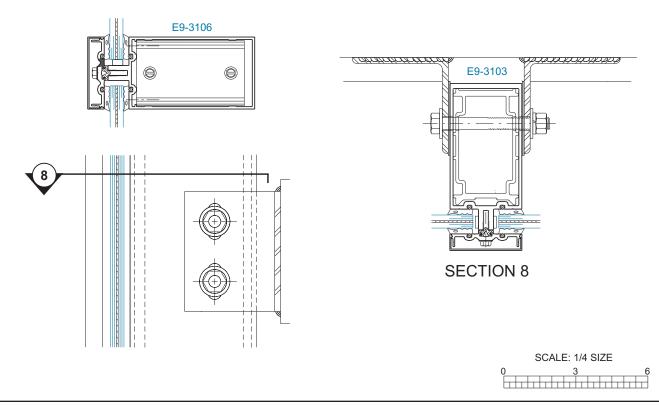

STANDARD 90° CORNERS

SHALLOW DOOR FRAMING MEMBERS WITH INSULATED GLAZING FOR DESIGN PRESSURES OF 45-55 PSF

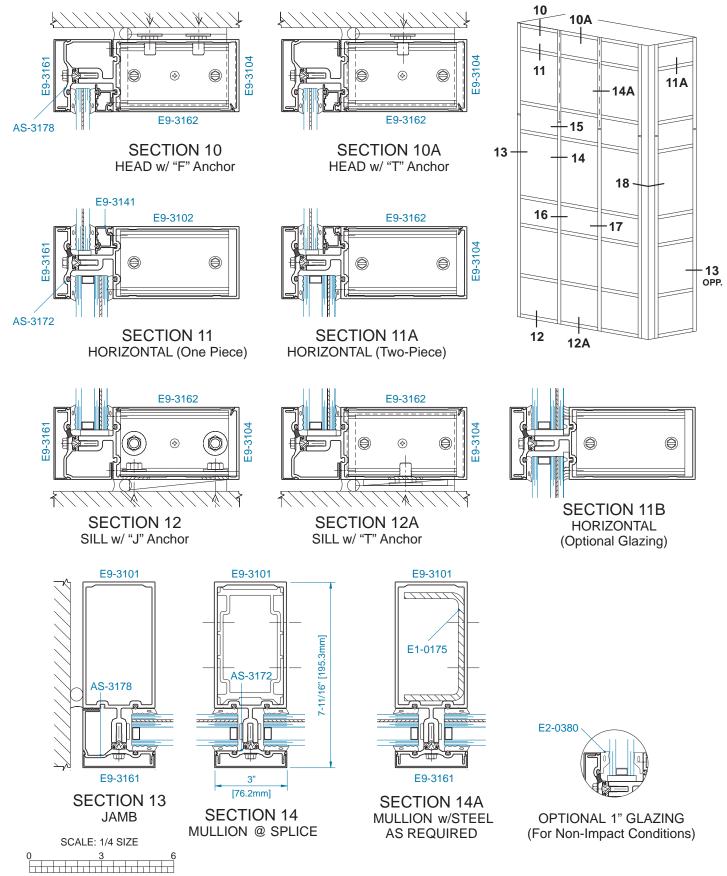




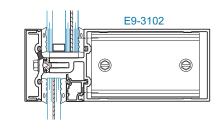
DOOR FRAMING MEMBERS WITH SINGLE GLAZING FOR DESIGN PRESSURES OF 45-55 PSF

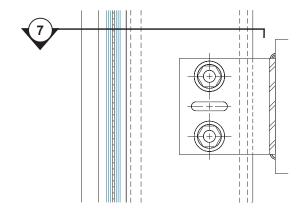

FOR DESIGN PRESSURES OF 65-90 PSF

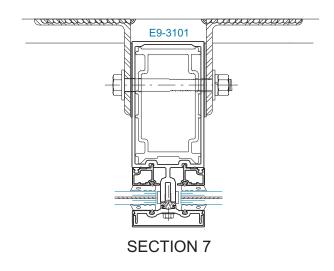
TYPICAL DEADLOAD ANCHOR

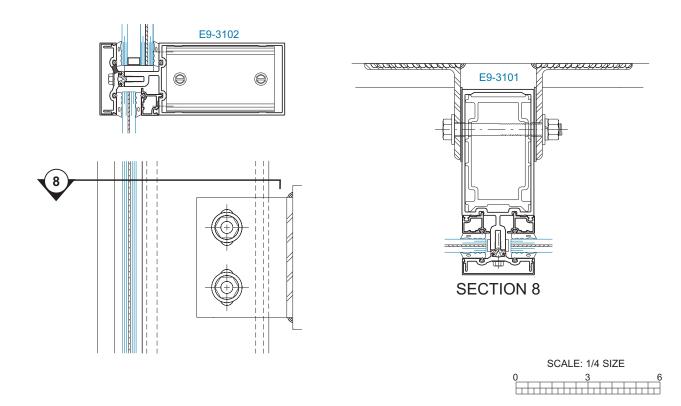


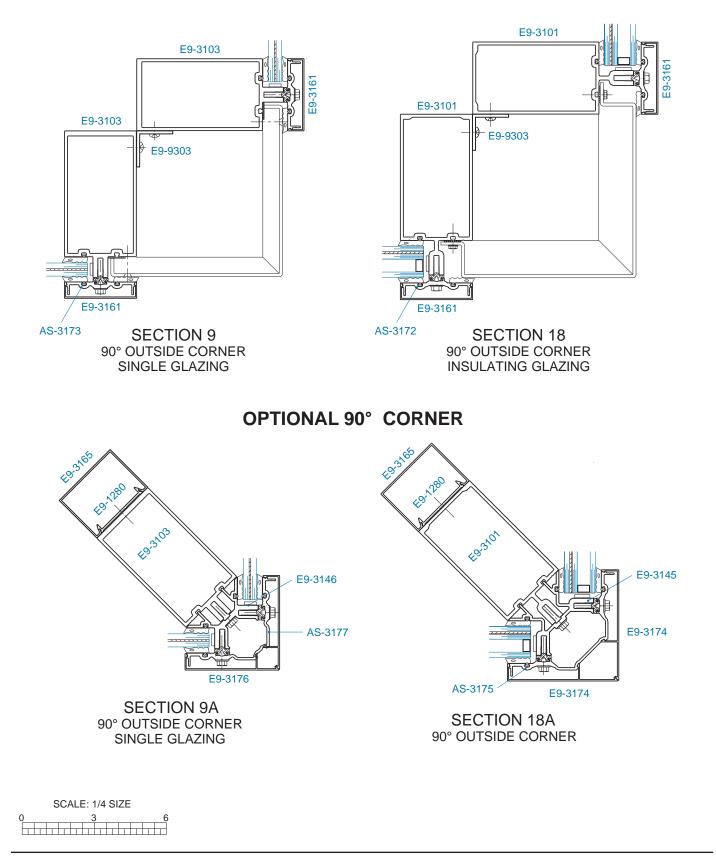
TYPICAL WINDLOAD ANCHOR

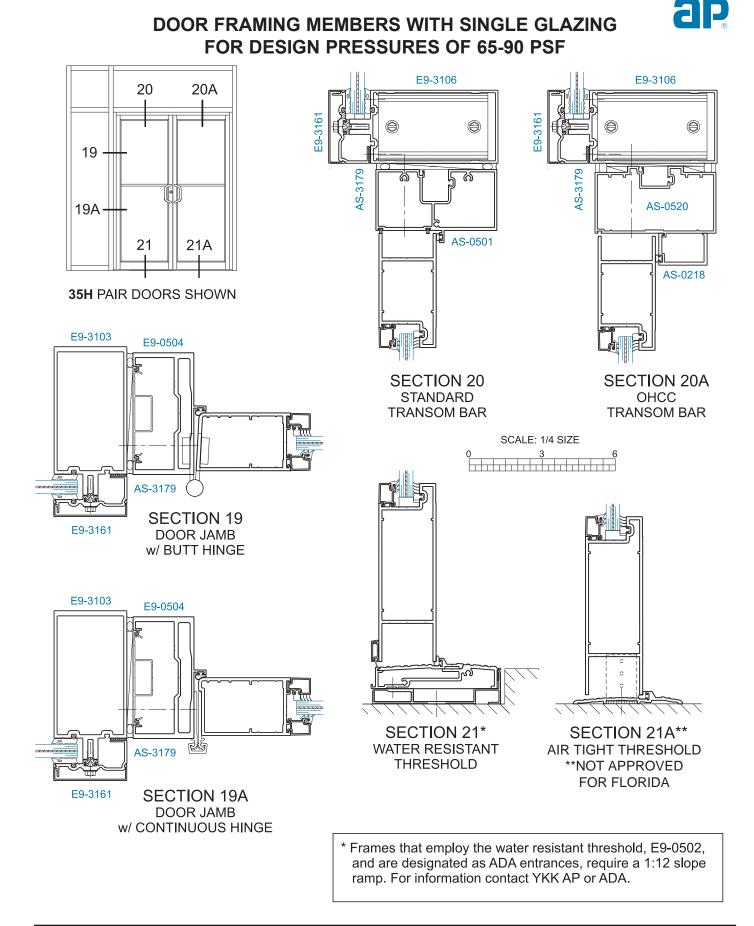


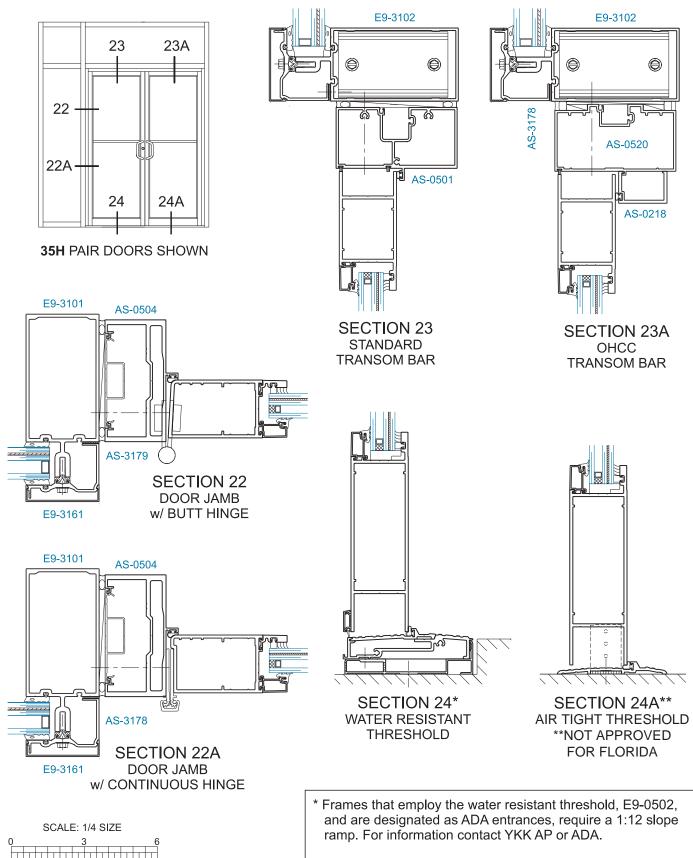

FOR DESIGN PRESSURES OF 65-90 PSF



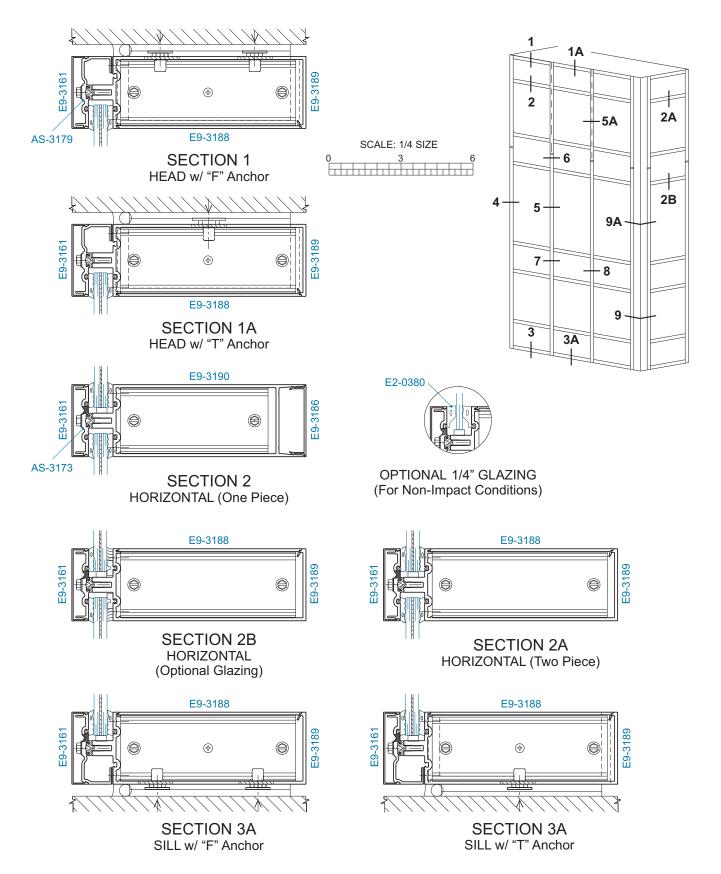

TYPICAL DEADLOAD ANCHOR

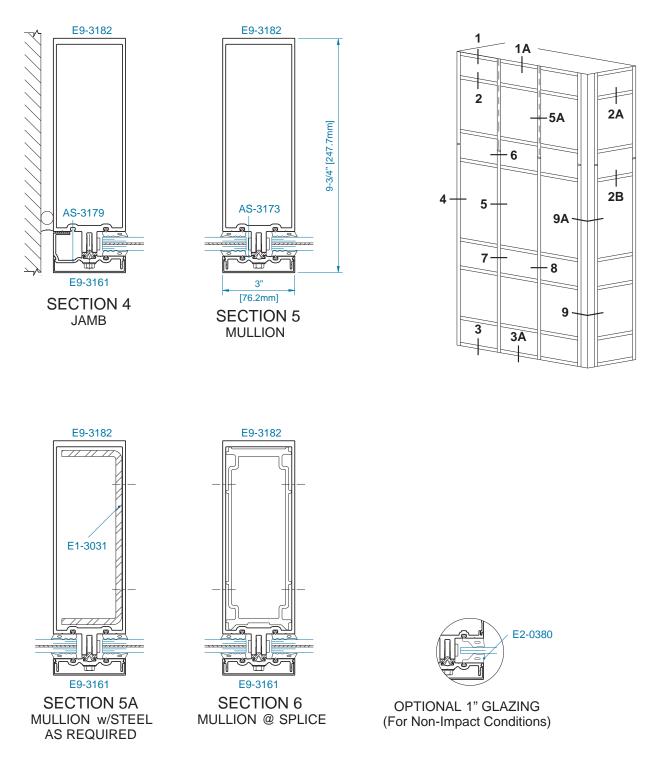

TYPICAL WINDLOAD ANCHOR



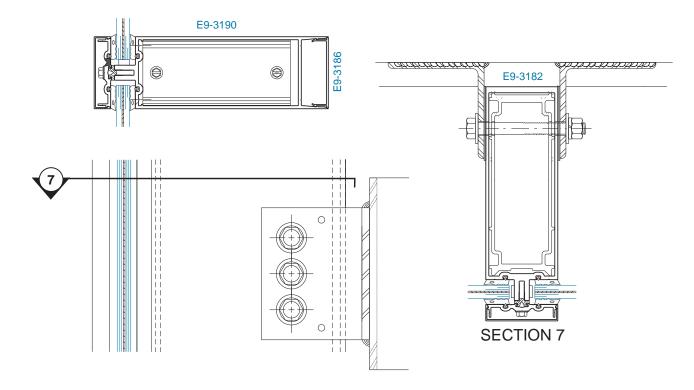

FOR DESIGN PRESSURES OF 65-90 PSF

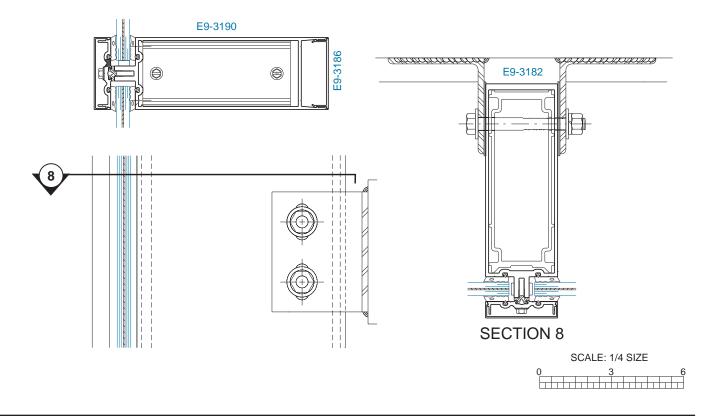
STANDARD 90° CORNERS

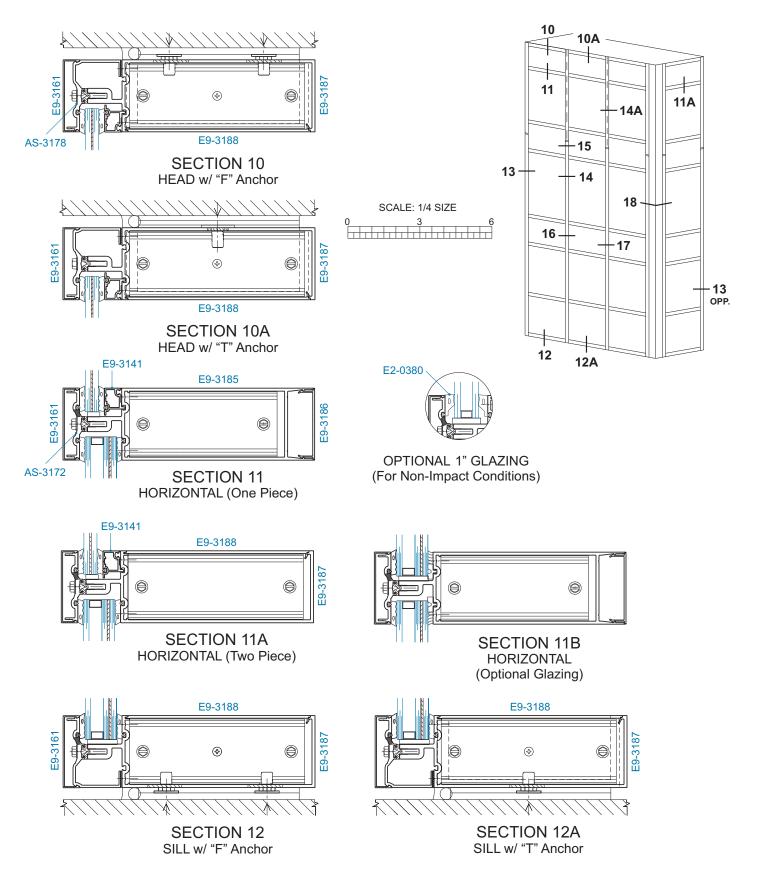



DOOR FRAMING MEMBERS WITH INSULATING GLAZING FOR DESIGN PRESSURES OF 65-90 PSF

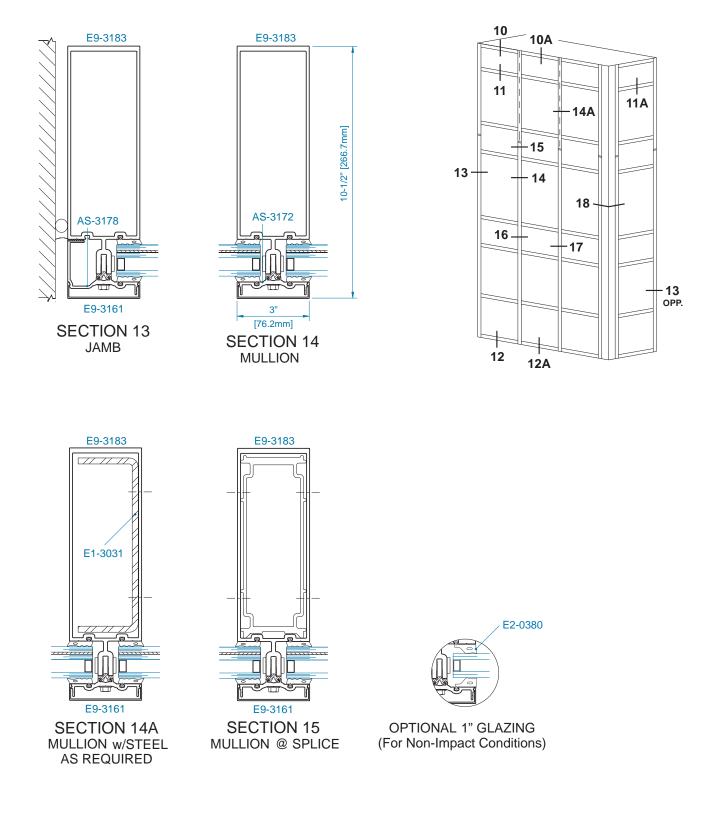
YKK



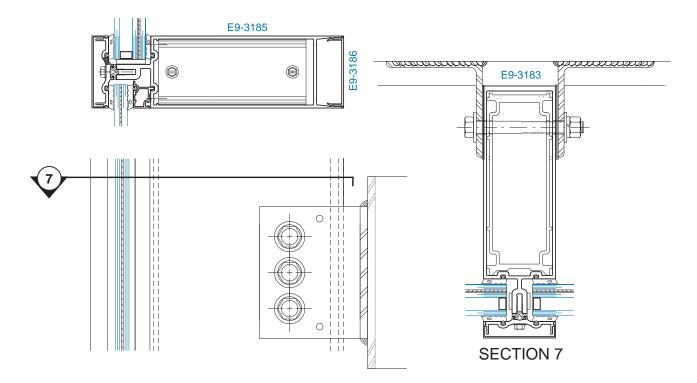

SCALE: 1/4 SIZE 0 3 6

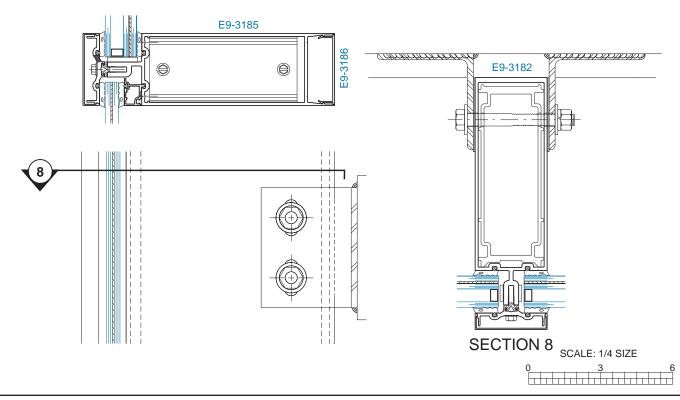


TYPICAL DEADLOAD ANCHOR



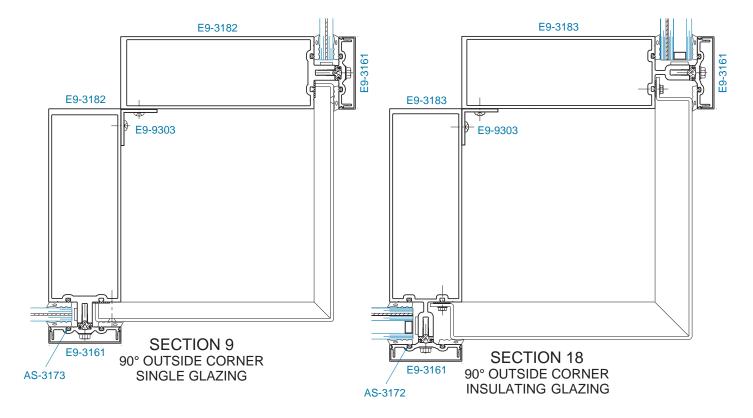
TYPICAL WINDLOAD ANCHOR

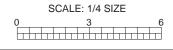


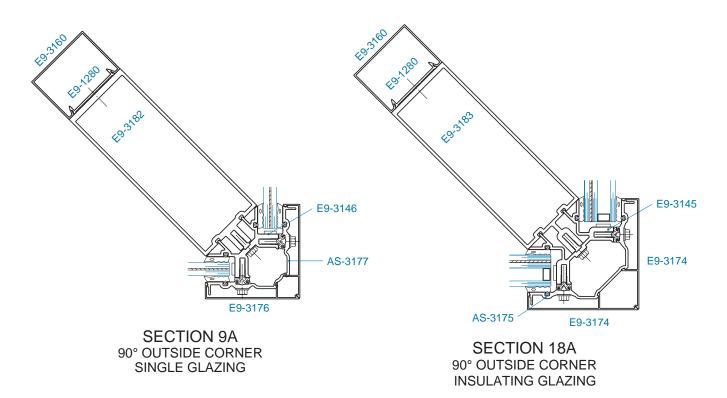


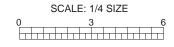
SCALE: 1/4 SIZE

TYPICAL DEADLOAD ANCHOR

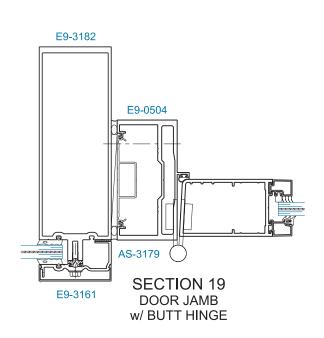


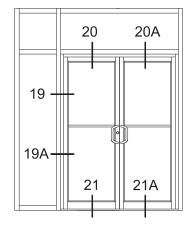

TYPICAL WINDLOAD ANCHOR



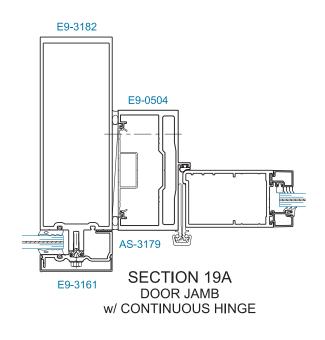

STANDARD 90° CORNERS

OPTIONAL 90° CORNER

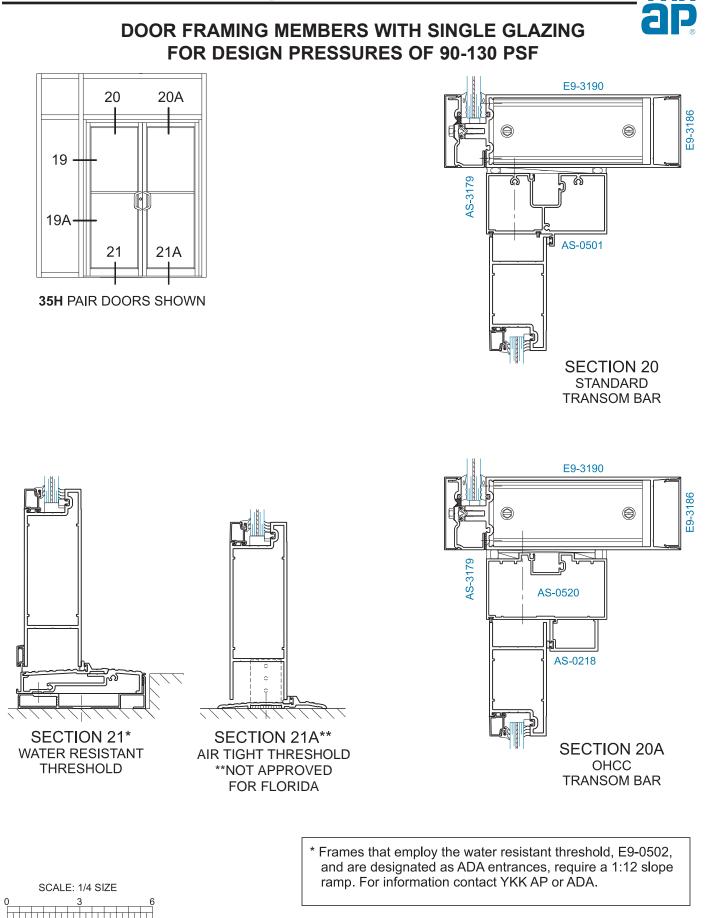




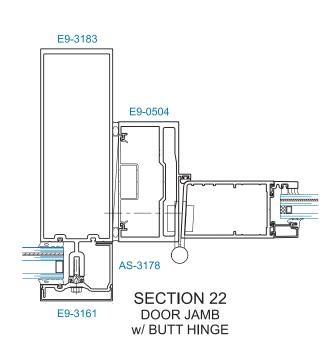
үкк

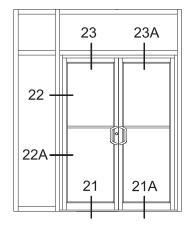


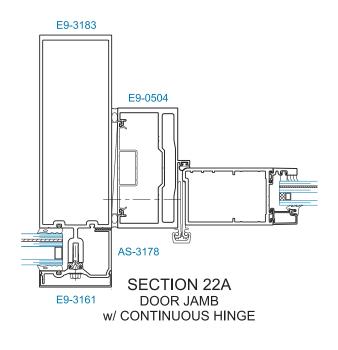
DOOR FRAMING MEMBERS WITH SINGLE GLAZING FOR DESIGN PRESSURES OF 90-130 PSF

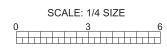


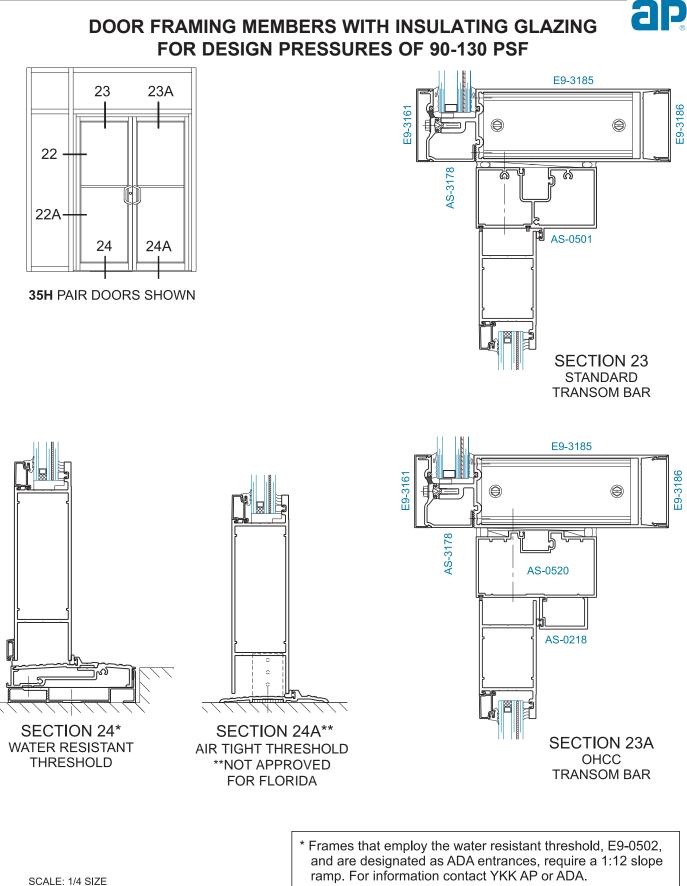
35H PAIR DOORS SHOWN

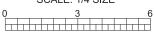







DOOR FRAMING MEMBERS WITH INSULATING GLAZING FOR DESIGN PRESSURES OF 90-130 PSF





35H PAIR DOORS SHOWN

FLORIDA | GEORGIA | TEXAS CORPORATE HEADQUARTERS 6655 Garden Road Riviera Beach, FL 33404 (561)-881-0020 HTLTEST.COM

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 1 of 11

YKK AP AMERICA, INC.

Curtainwall Test Report #: 0231-0807-09

1.0MANUFACTURER'S IDENTIFICATION1.1Name of Applicant:YKK AP AI

YKK AP AMERICA, INC. 7680 The Bluffs, Suite 100 Austell, GA 30168 Voice: (678) 838-6095 Fax: (678) 838-6056 Don Pangburn

1.2 Contact Person:

2.0 LABORATORY IDENTIFICATION

- 2.1 HTL Test Notification:
- 2.2 HTL Lab Certifications:

N/A Miami-Dade County (05-1014.01); Florida Building Code (TST1527); IAS (TL-244); AAMA; WDMA; Keystone Certificate; Texas Department of Insurance

3.0 SCOPE OF WORK

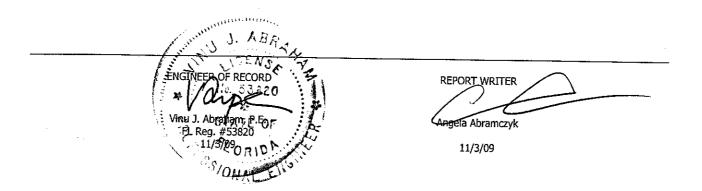
3.1 Introduction

YKK AP AMERICA, INC. retained HTL, LLC to conduct Florida Building Code standard testing on their YHC 300 O.G. Curtainwall system.

3.2 <u>Report Information</u>

Table 3.1 provides the test dates for the mock-up and specimen number.

Table 3.1: Specimen Test Dates						
_Mock-Up	Specimen #	Test Date				
TS1	2	9/29/09 - 10/22/09				


4.0 PRODUCT IDENTIFICATION

4.1 Product Type:

4.2 Model Designation:

4.3 <u>Performance Class</u>:

Curtainwall YHC 300 O.G. +/-55 psf Design Pressure

Sheets

TS1

 $1 - 5^{-1}$

4.4 **Overall Size & Configuration:** Table 4.1 provides the overall size for the mock-up/specimen number. The table also indicates which YKK AP AMERICA, INC. drawing number and sheet to see for the configuration of this mock-up.

Table 4.1: Specimen Overall Size

Mock-Up	Specimen #	Overall Size	Drawing/Sheet #
Elevation TS1 (2)	2	183" (w) x 295-1/2" (h)	ELEV-TS1/TS1
None			

4.5 Number of Operable Panels: 4.6

Drawing:

This test report is incomplete if not accompanied by the YKK AP AMERICA, INC. drawing numbers indicated in Table 4.2. bearing the ink stamp of Hurricane Test Laboratory, LLC.

Table 4.2: Drawing Numbers

Drawing #

ELEV-TS1

DET-TS1

4.7	Sample Source:	

Sample provided by YKK AP AMERICA, INC.

5.0 **PRODUCT DESCRIPTION**

5.1 Frame Construction

The framing members were fabricated using the aluminum extrusions defined in Table 5.1.

Elevation #

TS1 (2)

TS1 (2)

Description	Part #	Overall Cross-Section	Alloy/Temper		
Head & Sill	E9-3105	6.110" × 3.000" × 0.100"	6063-T5		
Intermediate Horizontal (left bay)	E9-3105	6.110" x 3.000" x 0.100"	6063-T5		
Intermediate Horizontal (all other areas)	E9-3106	6.110" × 3.000" × 0.100"	6063-T5		
Mullion	E9-3107	3.000" x 6.120" x 0.100"	6063-T6		
Flush Filler (for E9-3105)	E9-3162	4.890" x 0.331" x 0.079"	6063-T5		

Table 5 1: Aluminum Extrusion Details

Typical Frame Corner Construction 5.1.1

At each corner, the vertical frame member ran through while the horizontal frame member end was square cut, butted and mechanically fastened to the vertical frame member via a 4-1/2" (long) aluminum shear block (Part #E1-3001). At each frame corner, the shear block was attached to the vertical frame member using two (2), 1/4"-20 x 5/8" HWH TCS (Type F). Each horizontal frame member end was attached to the adjacent shear block using two (2), #12 x 1-1/4" FH SMS (Type AB).

5.1.2 Frame Joint Sealant

At each frame joint, the exterior leg of each horizontal frame member was sealed with a bead of Tremco® Spectrem 2® silicone sealant prior to its attachment to the shear block.

ENGINEER OF RECORD

11/3/09

REPORT WRITER 11/3/09

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 3 of 11

5.1.3 End Cap & Anchor Sleeve Construction

There was a mullion end cap (Part # E1-3011) attached to the top and bottom end of each mullion and jamb using one (1), $#14 \times 5/8$ " FH SMS. <u>NOTE</u>: One (1), 3" long anchor sleeve (Part #E1-3006) was inserted into the top and bottom of each mullion end and secured in place using two (2), $#10 \times 5/8$ " PH SMS (Type AB).

5.1.4 Miscellaneous Construction

There was a continuous filler (Part # E9-3162) used at the interior frame head, sill and some intermediate horizontal (see above Table 5.1 "Aluminum Extrusion Details" for where the intermediate horizontals would apply) locations between each mullion.

5.2 Pressure Plate and Snap Cover Assembly

Table 5.2 provides the extrusions used in the pressure plate and snap cover assemblies.

Table 5.2. Flessule Flate and Shap Cover Details				
Description	Part #	Overall Cross-Section	Alloy/Temper	
Perimeter Pressure Plate	E9-3179	2.955" x 1.489" x 0.100"	6063-T5	
Intermediate Horizontal/Vertical Pressure Plate	E9-3173	2.910" x 0.566" x 0.115"	6063-T5	
Snap Cover	E9-3161	3.000" x 0.687" x 0.056"	6063-T5	

Table 5.2: Pressure Plate and Snap Cover Details

5.2.1 Pressure Plates

Each continuous pressure plate (Part # E9-3179 or E9-3173) was square cut at each end and secured to the adjacent frame member using a single row of $\frac{1}{4}$ "-20 x 1-1/4" HWH MS spaced 1-1/2" from each end and at 9" on center thereafter. <u>NOTE:</u> A continuous EPDM thermal isolator (Part # E2-0103) was applied to the centerline of each pressure plate prior to its installation. A continuous strip of 0.125" x 0.688" sponge isolator tape (Part # E2-0356) was applied to the perimeter leg of each perimeter pressure plate prior to its installation. The "AS" part #s called out in the details are the assembled pressure plates with this EPDM thermal isolator and (if applicable) the sponge isolator tape applied to the perimeter pressure plate. YKK AP AMERICA, INC. does not produce separate drawings for "AS" part numbers.

5.2.2 Snap Covers

At the exterior of all pressure plates, the snap covers (Part # E9-3161) were snap fit to the pressure plate.

5.3 Splice Construction

The vertical members used in this test specimen consisted of two separate sections, i.e., a 114" long lower section and a 181" long upper section. The lower and upper sections of the vertical members were each spliced together using a 6" long splice sleeve (Part # E1-3005). At each splice location, first a #8-32 x $\frac{1}{2}$ " FH TCS (Type F) was secured to the lower section, then the splice sleeve was inserted into the lower section and allowed to rest on top of this fastener. Finally, two (2), #12 x $\frac{3}{4}$ " FH SMS (Type AB) were applied to each side of the vertical, passed through the lower section and threaded into the splice sleeve.

REPORT WRITER 11/3/09

5.4 Vertical Reinforcement

The vertical members were reinforced at the mid-point of the dead load anchor locations using the part defined in Table 5.3.

Table 5.3: Vertical Reinforcement Details				
Description Part # Overall Cross-Section Material				
Vertical Reinforcement Sleeve	E1-3007	2.734" x 4.860" x 0.125"	6063-T5	

alla montratiation et c

Vertical Reinforcement Sleeve 5.4.1

Each 29" long vertical reinforcement sleeve (Part # E1-3007) was attached to the adjacent vertical member via the dead load anchor fasteners.

5.5 Glazing Details

- Glass Type C consisted of 9/16" thick (nominal) laminated glass consisting of the following 5.5.1 components:
 - 1/4" heat strengthened glass
 - 0.060" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
 - 1/4" heat strengthened glass

Glass Type G consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.060" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- 1/4" heat strengthened glass

Glass Type I consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.035" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- 14" heat strengthened glass

5.5.2 Glazing Method

The glass lites used in this test specimen were exterior glazed on both the interior and the exterior side using strips of EPDM gasket (Part # E2-0379).

5.5.3 Daylight Opening and Glass Bite

9

The glass types for each lite were per the YKK AP AMERICA, INC. drawing numbers and sheets indicated in Table 5.4, without modifications.

15/16"

		Table 5.4: Daylight Op	ening and Glass E	Bite Details	
Elevation #	Qty.	Daylight Opening	Glass Bite	Drawing #	Sheet #

- 5.6 Weather Stripping None used

TS1 (2)

ENGINEER OF RECORD

57" (w) x 94-1/2" (h)

REPORT WRITER 11/3/09

TS1

ELEV-TS1

11/3/09

5.7 <u>Hardware</u>

None used

5.8 Weep Holes, Water Diverters, and Covers

Table 5.5 provides the weep holes used in this test specimen.

Table 5.5: Weep Hole Details

Qty.	Location	Description
2/snap cover	At the third points of each exterior horizontal snap cover	5/16" diameter weep hole
3/member	3" from each end and at the centerline of each horizontal frame	5/16" diameter weep hole
	member	

5.9 Sealants Used

Table 5.6 provides a summary of the sealants used in this test specimen.

Elevation # Location Sealant Decription				
TS1 (2) – head & sill	Perimeter Sealant	Tremco® Spectrem 2® silicone sealant		
TS1 (2) – jambs Perimeter Sealant Silicone sheet		Silicone sheet		
TS1 (2)	51 (2) Frame Joint Sealant Tremco® Spectrem 2® silicone sealant			
N/A	Glazing Sealant	None used		

Table 5.6: Sealant Details

6.0 PRODUCT INSTALLATION

Table 6.1 provides a detailed summary of the product installation into the steel opening. The rough opening allowed for a 2" shim space at the jambs. The rough opening allowed for a 1" shim space in all other areas.

Elevation		Description	Installation		
#	Location	Description	Test Opening	Frame member	
TS1 (2)	Jambs	"F" anchor (Part # E1-3004)	Two (2), 3/8-16 x 1" HH bolts	Slide in	
TS1 (2)	Intermediate Mullions	"T" anchor (Part # E1-3003)	Two (2), 3/8-16 x 1" HH bolts	Slide in	
TS1 (2)	Jambs @ 150" from sill	Dead load anchor (Part # E1-1205)	3/16" long fillet weld along the top and bottom edges of the angle leg that was against the opening	Two (2), 1/2"-13 x 4-1/2" Grade 5 bolts w/matching nuts and washers	
TS1 (2)	Intermediate Mullions @ 150" from sill	Two (2) dead load anchors (Part # E1-1205)	3/16" long fillet weld along the top and bottom edges of the angle legs that were against the opening	Two (2), 1/2"-13 x 4- 1/2" Grade 5 bolts w/matching nuts and washers	

<u>NOTE</u>: Each dead load anchor was installed with a nylon slip pad (Part # E3-0103) between it and the steel substrate. At all dead load anchor locations the bolts pass through the reinforcement sleeve.

ENGINEER OF RECORD 11/3/09

REPORT WRITE 11/3/09

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 6 of 11

7.0 TEST SEQUENCE

Table 7.1 provides a summary of the test sequence for the specimen tested.

Table 7.1: Test Sequence					
Tes	Test Specimen TS1(2)				
1.	Air Infiltration Test				
2.	Water Infiltration Test				
3.	Dynamic Water Infiltration Test				
4.	Interstory Displacement				
5.	Air Infiltration Test				
6.	Water Infiltration Test				
7.	Water Infiltration Test				
8.	Positive Pre-Load				
9.	Positive Design Load				
10.	Negative Pre-Load				
11.	Negative Design Load				
12.	Water Infiltration Test				
13.	Positive Overload				
14.	Negative Overload				

8.0 TEST RESULTS

8.1

Air Infiltration Test

8.1.1 Results – Air Infiltration Test

Table 8.1 provides the test results of the air infiltration test.

Specimen	Test Pressure	Measured	Allowed	
#	(psf)	(cfm/ft ²)	(cfm/ft ²)	
TS1(2)	+1.57	0.016	N/A	
	+6.24	0.014	0.06	
	+1.57	0.000	N/A	
	+6.24	0.001	0.06	

Table 8.1: Air Infiltration Test Results

8.1.2 Conclusion – Air Infiltration Test

HTL observed a measured air infiltration less than the allowed air infiltration through the test specimen; as such, this test specimen satisfies the requirements of ASTM E330.

ENGINEER OF RECORD 11/3/09

REPORT WRITER 11/3/09

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 7 of 11

- 8.2 <u>Water Infiltration Test</u>
 - 8.2.1 <u>Results Water Infiltration Test</u>

Table 8.2 provides the results for the water infiltration test conducted per the requirements of ASTM E331 and TAS 202.

Specimen #	Test Pressure (psf)	Spray Rate (gph/ft ²)	Test Duration (minutes)	Conclusion		
	20	5.0	15	No Entry		
TC+(2)	15	5.0	15	No Entry		
TS1(2)	20	5.0	15	No Entry		
	20	5.0	15	No Entry		

Table 8.2: Water Infiltration Test Results

8.2.2 <u>Conclusion – Water Infiltration Test</u> HTL observed zero (0) water infiltration through the test specimen; as such, this test specimen satisfies the requirements of ASTM E331.

8.3 Dynamic Water Infiltration Test

8.3.1 <u>Results – Dynamic Water Infiltration Test</u> Table 8.3 provides the results for the dynamic water infiltration test conducted per the requirements of AAMA 501.1.

Table 8.3: Dynamic Water Infiltration Test Results
--

Specimen #	Test Pressure (psf)	Measured	Allowed
TS1(2)	20	No Entry	No Entry

8.3.2 Conclusion – Dynamic Water Infiltration Test

HTL observed zero (0) water infiltration through the test specimen; as such, this test specimen satisfies the requirements of AAMA 501.1.

8.4 Interstory Displacement Test

8.4.1 <u>Results – Interstory Displacement Test</u>

Table 8.4 provides the results for the interstory displacement test conducted per the requirements of AAMA 501.4.

	Table 8.4:	Interstory	Displacement Test Results
--	------------	------------	---------------------------

Specimen #	Displacement	# of Cycles	Conclusion
TS1(2)	+/-1.5″	3	PASS

8.4.2 Conclusion – Interstory Displacement Test

HTL observed no visible damage, no glass breakage/fallout, no wall components detached, and trim was not visibly disengaged; post displacement performance remained within specified

ENGINEER OF RECORD 11/3/09

REPORT WRITE 11/3/09

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 8 of 11

allowable limits without adjustments or repair; as such, this test specimen satisfies the requirements of AAMA 501.4.

8.5 Uniform Static Load Test

8.5.1 Deflection Gage Locations

Figure 8.1 shows the deflection gage locations for the uniform static load test.

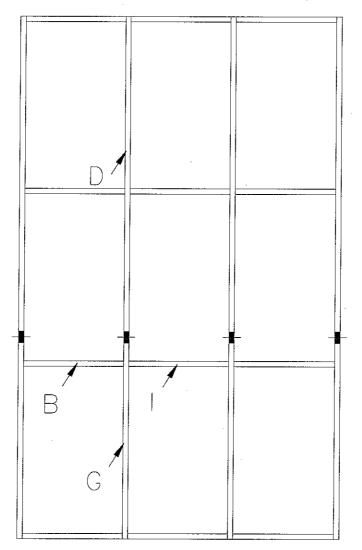


Figure 8.1: Deflection Gage Locations Uniform Static Load Test

ENGINEER OF RECORD REPORT WRITER 11/3/09 11/3/09

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 9 of 11

8.5.2 Positive Load Test Results

Table 8.5 provides the positive uniform static load test results for the deflection gage locations shown in Section 8.5.1. The deflection reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

<u> </u>	Table 8.5. Positive Uniform Static Load Test Results						
Specimen	Gage	Load	Deflecti	Deflection (in.)		Permanent Set (in.)	
#	Location	(psf)	Measured	Allowed	Measured	Allowed	
		+41.25	0.24	0.33	0.02		
	В	+55.00	0.29	0.33	0.03	0.120	
		+82.50	0.04	N/A	0.00		
		+41.25	0.30	0.81	0.01		
	D	+55.00	0.40	0.81	0.02	0.29	
TC1(2)		+82.50	0.62	N/A	0.03		
TS1(2)		+41.25	0.47	0.83	0.03		
	G	+55.00	0.62	0.83	0.04	0.30	
		+82.50	0.93	N/A	0.05		
		+41.25	0.24	0.33	0.02		
	Ι	+55.00	0.30	0.33	0.03	0.12	
		+82.50	0.05	N/A	0.00		

Table 8.5: Positive Uniform Static Load Test Results

8.5.3 <u>Negative Uniform Static Load Test Results</u>

Table 8.6 provides the negative uniform static load test results for the locations presented in Section 8.5.1.

Specimen	Gage	Load	Deflecti		Permanen	t Set (in.)
#	Location	(psf)	Measured	Allowed	Measured	Allowed
		-41.25	0.09	0.33	0.08	
	В	-55.00	0.11	0.33	0.08	0.12
		-82.50	0.05	N/A	0.01	
		-41.25	0.27	0.81	0.01	
	D	-55.00	0.38	0.81	0.02	0.29
TS1(2)		-82.50	0.59	N/A	0.03	
151(2)		-41.25	0.45	0.83	0.05	
	G	-55.00	0.62	0.83	0.07	0.30
		-82.50	0.89	N/A	0.05	
		-41.25	0.03	0.33	0.00	
	Ι	-55.00	0.04	0.33	0.00	0.12
		-82.50	0.06	N/A	0.01	

Table 8.6: Negative Uniform Static Load Test Results

8.5.4 Conclusion – Uniform Static Load Test

HTL observed no signs of failure in any area of this test specimen during the uniform static load test. In addition, this specimen met the deflection and permanent set requirements; as such, this test specimen satisfies the uniform static load test requirements of ASTM E330.

ENGINEER OF RECORD 11/3/09

REPORT 11/3/09

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 10 of 11

9.0 SUMMARY

Table 9.1 provides a summary of the test results for YKK AP America's YHC 300.

	Table 9.1: Summary of Test Results					
Specimen #	Test Method	Test Conditions	Test Conclusion			
TS1(2)	Air Infiltration Test (ASTM E283)	1.57 & 6.24 psf	PASS			
TS1(2)	Water Infiltration Test (ASTM E331)	20 psf	PASS			
TS1(2)	Dynamic Water Infiltration Test (AAMA 501.1)	20 psf	PASS			
TS1(2)	Interstory Displacement Test (AAMA 501.4)	+/-1.5″	PASS (Seismic Use Group III)			
TS1(2)	Air Infiltration Test (ASTM E283)	1.57 & 6.24 psf	PASS			
TS1(2)	Water Infiltration Test (ASTM E331)	15 psf	PASS			
TS1(2)	Water Infiltration Test (ASTM E331)	20 psf	PASS			
TS1(2)	Water Infiltration Test (ASTM E331)	20 psf	PASS			
TS1(2)	Static Load Test (ASTM E330)	+/- 55 psf Design Pressure	PASS			

· - · -

10.0 CERTIFICATION AND DISCLAIMER STATEMENT

All tests performed on this test specimen were conducted in accordance with the specifications of the applicable codes, standards and test methods listed below by HTL, LLC. HTL, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested at HTL. HTL is not owned, operated or controlled by any company manufacturing or distributing products it tests. This report is only intended for the use of the entity named in Section 1.0 of this report. Detailed assembly drawings showing wall thickness of all members, corner construction and hardware applications are on file and have been compared to the test specimen submitted. A copy of this test report along with representative sections of the test specimen will be retained at HTL for a period of three (3) years. All results obtained apply only to the specimen tested and they do indicate compliance with the performance requirements of the test methods and specifications listed in the following section.

ENGINEER OF RECORD 11/3/09

REPORT WRITER 14710

Test Report #: 0231-0807-09 Specimen #: TS1(2) Page: 11 of 11

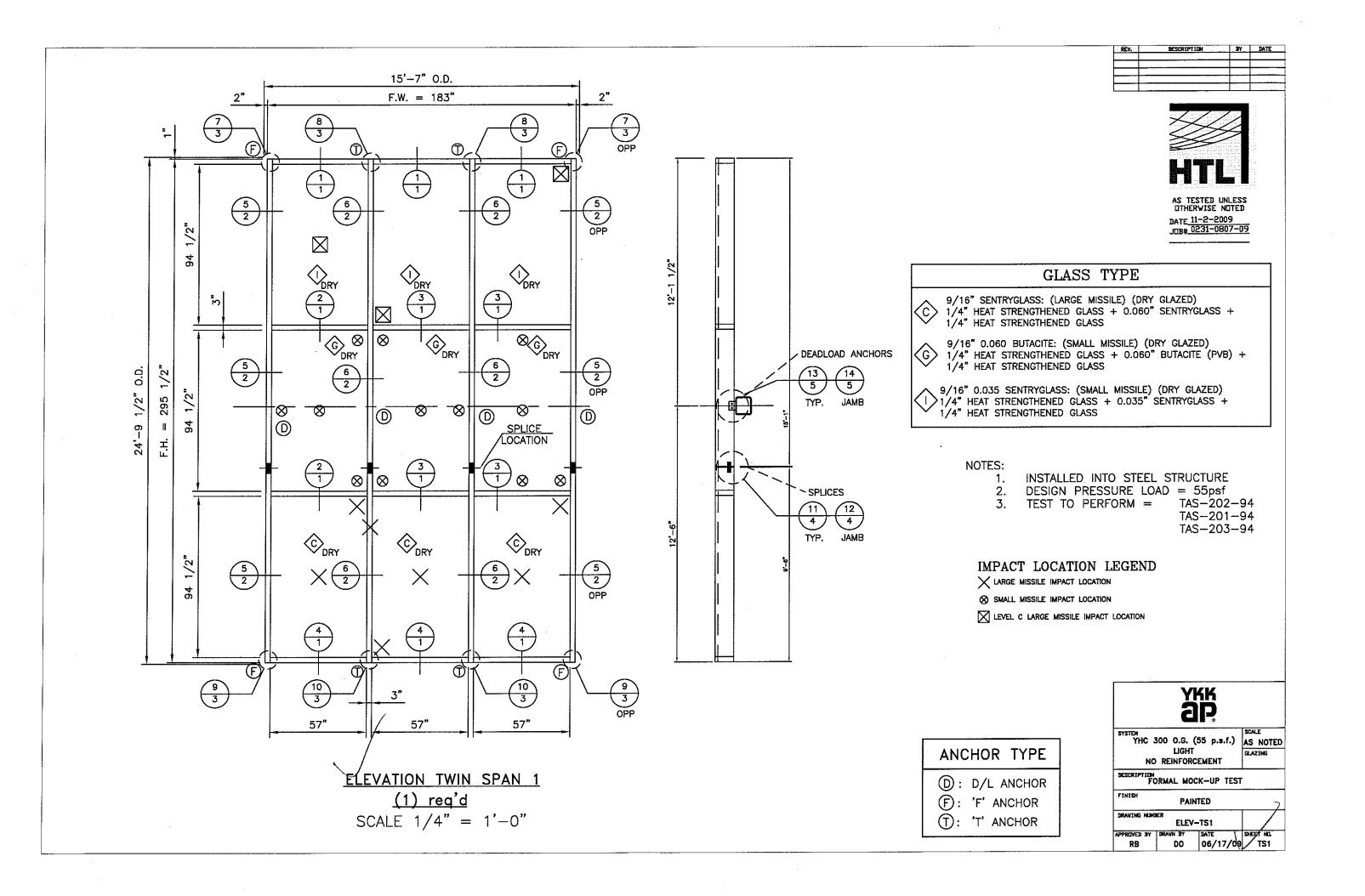
11.0 APPLICABLE CODES, STANDARDS, AND TEST METHODS

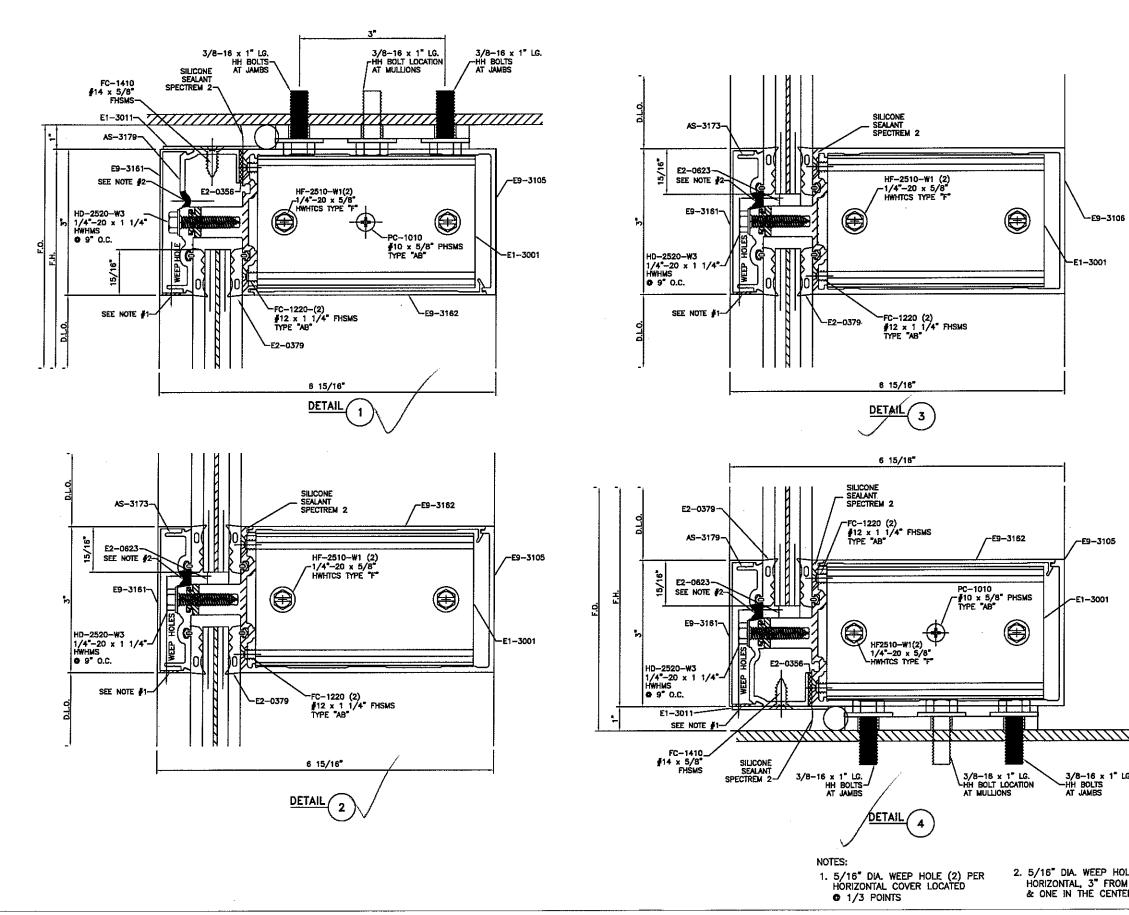
ASTM E283-04 – Standard Test Method for Determining Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E330-02 – Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E331-00 – Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

AAMA 501.1-05 – Standard Test Method for Water Penetration of Windows, Curtain Walls and Doors Using Dynamic Pressure

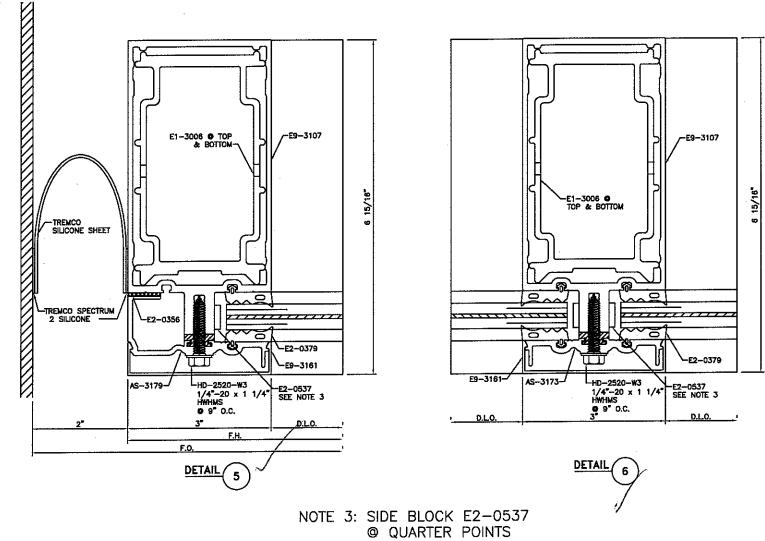

AAMA 501.4-00 – Recommended Static Test Method for Evaluating Curtain Wall and Storefront Systems Subjected to Seismic and Wind Induced Interstory Drifts


12.0 WITNESSES (ALL OR PARTIAL)

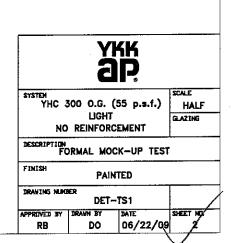
Vinu J. Abraham, P.E.	CEO	HTL, LLC
Kristin Norville, E.I.	Assistant Operations Manager	HTL, LLC
John Spallina	Technician	HTL, LLC
Howard Bennett	Technician	HTL, LLC
Veron Wickham	Technician	HTL, LLC
Martin Gibbard	Technician	HTL, LLC
Alan Rule	Technician	HTL, LLC
Freddie Henderson	Technician	HTL, LLC

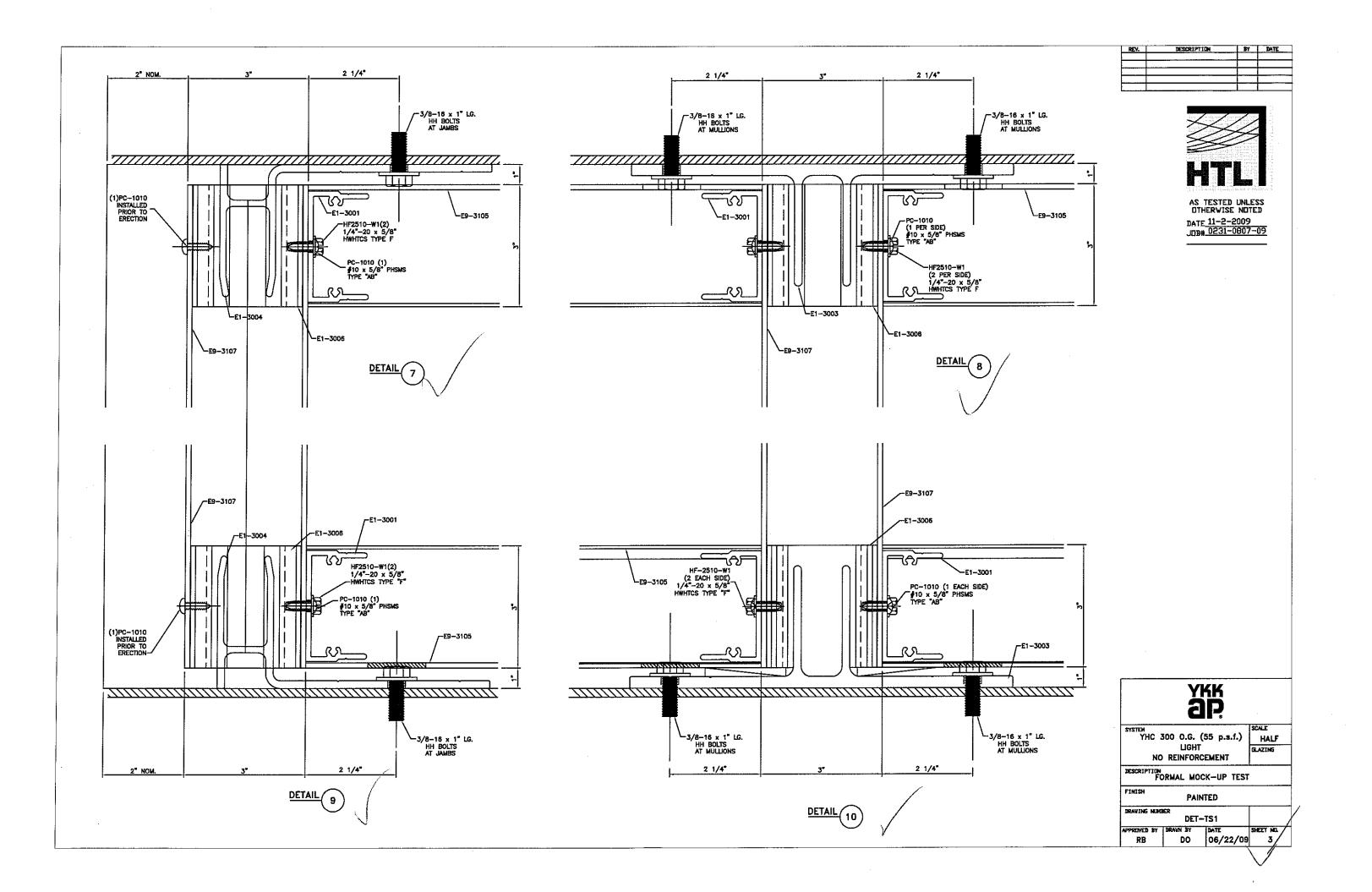
ENGINEER OF RECORD 11/3/09

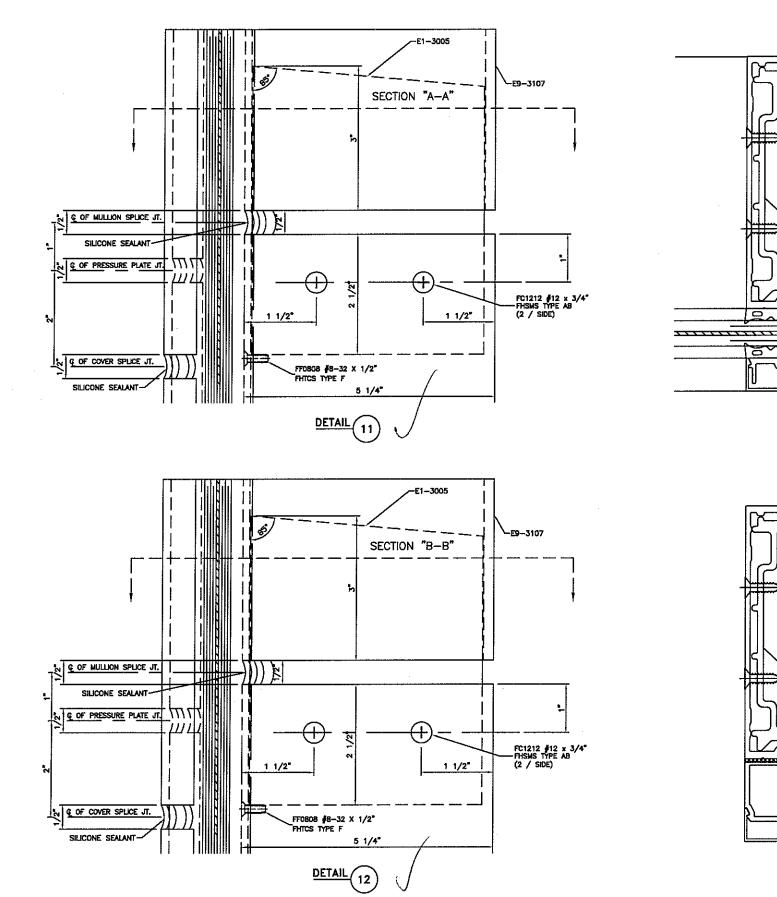
REPORT WRITER 11/3/09

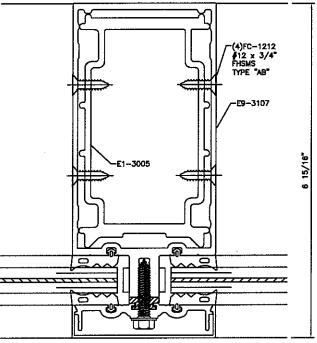


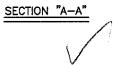
REV.	DESCRIPTION	BY	DATE
		[

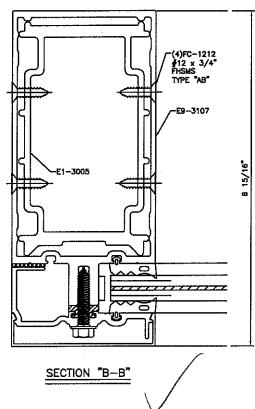


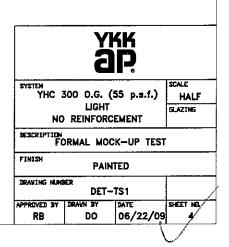

<i></i>	ар				
3 × 1° LG. TS BS	SYSTEM YHC		(55 p.s.f.)	scale HALF	
BS	NC	LIGHT NO REINFORCEMENT			
	DESCRIPTION	DESCRIPTION FORMAL MOCK-UP TEST			
	FINISH	PA	NTED		
EP HOLE (3) PER	DRAVING NUH		-TS1		
FROM EACH END, CENTER.	APPROVED BY RB	DRAVN BY DO	DATE 06/22/09	SHEET NO	

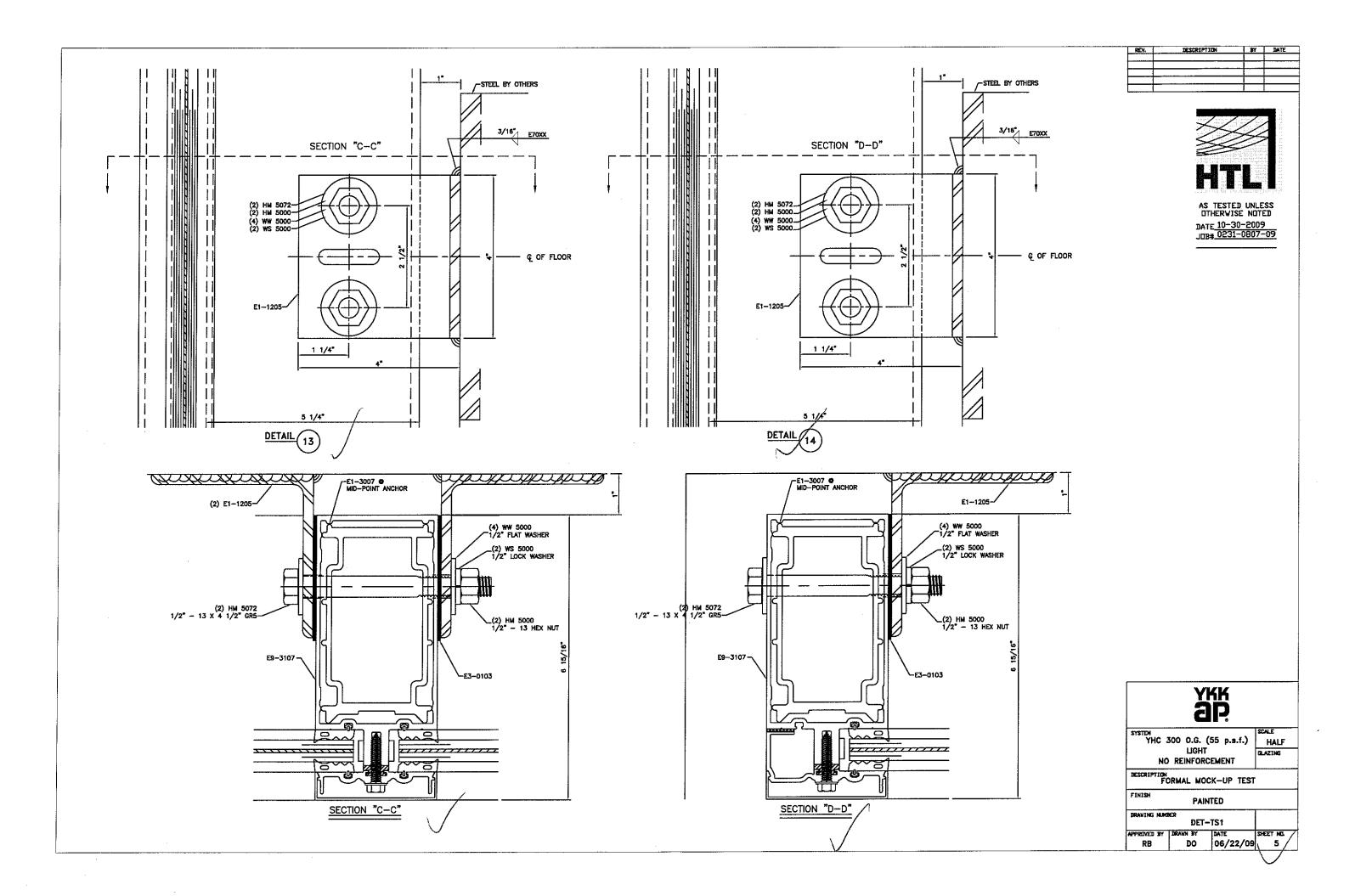



REV.	DESCRIPTION	BY	DATE
·			
		_	









REV.	DESCRIPTION	BY	DATE

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 1 of 21

YKK AP AMERICA, INC.

Curtainwall

Test Report #: 0231-0807-09 & G231-1001-09

1.0 MANUFACTURER'S IDENTIFICATION

1.1	Name of Applicant:	YKK AP AMERICA, INC.
		7680 The Bluffs, Suite 100
		Austell, GA 30168
		Voice: (678) 838-6095
		Fax: (678) 838-6056
1.2	Contact Person:	Don Pangburn
		-

2.0 LABORATORY IDENTIFICATION 2.1 HTL Test Notification: HTL09061 & HTLGA0928 2.2 HTL Lab Certifications: Miami-Dade County (05-1014.01); Florida Building Code (TST1527); IAS (TL-244); AAMA; WDMA; Keystone Certificate; Texas Department of Insurance

3.0 SCOPE OF WORK

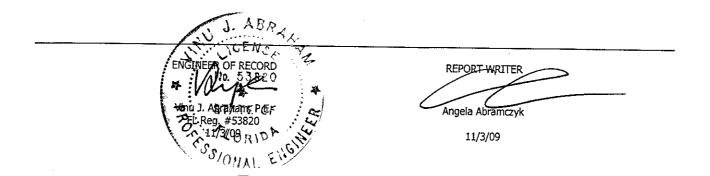
3.1 Introduction

YKK AP AMERICA, INC. retained HTL, LLC to conduct Florida Building Code standard testing on their YHC 300 O.G. Curtainwall system.

3.2 <u>Report Information</u>

Table 3.1 provides the test dates for each mock-up and specimen number.

Table 3.1: Specimen Test Dates


Mock-Up	Specimen #	Test Date
TS1	2	9/29/09 - 10/22/09
2A	2A	10/22/09 - 10/23/09

4.0 PRODUCT IDENTIFICATION

4.1 <u>Product Type:</u>

- 4.2 <u>Model Designation</u>:
- 4.3 <u>Performance Class</u>:

Curtainwall YHC 300 O.G. +/-55 psf Design Pressure

4.4 **Overall Size & Configuration:** Table 4.1 provides the overall size for each mock-up/specimen number. The table also indicates which YKK AP AMERICA, INC. drawing number and sheet to see for the configuration of each mock-up.

Table 4.1: Specimen Overall Size

Mock-Up	Specimen #	Overall Size	Drawing/Sheet #
Elevation TS1 (2)	2	183" (w) x 295-1/2" (h)	ELEV-TS1/TS1
Elevation 2A	2A	183" (w) x 126" (h)	ELEV-2A/2A
Niene			

4.5 Number of Operable Panels:

4.6 Drawing: None

This test report is incomplete if not accompanied by the YKK AP AMERICA, INC. drawing numbers indicated in Table 4.2. bearing the ink stamp of Hurricane Test Laboratory, LLC.

Table 4.2: Drawing Numbers

	Table HELDraming Hann	3010
Elevation #	Drawing #	Sheets
TS1 (2)	ELEV-TS1	TS1
TS1 (2)	DET-TS1	1 - 5
2A	ELEV-2A	2A
2A	DET-2A	1-4
- I II		

4.7 Sample Source:

Samples provided by YKK AP AMERICA, INC.

5.0 **PRODUCT DESCRIPTION**

5.1 Frame Construction

The framing members were fabricated using the aluminum extrusions defined in Table 5.1.

Table 5.1: Aluminum Extrusion Details				
Description	Part #	Overall Cross-Section	Alloy/Temper	
Elev	ation TS1 (2	2)		
Head & Sill	E9-3105	6.110" x 3.000" x 0.100"	6063-T5	
Intermediate Horizontal (left bay)	E9-3105	6.110" x 3.000" x 0.100"	6063-T5	
Intermediate Horizontal (all other areas)	E9-3106	6.110" × 3.000" × 0.100"	6063-T5	
Mullion	E9-3107	3.000" x 6.120" x 0.100"	6063-T6	
Flush Filler (for E9-3105)	E9-3162	4.890" x 0.331" x 0.079"	6063-T5	
E	levation 2A			
Head & Sill	E9-3104	6.678" x 3.000" x 0.100"	6063-T5	
Intermediate Horizontal (left bay)	E9-3104	6.678" x 3.000" x 0.100"	6063-T5	
Intermediate Horizontal (all other areas)	E9-3102	6.678" x 3.000" x 0.100"	6063-T5	
Mullion	E9-3111	3.000" x 6.688" x 0.100"	6063-T6	
Flush Filler (for E9-3104)	E9-3162	4.890" x 0.331" x 0.079"	6063-T5	

11/3/09

REPORT WRITER 11/3/09

5.1.1 <u>Typical Frame Corner Construction</u>

At each corner, the vertical frame member ran through while the horizontal frame member end was square cut, butted and mechanically fastened to the vertical frame member via a 4-1/2'' (long) aluminum shear block (Part #E1-3001). At each frame corner, the shear block was attached to the vertical frame member using two (2), $\frac{1}{4}''-20 \times \frac{5}{8}''$ HWH TCS (Type F). Each horizontal frame member end was attached to the adjacent shear block using two (2), $\frac{#12 \times 1-1}{4''}$ FH SMS (Type AB).

5.1.2 Frame Joint Sealant

At each frame joint, the exterior leg of each horizontal frame member was sealed with a bead of Tremco® Spectrem 2® silicone sealant prior to its attachment to the shear block.

5.1.3 End Cap & Anchor Sleeve Construction

There was a multion end cap (Part # E1-3011 for Elevation TS1 (2) & E1-3010 for Elevation 2A) attached to the top and bottom end of each multion and jamb using one (1), $#14 \times 5/8"$ FH SMS. <u>NOTE</u>: One (1), 3" long anchor sleeve (Part #E1-3006) was inserted into the top and bottom of each multion end and secured in place using two (2), $#10 \times 5/8"$ PH SMS (Type AB).

5.1.4 Miscellaneous Construction

There was a continuous filler (Part # E9-3162) used at the interior frame head, sill and some intermediate horizontal (see above Table 5.1 "Aluminum Extrusion Details" for where the intermediate horizontals would apply) locations between each mullion.

5.2 <u>Pressure Plate and Snap Cover Assembly</u>

Table 5.2 provides the extrusions used in the pressure plate and snap cover assemblies.

Description	Part #	Overall Cross-Section	Alloy/Temper
Ele	vation TS1 (2	2)	
Perimeter Pressure Plate	E9-3179	2.955" x 1.489" x 0.100"	6063-T5
Intermediate Horizontal/Vertical Pressure Plate	E9-3173	2.910" x 0.566" x 0.115"	6063-T5
Snap Cover	E9-3161	3.000" x 0.687" x 0.056"	6063-T5
	Elevation 2A		
Perimeter Pressure Plate	E9-3178	2.955" x 1.976" x 0.100"	6063-T5
Intermediate Horizontal/Vertical Pressure Plate	E9-3172	2.910″ x 0.743″ x 0.115″	6063-T5
Snap Cover	E9-3161	3.000" x 0.687" x 0.056"	6063-T5

Table 5.2: Pressure Plate and Snap Cover Details

5.2.1 Pressure Plates

Each continuous pressure plate (Part # E9-3178, E9-3179, E9-3172 or E9-3173) was square cut at each end and secured to the adjacent frame member using a single row of $\frac{1}{4''-20 \times 1-1}/4''$ HWH MS spaced 1-1/2" from each end and at 9" on center thereafter. <u>NOTE</u>: A continuous EPDM thermal isolator (Part # E2-0103) was applied to the centerline of each pressure plate prior to its installation. A continuous strip of 0.125" x 0.688" sponge isolator tape (Part # E2-0356) was applied to the perimeter leg of each perimeter pressure plate prior to its installation. The

11/3/09

REPORT WRITER

173/09

"AS" part #s called out in the details are the assembled pressure plates with this EPDM thermal isolator and (if applicable) the sponge isolator tape applied to the perimeter pressure plate. YKK AP AMERICA, INC. does not produce separate drawings for "AS" part numbers.

5.2.2 Snap Covers

At the exterior of all pressure plates, the snap covers (Part # E9-3161) were snap fit to the pressure plate.

5.3 Splice Construction (Elevation TS1 [2])

The vertical members used in this test specimen consisted of two separate sections, i.e., a 114" long lower section and a 181" long upper section. The lower and upper sections of the vertical members were each spliced together using a 6" long splice sleeve (Part # E1-3005). At each splice location, first a #8-32 x $\frac{1}{2}$ " FH TCS (Type F) was secured to the lower section, then the splice sleeve was inserted into the lower section and allowed to rest on top of this fastener. Finally, two (2), #12 x $\frac{3}{4}$ " FH SMS (Type AB) were applied to each side of the vertical, passed through the lower section and threaded into the splice sleeve.

5.4 <u>Vertical Reinforcement (Elevation TS1 [2])</u>

The vertical members were reinforced at the mid-point of the dead load anchor locations using the part defined in Table 5.3.

Table 5.3: Vertical Reinforcement Details

Description	Part #	Overall Cross-Section	Material	
Vertical Reinforcement Sleeve	E1-3007	2.734" x 4.860" x 0.125"	6063-T5	

5.4.1 <u>Vertical Reinforcement Sleeve</u>

Each 29" long vertical reinforcement sleeve (Part # E1-3007) was attached to the adjacent vertical member via the dead load anchor fasteners.

5.5 Glazing Details

5.5.1 Glass Type C consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.060" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- 1/4" heat strengthened glass

Glass Type G consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.060" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- 1/4" heat strengthened glass

Glass Type I consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.035" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)

1/4" heat strengthened glass

ENGINEER OF RECORD

11/3/09

REPORT WRITER

11/3/09

Glass Type CI consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- 1/4" tempered glass
- 1/2" air space
- 1/4" heat strengthened glass
 - 0.060" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- ¼" heat strengthened glass

Glass Type GI consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- 1/4" tempered glass
- 1/2" air space
- ¼" heat strengthened glass
- 0.060" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- ¼" heat strengthened glass

Glass Type II consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- 1/4" tempered glass
- 1/2" air space
- 1/4" heat strengthened glass
- 0.035" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- 1/4" heat strengthened glass

5.5.2 <u>Glazing Method</u>

The glass lites used in these test specimens were exterior glazed on both the interior and the exterior side using strips of EPDM gasket (Part # E2-0379).

5.5.3 Daylight Opening and Glass Bite

The glass types for each lite were per the YKK AP AMERICA, INC. drawing numbers and sheets indicated in Table 5.4, without modifications.

Elevation #	Qty.	Daylight Opening	Glass Bite	Drawing #	Sheet #
TS1 (2)	9	57" (w) x 94-1/2" (h)	15/16″	ELEV-TS1	TS1
2A	3	57" (w) x 22-1/2" (h)	15/16″	ELEV-2A	2A
2A	3	57" (w) x 94-1/2" (h)	15/16″	ELEV-2A	2A

Table 5.4: Daylight Opening and Glass Bite Details

5.6 <u>Weather Stripping</u>

None used

5.7 <u>Hardware</u> None used

ENGINEER OF RECORD

REPORT WRITER 11/3/09

5.8 Weep Holes, Water Diverters, and Covers

Table 5.5 provides the weep holes used in these test specimens.

Table 5.5: Weep Hole Details

Qty.	Location	Description
2/snap cover	At the third points of each exterior horizontal snap cover	5/16" diameter weep hole
3/member	3" from each end and at the centerline of each horizontal frame	5/16" diameter weep hole
	member	

5.9 Sealants Used

Table 5.6 provides a summary of the sealants used in each test specimen.

Elevation #	Location	Sealant Description		
TS1 (2) – head & sill	Perimeter Sealant	Tremco® Spectrem 2® silicone sealant		
TS1 (2) – jambs	Perimeter Sealant	Silicone sheet		
2A	Perimeter Sealant	Tremco® Spectrem 2® silicone sealant		
TS1 (2) & 2A	Frame Joint Sealant	Tremco® Spectrem 2® silicone sealant		
N/A	Glazing Sealant	None used		

Table 5.6: Sealant Details

6.0 PRODUCT INSTALLATION

Table 6.1 provides a detailed summary of the product installation into the steel opening. The rough opening allowed for a 2'' shim space at the jambs of Elevation TS1 (2). The rough opening allowed for a 1'' shim space in all other areas.

Elevation	Leather	Description	Installatior	ו
#	Location	Description	Test Opening	Frame member
TS1 (2)	Jambs	"F" anchor (Part # E1-3004)	Two (2), 3/8-16 x 1" HH bolts	Slide in
TS1 (2)	Intermediate Mullions	"T" anchor (Part # E1-3003)	Two (2), 3/8-16 x 1" HH bolts	Slide in
TS1 (2)	Jambs @ 150" from sill	Dead load anchor (Part # E1-1205)	3/16" long fillet weld along the top and bottom edges of the angle leg that was against the opening	Two (2), 1/2"-13 x 4-1/2" Grade 5 bolts w/matching nuts and washers
TS1 (2)	Intermediate Mullions @ 150" from sill	Two (2) dead load anchors (Part # E1-1205)	3/16" long fillet weld along the top and bottom edges of the angle legs that were against the opening	Two (2), 1/2"-13 x 4- 1/2" Grade 5 bolts w/matching nuts and washers
2A	Jambs	"F" anchor (Part # E1-3004)	Two (2), 3/8-16 x 1" HH bolts	Slide in
2A	Intermediate Mullions	"T" anchor (Part # E1-3003)	Two (2), 3/8-16 x 1" HH bolts	Slide in

Table 6.1: Product Installation Details

<u>NOTE:</u> Each dead load anchor was installed with a nylon slip pad (Part # E3-0103) between it and the steel substrate. At all dead load anchor locations the bolts pass through the reinforcement sleeve.

ENGINEER OF RECORD

11/3/09

REPORT WRITER 11/3/09

7.0 **TEST SEQUENCE**

Table 7.1 provides a summary of the test sequence for each test specimen tested.

	Table 7.1: Test Sequence									
Tes	t Specimen TS1(2)	Tes	st Specimen 2A							
1.	Air Infiltration Test	1.	Positive Pre-Load							
2.	Positive Pre-Load	2.	Positive Design Load							
3.	Positive Design Load	3.	Positive Overload							
4.	Negative Pre-Load	4.	Negative Pre-Load							
5.	Negative Design Load	5.	Negative Design Load							
6.	Water Infiltration Test	6.	Negative Overload							
7.	Positive Overload	7.	Large Missile Impact							
8.	Negative Overload	8.	Small Missile Impact							
9.	Large Missile Impact Level C	9.	Positive Cyclic Load							
10.	Large Missile Impact Level D	10.	Negative Cyclic Load							
11.	Small Missile Impact									
12.	Positive Cyclic Load									
13.	Negative Cyclic Load									
14.	Large Missile Impact Level C									

TEST RESULTS 8.0

8.1

Air Infiltration Test

Results - Air Infiltration Test 8.1.1

Table 8.1 provides the test results of the air infiltration test.

Та	ble	8.1:	Air	Infiltration	Test	t Results	

IGD	Tuble 0.11.7 al Innia dubit Tese Results									
Specimen	Test Pressure	Measured	Allowed							
# (psf)		(cfm/ft ²)	(cfm/ft ²)							
TS1(2)	+1.57	0.016	N/A							
151(2)	+6.24	0.014	0.06							

8.1.2 Conclusion – Air Infiltration Test

HTL observed a measured air infiltration less than the allowed air infiltration through the test specimen; as such, this test specimen satisfies the requirements of ASTM E330.

8.2 Water Infiltration Test

Results - Water Infiltration Test 8.2.1

> Table 8.2 provides the results for the water infiltration test conducted per the requirements of ASTM E331.

	Table 8.2: Water Inflitration Test Results										
	Specimen #	Test Pressure (psf)	Spray Rate (gph/ft ²)	Test Duration (minutes)	Conclusion						
[TS1(2)	No Entry									

11/3/09

REPORT WRITER 11/3/09

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 8 of 21

- 8.2.2 <u>Conclusion Water Infiltration Test</u> HTL observed zero (0) water infiltration through the test specimen; as such, this test specimen satisfies the requirements of ASTM E331.
- 8.3 Uniform Static Load Test

8.3.1 <u>Deflection Gage Locations</u> Figures 8.1 and 8.2 show the deflection gage locations for the uniform static load test.

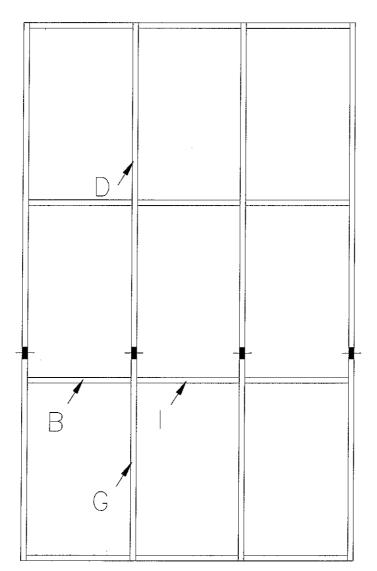


Figure 8.1: Deflection Gage Locations Uniform Static Load Test - Specimen TS1(2)

11/3/09

REPORT WRITER 11/3/09

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 9 of 21

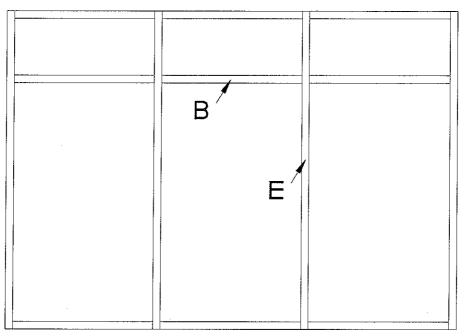


Figure 8.2: Deflection Gage Locations Uniform Static Load Test - Specimen 2A

8.3.2 Positive Load Test Results

Table 8.3 provides the positive uniform static load test results for the deflection gage locations shown in Section 8.3.1. The deflection reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

Table 8.3: Positive Uniform Static Load Test Results								
Specimen	nen Gage Load Deflection (in.)				Permanent Set (in.)			
#	Location	(psf)	Measured	Allowed	Measured	Allowed		
		+41.25	0.24	0.33	0.02			
	В	+55.00	0.29	0.33	0.03	0.120		
		+82.50	0.04	N/A	0.00			
		+41.25	0.30	0.81	0.01			
	D	+55.00	0.40	0.81	0.02			
TS1(2)		+82.50	0.62	N/A	0.03	0.29		
151(2)		+41.25	0.47	0.83	0.03			
	G	+55.00	0.62	0.83	0.04	0.30		
l		+82.50	0.93	N/A	0.05			
		+41.25	0.24	0.33	0.02			
	I	+55.00	0.30	0.33	0.03	0.12		
		+82.50	0.05	N/A	0.00			

_.

ENGINEER OF RECORD 11/3/09

REPORT WRITER

11/3/09

Specimen	Gage	Load	Deflection (in.) Measured Allowed		Permanent Set (in.)		
#	Location	(psf)			Measured	Allowed	
		+41.25	0.00	N/A	0.00		
	В	+55.00	0.03	0.33	0.00	0.12	
24		+82.50	0.02	N/A	0.01		
2A		+41.25	0.35	N/A	0.01		
	Е	+55.00	0.48	0.70	0.01	0.25	
		+82.50	0.76	N/A	0.02		

8.3.3 Negative Uniform Static Load Test Results

Table 8.4 provides the negative uniform static load test results for the locations presented in Section 8.3.1.

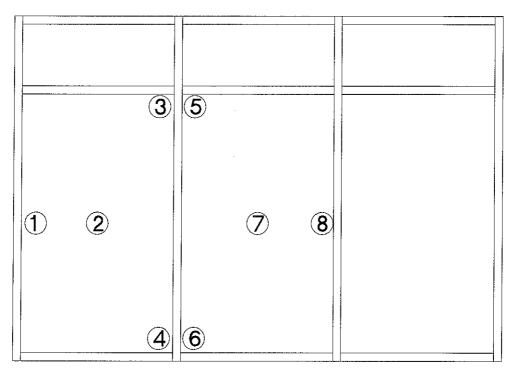
Specimen Gage		Load	Deflecti	on (in.)	Permanen	t Set (in.)	
#	Location	(psf)	Measured	Allowed	Measured	Allowed	
		-41.25	0.09	0.33	0.08		
	В	-55.00	0.11	0.33	0.08	0.12	
		-82.50	0.05	N/A	0.01		
		-41.25	0.27	0.81	0.01		
	D	-55.00	0.38	0.81	0.02	0.29	
TS1(2)		-82.50	0.59	N/A	0.03		
131(2)		-41.25	0.45	0.83	0.05		
	G	-55.00	0.62	0.83	0.07	0.30	
		-82.50	0.89	N/A	0.05		
		-41.25	0.03	0.33	0.00		
	I	-55.00	0.04	0.33	0.00	0.12	
		-82.50	0.06	N/A	0.01		
		-41.25	0.02	N/A	0.01		
	В	-55.00	0.14	0.33	0.02	0.12	
2A		-82.50	0.05	N/A	0.03		
2A		-41.25	0.36	N/A	0.04		
	E	-55.00	0.51	0.70	0.01	0.25	
		-82.50	0.82	N/A	0.02		

Table 8.4: Negative Uniform Static Load Test Results

8.3.4 Conclusion – Uniform Static Load Test

HTL observed no signs of failure in any area of these test specimens during the uniform static load test. In addition, each specimen met the deflection and permanent set requirements; as such, these test specimens satisfy the uniform static load test requirements of ASTM E330.

ENGINEER OF RECORD 11/3/09


REPORT WRITER 11/3/09

8.4 Small Missile Impact Test

8.4.1 Small Missile Impact Locations

Figures 8.3 and 8.4 show the small missile impact location for the specimens tested.

O-Small Missile Location

Figure 8.3: Small Missile Impact Locations - Specimen 2A

11/3/00

REPORT WRITER 11/3/0

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 12 of 21

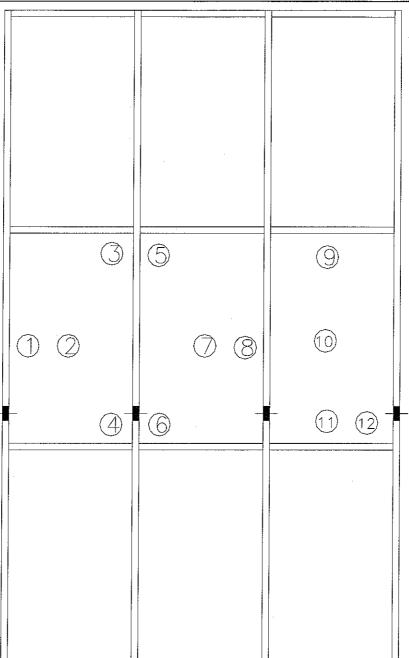


Figure 8.4: Small Missile Impact Locations - Specimen TS1(2)

ENGINEER OF RECORD 11/3/09

REPORT WRITER 11/3/09

8.4.2 Test Results - Small Missile Impact Test

HTL used ten (10) ball bearings with a 5/16" nominal diameter, each weighing between 1.90 and 2.10 grams. Table 8.5 provides the test results for the small missile impact test.

		Missile	Glass	Х	Y
Specimen #	Impact	Velocity	Temp.	Coord.1	Coord. ²
#	#	(ft/sec)	(°F)	(in.)	(in.)
	1	131.55		9.00	148.00
	2	131.25		31.50	148.00
	3	130.89		54.00	189.00
	4	131.74		54.00	106.00
	5	131.43		69.00	189.00
TS1(2)	6	131.86	75	69.00	106.00
131(2)	7	130.28	75	91.50	148.00
	8	130.04		114.00	148.00
	9	131.07		152.50	189.00
	10	129.68		152.50	148.00
	11	129.92		152.50	106.00
	12	130.70		175.50	106.00
	1	129.42		9.50	51.00
	2	130.21		32.00	49.00
	3	130.55		54.00	92.00
2A	4	129.53	72	54.00	9.00
28	5	129.88	12	69.00	92.00
	6	130.74		69.00	9.00
	7	130.03		90.00	50.00
	8	130.66		115.00	50.00

Table 8.5: Small Missile Impact Test Results

¹Measured from the left side of test specimen. ²Measured from the bottom of test specimen.

8.4.3 Conclusion - Small Missile Impact Test

The small missiles impacted the intended targets and HTL carefully inspected each impact location. HTL observed no signs of penetration, rupture, or opening after the small missile impact test; as such, these test specimens satisfy the small missile requirements of ASTM E1886/1996.

ENGINEER OF RECORD

11/3/09

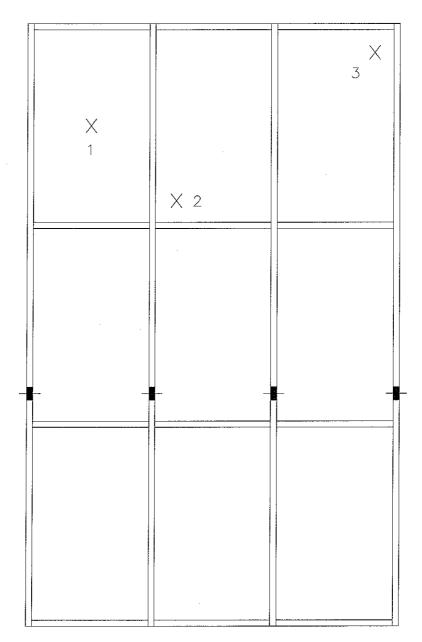
REPORT WRITER

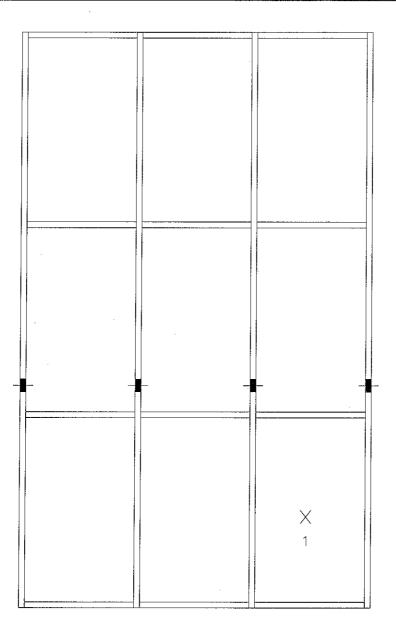
11/3/09

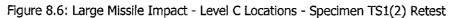
8.5 Large Missile Impact Test - Level C 8.5.1

Large Missile Impact - Level C Locations

Figures 8.5 and 8.6 show the large missile impact – Level C locations for the specimen tested.




Figure 8.5: Large Missile Impact - Level C Locations - Specimen TS1(2)


11/3/09

REPORT WRITER 11/3/09

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 15 of 21

ENGINEER OF RECORD

11/3/09

REPORT WRITER

11/3/09

8.5.2 <u>Test Results - Large Missile Impact Test</u> Table 8.6 provides the large missile impact test results.

Specimen	Impact	Missile	Missile	Missile	Glass	Х	Y		
		Weight	Length	Velocity	Temp.	Coord. ¹	Coord. ²		
#	#	(lbs.)	(in.)	(ft/sec)	(°F)	(in.)	(in.)		
	1*	4 lbs		39.99	73.7	31.50	246.50		
TS1(2)	2 3	4 IDS 48	48″	39.88	73.7	70.50	206.00		
		5 02		40.11	73.7	169.00	234.63		
TS1(2)	4	4 lbs	48″	39,38	75.6	150.00	48.00		
Retest	1	5 oz	от	22.20	73.0	120.00	-0.00		

Table 8.6: Large Missile Impact Test Results

¹Measured from the left side of test specimen. ²Measured from the bottom of test specimen.

*This impact caused both pieces of laminated glass to crack, since this was not a failure it continued to the cyclic load test and passed. The client requested that the specimen be re-impacted to verify that the cracking was an anomaly. The bottom right lite was re-glazed and impacted and passed without cracking therefore verifying the anomaly.

8.5.3 Conclusion - Large Missile Impact Test

The large missile impacted the intended targets and HTL carefully inspected each impact location. HTL observed no signs of penetration, rupture, or opening after the large missile impact test; as such, this test specimen satisfies the large missile requirements of the ASTM E1886/1996 Level C.

ENGINEER OF RECORD

11/3/09

REPORT WRITER 11/3/09

8.6 Large Missile Impact Test

8.6.1 Large Missile Impact Locations

Figures 8.7 and 8.8 show the large missile impact location for the specimens tested.

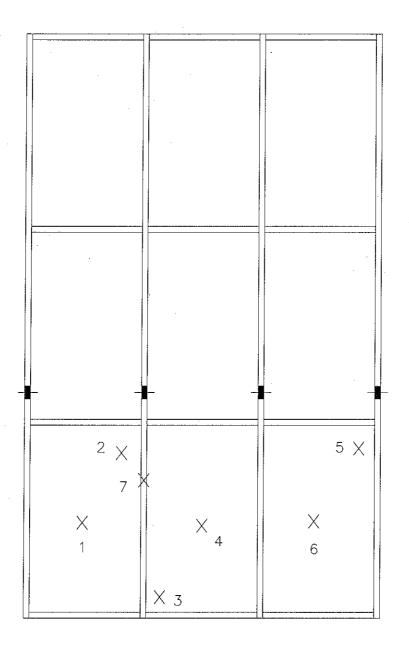


Figure 8.7: Large Missile Impact Locations - Specimen TS1(2)

REPORT WRITER ENGINEER OF RECORD 11/3/09 11/3/09

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 18 of 21

		r		_	
		F		I .	1
		{		•	
- 1				I .	
				I .	
- 1					
- 1				I .	
- 1				I .	
- 1					
- 1				I .	
- 1				I .	
				I .	
				I .	
- 1				+	
- ł			1	1	
				1	
- 1					
- L					
_ r		1 1		1	
1				1	
- 1				! I	
				E	
- 1				Ł	
- 1		F		L	1
1				1	1
- 1		t I		1	1
- 1				1	
- 1				1	
- 1				1	
- 1		1		1	
- [1		1]
- 1				1	
- 1				1	
- 1		1		1	
- 1				1	
		1			
		- 1			
- 1			1		
- 1				•	
- 1					
- 1	1	F	i i i i i i i i i i i i i i i i i i i	1	
- 1					
- 1		1 1			
- 1	le la			E	
- 1	i i i i i i i i i i i i i i i i i i i			E .	
- 1		- 1		ŧ –	
1		- 1		F	37
- L		- 1		Ł	Х
- 1		- 1			X
- 1		- 1		1 3	~
- 1		- 1			
- I.		- 1		1 1	- •
- I.		- 1		i	4
- 1				1	
- 1				1	
		- 1			
- 1		- 1			
-		- 1			
- 1		- 1	·		
- 1		- 1			
- 1		- 1			
- 1		- 1			
- E		- 6			
ſ		1			
				1	
		- 1	1		
		- 1			
		- 1			
		- 1	ł		
		- 1			
-		- 1			
1		- 1			
		- 1			
		1			
		- 1			
1					1
- 1-		- k			
		. 1			
1					

X-Large Missile Location

Figure 8.8: Large Missile Impact Locations - Specimen 2A

8.6.2 Test Results - Large Missile Impact Test

Table 8.7 provides the large missile impact test results.

Table 8.7: Large Missile Impact Test Results										
Creatinger	Impact	Missile	Missile	Missile	Glass	Х	Ý			
Specimen #	#	Weight	Length	Velocity	Temp.	Coord.1	Coord. ²			
#	#	(lbs.)	(in.)	(ft/sec)	(°F)	(in.)	(in.)			
	1			50.52	92.0	31.00	50.25			
	2			50.53	92.0	52.00	88.25			
		0 lh	92″	50.31	92.0	72.50	12.00			
TS1(2)	4	9 lb 2 oz		49.75	92.0	88.50	48.00			
	5	2 02		49.41	92.0	169.50	92.25			
	6			49.35	92.0	150.00	51.50			
	7			50.54	92.0	60.50	76.00			
2A	1	9.00	96.00	52.36	72.0	153.00	51.00			

Table 8.7:	Large	Missile	Impact	Test	Results

¹Measured from the left side of test specimen. ²Measured from the bottom of test specimen.

ENGINEER OF RECORD

REPORT WRITER

11/3/09

11/3/09

8.6.3 Conclusion - Large Missile Impact Test

The large missile impacted the intended targets and HTL carefully inspected each impact location. HTL observed no signs of penetration, rupture, or opening after the large missile impact test; as such, these test specimens satisfy the large missile requirements of ASTM E1886/1996 Level D.

8.7 Cyclic Load Test

8.7.1 Deflection Gage Locations - Cyclic Load Test

Figures 8.1 and 8.2 show the deflection gage locations for the cyclic load test. Please refer to Section 8.3.1 for these figures.

8.7.2 <u>Test Spectrum - Cyclic Load Test</u>

Tables 8.8 and 8.9 provide the positive and negative cyclic load test spectrum respectively.

Table 8.8: Positive Load Test Spectrum

Stage	1	2	3	4
Pressure Range (psf)	11.0 - 27.5	0 - 33.0	27.5 - 44.0	16.5 - 55.0
Number of Cycles	3500	300	600	100

Table 8.9: Negative Load Test Spectrum

Stage	5	6	7	8 [.]
Pressure Range (psf)	16.5 - 55.0	27.5 - 44.0	0 - 33.0	11.0 - 27.5
Number of Cycles	50	1050	50	3350

8.7.3 Deflection Results - Cyclic Load Test

Table 8.10 shows the cyclic test results for each test specimen.

		Inward (Positive Load)		Outward (Negative Load)	
Spec. Gage		Permanent Set		Permanent Set	
#	Loc.	Measured	Allowed	Measured	Allowed
		(in.)	(in.)	(in.)	(in.)
TC1(2)	В	0.12	0.12	0.00	0.12
	D	0.06	0.29	0.00	0.29
TS1(2)	G	0.19	0.30	0.00	0.30
	I	0.12	0.12	0.00	0.12
2	В	0.06	0.12	0.08	0.12
	E	0.13	0.25	0.18	0.25

Table 8.10: Cyclic Load Test Results

8.7.4 Conclusion - Cyclic Load Test

Upon completion of the cyclic load test, HTL carefully inspected the test specimens for failures. HTL observed no signs of failure; as such, these test specimens satisfy the cyclic load test requirements of ASTM E1886/1996.

ENGINEER OF RECORD

11/3/0

REPORT WRITER

11/3/09

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 20 of 21

9.0 SUMMARY

Table 9.1 provides a summary of the test results for YKK AP America's YHC 300.

	Table 9.1: Summa	ary of Test Results	
Specimen #	Test Method	Test Conditions	Test Conclusion
TS1(2)	Air Infiltration Test (ASTM E283)	1.57 & 6.24 psf	PASS
TS1(2)	Water Infiltration Test (ASTM E331)	20 psf	PASS
TS1(2) & 2A	Static Load Test (ASTM E330)	+/- 55 psf Design Pressure	PASS
TS1(2) & 2A	Small Missile Impact Test (ASTM E1886/E1996)		PASS
TS1(2)	Large Missile Impact Test (ASTM E1886/E1996)	Level C	PASS
TS1(2) & 2A	Large Missile Impact Test (ASTM E1886/E1996)	Level D	PASS
TS1(2) & 2A	Cyclic Load Test (ASTM E1886/E1996)	+/- 55 psf Design Pressure	PASS
TS1(2)	Large Missile Impact Test (ASTM E1886/E1996)	Level C	PASS

10.0 CERTIFICATION AND DISCLAIMER STATEMENT

All tests performed on these test specimens were conducted in accordance with the specifications of the applicable codes, standards and test methods listed below by HTL, LLC. HTL, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested at HTL. HTL is not owned, operated or controlled by any company manufacturing or distributing products it tests. This report is only intended for the use of the entity named in Section 1.0 of this report. Detailed assembly drawings showing wall thickness of all members, corner construction and hardware applications are on file and have been compared to the test specimens submitted. A copy of this test report along with representative sections of the test specimens will be retained at HTL for a period of three (3) years. All results obtained apply only to the specimens tested and they do indicate compliance with the performance requirements of the test methods and specifications listed in the following section.

REPORT WRITER 11/3/09

Test Report #: 0231-0807-09 & G231-1001-09 #6 Specimen #: TS1(2) & 2A Page: 21 of 21

11.0 APPLICABLE CODES, STANDARDS, AND TEST METHODS

ASTM E283-04 – Standard Test Method for Determining Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E330-02 – Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E331-00 – Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E1886-05 – Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials ASTM E1996-09 – Standard Specification for performance of Exterior Windows, Curtain Walls, Doors and

Impact Protective Systems Impacted by Windborne Debris in Hurricanes

12.0 WITNESSES (ALL OR PARTIAL)

Vinu J. Abraham, P.E.	CEO	HTL, LLC
Jose Colon, E.I.	Operations Manager	HTL Georgia
Kristin Norville, E.I.	Assistant Operations Manager	HTL, LLC
Ian McKenzie	Lab Supervisor	HTL Georgia
Kevin Gardner	Test Team	HTL Georgia
Robert Kott	Support Team	HTL Georgia
John Spallina	Technician	HTL, LLC
Howard Bennett	Technician	HTL, LLC
Veron Wickham	Technician	HTL, LLC
Martin Gibbard	Technician	HTL, LLC
Alan Rule	Technician	HTL, LLC
Freddie Henderson	Technician	HTL, LLC

ENGINEER OF RECORD

REPORT WRITER 11/3/09

/ 11/3/09

CORPORATE HEADQUARTERS 6655 Garden Road Riviera Beach, Florida 33404 H T L T E S T . C O M P: 888,477,2454

12/24/2009

F: 561.881.0075

Jaime D. Gascon, P.E. Miami-Dade Building Code Compliance Office 140 West Flagler Street, Suite 1603 Miami, Florida 33130-1563

Re: Application for Product Approval (HTL Test Notifications # HTL09061 & HTLGA0928 for HTL Test Report # 0231-0807-09 & G231-1001-09 #6, Specimen # TS1(2) & 2A)

Dear Mr. Gascon:

This letter is being written as an addendum to the test report previously issued by Hurricane Test Laboratory, LLC (HTL) for the above-mentioned application for product approval. The test report being clarified is labeled HTL Test Report # HTL09061 & HTLGA0928 for HTL Test Report # 0231-0807-09 & G231-1001-09 #6 (Specimen # TS1(2) & 2A) for the YKK AP AMERICA, INC. 300 O.G. Curtainwall System. These clarifications are being made to Sections 5.5.1 and 5.9 of the test report in order to specify the insulated glass edge sealants and spacer used. Please review the following underlined changes:

The following revises section 5.5.1 in the HTL Test Report # 0231-0807-09 & G231-1001-09 #6 (Specimen # TS1(2) & 2A):

- 5.5.1 Glass Type C consisted of 9/16" thick (nominal) laminated glass consisting of the following components:
 - 1/4" heat strengthened glass
 - 0.060" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
 - 1/4" heat strengthened glass

Glass Type G consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- ¼" heat strengthened glass
- 0.060" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- ¼" heat strengthened glass

Glass Type I consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- ¼" heat strengthened glass
- 0.035" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- ¼" heat strengthened glass

Page 1 of 3

CORPORATE HEADQUARTERS

6655 Garden Road Riviera Beach, Florida 33404 H T L T E S T . C O M P: 888.477.2454 F: 561.881.0075

12/24/2009

Glass Type CI consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- ¹/₄" tempered glass
- ½" air space with a spacer assembly with dimensions of 1/2" (w) x 5/8" (h) consisting of an aluminum box spacer around the perimeter of the glass, dual sealed with a primary seal to the glass with polybutylene sealant, and a secondary seal around the perimeter edge with silicone insulating glass sealant
- 1/4" heat strengthened glass
- 0.060" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- 1/4" heat strengthened glass

Glass Type GI consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- ¹/4" tempered glass
- ½" air space with a spacer assembly with dimensions of 1/2" (w) x 5/8" (h) consisting of an aluminum box spacer around the perimeter of the glass, dual sealed with a primary seal to the glass with polybutylene sealant, and a secondary seal around the perimeter edge with silicone insulating glass sealant
- 1/4" heat strengthened glass
- 0.060" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- 1/4" heat strengthened glass

Glass Type II consisted of 1-5/16'' thick (nominal) insulated laminated glass consisting of the following components:

- ¹/₄" tempered glass
- 1/2" air space with a spacer assembly with dimensions of 1/2" (w) x 5/8" (h) consisting of an aluminum box spacer around the perimeter of the glass, dual sealed with a primary seal to the glass with polybutylene sealant, and a secondary seal around the perimeter edge with silicone insulating glass sealant
- 1/4" heat strengthened glass
- 0.035" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- 1/4" heat strengthened glass

The following revises section 5.9 in the HTL Test Report # 0231-0807-09 & G231-1001-09 #6 (Specimen # TS1(2) & 2A):

5.9 <u>Sealants Used</u>

Table 5.6 provides a summary of the sealants used in each test specimen.

		Details
Elevation #	Location	Sealant Description
TS1 (2) – head & sill	Perimeter Sealant	Tremco® Spectrem 2® silicone sealant
TS1 (2) – jambs	Perimeter Sealant	Silicone sheet
2A	Perimeter Sealant	Tremco® Spectrem 2® silicone sealant
TS1 (2) & 2A	Frame Joint Sealant	Tremco® Spectrem 2® silicone sealant
N/A	Glazing Sealant	None used
<u>2A</u>	Insulated Glass Primary Sealant	polybutylene sealant
<u>2A</u>	Insulated Glass Secondary Sealant	silicone insulating glass sealant

Table 5.6: Sealant Details

Page 2 of 3

LINKING MANUFACTURERS WITH KNOWLEDGE, EXPERIENCE & SERVICE IN ARCHITECTURAL TESTING

CORPORATE HEADQUARTERS 6655 Garden Road Riviera Beach, Florida 33404 H T L T E S T. C O M P: 888.477.2454 F: 561.881.0075

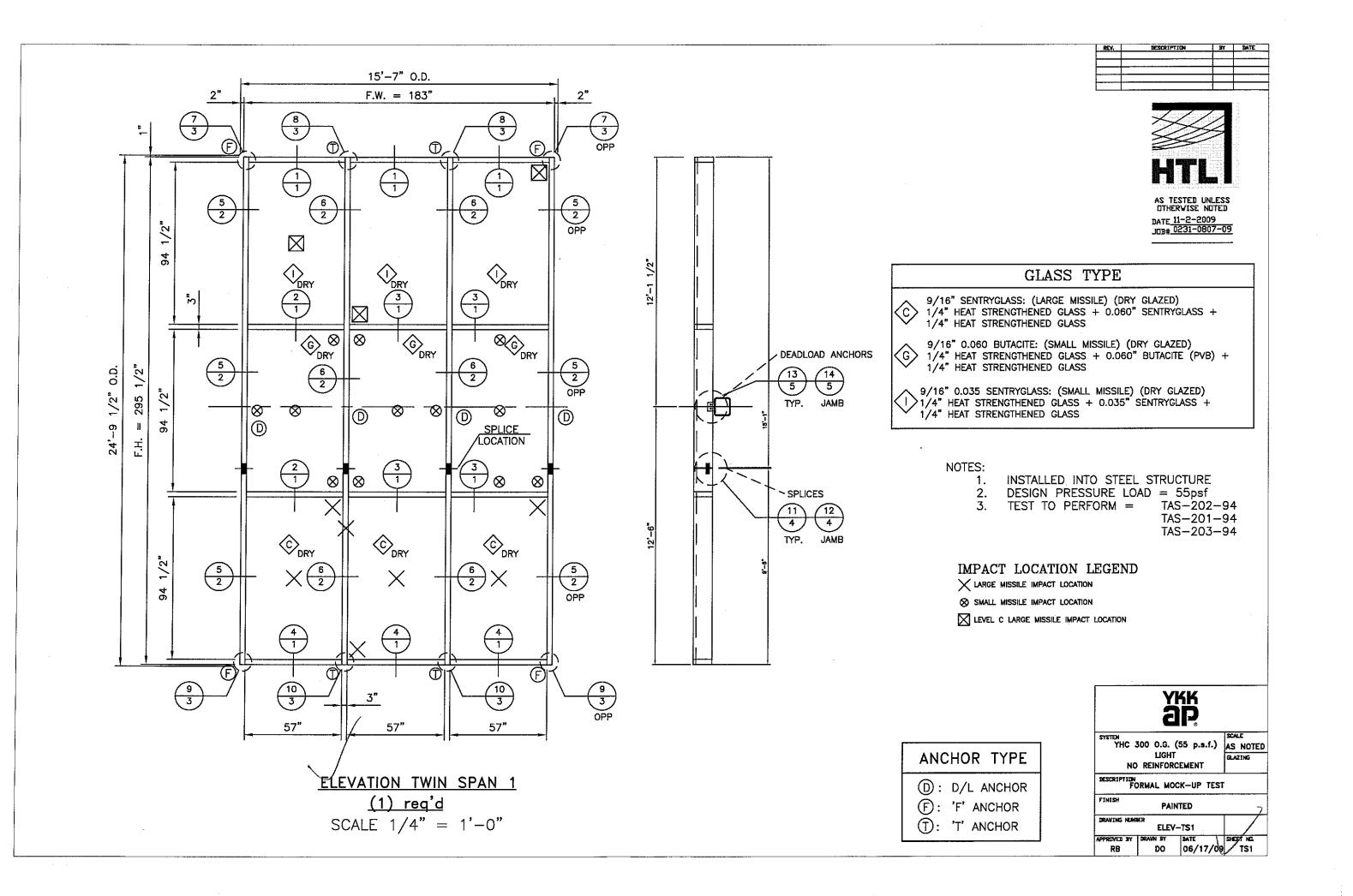
12/24/2009

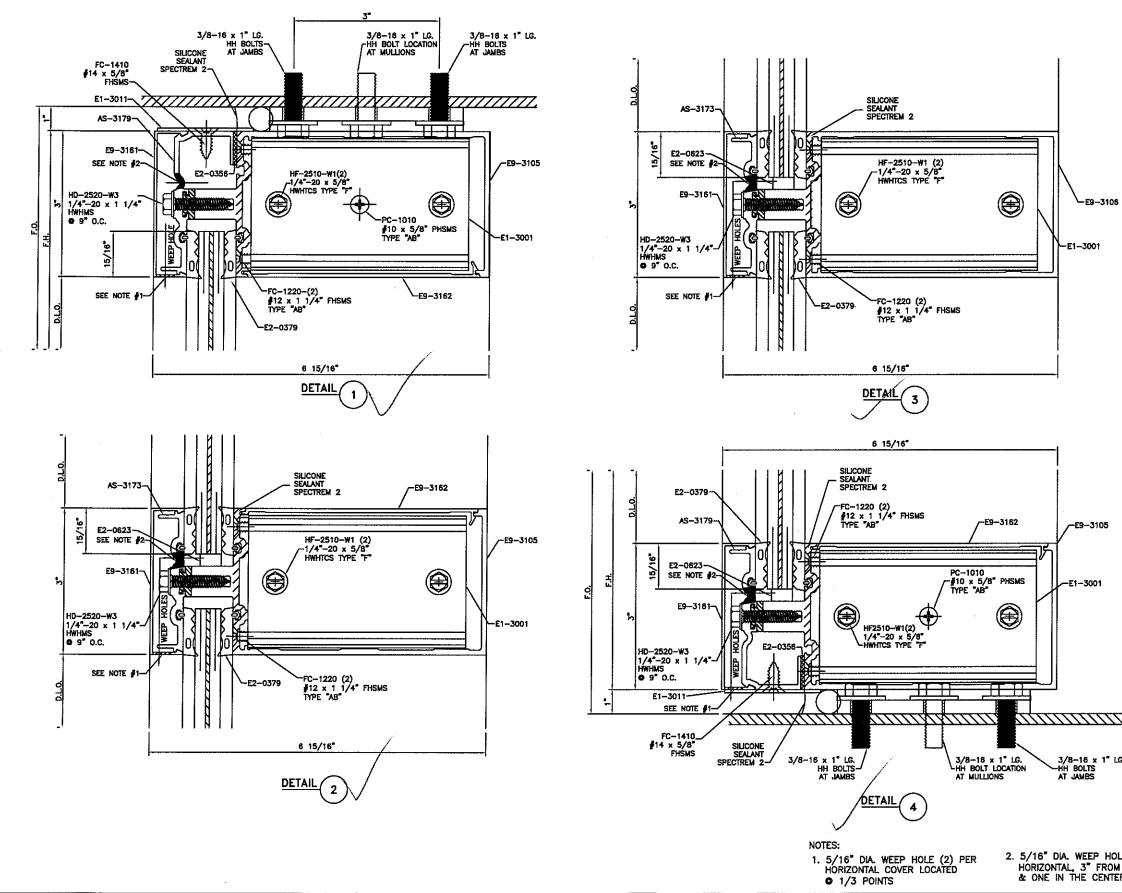
We have enclosed updated, stamped elevation drawings (YKK AP AMERICA, INC. drawings # ELEV-2A, sheet 2A and # ELEV-2A-2, sheet 2A-2) that reflect these revisions.

This letter should provide you with the additional information required for you to continue the fair evaluation of this product/system.

Sincerely,

HURRICANE TEST LABORATORY, LLC

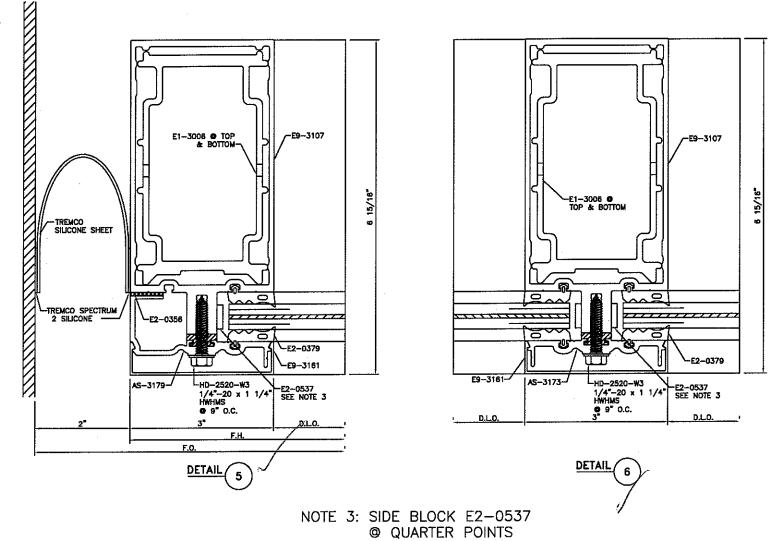

Vinu J. Abraham, P.E. ENGINEER OF RECORD FL Reg. # 53820


Enclosure

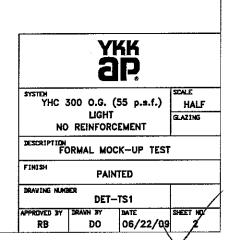
Cc: YKK AP AMERICA, INC.

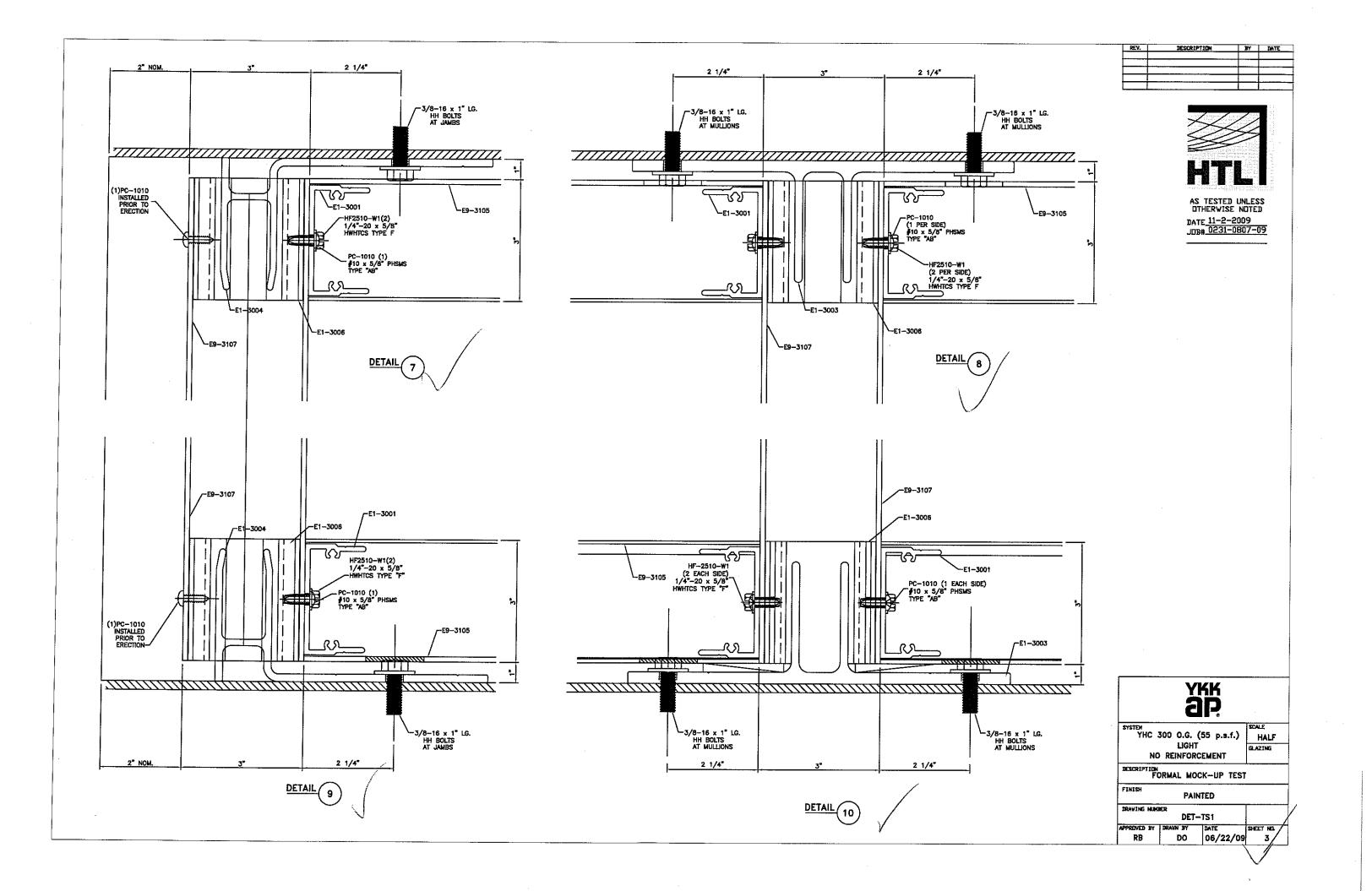
Page 3 of 3

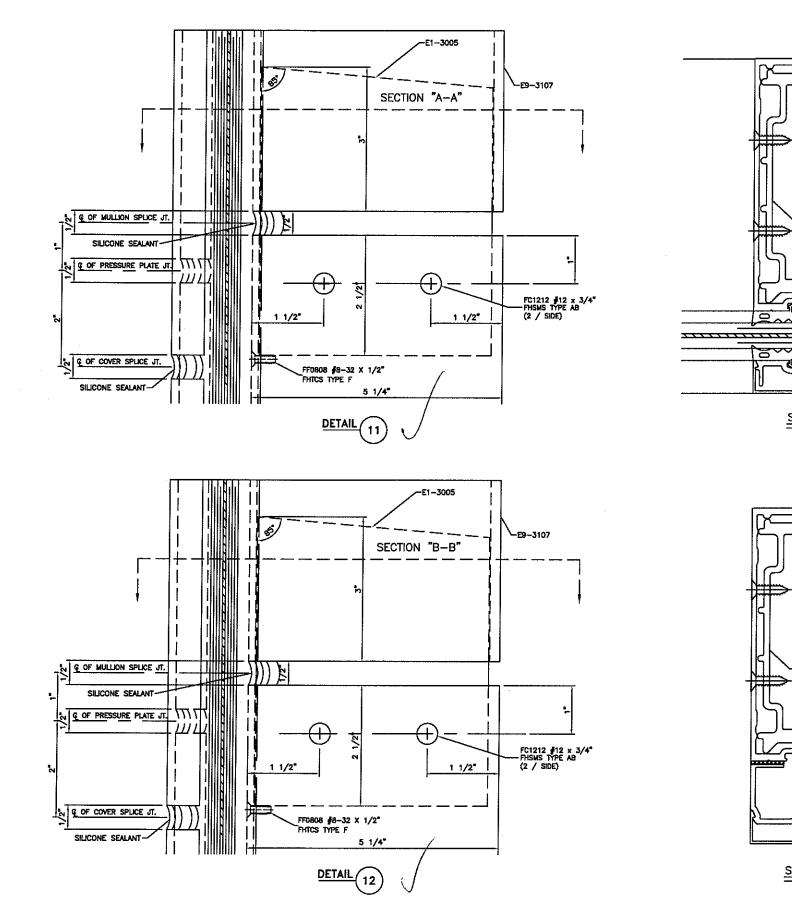
LINKING MANUFACTURERS WITH KNOWLEDGE, EXPERIENCE & SERVICE IN ARCHITECTURAL TESTING

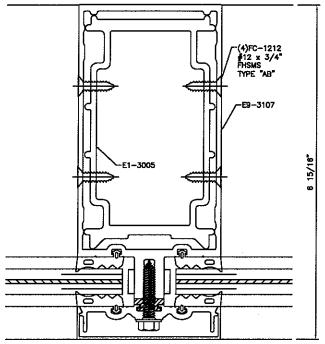


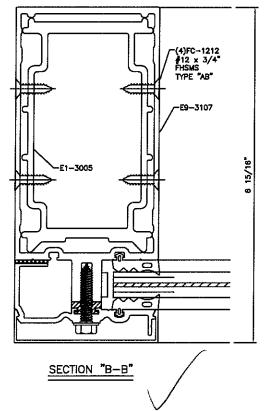
DESCRIPTION	37	DATE

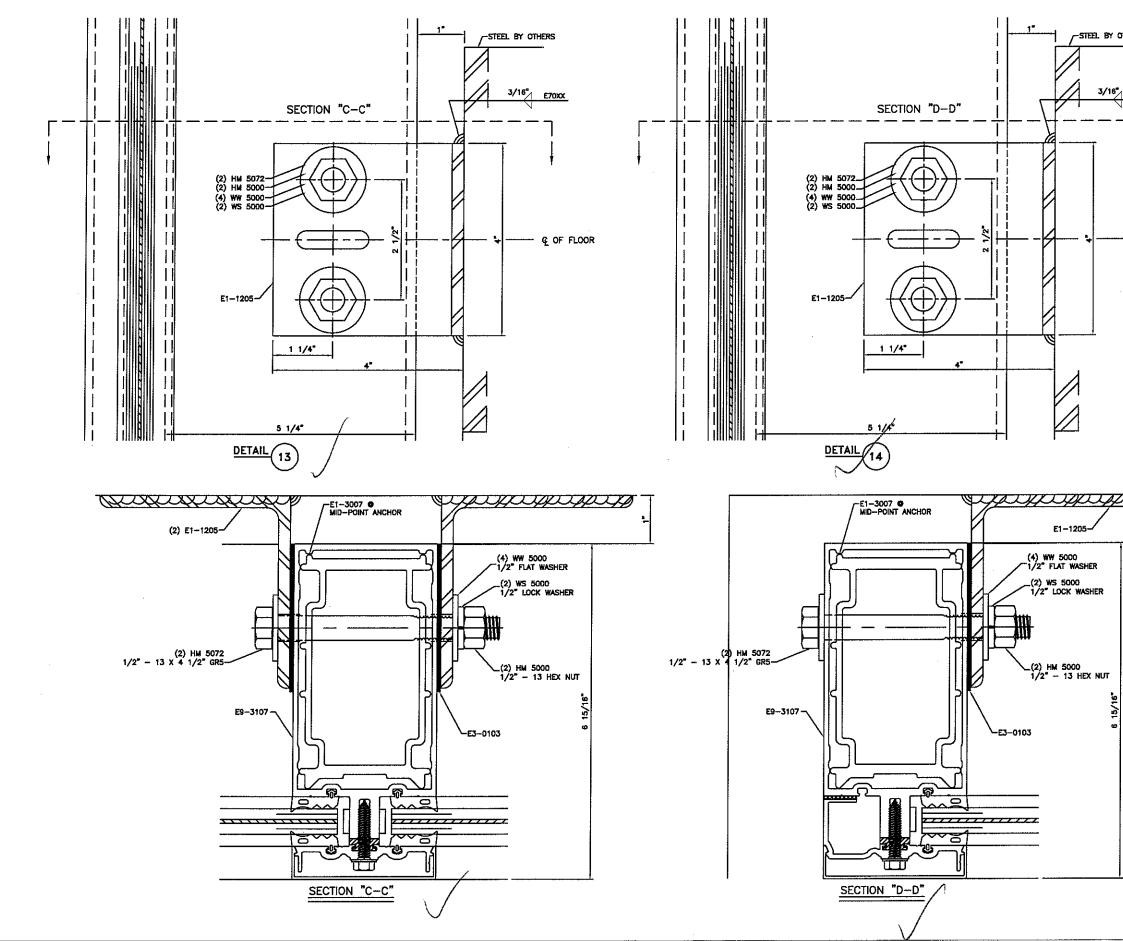


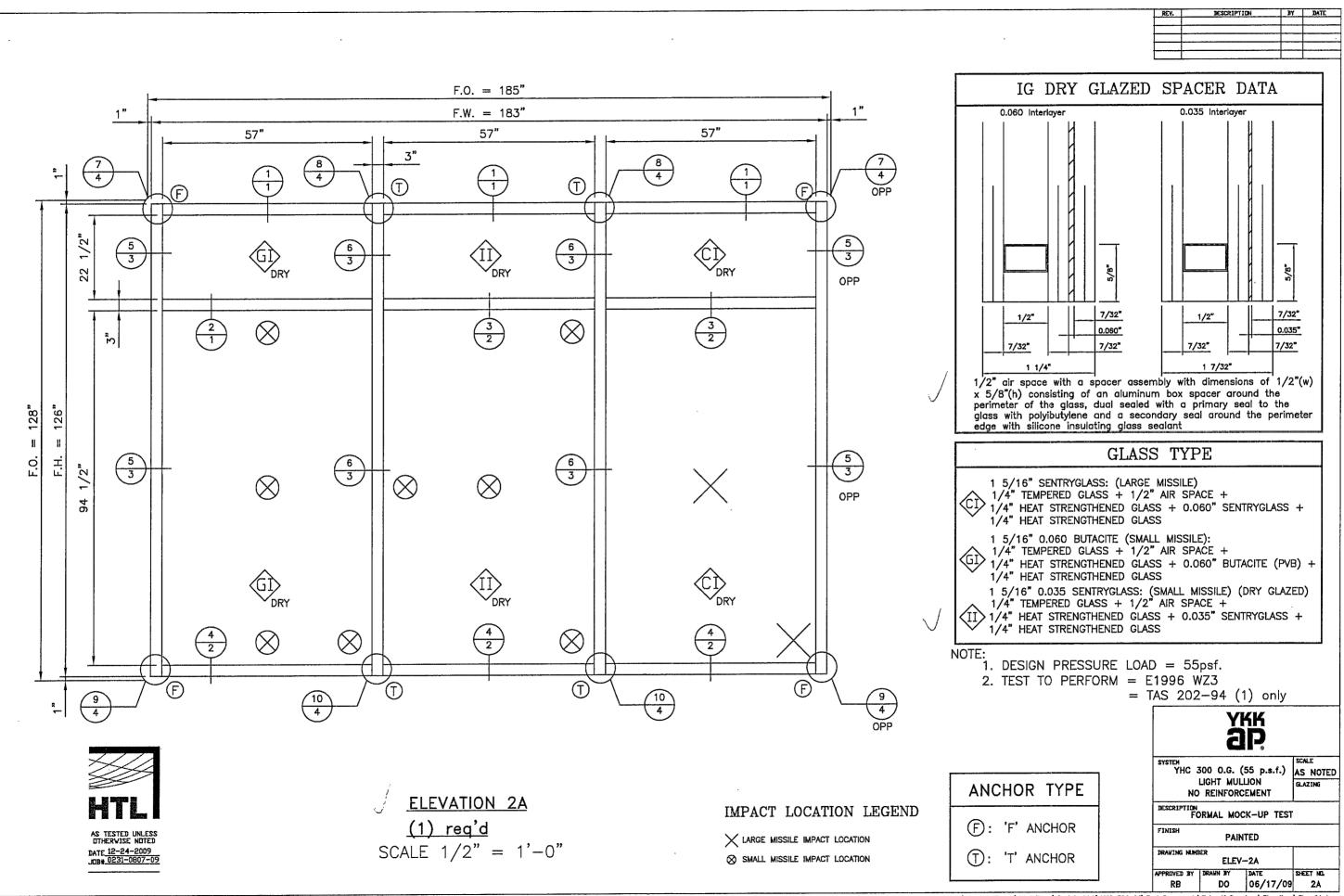

	ар Үкк				
6 x 1° LG. LTS IBS		300 O.G. LIGHT REINFOR		SCALE HALF GLAZING	
	DESCRIPTION	DESCRIPTION FORMAL MOCK-UP TEST			
	FINISH	PAI	NTED		
EEP HOLE (3) PER 3" FROM EACH END,	DRAVING NUM		-TS1		
E CENTER.	APPROVED BY	DRAVN BY DO	DATE 06/22/09	SHEET NO	
	. 1			$\overline{}$	

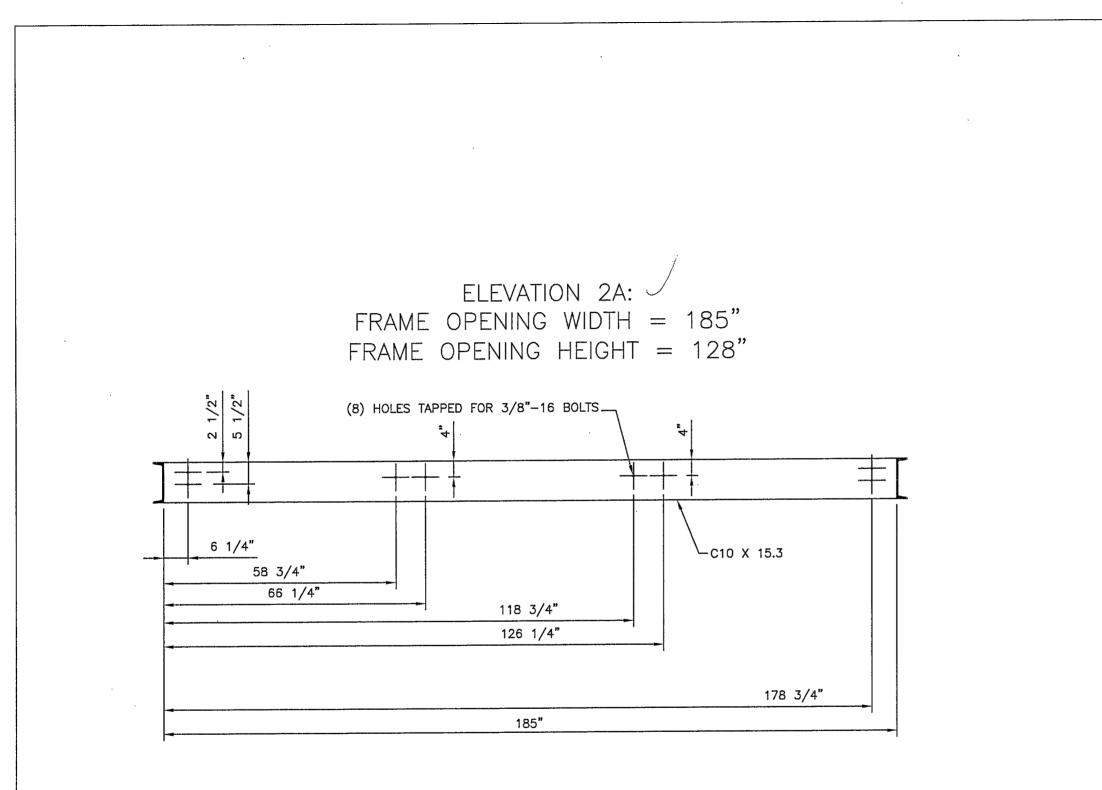



REV.	DESCRIPTION	٦Y	DATE




SECTION "A-A"

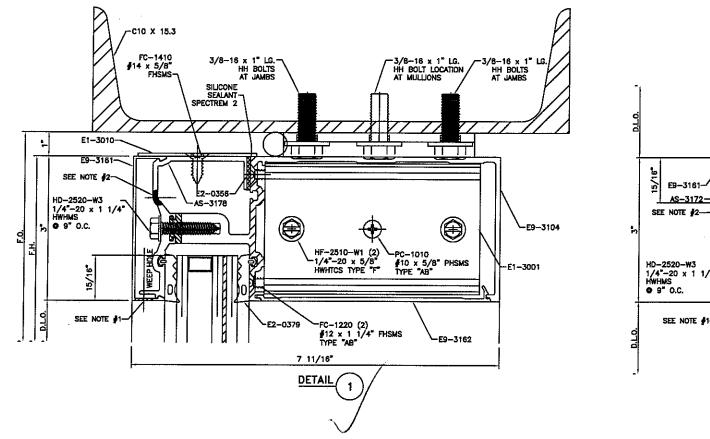

REV.	DESCRIPTION	BY	DATE
		-	

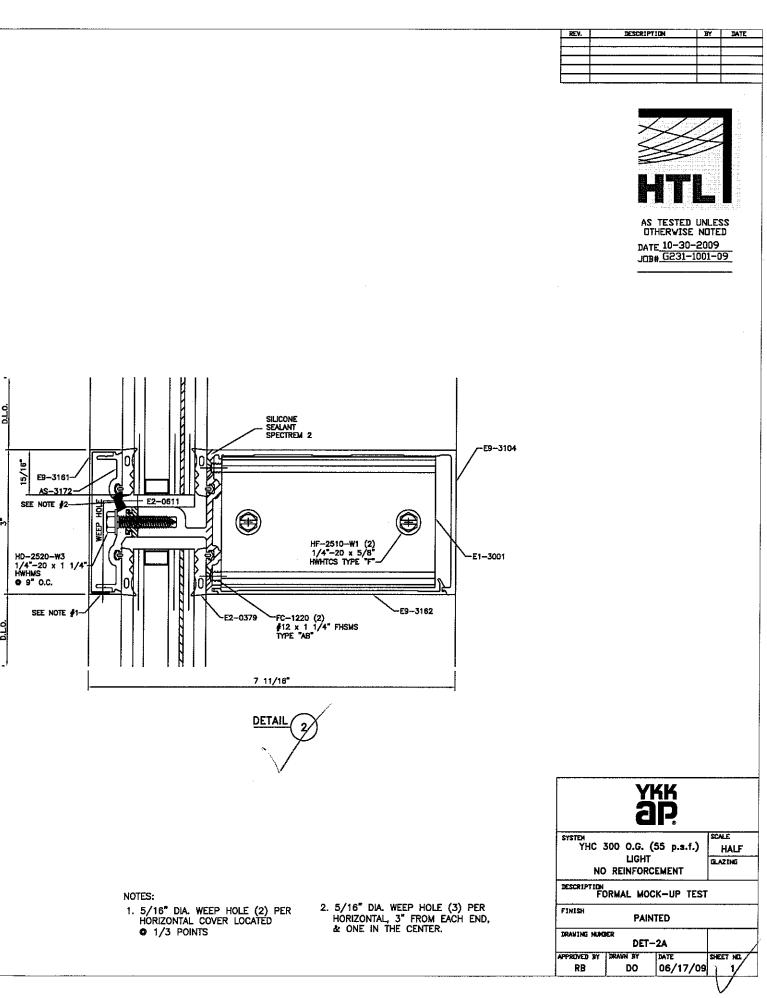

	<u> </u>	J Ľ KK	
SYSTEM YHC		(55 p.s.f.)	SCALE HALF
NC	LIGHT NO REINFORCEMENT		GLAZING
DESCRIPTION	ORMAL MO	CK-UP TEST	 [
FINISH	PAI	NTED	
DRAVING NUM		-TS1	
APPROVED BY	DRAWN BY	DATE	SHEET NO.
RB	DO	06/22/09	4
I	I	1	

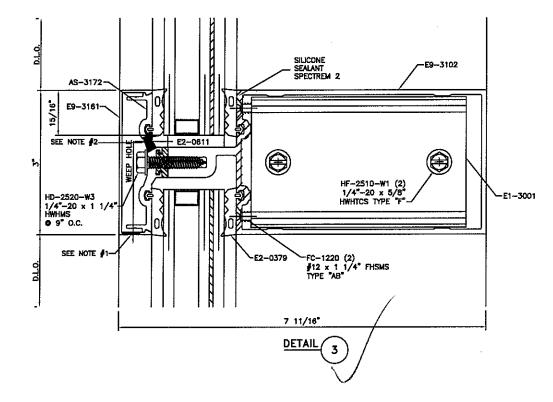
	REV.	DESCRIPTION	BY	DATE
THERS				
E70XX		DTHERV		D
		JOB# 02	31-0807-	-09
GOF FLOOR				
		Акк		
	SYSTEM	C 300 O.G. (55 p	SC	ALE HALF
	SYSTEM YH		.s.f.) SC	
	YH	C 300 O.G. (55 p Light	.s.f.) IT	HALF
	YH	C 300 O.G. (55 p Light No reinforcemen	.s.f.) IT	HALF
	DESCRIPT	C 300 O.G. (55 p Light NO REINFORCEMEN FORMAL MOCK-U PAINTED	.s.f.) IT	HALF
	TH DESCRIPT FINISH DRAVING	C 300 O.G. (55 p LIGHT NO REINFORCEMEN ION FORMAL MOCK-U PAINTED NUMBER DET-TS1 BY (DRAWN BY) DATE	P TEST	HALF

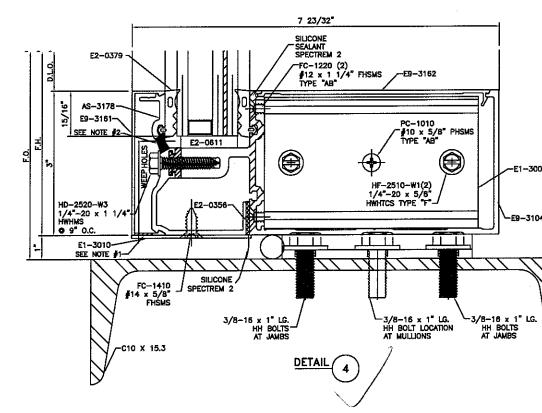
M:\Product Teams\Wall Team\Curtain Wall\YHC 300 OG\Test Documents\Takeoff Drawings\Elevations\Elev 2A.dwg

SCALE 1/2" = 1'-0"

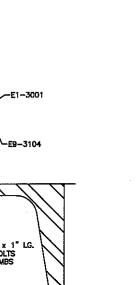

AS TESTED UNLESS DTHERVISE NOTED DATE 12-24-2009 JOB# 0231-0807-09

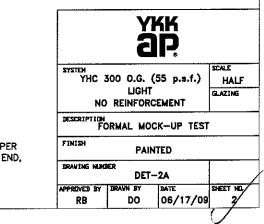


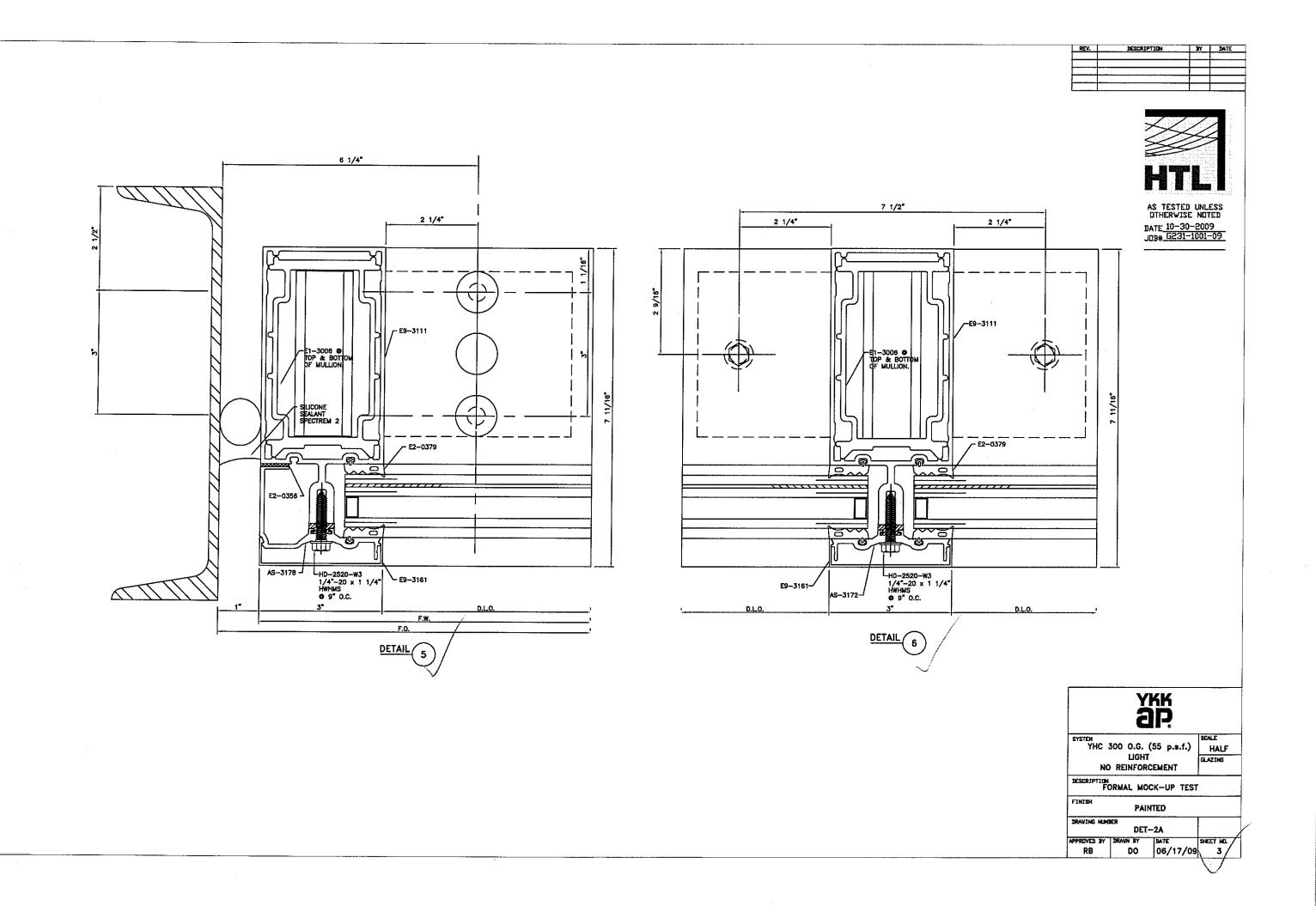

REV.	DESCRIPTION	BY	DATE
L			

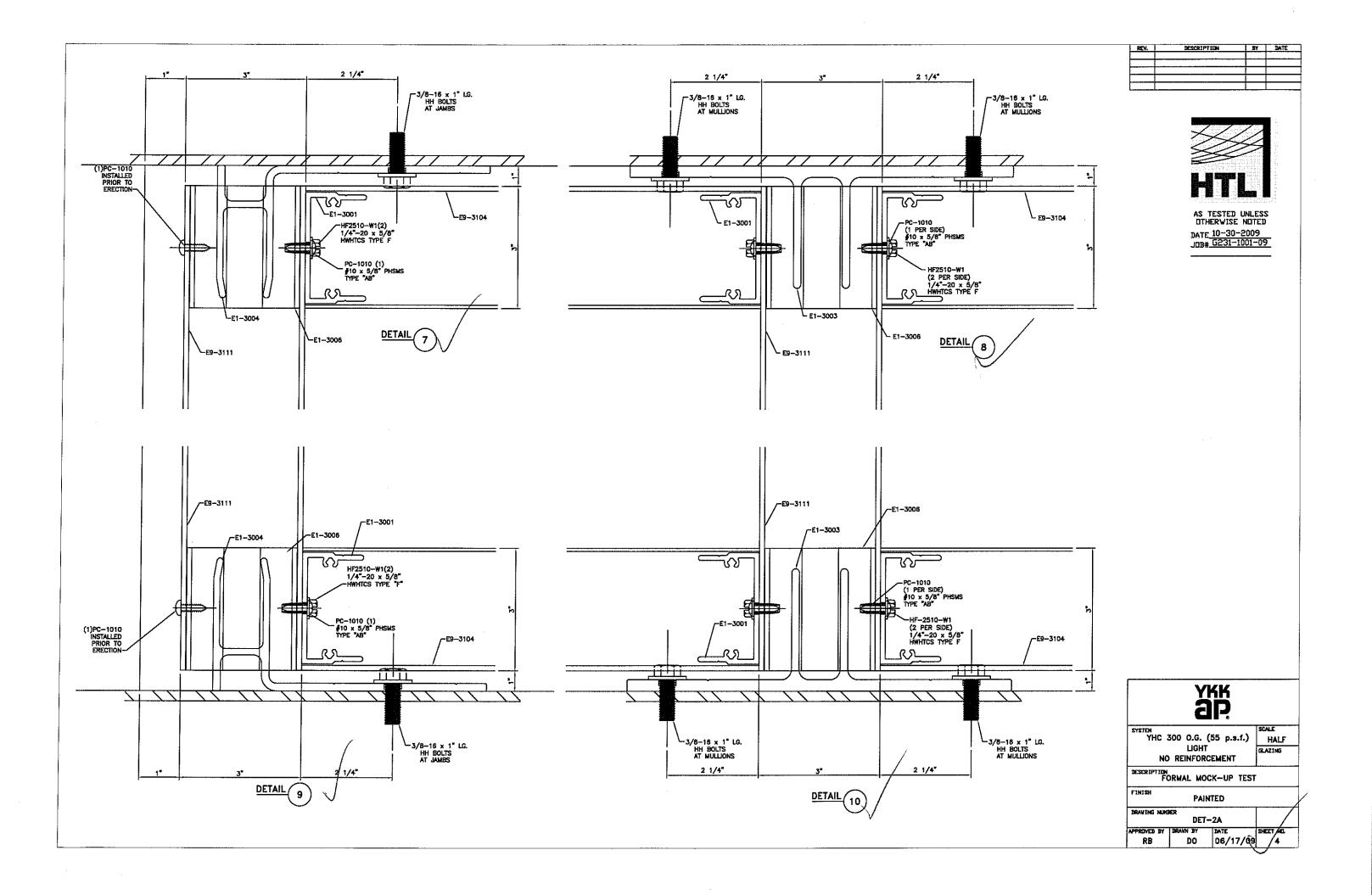

SYSTEM			SCALE			
	500 O.G. (55 p.s.f.)	AS NOTED			
	LIGHT					
10	REINFORC	CHENT	GLAZING			
NU	EMENI					
DESCRIPTION						
FC	ORMAL MOC	K-UP TEST				
FINISH						
	PAIN	TED				
DRAVING NUME	DRAVING NUMBER					
	ELEV-2A-2					
APPROVED BY	DRAWN BY	DATE	SHEET NO.			
RB	DO	06/17/09	2A-2			

M:\Product Teams\Wall Team\Curtain Wall\YHC 300 OG\Test Documents\Taksoff Drawings\Elevations\Elev 2A.dwg




NOTES:


1. 5/16" DIA. WEEP HOLE (2) PER HORIZONTAL COVER LOCATED • 1/3 POINTS 5/16" DIA. WEEP HOLE (3) PER HORIZONTAL, 3" FROM EACH END, & ONE IN THE CENTER.


REV.	DESCRIPTION	JIY	DATE

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 1 of 13

YKK AP AMERICA, INC.

Curtainwall

Test Report #: G231-1001-09

1.0 MANUFACTURER'S IDENTIFICATION

1.1 Name of Applicant: YKK AP AMERICA, INC. 7680 The Bluffs, Suite 100 Austell, GA 30168 Voice: (678) 838-6095 Fax: (678) 838-6056 Don Pangburn

1.2 Contact Person:

2.0 LABORATORY IDENTIFICATION

- **HTL Test Notification:** 2.1 2.2
- HTL Lab Certifications:

HTLGA0928 Miami-Dade County (05-1014.01); Florida Building Code (TST1527); IAS (TL-244); AAMA; WDMA; Keystone Certificate; Texas Department of Insurance

3.0 **SCOPE OF WORK**

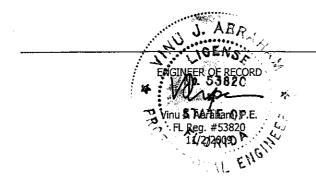
3.1 Introduction

YKK AP AMERICA, INC. retained HTL, LLC to conduct Florida Building Code standard testing on their YHC 300 O.G. Curtainwall system.

3.2 Report Information

Table 3.1 provides the test dates for each mock-up and specimen number.

Ta	ible 3.	1: Spec	imen T	est Dates	š
					_


Mock-Up	Specimen #	Test Date
3	3	10/21-22/09
3A	3A	10/20-21/09

4.0 **PRODUCT IDENTIFICATION**

4.1 Product Type:

- 4.2 Model Designation:
- 4.3 Performance Class:

Curtainwall YHC 300 O.G. +/-65 psf Design Pressure

REPORT WRITER Angela Abrainczyk

4.4 **Overall Size & Configuration:**

Number of Operable Panels:

Table 4.1 provides the overall size for each mock-up/specimen number. The table also indicates which YKK AP AMERICA, INC. drawing number and sheet to see for the configuration of each mock-up.

Table 4.1: Specimen Ove	erall Size
-------------------------	------------

Mock-Up	Specimen #	Overall Size	Drawing/Sheet #
Elevation 3	3	243" (w) x 126" (h)	ELEV-3/3
Elevation 3A	3A	243" (w) x 162" (h)	ELEV-3A/3A
B.1			

None

4.6 Drawing:

4.5

This test report is incomplete if not accompanied by the YKK AP AMERICA, INC. drawing numbers indicated in Table 4.2. bearing the ink stamp of Hurricane Test Laboratory, LLC.

Table 4.2: Drawing Numbers

Elevation #	Drawing #	Sheets
3	ELEV-3	
3	DET-3	1 - 4
- 3A	ELEV-3A	3A
3A	DET-3A	1 - 4
Complee provided	WYKK AD AMEDICA T	NC

4.7 Sample Source:

Samples provided by YKK AP AMERICA, INC.

5.0 **PRODUCT DESCRIPTION**

5.1 Frame Construction

The framing members were fabricated using the aluminum extrusions defined in Table 5.1.

Table 5.1: Alu	minum Extr	usion Details	
Description	Part #	Overall Cross-Section	Alloy/Temper
E	levation 3		
Head & Sill	E9-3105	6.110" x 3.000" x 0.100"	6063-T5
Intermediate Horizontal (left bay)	E9-3105	6.110" x 3.000" x 0.100"	6063-T5
Intermediate Horizontal (all other areas)	E9-3106	6.110" × 3.000" × 0.100"	6063-T5
Mullion	E9-3103	3.000" x 6.120" x 0.125"	6063-T6
Flush Filler (for E9-3105)	E9-3162	4.890" x 0.331" x 0.079"	6063-T5
E	levation 3A		
Head & Sill	E9-3104	6.678" x 3.000" x 0.100"	6063-T5
Intermediate Horizontal (left bay)	E9-3104	6.678" x 3.000" x 0.100"	6063-T5
Intermediate Horizontal (all other areas)	E9-3102	6.678" x 3.000" x 0.100"	6063-T5
Mullion	E9-3101	3.000" x 6.688" x 0.125"	6063-T6
Flush Filler (for E9-3104)	E9-3162	4.890" x 0.331" x 0.079"	6063-T5

ENGINEER OF RECORD

11/2/2009

REPORT WRITER

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 3 of 13

5.1.1 Typical Frame Corner Construction

At each frame corner, the vertical frame member ran through while the horizontal frame member end was square cut, butted and mechanically fastened to the vertical frame member via a 4-1/2" (long) aluminum shear block (Part #E1-3001). At each frame corner, the shear block was attached to the vertical frame member using two (2), $\frac{1}{4}$ "-20 x 5/8" HWH TCS (Type F). Each horizontal frame member end was attached to the adjacent shear block using two (2), $\frac{#12 \times 1-1}{4}$ " FH SMS (Type AB).

5.1.2 Frame Joint Sealant

At each frame joint, the exterior leg of each horizontal frame member was sealed with a bead of Tremco® Spectrem 2® silicone sealant prior to its attachment to the shear block.

5.1.3 End Cap & Anchor Sleeve Construction

There was a mullion end cap (Part # E1-3011 for Elevation 3 & E1-3010 for Elevation 3A) attached to the top and bottom end of each mullion and jamb using one (1), $#14 \times 5/8"$ FH SMS. <u>NOTE:</u> One (1), 3" long anchor sleeve (Part #E1-3006) was inserted into the top and bottom of each mullion end and secured in place using two (2), $#10 \times 5/8"$ PH SMS (Type AB).

5.1.4 Miscellaneous Construction

There was a continuous filler (Part # E9-3162) used at the interior frame head, sill and some intermediate horizontal (see above Table 5.1 "Aluminum Extrusion Details" for where the intermediate horizontals would apply) locations between each mullion.

5.2 Pressure Plate and Snap Cover Assembly

Table 5.2 provides the extrusions used in the pressure plate and snap cover assemblies.

Description	Part #	Overall Cross-Section	Alloy/Temper
Ē	levation 3		
Perimeter Pressure Plate	E9-3179	2.955" x 1.489" x 0.100"	6063-T5
Intermediate Horizontal/Vertical Pressure Plate	E9-3173	2.910" x 0.566" x 0.115"	6063-T5
Snap Cover	E9-3161	3.000" x 0.687" x 0.056"	6063-T5
El	evation 3A		
Perimeter Pressure Plate	E9-3178	2.955" x 1.976" x 0.100"	6063-T5
Intermediate Horizontal/Vertical Pressure Plate	E9-3172	2.910″ x 0.743″ x 0.115″	6063-T5
Snap Cover	E9-3161	3.000" x 0.687" x 0.056"	6063-T5

Table 5.2: Pressure Plate and Snap Cover Details

5.2.1 Pressure Plates

Each continuous pressure plate (Part # E9-3178, E9-3179, E9-3172 or E9-3173) was square cut at each end and secured to the adjacent frame member using a single row of $\frac{1}{4}$ "-20 x 1-1/4" HWH MS spaced 1-1/2" from each end and at 9" on center thereafter. <u>NOTE:</u> A continuous EPDM thermal isolator (Part # E2-0103) was applied to the centerline of each pressure plate prior to its installation. A continuous strip of 0.125" x 0.688" sponge isolator tape (Part # E2-0356) was applied to the perimeter leg of each perimeter pressure plate prior to its installation. The

ENGINEER OF RECORD 11/2/2009

REPORT WRITER

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 4 of 13

"AS" part #s called out in the details are the assembled pressure plates with this EPDM thermal isolator and (if applicable) the sponge isolator tape applied to the perimeter pressure plate. YKK AP AMERICA, INC. does not produce separate drawings for "AS" part numbers.

5.2.2 Snap Covers

At the exterior of all pressure plates, the snap covers (Part # E9-3161) were snap fit to the pressure plate.

- 5.3 <u>Vertical Reinforcement</u> None used
- 5.4 Glazing Details
 - 5.4.1 Glazing Materials

Glass Type A consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.090" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- 1/4" heat strengthened glass

Glass Type D consisted of 9/16" thick (nominal) laminated glass consisting of the following components:

- 1/4" heat strengthened glass
- 0.090" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
 - 1/4" heat strengthened glass

Glass Type AI consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- 1/4" tempered glass
- ½" air space
- 1/4" heat strengthened glass
- 0.090" DuPont Butacite® PVB Interlayer (Miami-Dade NOA #05-1208.02)
- 1/4" heat strengthened glass

Glass Type DI consisted of 1-5/16" thick (nominal) insulated laminated glass consisting of the following components:

- 1/4" tempered glass
- 1/2" air space
- ¼" heat strengthened glass
- 0.090" DuPont SentryGlas® ionoplast interlayer (Miami-Dade NOA #09-0312.03)
- 1/4" heat strengthened glass
- 5.4.2 Glazing Method

The glass lites used in these test specimens were exterior glazed using the following (typical) procedures:

<u>Interior Side:</u> Using strips of EPDM spacer gasket (Part #E2-0353) followed by a 1/4" x 1/2" continuous bead of Dow Corning® 995 Silicone Structural Glazing Sealant Exterior Side: Using strips of EPDM gasket (Part # E2-0379)

ENGINEER OF RECORD

REPORT WRITER

11/2/2009

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 5 of 13

5.4.3 Daylight Opening and Glass Bite

The glass types for each lite were per the YKK AP AMERICA, INC. drawing numbers and sheets indicated in Table 5.3, without modifications.

Elevation #	Qty.	Daylight Opening	Glass Bite	Drawing #	Sheet #
3 & 3A	4 4	57" (w) x 22-1/2" (h) 57" (w) x 94-1/2" (h)	15/16″ 15/16″	ELEV-3 & ELEV-3A	3 & 3A

Table 5.3: Daylight Opening and Glass Bite Details

5.5 Weather Stripping

None used

5.6 <u>Hardware</u> None used

5.7 <u>Weep Holes, Water Diverters, and Covers</u>

Table 5.4 provides the weep holes used in these test specimens.

Table 5.4: Weep Hole Details

Qty.	Location	Description
2/snap cover	At the third points of each exterior horizontal snap cover	5/16" diameter weep hole
3/member	3" from each end and at the centerline of each horizontal frame member	5/16" diameter weep hole

5.8 Sealants Used

Table 5.5 provides a summary of the sealants used in each test specimen.

Table 5.5: Sealant Details		
Elevation #	Location	Sealant Description
3 & 3A	Perimeter Sealant	Tremco® Spectrem 2® silicone sealant
3 & 3A	Frame Joint Sealant	Tremco® Spectrem 2® silicone sealant
3 & 3A	Glazing Sealant	Dow Corning® 995 Silicone Structural Glazing Sealant

.

6.0 PRODUCT INSTALLATION

Table 6.1 provides a detailed summary of the product installation into the steel opening. The rough opening allowed for a 1'' shim space.

Table	61.	Product	Installation	Dotaile
Idule	0.1:	Produce	Installation	Delalis

Elevation #	Location	Description	Installa	tion
Elevation #	Locadon	Description	Test Opening	Frame member
Ali	Jambs	"F" anchor (Part # E1-3004)	Two (2), 3/8-16 x 1" HH bolts	Slide in
All	Intermediate Mullions	"T" anchor (Part # E1-3003)	Two (2), 3/8-16 x 1" HH bolts	Slide in

ENGINEER OF RECORD

REPORT WRITER

11/2/2009

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 6 of 13

7.0 TEST SEQUENCE

Table 7.1 provides a summary of the test sequence for each test specimen tested.

	Table 7.1: Test Sequence			
Test Specimen 3		Te	st Specimen 3A	
1.	Air Infiltration Test	1.	Positive Pre-Load	
2.	Positive Pre-Load	2.	Positive Design Load	
3.	Positive Design Load	3.	Positive Overload	
4.	Negative Pre-Load	4.	Negative Pre-Load	
5.	Negative Design Load	5.	Negative Design Load	
6,	Water Infiltration Test	6.	Negative Overload	
7.	Positive Overload	7.	Large Missile Impact	
8.	Negative Overload	8.	Positive Cyclic Load	
9.	Large Missile Impact	9.	Negative Cyclic Load	
10.	Positive Cyclic Load			
11.	Negative Cyclic Load			

8.0 TEST RESULTS

8.1 Air Infiltration Test

8.1.1 Results – Air Infiltration Test

Table 8.1 provides the test results of the air infiltration test.

Table 8.1: Air Infiltration Te	st Results
--------------------------------	------------

Specimen #	Test Pressure (psf)	Measured (cfm/ft ²)	Allowed (cfm/ft ²)
2	+1.57	0.01	0.40
3	+6.24	0.03	0.40

8.1.2 <u>Conclusion – Air Infiltration Test</u>

HTL observed a measured air infiltration less than the allowed air infiltration through the test specimen; as such, this test specimen satisfies the requirements of ASTM E283 and TAS 202.

8.2 <u>Water Infiltration Test</u>

8.2.1 <u>Results – Water Infiltration Test</u>

Table 8.2 provides the results for the water infiltration test conducted per the requirements of ASTM E331 and TAS 202.

Table 8.2	: Water	 Infiltration 	Test	Results
-----------	---------	----------------------------------	------	---------

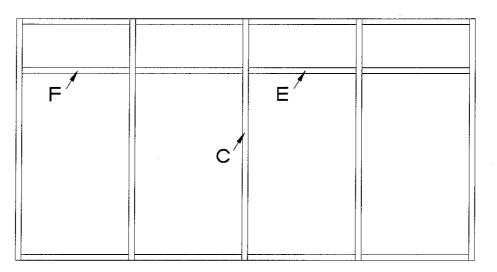
	Specimen	Test Pressure	Sprav Rate	Test Duration	
	#	(psf)	(gph/ft ²)	(minutes)	Conclusion
ĺ	3	20	5	15	No Entry

8.2.2 Conclusion – Water Infiltration Test

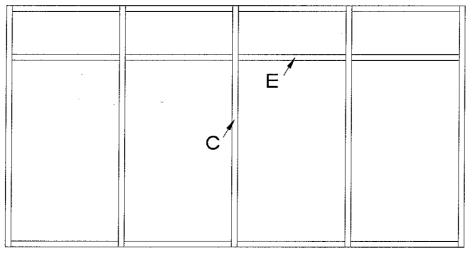
HTL observed zero (0) water infiltration through this test specimen; as such, these test specimens satisfy the requirements of ASTM E331 and TAS 202.

ENGINEER OF RECORD 11/2/2009

REPORT-WRITER



Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 7 of 13


8.3 Uniform Static Load Test

8.3.1 Deflection Gage Locations

Figure 8.1 shows the deflection gage locations for the uniform static load test.

Specimen 3

Specimen 3A

Figure 8.1: Deflection Gage Locations Uniform Static Load Test

ENGINEER OF RECORD REPORT WRITER 11/2/2009 11/2/2009

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 8 of 13

8.3.2 Positive Load Test Results

Table 8.3 provides the positive uniform static load test results for the deflection gage locations shown in Section 8.3.1. The deflection reported is the overall deflection between three points (longest unsupported span) which accounts for support movement.

Specimen	Gage	Load	Deflecti		Permanen	t Set (in.)
#	Location	(psf)	Measured	Allowed	Measured	Allowed
		+48.75	0.27	n/a	0.00	·
	С	+65.00	0.36	0.70	0.01	0.25
		+97.50	0.57	n/a	0.02	
		+48.75	0.01	n/a	0.00	
3	E	+65.00	0.01	0.33	0.00	0.12
		+97.50	0.02	n/a	0.00	
		+48.75	0.04	n/a	0.01	
	F	+65.00	0.05	0.33	0.00	0.12
		+97.50	0.07	n/a	0.01	
		+48.75	0.24	n/a	0.01	
3A	С	+65.00	0.37	0.70	0.01	0.25
			0.57	n/a	0.02	
		+48.75	0.05	n/a	0.01	
3A 🛛	E	+65.00	0.03	0.33	0.00	0.12
		+97.50	0.06	n/a	0.01	

Table 8.3: Positive Uniform Static Load Test Results

8.3.3 Negative Uniform Static Load Test Results

Table 8.4 provides the negative uniform static load test results for the locations presented in Section 8.3.1.

Specimen	Gage	Load	Deflecti	on (in.)	Permanen	t Set (in.)
#	Location	(psf)	Measured	Allowed	Measured	Allowed
		-48.75	0.36	n/a	0.01	
	С	-65.00	0.45	0.70	0.01	0.25
		-97.50	0.54	n/a	0.01	
		-48.75	0.07	n/a	0.00	
3	E	-65.00	0.00	0.33	0.00	0.12
		-97.50	0.03	n/a	0.02	
		-48.75	0.11	n/a	0.00	
490 J	F	-65.00	0.05	0.33	0.00	0.12
		-97.50	0.14	n/a	0.06	

Table 8.4: Negative Uniform Static Load Test Results

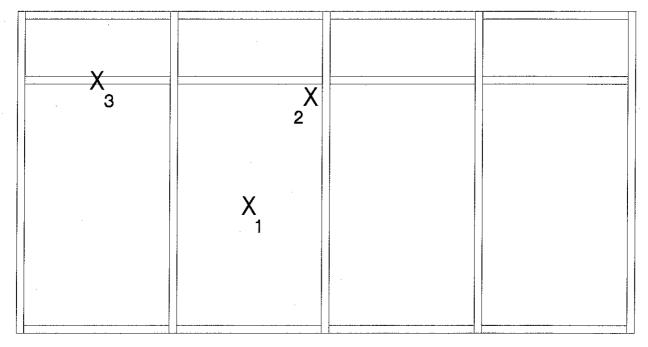
ENGINEER OF RECORD

REPORT WRITER

11/2/2009

Table 8.4 (continued): Negative Uniform Static Load Test Results							
Specimen	Gage	Load	Deflecti	on (in.)	Permanen	it Set (in.)	
#	Location	(psf)	Measured	Allowed	Measured	Allowed	
		-48.75	0.24	n/a	0.01		
	C	-65.00	0.35	0.70	0.03	0.25	
24		-97.50	0.56	n/a	0.04		
SA	3A E	-48.75	0.02	n/a	0.00		
		-65.00	0.02	0.33	0.00	0.12	
		-97.50	0.04	n/a	0.00		

Table 8.4 (continued): Negative Uniform Static Load Test Results


8.3.4 Conclusion – Uniform Static Load Test

HTL observed no signs of failure in any area of these test specimens during the uniform static load test. In addition, each specimen met the deflection and permanent set requirements; as such, these test specimens satisfy the uniform static load test requirements of ASTM E330 and TAS 202.

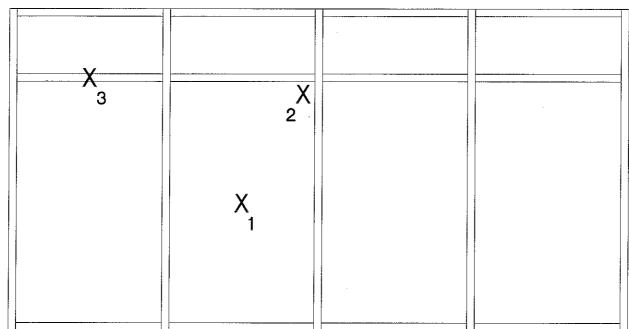
8.4 Large Missile Impact Test

8.4.1 Large Missile Impact Locations

Figures 8.2 and 8.3 show the large missile impact locations for the specimens tested.

X- Large Missile Location

Figure 8.2: Large Missile Impact Locations - Specimen 3


ENGINEER OF RECORD 11/2/2009

REPORT WRITER

11/2/2009

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 10 of 13

X- Large Missile Location

Figure 8.3: Large Missile Impact Locations - Specimen 3A

8.4.2 <u>Test Results - Large Missile Impact Test</u> Table 8.5 provides the large missile impact test results.

Table 8.5: Large Missile Impact Test Results							
Specimen	Import	Missile	Missile	Missile	Glass	Х	Y
specifien #	Impact	Weight	Length	Velocity	Temp.	Coord. ¹	Coord. ²
#	#	(lbs.)	(in.)	(ft/sec)	(°F)	(in.)	(in.)
	1			49.08		90.00	50.00
3	2	9.13	96	49.66	68	114.00	93.00
	3			49.90		30.00	96.00
	1			52.91		91.00	49.00
3A (2	9.00	97	51.73	66	115.00	92.00
	3			49.22		32.00	97.00

¹Measured from the left side of test specimen. ²Measured from the bottom of test specimen.

ENGINEER OF RECORD

11/2/2009

REPORT WRITER

11/2/2009

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 11 of 13

8.4.3 Conclusion - Large Missile Impact Test

The large missile impacted the intended targets and HTL carefully inspected each impact location. HTL observed no signs of penetration, rupture, or opening after the large missile impact test; as such, these test specimen satisfy the large missile requirements of the Florida Building Code TAS 201 and ASTM E1886/1996 Level D.

8.5 Cyclic Load Test

8.5.1 Deflection Gage Locations - Cyclic Load Test

Figure 8.1 shows the deflection gage locations for the cyclic load test. Please refer to Section 8.3.1 for figure 8.1.

8.5.2 <u>Test Spectrum - Cyclic Load Test</u> Tables 8.6 and 8.7 provide the positive and pagative cyclic load test spectrum

Tables 8.6 and 8.7 provide the positive and negative cyclic load test spectrum respectively.

Table 8.6: Positive Load Test Spectrum

Stage	1	2	3	4
Pressure Range (psf)	13.0 - 32.5	0 - 39.0	32.5 - 52.0	19.5 - 65.0
Number of Cycles	3500	300	600	100

Table 8.7: Negative Load Test Spectrum

Stage	5	6	7	8
Pressure Range (psf)	19.5 - 65.0	32.5 - 52.0	0 - 39.0	13.0 - 32.5
Number of Cycles	50	1050	50	3350

8.5.3 Deflection Results - Cyclic Load Test

Table 8.8 shows the cyclic test results for each test specimen.

Table 8.8: Cyclic Load Test Results							
		Inward (Po	ositive Load)	Outward (Negative Load)			
Spec. #	Gage	Permanent Set		Perma	nent Set		
#	Loc.	Measured	Allowed	Measured	Allowed		
		(in.)	(in.)	(in.)	(in.)		
2	С	0.13	0.25	0.18	0.25		
ാ	Е	0.00	0.12	0.06	0.12		
24	С	0.13	0.25	0.13	0.25		
3A -	E	0.06	0.12	0.09	0.12		

Table 8.8: Cyclic Load Test Results

8.5.4 Conclusion - Cyclic Load Test

Upon completion of the cyclic load test, HTL carefully inspected the test specimens for failures. Glass types "A and AI" failed cycling because of tears in the glass. They were boarded up to pass the mullions and the other glass types. HTL observed no other signs of failure; as such, these test specimens satisfy the cyclic load test requirements of TAS 203 and ASTM E1886/1996.

ENGINEER OF RECORD

11/2/2009

REPORT WRITER

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 12 of 13

9.0 SUMMARY

Table 9.1 provides a summary of the test results for YKK AP America's YHC 300.

· · · ·	Table 9.1: Summary of Test Results							
Specimen #	Test Method	Test Conditions	Test Conclusion					
3	Air Infiltration Test (TAS 202 and ASTM E283)	1.57 and 6.24 psf	PASS					
3	Water Infiltration Test (TAS 202 and ASTM E331)	20 psf	PASS					
3 & 3A	Static Load Test (TAS 202 and ASTM E330)	+/- 65 psf Design Pressure	PASS					
3 & 3A	Large Missile Impact Test (TAS 201, ASTM E1886/E1996)		PASS					
3 & 3A	Cyclic Load Test (TAS 203 and ASTM E1886/E1996)	+/- 65 psf Design Pressure	PASS (Glass Type "D and DI" only)					

10.0 CERTIFICATION AND DISCLAIMER STATEMENT

All tests performed on these test specimens were conducted in accordance with the specifications of the applicable codes, standards and test methods listed below by HTL, LLC. HTL, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested at HTL. HTL is not owned, operated or controlled by any company manufacturing or distributing products it tests. This report is only intended for the use of the entity named in Section 1.0 of this report. Detailed assembly drawings showing wall thickness of all members, corner construction and hardware applications are on file and have been compared to the test specimens submitted. A copy of this test report along with representative sections of the test specimens will be retained at HTL for a period of three (3) years. All results obtained apply only to the specimens tested and they do indicate compliance with the performance requirements of the test methods and specifications listed in the following section.

ENGINEER OF RECORD 11/2/2009

REPORT WRITER 11/2/2009

Test Report #: G231-1001-09 #7 Specimen #: 3 & 3A Page: 13 of 13

11.0 APPLICABLE CODES, STANDARDS, AND TEST METHODS

Florida Building Code TAS 201-94 - Impact Test Procedures

Florida Building Code TAS 202-94 – Criteria for Testing Impact & Nonimpact Resistant Building Envelope Components using Uniform Static Air Pressure

Florida Building Code TAS 203-94 – Criteria for Testing Products Subject to Cyclic Wind Pressure Loading ASTM E283-04 – Standard Test Method for Determining Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E330-02 – Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

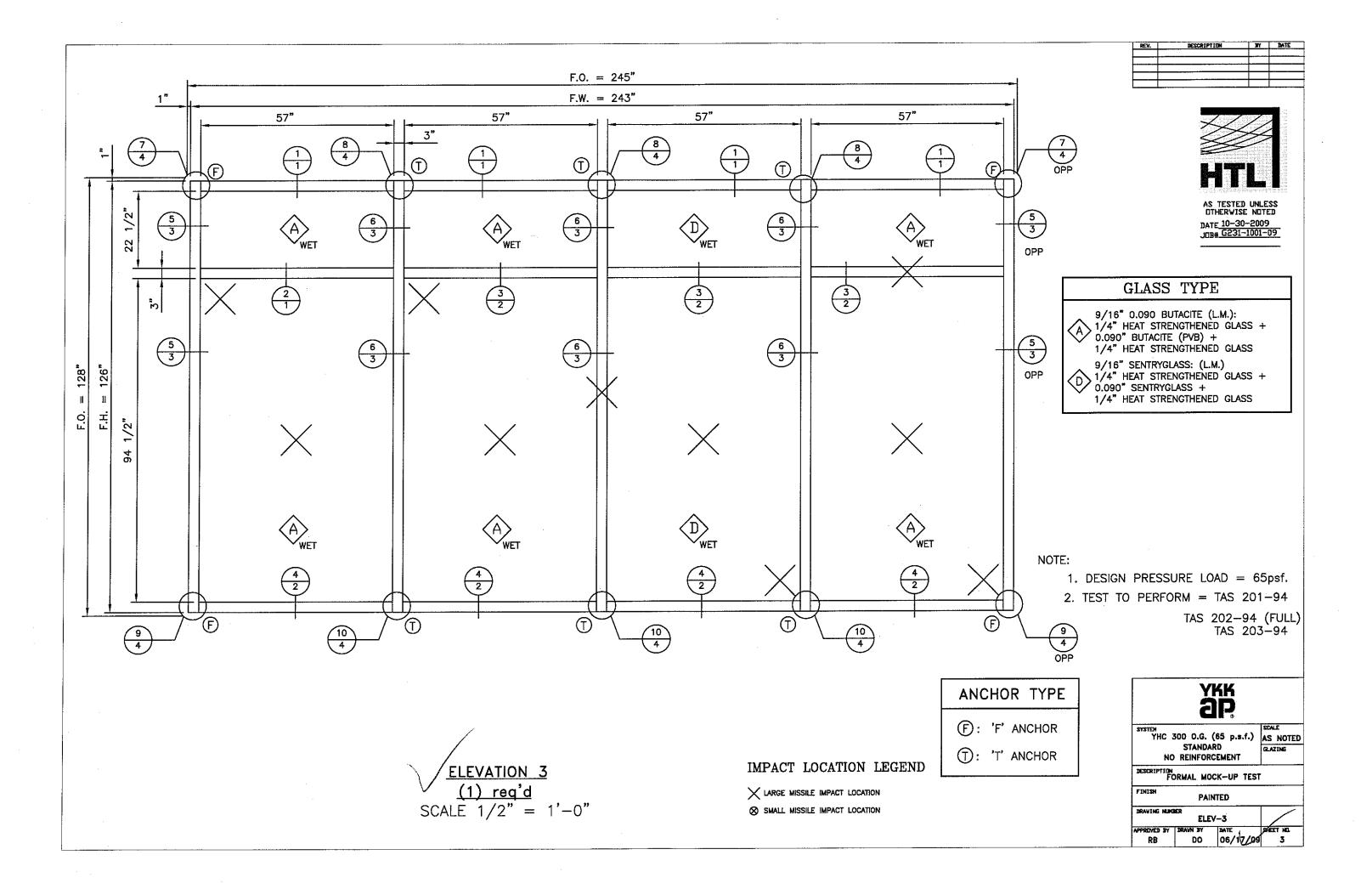
ASTM E331-00 – Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

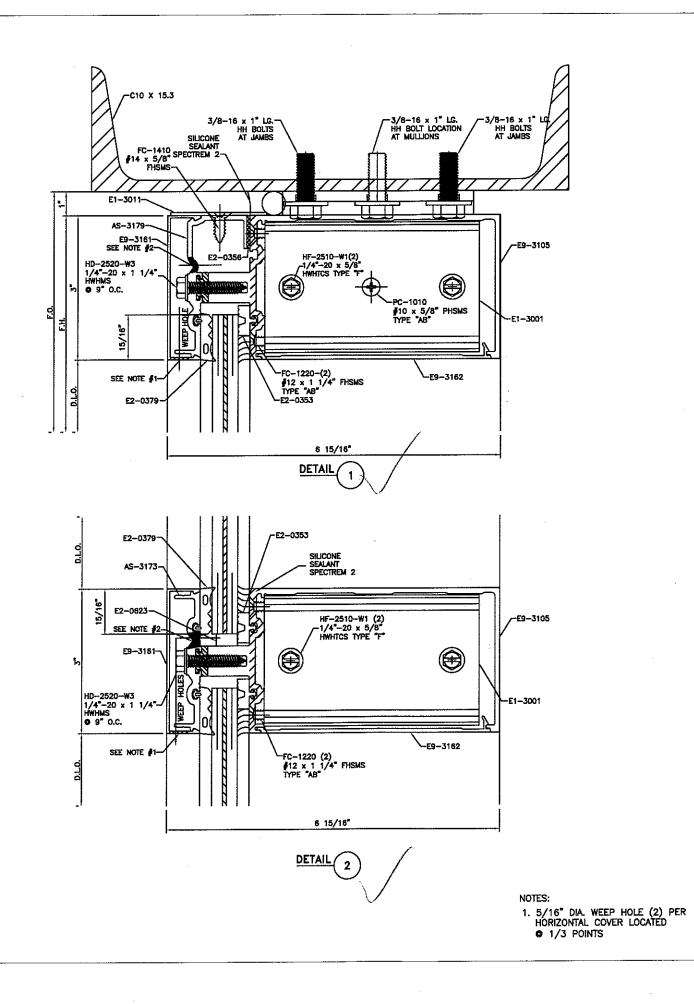
ASTM E1886-05 – Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials

ASTM E1996-09 – Standard Specification for performance of Exterior Windows, Curtain Walls, Doors and Impact Protective Systems Impacted by Windborne Debris in Hurricanes

12.0 WITNESSES (ALL OR PARTIAL)

- Vinu J. Abraham, P.E. Jose Colon, E.I. Ian McKenzie Kevin Gardner Robert Kott
- CEO Operations Manager Lab Supervisor Test Team Support Team

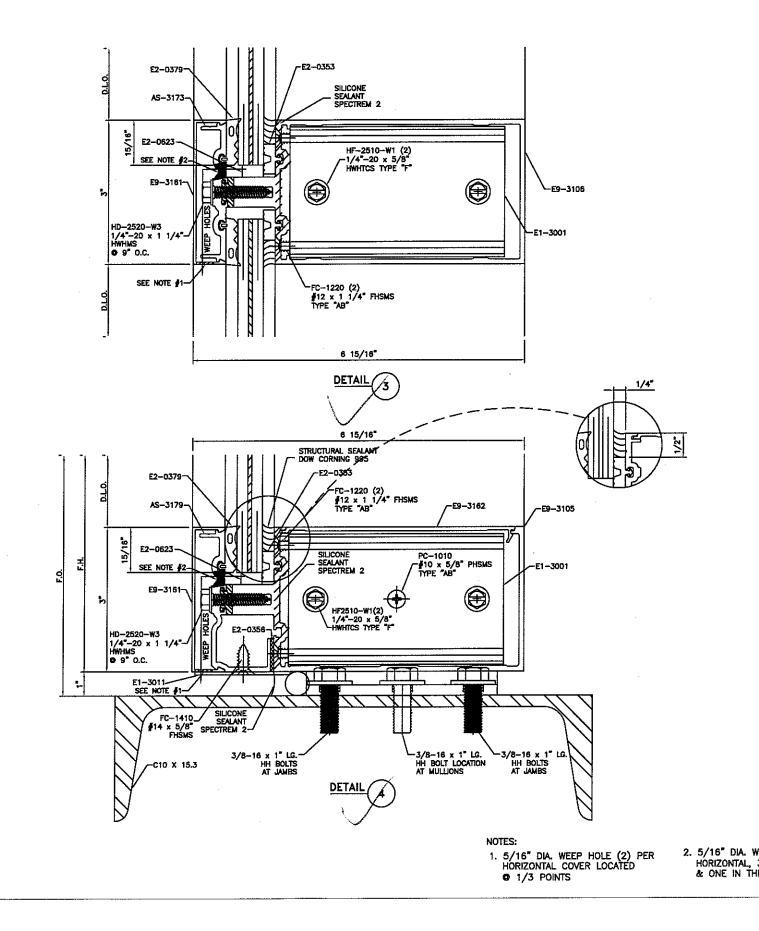

HTL, LLC HTL Georgia HTL Georgia HTL Georgia HTL Georgia


ENGINEER OF RECORD

11/2/2009

REPORT WRITER

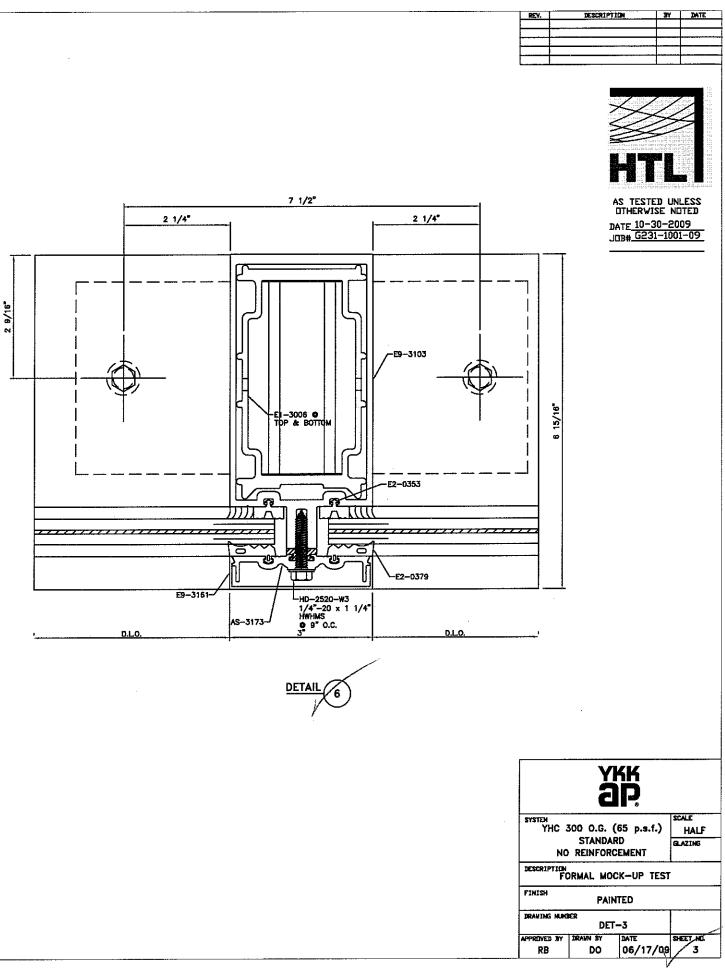
11/2/2009

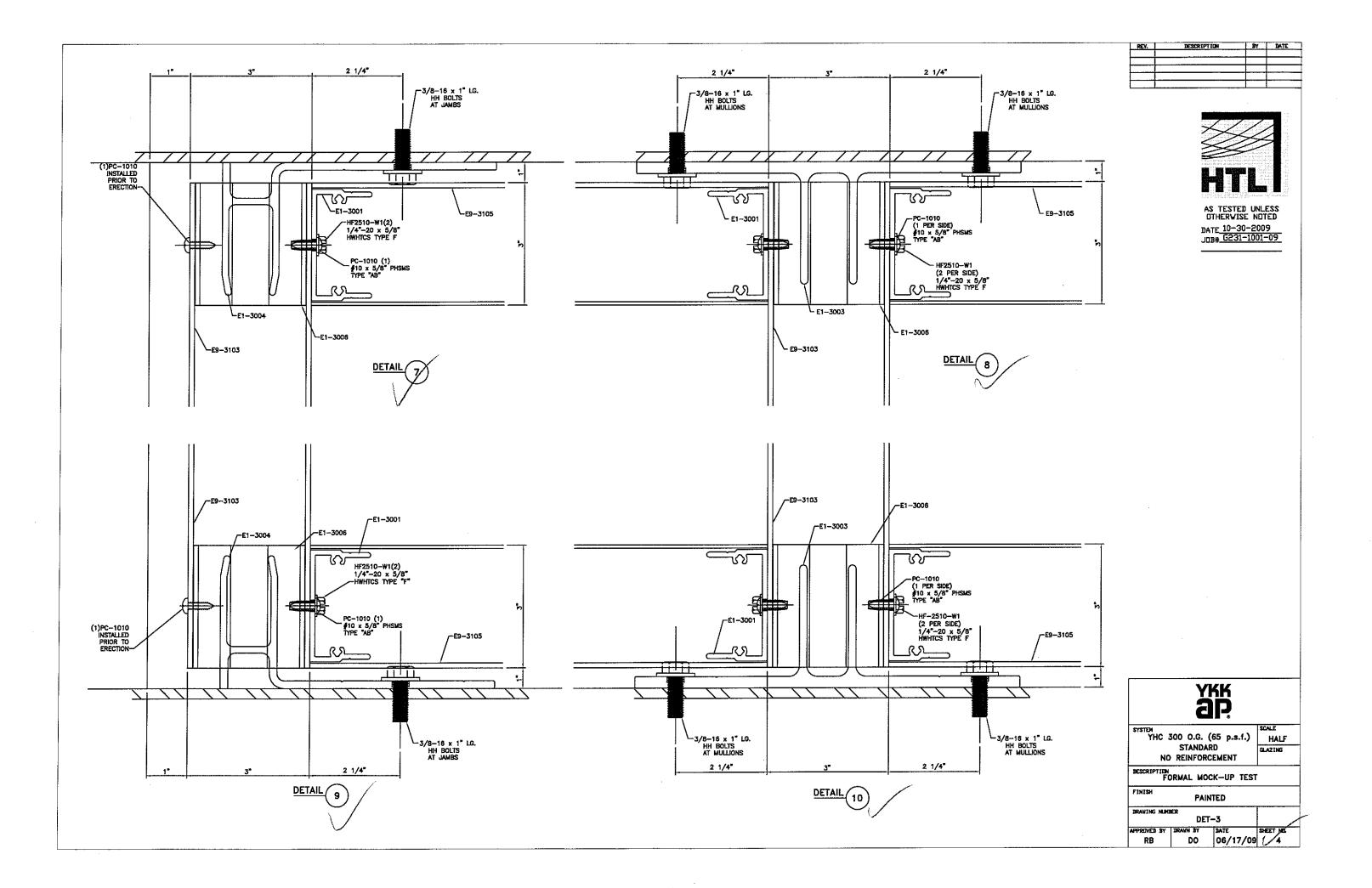

2. 5/16" DIA. WEEP HOLE (3) PER HORIZONTAL, 3" FROM EACH END, & ONE IN THE CENTER.

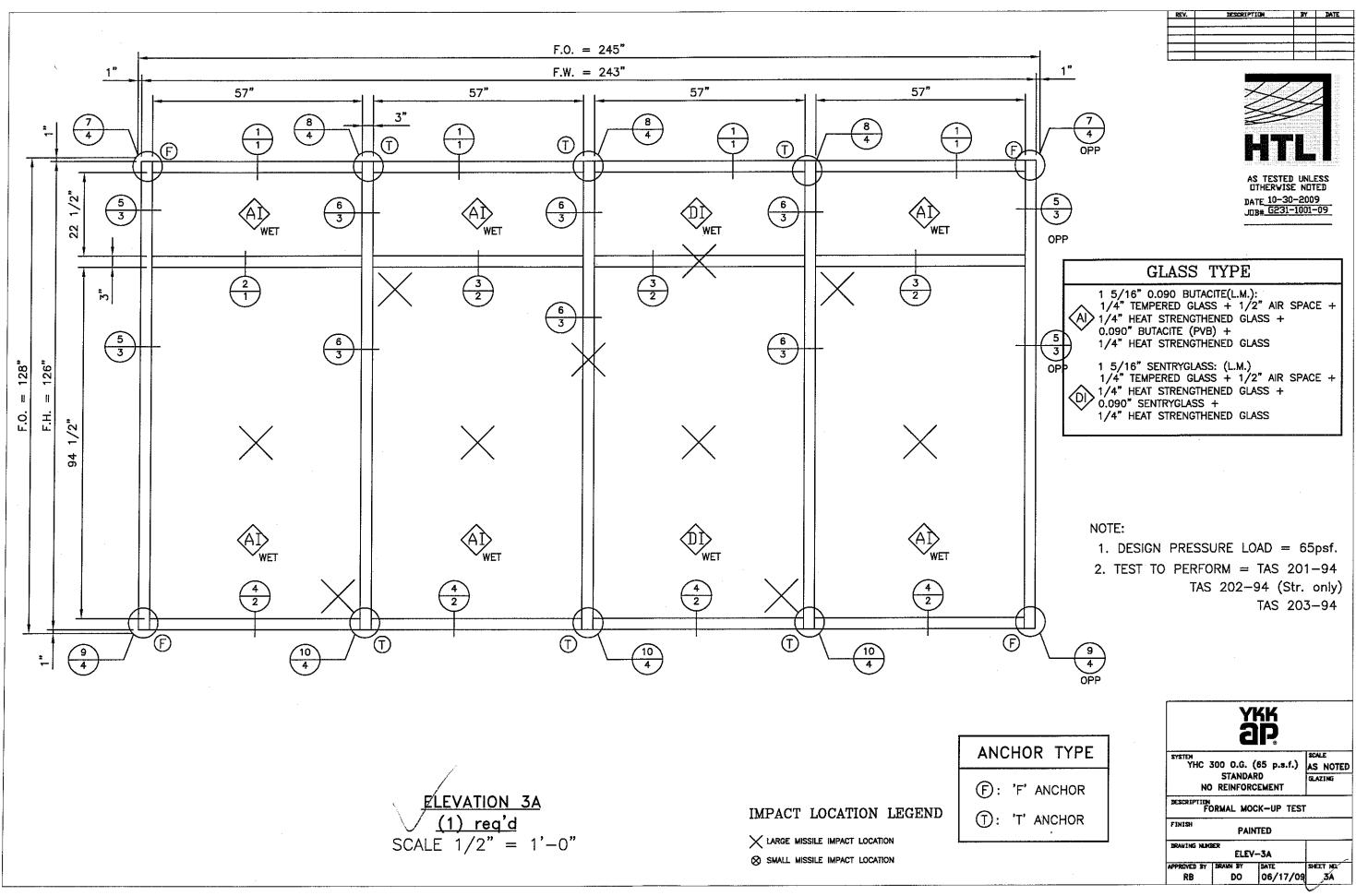
REV.	DESCRIPTION	BY .	DATE
	·····		

AS TESTED UNLESS OTHERWISE NOTED DATE 10-30-2009 JDB# G231-1001-09

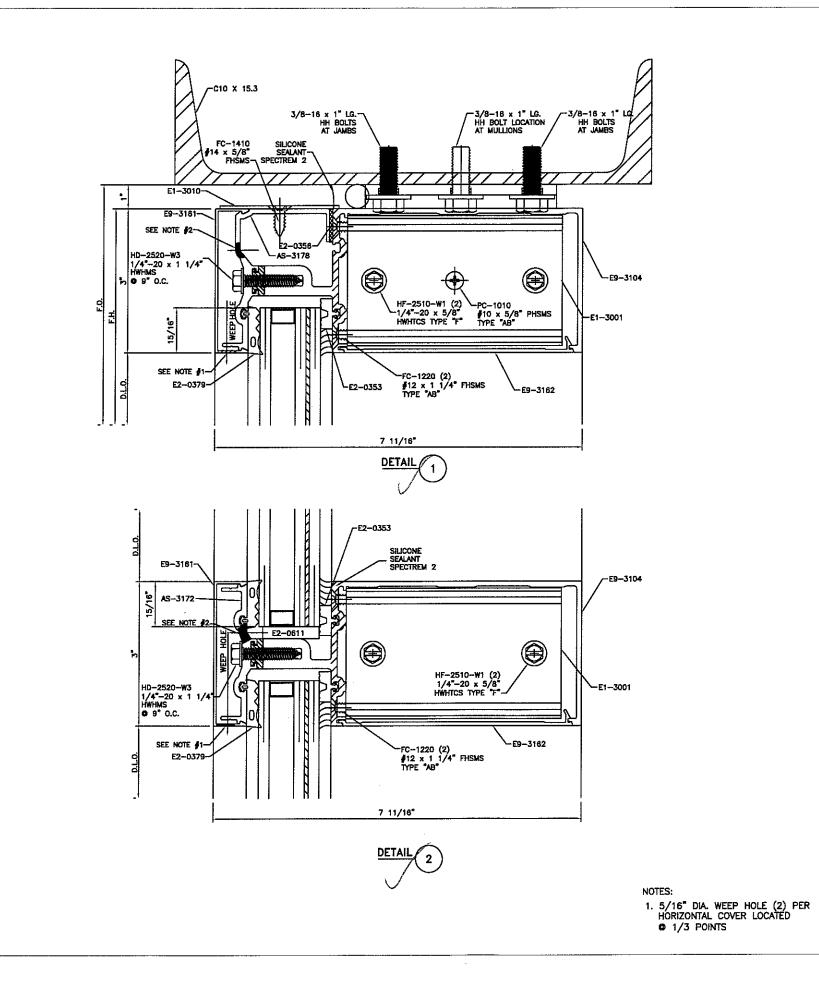
		Jb kk	
	SOO O.G. STANDA		SCALE HALF GLAZING
ESCRIPTION FC	ORMAL MO	CK-UP TEST	•
FINISH	PAI	NTED	
DRAVING NUMBER DET-3			/
APPROVED BY	DRAWN BY	DATE 06/17/09	SHEET NO.

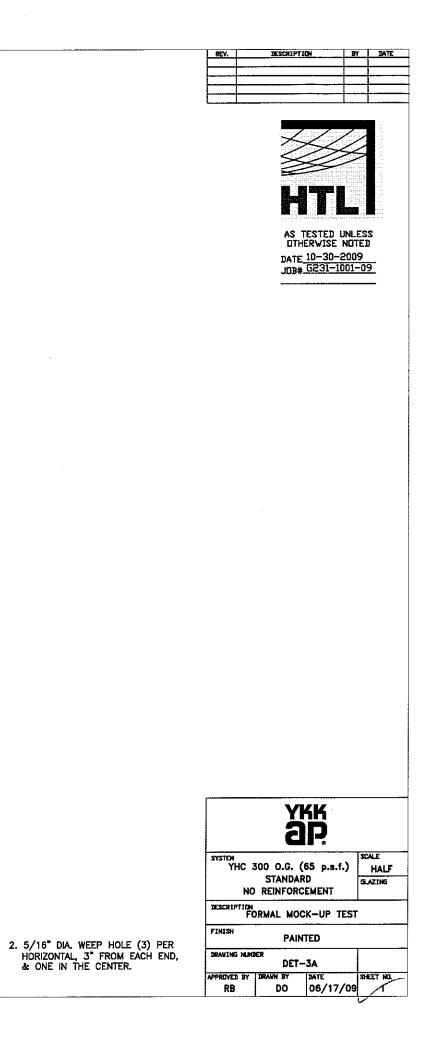

REY.	DESCRIPTION	BY	DATE

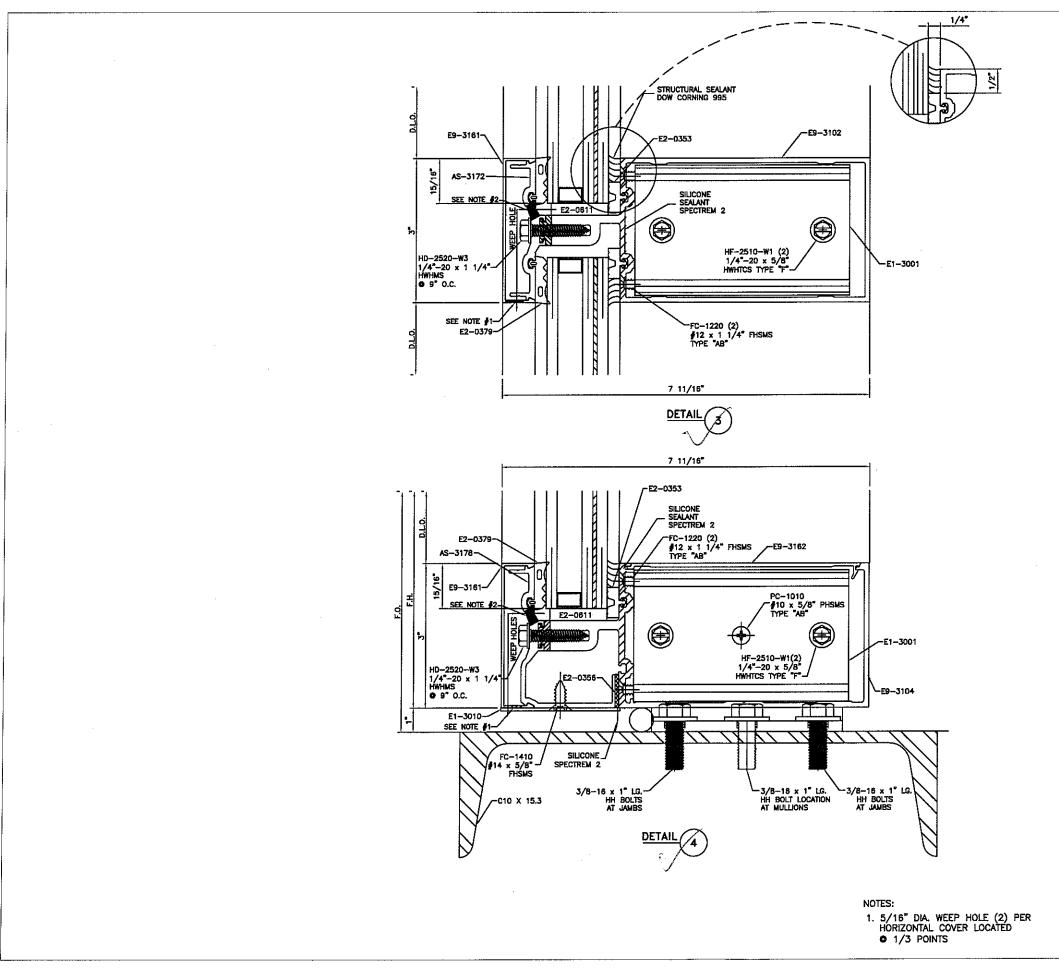


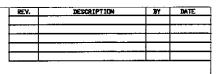

AS TESTED UNLESS DTHERWISE NOTED DATE 10-30-2009 JOB# G231-1001-09

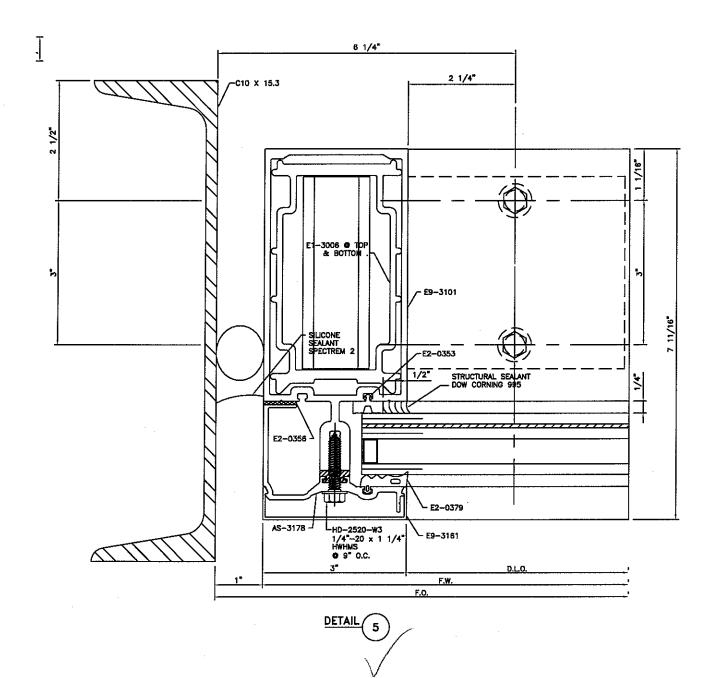
		a a	IP KK	
	SYSTEM YHC 300 O.G. (65 p.s.f.) STANDARD NO REINFORCEMENT		SCALE HALF	
			GLAZING	
	DESCRIPTION	ORMAL MO	CK-UP TEST	
	FINISH PAINTED			
WEEP HOLE (3) PER 3" FROM EACH END,	DRAVING NUM	ER DET	-3	
HE CENTER.	APPROVED BY RB	DRAWN 38Y DO	DATE 06/17/09	SHEET NO.

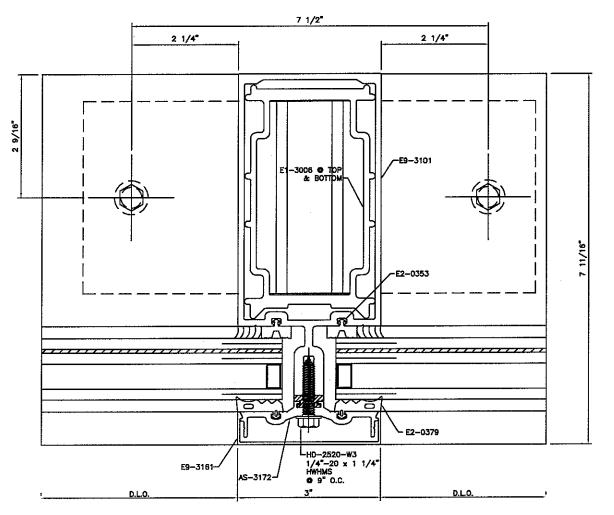

6 1/4" 2 1/4" -C10 X 15.3 118 (-3006 O TOP & BOTTOM-/-E9-3103 15/16" SILICONE SEALANT SPECTREM <u>∕-</u>E2-0353 1/2* STRUCTURAL SEALANT \mathbb{I} <u>IIII A</u> E2-0356 <u>Ease</u> E2-0379 ТП LE9-3181 HD-2520-W3 1/4"-20 x 1 1/4" HWHMS • 9" O.C. AS-3179-3* D.L.O. TITT F.H. F.O. DETAIL گر

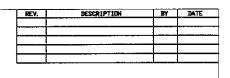




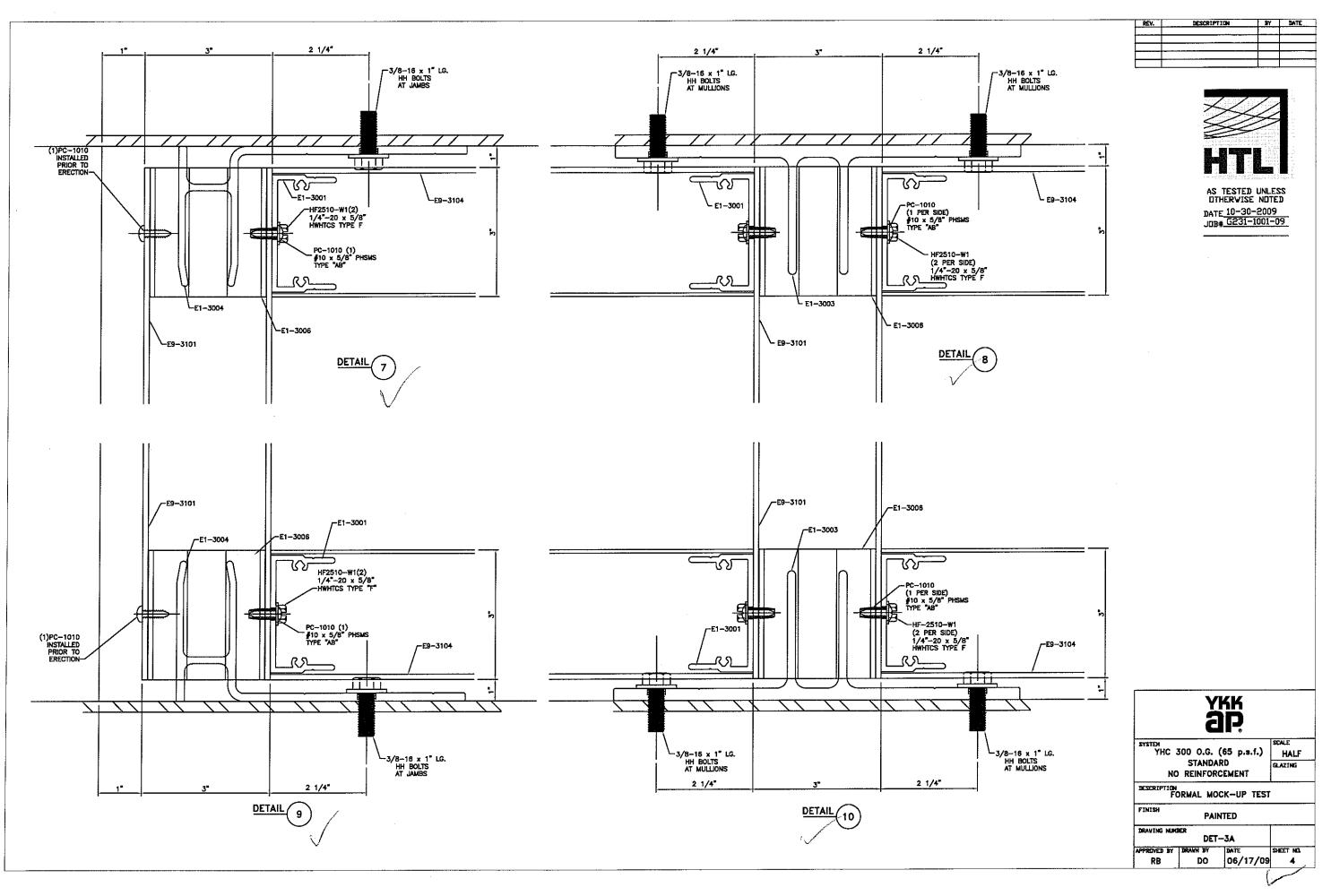

.




2. 5/16" DIA. WEEP HORIZONTAL, 3" FI & ONE IN THE CE



	ЯКК			
		300 O.G. STANDA REINFOR		SCALE HALF GLAZING
	DESCRIPTION	DESCRIPTION FORMAL MOCK-UP TEST		
	FINISH	PAI	NTED	
HOLE (3) PER ROM EACH END,	DRAVING NUM		-3A	
ENTER.	APPROVED BY RB	DRAVN BY DO	DATE 06/17/09	SHEET NO.


DETAIL 6

DATE 10-30-2009 JDB# G231-1001-09

S B B				
SYSTEM YHC 300 O.G. (65 p.s.f.)			scale HALF	
NC	STANDARD NO REINFORCEMENT		GLAZING	
DESCRIPTION	ORMAL MO	CK-UP TEST		
FINISH PAINTED				
DRAVING NUMBER				
APPROVED BY	PPREVED BY DRAWN BY DATE			
RB DO 06/17/09			3	
			L'AND AND AND AND AND AND AND AND AND AND	

TEST REPORT

Report No.: F3753.02-550-18

Rendered to:

YKK AP AMERICA, INC Austell, Georgia

PRODUCT TYPE: Curtain Wall **SERIES/MODEL**: YHC 300 OG – Elevation 2

Title	Summary of Results
Design Pressure	±2633 Pa (±55.00 psf)
Uniform Load Structural Test Pressure	±3950 Pa (±82.50 psf)
Large Missile Test	Pass

Reference must be made to Report No. F3753.02-550-18, dated 04/21/16 for complete test specimen description and detailed test results.

- 1.0 Report Issued To: YKK AP America, Inc. 270 Riverside Parkway, Suite A Austell, Georgia 30168 Don Pangburn
 2.0 Test Laboratory: Architectural Testing, Inc., an Intertek company ("Intertek-ATI")
 - 1701 Westfork Drive, Suite 106 Lithia Springs, Georgia 30122 770-941-6916

3.0 Project Summary:

- 3.1 Product Type: Curtain Wall
- 3.2 Series/Model: YHC 300 OG Elevation 2
- **3.3 Compliance Statement**: Results obtained are tested values and were secured by using the designated test method(s). Test specimen description and results are reported herein.
- **3.4 Test Date(s)**: 03/15/16 03/16/16
- **3.5 Test Record Retention End Date**: All test records for this report will be retained until March 16, 2020.
- **3.6 Test Location**: Intertek-ATI test facility in Lithia Springs, Georgia.
- **3.7 Test Specimen Source**: The test specimen was provided by the client. Representative samples of the test specimen(s) will be retained by Intertek-ATI for a minimum of four years from the test completion date.
- **3.8 Drawing Reference**: The test specimen drawings have been reviewed by Intertek-ATI and are representative of the test specimen(s) reported herein. Test specimen construction was verified by Intertek-ATI per the drawings located in Appendix C. Any deviations are documented herein or on the drawings.
- 3.9 List of Official Observers:

<u>Name</u>

<u>Company</u>

Don Pangburn	YKK AP America, Inc.
Shane Tanner	YKK AP America, Inc.
Jon Gardner	Intertek-ATI
Darrell Lewis	Intertek-ATI
lan McKenzie	Intertek-ATI
Jacques Johnson	Intertek-ATI

4.0 Test Method(s):

ASTM E330/E330M-14, Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E1886-13a, Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials

ASTM E1996-14a, Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborne Debris in Hurricanes

5.0 Test Specimen Description:

5.1 Product Sizes:

Overall Area:	Wi	Width		ght
14.8 m² (158.83 ft²)	millimeters	inches	millimeters	inches
Overall size	4,648	183	2,515	99

5.2 Frame Construction:

Frame Member	Material	Description
Head/Sill		Part #E9-3127 (Middle and Right
		Bays), #E9-3112 (Left Bay)
Head/Sill Filler		Part #E9-8169
Jambs/Mullions	Aluminum 6063-T5	Part #E9-3126
Head/Sill/Jamb Pressure Plate		Part #AS-3178
Mullion Pressure Plate		Part #AS-3172
Pressure Plate Cover		Part #E9-3161

Location	Joinery Type	Detail
Intermediate mullions at head and sill	Square cut and butted	Part #HF2510-W1 (two per side) 1/4"-20 x 5/8" HMHTCS Type F
Top and bottom	Square cut and	Part #HF2510-W1 (two side by side connecting
corners	butted	head and sill to the jambs).

5.0 Test Specimen Description: (Continued)

5.3 Reinforcement: Reinforcement was not utilized.

5.4 Weatherstripping:

Description	Quantity	Location
Pressure Plate Gasket	13 rows	Faces of the mullion and pressure plates
(Part #E2-0379)	1310W3	races of the multion and pressure plates

5.5 Glazing: No conclusions of any kind regarding the adequacy or inadequacy of the glass in any glazed test specimen(s) can be made.

Glass Type	Overall Thickness	Glass Makeup	Glazing Method
		1/4" tempered glass	
		1/2" air space	Exterior Dry-Glazing – Pressure
GI	1-5/16"	1/4"heat-strengthened glass	Plate (Part #AS-3172) with gasket (Part #E2-0379
	_ 0, _0	0.060" (Saflex - PVB) interlayer	Interior Dry Glazing – Gasket (Part # E20379)
		1/4" heat-strengthened glass	
		1/4" tempered glass	
		1/2" air space	Exterior Dry-Glazing – Pressure
СІ	1-5/16"	1/4"heat-strengthened glass	Plate (Part #AS-3172) with gasket (Part #E2-0379
	-, -	0.060" (SentryGlass) interlayer	Interior Dry Glazing – Gasket (Part # E20379)
		1/4" heat-strengthened glass	

	Glass Type Location		Daylight Opening		
Glass Type Location	Quantity	millimeters	inches	Glass Bite	
CI	All lites	3	1448 x 2362	57 x 93	

5.6 Drainage: No drainage was utilized.

6.0 Installation:

The specimen was installed into a steel test buck. The rough opening allowed for a 1/2" shim space. The exterior perimeter of the window was sealed with structural sealant.

Location	Anchor Description	Anchor Location
Intermediate Mullions	Part #E1-3046	Head and sill of intermediate mullions attached to the steel with 3/8-16 x 1" LG HH Bolts
Top and bottom of jambs	Part #E1-3004	Head and sill of jambs anchored on the steel with two (2) 3/8-16 x 1" LG HH Bolts

7.0 Test Results: The temperature during testing was 25°C (77°F). The results are tabulated as follows:

Title of Test	Results	Allowed	Note
Uniform Load Deflection,			
1/2 of Test Load			
per ASTM E330			
Deflections taken at one			
intermediate mullion			
+1976 Pa (+41.25 psf)	5.6 mm (0.22")	14.0 mm (0.55") max.	
-1976 Pa (-41.25 psf)	6.6 mm (0.26")	14.0 mm (0.55") max.	1, 2
Uniform Load Structural,			
Design Load			
per ASTM E330			
Deflections taken at one			
intermediate mullion			
+2635 Pa (+55.00 psf)	7.9 mm (0.31")	14.0 mm (0.55") max.	
-2635 Pa (-55.00 psf)	8.9 mm (0.35")	14.0 mm (0.55") max.	1, 2
Uniform Load Deflection,			
Test Load			
per ASTM E330			
Permanent sets taken at one			
intermediate mullion			
+3952 Pa (+82.50 psf)	1.0 mm (0.04")	5.1 mm (0.20") max.	
-3952 Pa (-82.50 psf)	1.5 mm (0.06")	5.1 mm (0.20") max.	1, 2

7.0 Test Results: (Continued)

ASTM E1886 and ASTM E1996, Large and Small Missile Impact

Conditioning Temperature: 26.7°C (80°F) Large Missile Weight: 4082g (9.0 lbs) Large Missile Length: 2.5 m (8'4") Small Missile Weight: 2g

Elevation 2: Orientation within ±5° of horizontal

Impact #1 (Small Missile): Missile Velocity: 40.1 m/s (131.5 fps)			
Impact Area: Bottom of center lite at the midpoint			
Observations:	Missile hit target area. No signs of penetration.		
Results:	Pass		

Impact #2 (Small Missile): Missile Velocity: 39.9 m/s (130.8 fps)			
Impact Area: Geometric center of center lite			
Observations :	Observations : Missile hit target area. No signs of penetration.		
Results:	Pass		

Impact #3 (Small Missile): Missile Velocity: 39.5 m/s (129.5 fps)			
Impact Area: Top of center lite at the midpoint			
Observations : Missile hit target area. No signs of penetration.			
Results:	Pass		

Impact #4 (Large Missile): Missile Velocity: 15.4 m/s (50.4 fps)			
Impact Area: Bottom right corner of left lite			
Observations:	vations: Missile hit target area. No signs of penetration.		
Results: Pass			

Impact #5 (Large Missile): Missile Velocity: 15.2 m/s (49.8 fps)			
Impact Area: Top right corner of right lite			
Observations:	Missile hit target area. No signs of penetration.		
Results:	Pass		

Note: See Elevation 2 drawings for impact locations

7.0 Test Results: (Continued)

Conclusion: The large and small missiles impacted each intended target and Intertek-ATI carefully inspected each impact location. Intertek-ATI observed no signs of penetration, rupture, or opening after the large missile impact test; as such, each test specimen satisfies the large and small requirements of ASTM E1886 and ASTM E1996.

ASTM E1886 and ASTM E1996, Air Pressure Cycling

Test Unit: Elevation 2 Design Pressure: ±2633 Pa (±55.0 psf)

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
527 to 1317 (11.0 to 27.5)	3500	2.6	
0 to 1580 (0 to 33.0)	300	2.9	No damage to the frame or deglazing of
1317 to 2107 (27.5 to 44.0)	600	2.4	the glass
790 to 2633 (16.5 to 55.0)	100	2.8	

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure Range Pa (psf)	Number of Cycles	Average Cycle Time (seconds)	Observations
790 to 2633	50	3.0	
(16.5 to 55.0) 1317 to 2107			
(27.5 to 44.0)	1050	2.3	No damage to the frame or deglazing of
0 to 1580	50	3.0	the glass
(0 to 33.0)	50	5.0	
527 to 1317 (11.0 to 27.5)	3350	2.6	

7.0 Test Results: (Continued)

General Note: All testing was performed in accordance with the referenced standard(s).

Note 1: Loads were held for 30 seconds.

Note 2: Tape and film were used to seal against air leakage during structural testing.

8.0 Test Equipment:

Cannon: Constructed from steel piping utilizing compressed air to propel the missile

Missile: 2x4 Southern Pine and 8 mm (5/16") diameter ball bearings

Timing Device: Electronic Beam Type

Cycling Mechanism: Computer controlled centrifugal blower with electronic pressure measuring device

Deflection Measuring Device: Linear transducers

Test Report No.: F3753.02-550-18 Revision 2: 04/21/16 Report Date: 04/11/16 Page 8 of 9

Intertek-ATI will service this report for the entire test record retention period. Test records such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation, will be retained by Intertek-ATI for the entire test record retention period.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Intertek-ATI.

For ARCHITECTURAL TESTING, INC.:

Digitally Signed by: Jacques Johnson

Jacques R. Johnson Quality Manager

JRJ:IJM:jab

Digitally Signed by: Ian J. McKenz

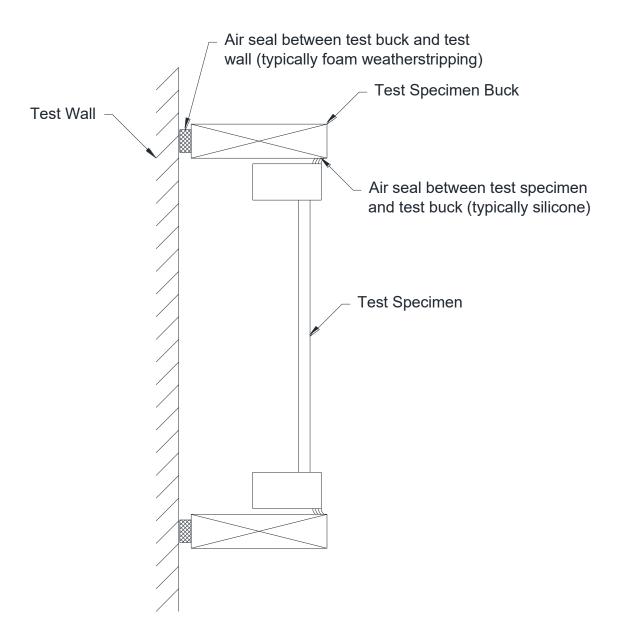
Ian J. McKenzie Lab Manager - Regional Operations

Attachments (pages): This report is complete only when all attachments listed are included. Appendix A: Location of air seal (1) Appendix B: Photograph(s) (1)

Appendix C: Drawings (5)

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)
0	04/11/16	N/A	Original report issue
1	04/15/16	Cover	Changed the cover page job number to reflect the job number in the header.
2	04/21/16	Drawings	Update drawings


This report produced from controlled document template ATI 00479, revised 06/19/15.

Appendix A

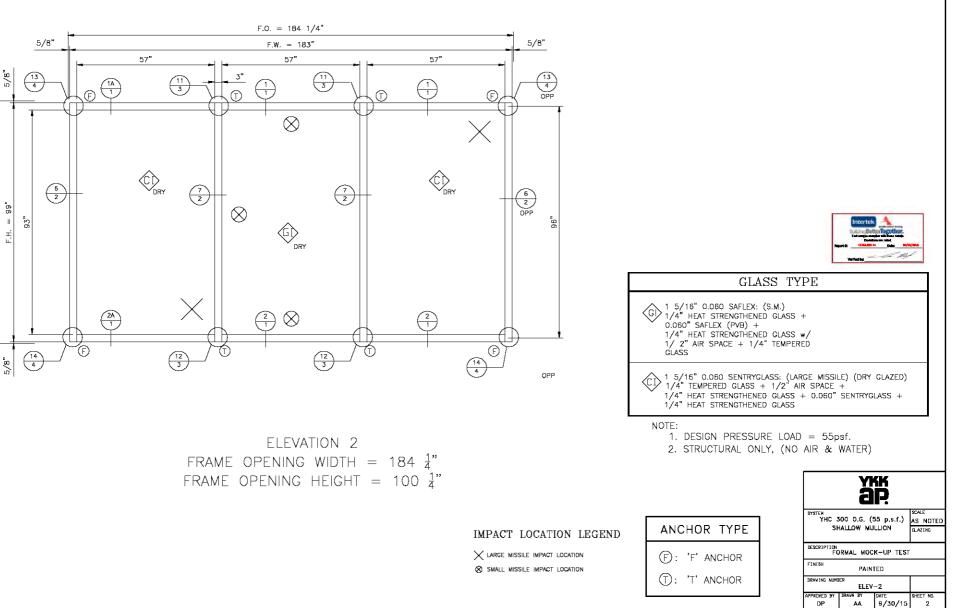
Location of Air Seal: The air seal between the test specimen and the test wall is detailed below. The seal is made of foam weatherstripping and is attached to the edge of the test specimen buck. The test specimen buck is placed against the test wall and clamped in place, compressing the weatherstripping and creating a seal.

Test Report No.: F3753.02-550-18 Revision 2: 04/21/16 Report Date: 04/11/16

Appendix B

Photographs

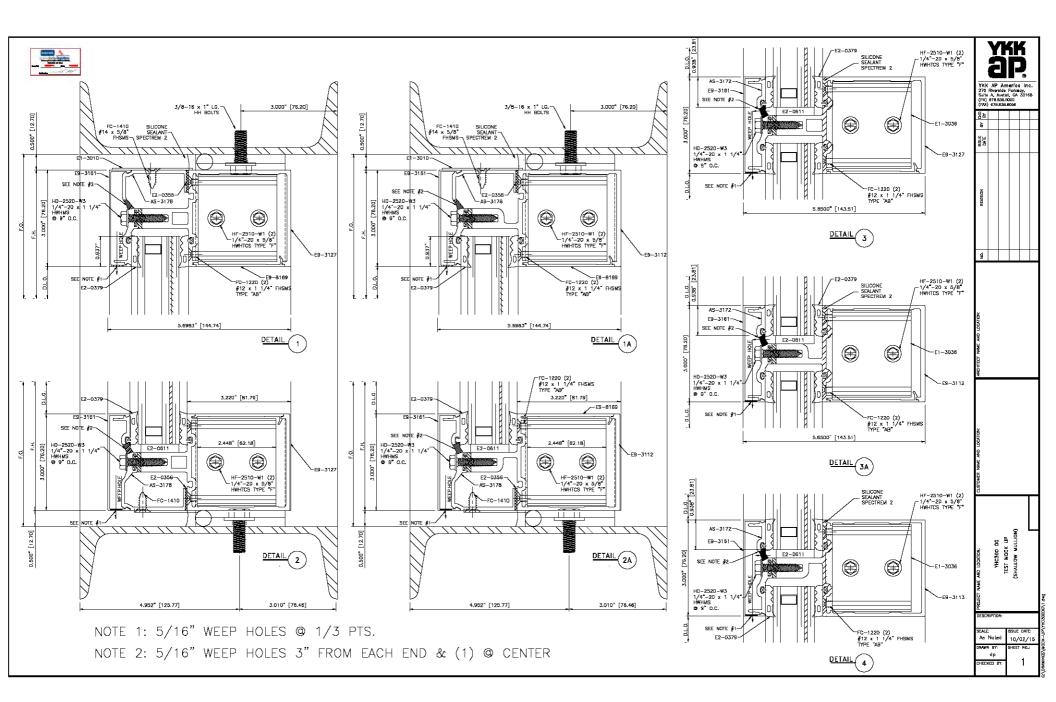
Photo No. 1 Test Specimen After Large and Small Missile Impacts

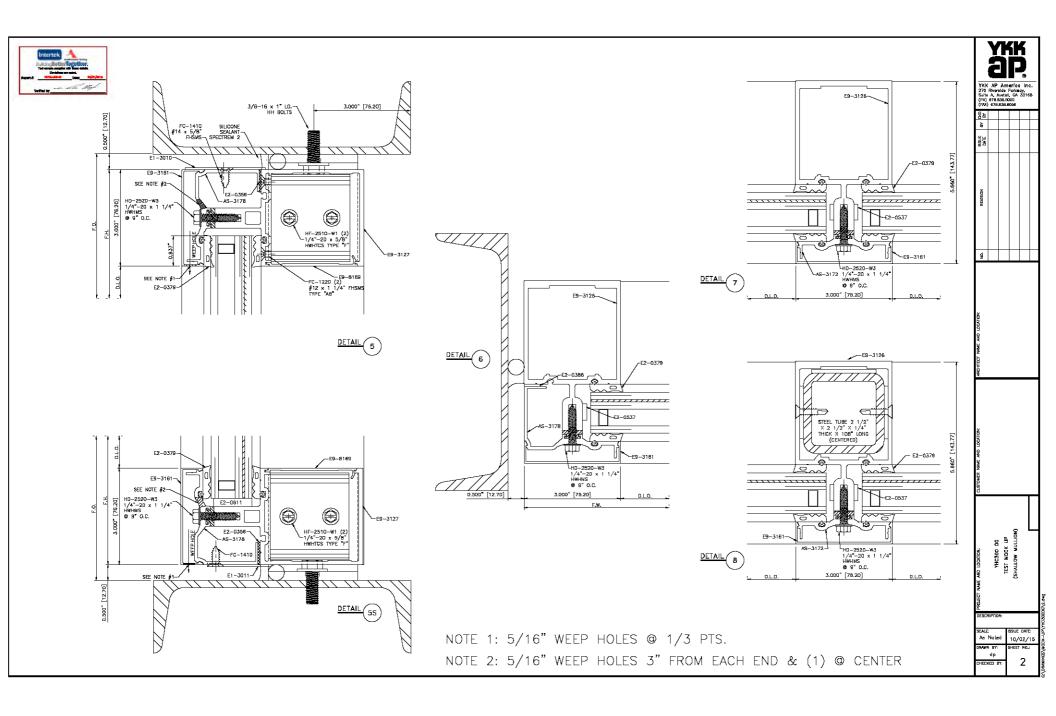


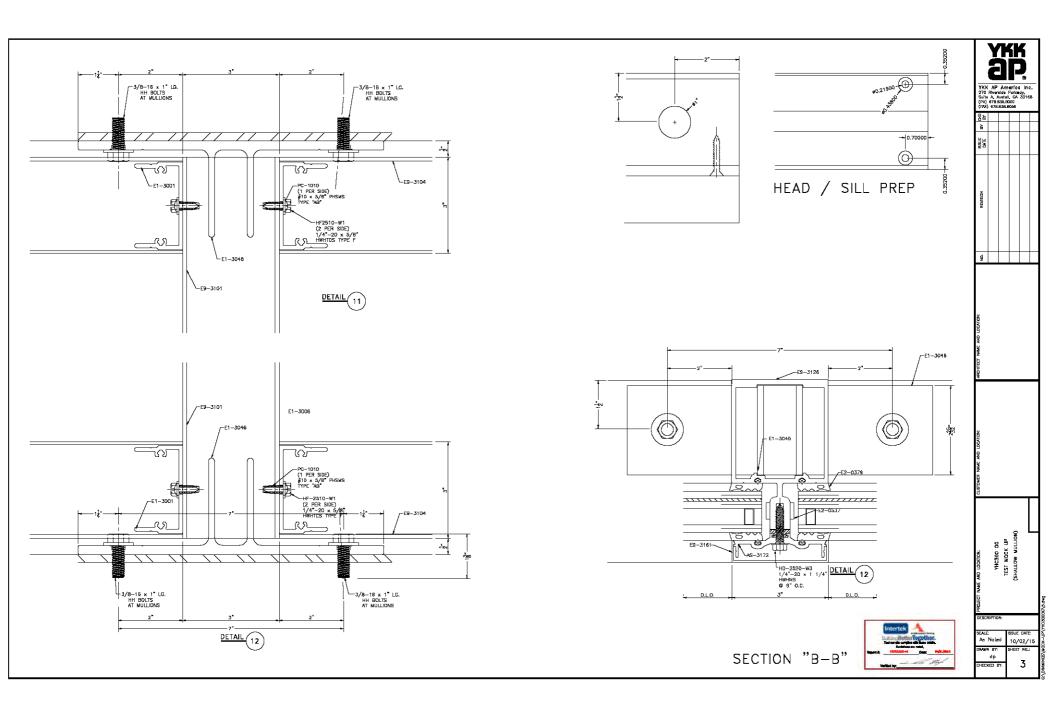
Test Report No.: F3753.02-550-18 Revision 2: 04/21/16 Report Date: 04/11/16

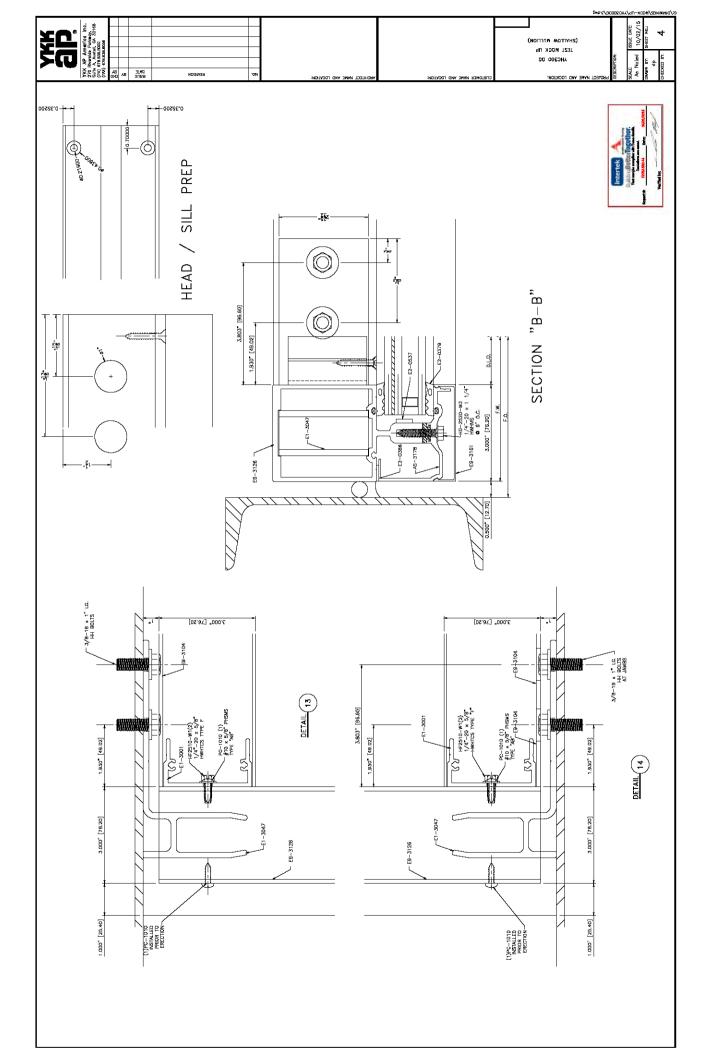
Appendix C

Drawings


= 100 1/4"


Ď.


M:\Product Team=\Wall Team\Curtain Wall\YHC3DD DG\Test Documents\Takaoff Drawings\Elevations\Elev 2.dwg


DESCRIPTION

BY DATE

AAMA 507-12 THERMAL PERFORMANCE REPORT

Rendered to:

YKK AP AMERICA

SERIES/MODEL: YHC 300 OG Curtain Wall TYPE: Glazed Wall System

 Report No:
 D5331.01-116-45

 Report Date:
 03/10/14

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

AAMA 507-12 THERMAL PERFORMANCE REPORT

Rendered to:

YKK AP AMERICA 1229 Highway 441 Bypass Dublin, Georgia 31021

Report No:	D5331.01-116-45
Report Date:	03/10/14
Simulation Date:	03/10/14

Project Summary:

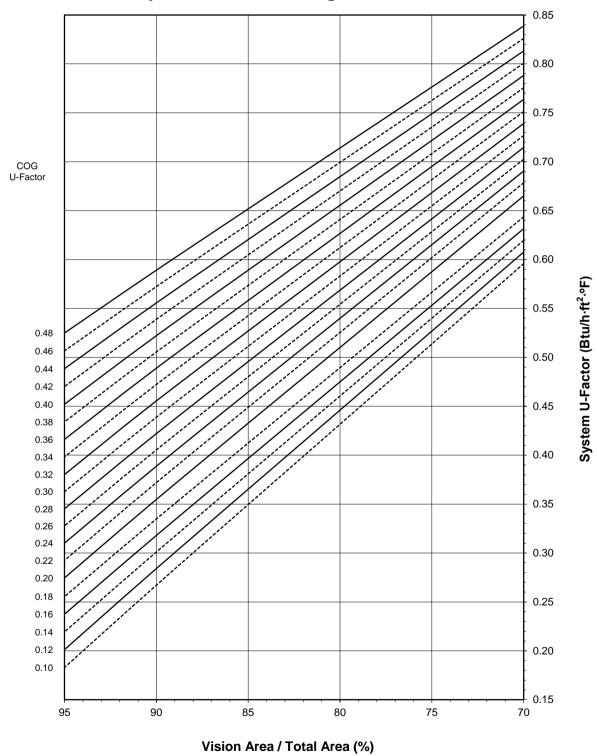
Architectural Testing, Inc. was contracted by YKK AP America to provide U-Factor and Solar Heat Gain Coefficient thermal performance ratings on the YHC 300 OG Curtain Wall Glazed Wall System. The thermal performance ratings were determined in accordance with AAMA 507-12, Standard Practice for Determining the Thermal Performance Characteristics of Fenestration Systems Installed in Commercial Building.

Reference Documents:

AAMA 507-12, Standard Practice for Determining the Thermal Performance Characteristics of Fenestration Systems Installed in Commercial Buildings

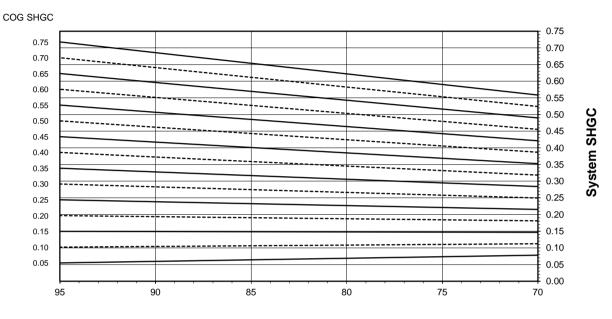
NFRC 100-2010, Procedure for Determining Fenestration Product U-Factors

NFRC 200-2010, Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence

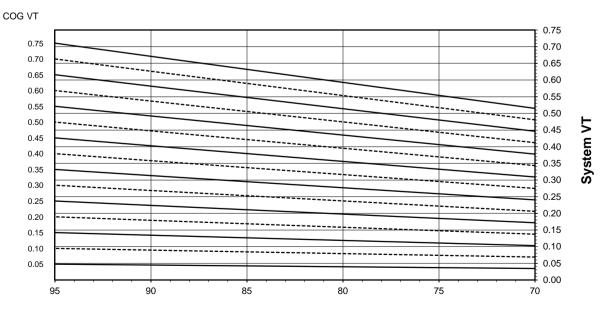

Simulation Specimen Description:

Series/Model:	YHC 300 OG Curtain Wall			
Туре:	Glazed Wall System			
Frame Material:	Aluminum Thermally Improved Framing System			
Material Finish:	Painted Aluminum			
Specimen Size:	2000mm wide by 2000mm high (78-3/4" by 78-3/4")			
Configuration:	Two vision lites separated by one intermediate vertical			
Drawing Reference:	YKK Drawing YHC 300 O.G., dated 10/09/13			

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com


System U-Factor vs. Percentage of Vision Area

Note: 1-5/16 inch Overall - Dual Glazed Laminated Glass (0.48-0.20 COG) with Aluminum Spacer, Dual Glazed Laminated Glass with Heat Mirror (0.18-0.10 COG) with Aluminum Spacer



System SHGC vs. Percentage of Vision Area

Vision Area / Total Area (%)

Size Specific U-Factor Matrix*

Glazing Option	Center of Glass U-Factor	Overall U-Factor	
1	0.48	0.60	
2	0.46	0.59	
3	0.44	0.57	
4	0.42	0.55	
5	0.40	0.54	
6	0.38	0.52	
7	0.36	0.50	
8	0.34	0.49	
9	0.32	0.47	
10	0.30	0.46	
11	0.28	0.44	
12	0.26	0.42	
13	0.24	0.41	
14	0.22	0.39	
15	0.20	0.37	
16	0.18	0.35	
17	0.16	0.34	
18	0.14	0.32	
19	0.12	0.30	
20	0.10	0.29	

Note: 1-5/16 inch Overall - Dual Glazed Laminated Glass (0.48-0.20 COG) with Aluminum Spacer, Dual Glazed Laminated Glass with Heat Mirror (0.18-0.10 COG) with Aluminum Spacer

Size Specific SHGC Matrix*		Size Specific VT Matrix*	
Center of Glass SHGC	Overall SHGC	Center of Glass VT	Overall VT
0.75	0.68	0.75	0.66
0.70	0.63	0.70	0.62
0.65	0.59	0.65	0.57
0.60	0.55	0.60	0.53
0.55	0.50	0.55	0.49
0.50	0.46	0.50	0.44
0.45	0.41	0.45	0.40
0.40	0.37	0.40	0.35
0.35	0.33	0.35	0.31
0.30	0.28	0.30	0.26
0.25	0.24	0.25	0.22
0.20	0.19	0.20	0.18
0.15	0.15	0.15	0.13
0.10	0.10	0.10	0.09
0.05	0.06	0.05	0.04

*Size Specific U-Factor, SHGC, and VT Matrices are based on the standard Glazed Wall System specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4"). This represents 88.9% Vision Area / Total Area.

Vision Area Data

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			re						tal Product U-Factor		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L	atu	<u>ح</u>		to	2	70%	NFRC	95%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		cto	per	tio	ght	act	cto			Vision Area	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ň	-Fa	lme	Sec	Hei	5	<u>н</u>				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	uo	Ū.	Ĩ,	ss	ne	ne	e N				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	pti	ő	ö	ŝ	rar	rar	6p;				
Image: Probability of the section of the sectin of the section of the section of the section of the sec		-	-	-							
R. Jamb 1.5732 1.6836 0.4392 Mullion 3.1463 1.6838 0.4391 Sili 1.5732 1.6301 0.4225 0.8260 0.5870 0.5067 L Jamb 1.5732 1.6800 0.4247 0.8260 0.5870 0.5067 Sili 1.5732 1.6804 0.4247 0.8133 0.5705 0.4885 Sili 1.5732 1.6775 0.4102 0.8133 0.5705 0.4885 L_Jamb 1.5732 1.6774 0.4102 0.8133 0.5705 0.4885 Mullion 3.1463 1.6774 0.4102 0.8133 0.5705 0.4885 L_Jamb 1.5732 1.6474 0.3959 0.8007 0.5540 0.4702 R. Jamb 1.5732 1.6744 0.3958 0.8017 0.5540 0.4702 Mullion 3.1463 1.6714 0.3814 0.7881 0.5376 0.4521 L_Jamb 1.5732 1.6714 0.3814 <t< td=""><td>1</td><td>0.40</td><td>43.7</td><td></td><td></td><td></td><td></td><td>0.0307</td><td>0.0035</td><td>0.5247</td></t<>	1	0.40	43.7					0.0307	0.0035	0.5247	
Mullion 3.1463 1.6838 0.4391 Sill 1.5732 1.6466 0.4425 2 0.46 44.8 Head 1.5732 1.6800 0.4247 R.Jamb 1.5732 1.6800 0.4247 0.8260 0.5870 0.5067 3 0.44 45.8 Head 1.5732 1.6435 0.4245 Sill 1.5732 1.6270 0.4112 0.8133 0.5705 0.4885 8.Jamb 1.5732 1.6774 0.4101 0.8133 0.5705 0.4885 9.44 45.8 Head 1.5732 1.6745 0.3102 0.4102 Multion 3.1463 1.6774 0.4101 0.410											
8 8 8 8 8 8 8 8 9											
2 0.46 44.8 Head 1.5732 1.6807 0.4247 L Jamb 1.5732 1.6807 0.4247 0.8260 0.5870 0.5067 3 0.44 45.8 Head 1.5732 1.6807 0.4247 3 0.44 45.8 Head 1.5732 1.6770 0.4112 0.8133 0.5705 0.4885 4 0.42 45.8 Head 1.5732 1.6773 0.4102 0.8133 0.5705 0.4885 4 0.42 46.8 Head 1.5732 1.6774 0.4101 0.8133 0.5705 0.4885 4 0.42 46.8 Head 1.5732 1.6745 0.3957 0.8007 0.5540 0.4702 5 0.40 47.9 Head 1.5732 1.6715 0.3951 0.7881 0.5376 0.4521 6 0.38 48.9 Head 1.5732 1.6112 0.3682 0.7757 0.5212 0.4341											
Image: base base base base base base base base	2	0.46	44.8					0.8260	0.5870	0.5067	
Res bR. Jamb1.57321.68040.4247Mullion3.14631.68060.4245Sill1.57321.62700.4112L. Jamb1.57321.67750.4100R. Jamb1.57321.67730.4102Mullion3.14631.67730.4102Mullion3.14631.67740.4101Mullion3.14631.67740.4102Mullion1.57321.67750.4102Mullion3.14631.67740.4104Mullion1.57321.67450.3957Mullion3.14631.67440.3957Mullion3.14631.67440.3957Mullion3.14631.67440.3958Mullion3.14631.67140.3951Mullion3.14631.67140.3813Mullion3.14631.67140.3814Mullion3.14631.67140.3814Mullion3.14631.67140.3814Mullion3.14631.67140.3814Mullion3.14631.67140.3814Mullion3.14631.67140.3814Mullion3.14631.67140.3814Mullion3.14631.66140.3682Mullion3.14631.66850.3673Mullion3.14631.66850.3673Mullion3.14631.66830.3524Mullion3.14631.66830.3524Mullion3.14631.66830.3524 <td></td>											
Sill 1.5732 1.6435 0.4279 3 0.44 45.8 Head 1.5732 1.6270 0.4112 0.10 R.Jamb 1.5732 1.6773 0.4100 0.8133 0.5705 0.4885 0.10 R.Jamb 1.5732 1.6773 0.4100 0.4102 0.8133 0.5705 0.4885 4 0.42 46.8 Head 1.5732 1.6040 0.4134 4 0.42 46.8 Head 1.5732 1.6742 0.3957 R.Jamb 1.5732 1.6742 0.3958 0.8007 0.5540 0.4702 Mullion 3.1463 1.6714 0.3958 0.8007 0.5540 0.4702 5 0.40 47.9 Head 1.5732 1.6615 0.3813 0.5376 0.4521 L.Jamb 1.5732 1.6615 0.3813 0.7567 0.5212 0.4341 L.Jamb 1.5732 1.6687 0.3671 0.5049 0.5049 0.4162 <td></td> <td></td> <td></td> <td>R. Jamb</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				R. Jamb							
3 0.44 45.8 Head 1.5732 1.6270 0.4112 0.8133 0.5705 0.4885 A 0.44 45.8 Head 1.5732 1.6775 0.4100 0.8133 0.5705 0.4885 Multion 3.1463 1.6774 0.4101 0.8133 0.5705 0.4885 4 0.42 46.8 Head 1.5732 1.6745 0.3957 0.8007 0.5540 0.4702 5 0.40 47.9 Head 1.5732 1.6742 0.3959 0.8007 0.5540 0.4521 6 0.40 47.9 Head 1.5732 1.6714 0.3954 0.7881 0.5376 0.4521 1. Jamb 1.5732 1.6613 0.3813 0.7757 0.5212 0.4341 6 0.38 48.9 Head 1.5732 1.6687 0.3671 8.10 1.5732 1.6687 0.3671 0.5049 0.4162 1. Jamb 1.5732 1.6683 <				Mullion	3.1463	1.6806	0.4245				
3 0.44 45.8 Head 1.5732 1.6270 0.4112 0.8133 0.5705 0.4885 Multion 3.1463 1.6773 0.4100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
R. Jamb 1.5732 1.6773 0.4102 Mullion 3.1463 1.6774 0.4101 Sill 1.5732 1.6404 0.4101 Sill 1.5732 1.6240 0.3969 0.8007 0.5540 0.4702 A 0.42 46.8 Head 1.5732 1.6745 0.3957 0.8007 0.5540 0.4702 B 1.5732 1.6745 0.3957 0.8007 0.5540 0.4702 Sill 1.5732 1.6745 0.3957 0.5097 0.5007 0.5540 0.4702 Sill 1.5732 1.6715 0.3813 0.7881 0.5376 0.4521 L. Jamb 1.5732 1.6713 0.3814 0.7757 0.5212 0.4341 Sill 1.5732 1.6168 0.3672 0.4637 0.4637 0.4641 Mullion 3.1463 1.6686 0.3673 0.7637 0.5049 0.4162 L. Jamb 1.5732 1.6163 0.3524 0.7637	3	0.44	45.8	Head				0.8133	0.5705	0.4885	
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$				L. Jamb	1.5732	1.6775	0.4100				
Sill 1.5732 1.6404 0.4134 4 0.42 46.8 Head 1.5732 1.6240 0.3969 0.8007 0.5540 0.4702 1.5732 1.6745 0.3957 0.3959 0.8007 0.5540 0.4702 1.5732 1.6745 0.3959 0.3959 0.1101 0.15732 1.6712 0.3959 Million 3.1463 1.6714 0.3958 0.7881 0.5376 0.4521 5 0.40 47.9 Head 1.5732 1.6713 0.3813 R. Jamb 1.5732 1.6714 0.3814 0.7881 0.5376 0.4521 6 0.38 48.9 Head 1.5732 1.6613 0.3682 0.7757 0.5212 0.4341 7 0.36 48.9 Head 1.5732 1.6687 0.3671 8.10 1.5732 1.6687 0.3671 0.514 0.5149 0.4462 1.1 1.5732 1.6687 0.3524 0.7637 <td></td> <td></td> <td></td> <td>R. Jamb</td> <td>1.5732</td> <td>1.6773</td> <td>0.4102</td> <td></td> <td></td> <td></td>				R. Jamb	1.5732	1.6773	0.4102				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Mullion	3.1463	1.6774	0.4101				
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$				Sill	1.5732	1.6404	0.4134				
R. Jamb 1.5732 1.6742 0.3959 Mulion 3.1463 1.674 0.3958 Sill 1.5732 1.6375 0.3991 5 0.40 47.9 Head 1.5732 1.6210 0.3824 1.5712 1.6715 0.3813 0.53815 0.5376 0.5376 0.4521 R. Jamb 1.5732 1.6715 0.3813 0.53814 0.5376 0.4521 R. Jamb 1.5732 1.6317 0.3814 0.5376 0.4521 B. Jamb 1.5732 1.6317 0.3814 0.7757 0.5212 0.4341 Sill 1.5732 1.6685 0.3671 0.5212 0.4341 L. Jamb 1.5732 1.6685 0.3672 0.5212 0.4341 R. Jamb 1.5732 1.6685 0.3672 0.5049 0.4162 L. Jamb 1.5732 1.6683 0.3523 0.7637 0.5049 0.4162 L. Jamb 1.5732 1.6683 0.3524 0	4	0.42	46.8	Head	1.5732	1.6240	0.3969	0.8007	0.5540	0.4702	
Mullion 3.1463 1.6744 0.3958 Sill 1.5732 1.6375 0.3991 5 0.40 47.9 Head 1.5732 1.6210 0.3824 0.7881 0.5376 0.4521 I.Jamb 1.5732 1.6713 0.3813 0.7881 0.5376 0.4521 R.Jamb 1.5732 1.6713 0.3815 0.7881 0.5376 0.4521 R.Jamb 1.5732 1.6714 0.3814 0.7881 0.5376 0.4521 Mullion 3.1463 1.6714 0.3814 0.7881 0.5376 0.4521 Mullion 3.1463 1.6618 0.3682 0.7757 0.5212 0.4341 I.Jamb 1.5732 1.6685 0.3672 0.5049 0.4162 Sill 1.5732 1.6683 0.3523 0.7637 0.5049 0.4162 I.Jamb 1.5732 1.6683 0.3524 0.7637 0.5049 0.4162 I.Jamb 1.5732 1.6683 0				L. Jamb	1.5732	1.6745	0.3957				
Sill1.57321.63750.399150.4047.9Head1.57321.62100.38240.78810.53760.45211.51.51.57321.67130.38130.38150.38130.38150.38130.38150.3814				R. Jamb		1.6742	0.3959				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					3.1463	1.6744	0.3958				
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.6375					
R. Jamb 1.5732 1.6713 0.3815 Mullion 3.1463 1.6714 0.3814 Sill 1.5732 1.6347 0.3847 6 0.38 48.9 Head 1.5732 1.6182 0.3682 0.7757 0.5212 0.4341 6 0.38 48.9 Head 1.5732 1.6687 0.3671 0.7577 0.5212 0.4341 7 0.36 50.0 Head 1.5732 1.6686 0.3672 8 0.36 50.0 Head 1.5732 1.6685 0.3673 7 0.36 50.0 Head 1.5732 1.6638 0.3523 8 0.37 1.6683 0.3524 0.7637 0.5049 0.4162 1. Jamb 1.5732 1.6683 0.3524 0.7637 0.5049 0.4162 1. Jamb 1.5732 1.6683 0.3524 0.7513 0.4885 0.3983 8 0.34 51.0 Head 1.5732	5	0.40	47.9					0.7881	0.5376	0.4521	
$ \begin{array}{ c c c c c c c } \hline Mullion & 3.1463 & 1.6714 & 0.3814 \\ \hline Sill & 1.5732 & 1.6347 & 0.3847 \\ \hline Sill & 1.5732 & 1.6182 & 0.3682 \\ \hline L. Jamb & 1.5732 & 1.6687 & 0.3671 \\ \hline R. Jamb & 1.5732 & 1.6685 & 0.3673 \\ \hline Mullion & 3.1463 & 1.6686 & 0.3672 \\ \hline Sill & 1.5732 & 1.6319 & 0.3704 \\ \hline \\ $											
Sill 1.5732 1.6347 0.3847 6 0.38 48.9 Head 1.5732 1.6182 0.3682 0.7757 0.5212 0.4341 6 0.38 A8.9 Head 1.5732 1.6687 0.3671 0.7757 0.5212 0.4341 R. Jamb 1.5732 1.6685 0.3672 0.3672 0.5019 0.4341 7 0.36 50.9 Head 1.5732 1.6683 0.3672 0.5049 0.4162 7 0.36 50.9 Head 1.5732 1.6683 0.3523 0.7637 0.5049 0.4162 1. Jamb 1.5732 1.6683 0.3524 0.7637 0.5049 0.4162 1. Jamb 1.5732 1.6683 0.3524 0.7513 0.4885 0.3983 8 0.34 51.0 Head 1.5732 1.6655 0.3382 8 0.34 51.0 Head 1.5732 1.6655 0.3382 9 0.32 <td></td>											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.38	48.9					0.7757	0.5212	0.4341	
$ \begin{array}{ c c c c c c c c c c } \hline Mullion & 3.1463 & 1.6686 & 0.3672 \\ \hline Sill & 1.5732 & 1.6319 & 0.3704 \\ \hline Sill & 1.5732 & 1.6319 & 0.3704 \\ \hline \\ $											
Sill 1.5732 1.6319 0.3704 7 0.36 50.0 Head 1.5732 1.6163 0.3542 0.7637 0.5049 0.4162 7 0.36 50.0 Head 1.5732 1.6683 0.3523 0.7637 0.5049 0.4162 R. Jamb 1.5732 1.6683 0.3524 0.7637 0.5049 0.4162 Mullion 3.1463 1.6683 0.3524 0.7637 0.5049 0.4162 8 0.34 51.0 Head 1.5732 1.6613 0.3525 8 0.34 51.0 Head 1.5732 1.6153 0.3390 L. Jamb 1.5732 1.6655 0.3382 0.7513 0.4885 0.3983 R. Jamb 1.5732 1.6655 0.3382 0.44 1.5732 0.3414 9 0.32 52.0 Head 1.5732 1.6628 0.3242 0.7391 0.4720 0.3803											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
L. Jamb 1.5732 1.6683 0.3523 R. Jamb 1.5732 1.6682 0.3524 Mullion 3.1463 1.6683 0.3524 Mullion 3.1463 1.6683 0.3524 Sill 1.5732 1.6153 0.3524 Sill 1.5732 1.6153 0.3524 R. Jamb 1.5732 1.6153 0.3524 Sill 1.5732 1.6153 0.3390 L. Jamb 1.5732 1.6655 0.3382 R. Jamb 1.5732 1.6655 0.3382 Mullion 3.1463 1.6655 0.3382 Mullion 3.1463 1.6655 0.3382 Sill 1.5732 1.6291 0.3414 9 0.32 52.0 Head 1.5732 1.6126 0.3251 L. Jamb 1.5732 1.6288 0.3242 0.7391 0.4720 0.3803	7	0.24	50.0					07627	0 5040	0.4162	
$ \begin{array}{ c c c c c c c c } \hline R. Jamb & 1.5732 & 1.6682 & 0.3524 \\ \hline Mullion & 3.1463 & 1.6683 & 0.3524 \\ \hline Mullion & 3.1463 & 1.6683 & 0.3524 \\ \hline Sill & 1.5732 & 1.6310 & 0.3555 \\ \hline \\ 8 & 0.34 & 51.0 & Head & 1.5732 & 1.6153 & 0.3390 \\ \hline L. Jamb & 1.5732 & 1.6655 & 0.3382 \\ \hline R. Jamb & 1.5732 & 1.6655 & 0.3382 \\ \hline Mullion & 3.1463 & 1.6655 & 0.3382 \\ \hline Sill & 1.5732 & 1.6291 & 0.3414 \\ \hline \\ 9 & 0.32 & 52.0 & Head & 1.5732 & 1.6126 & 0.3251 \\ \hline L. Jamb & 1.5732 & 1.6628 & 0.3242 \\ \hline \end{array} $	/	0.30	50.0					0.7037	0.3049	0.4102	
$ \begin{array}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \end{tabular} \\ \hline $											
Sill 1.5732 1.6310 0.355 8 0.34 51.0 Head 1.5732 1.6153 0.3390 0.7513 0.4885 0.3983 L. Jamb 1.5732 1.6655 0.3382 0.382 0.4885 0.3983 R. Jamb 1.5732 1.6655 0.3382 0.4885 0.4885 0.3983 Mullion 3.1463 1.6655 0.3382 0.3414 0.4485 0.3803 9 0.32 52.0 Head 1.5732 1.6126 0.3251 0.7391 0.4720 0.3803											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
L. Jamb 1.5732 1.6655 0.3382 R. Jamb 1.5732 1.6654 0.3382 Mullion 3.1463 1.6655 0.3382 Sill 1.5732 1.6291 0.3414 9 0.32 52.0 Head 1.5732 1.6126 0.3251 L. Jamb 1.5732 1.6628 0.3242 0.7391 0.4720 0.3803	8	0.34	51.0					0 7513	0 4885	0 3983	
R. Jamb 1.5732 1.6654 0.3382 Mullion 3.1463 1.6655 0.3382 Sill 1.5732 1.6291 0.3414 9 0.32 52.0 Head 1.5732 1.6126 0.3251 0.7391 0.4720 0.3803 L. Jamb 1.5732 1.6628 0.3242 0.7391 0.4720 0.3803	0	0.54	51.0					0.1010	5.7005	0.5705	
Mullion 3.1463 1.6655 0.3382 Sill 1.5732 1.6291 0.3414 9 0.32 52.0 Head 1.5732 1.6126 0.3251 L. Jamb 1.5732 1.6628 0.3242 0.7391 0.4720 0.3803											
Sill 1.5732 1.6291 0.3414 9 0.32 52.0 Head 1.5732 1.6126 0.3251 0.7391 0.4720 0.3803 L. Jamb 1.5732 1.6628 0.3242 0.7391 0.4720 0.3803											
9 0.32 52.0 Head 1.5732 1.6126 0.3251 0.7391 0.4720 0.3803 L. Jamb 1.5732 1.6628 0.3242 0.7391 0.4720 0.3803											
L. Jamb 1.5732 1.6628 0.3242	9	0.32	52.0					0.7391	0.4720	0.3803	
		-									
R. Jamb 1.5732 1.6628 0.3243					1.5732						
Mullion 3.1463 1.6628 0.3243											
Sill 1.5732 1.6266 0.3274											

Vision Area Data

		re						Total Product U-Factor		
	L	COG Temperature	c		C	5	70%	NFRC	95%	
	cto	oer:	tio	ght	act	cto	Vision Area	100-2010	Vision Area	
Option No.	COG U-Factor	lme	Cross Section	Frame Height	Frame U-Factor	Edge U-Factor	27.84"	78.74"	178.15"	
uo	Ċ	Ť	ŝ	ne	he	e C	by	by	by	
pti	Ö	Ö	ŗos	ran	ran	gb	27.84"	78.74"	145.67"	
10	0.30	53.1	Head	1.5732	L 1.6098	ш 0.3111	0.7267	0.4555	0.3628	
10	0.30	55.1	L. Jamb	1.5732	1.6599	0.3111	0.7207	0.4333	0.3028	
			R. Jamb	1.5732	1.6599	0.3103				
			Mullion	3.1463	1.6599	0.3104				
			Sill	1.5732	1.6238	0.3135				
11	0.28	54.2	Head	1.5732	1.6072	0.2973	0.7146	0.4390	0.3452	
	0.20	0.112	L. Jamb	1.5732	1.6574	0.2966	0.7710	01.0220	0.0.02	
			R. Jamb	1.5732	1.6574	0.2966				
			Mullion	3.1463	1.6574	0.2966				
			Sill	1.5732	1.6214	0.2997				
12	0.26	55.2	Head	1.5732	1.6051	0.2836	0.7025	0.4226	0.3278	
			L. Jamb	1.5732	1.6553	0.2829				
			R. Jamb	1.5732	1.6552	0.2829				
			Mullion	3.1463	1.6553	0.2829				
			Sill	1.5732	1.6193	0.2860				
13	0.24	56.3	Head	1.5732	1.6027	0.2699	0.6905	0.4061	0.3101	
			L. Jamb	1.5732	1.6529	0.2692				
			R. Jamb	1.5732	1.6529	0.2693				
			Mullion	3.1463	1.6529	0.2692				
			Sill	1.5732	1.6170	0.2723				
14	0.22	57.3	Head	1.5732	1.6004	0.2563	0.6785	0.3897	0.2924	
			L. Jamb	1.5732	1.6507	0.2556				
			R. Jamb	1.5732	1.6506	0.2557				
			Mullion	3.1463	1.6507	0.2557				
			Sill	1.5732	1.6148	0.2587				
15	0.20	58.4	Head	1.5732	1.5983	0.2427	0.6650	0.3727	0.2746	
			L. Jamb	1.5732	1.6415	0.2419				
			R. Jamb	1.5732	1.6415	0.2419				
			Mullion	3.1463	1.6415	0.2419				
			Sill	1.5732	1.6126	0.2451				
16	0.18	59.5	Head	1.5732	1.5583	0.2265	0.6437	0.3526	0.2554	
			L. Jamb	1.5732	1.6216	0.2232				
			R. Jamb	1.5732	1.6214	0.2232				
			Mullion	3.1463	1.6215	0.2232				
			Sill	1.5732	1.5766	0.2258				
17	0.16	60.6	Head	1.5732	1.5556	0.2129	0.6315	0.3360	0.2375	
			L. Jamb	1.5732	1.6188	0.2097				
			R. Jamb	1.5732	1.6186	0.2097				
			Mullion	3.1463	1.6187	0.2097				
			Sill	1.5732	1.5739	0.2122				
18	0.14	61.7	Head	1.5732	1.5532	0.1993	0.6196	0.3194	0.2194	
			L. Jamb	1.5732	1.6165	0.1961				
			R. Jamb	1.5732	1.6162	0.1962				
			Mullion	3.1463	1.6163	0.1962				
			Sill	1.5732	1.5715	0.1987				

Vision Area Data

		ıre					То	tal Product U-Fac	tor
	r	Temperature	Ľ	ŧ	tor	or	70%	NFRC	95%
	U-Factor	edu	Section	Height	U-Factor	U-Factor	Vision Area	100-2010	Vision Area
No.	J-F	Ten		e He		ц. - О	27.84"	78.74"	178.15"
Option		-	Cross	Frame	Frame		by	by	by
do	COG	COG	č	Fra	Fra	Edge	27.84"	78.74"	145.67"
19	0.12	62.8	Head	1.5732	1.5510	0.1857	0.6076	0.3027	0.2012
			L. Jamb	1.5732	1.6144	0.1825			
			R. Jamb	1.5732	1.6141	0.1826			
			Mullion	3.1463	1.6142	0.1826			
			Sill	1.5732	1.5693	0.1851			
20	0.10	63.9	Head	1.5732	1.5490	0.1721	0.5958	0.2860	0.1830
			L. Jamb	1.5732	1.6124	0.1688			
			R. Jamb	1.5732	1.6122	0.1690			
			Mullion	3.1463	1.6123	0.1689			
			Sill	1.5732	1.5673	0.1715			

Architectural Testing will service this report for the entire test record retention period. Test records that are retained such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation will be retained by Architectural Testing, Inc. for the entire test record retention period. The test record retention end date for this report is March 10, 2018.

Results obtained are simulated values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the product simulated. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.:

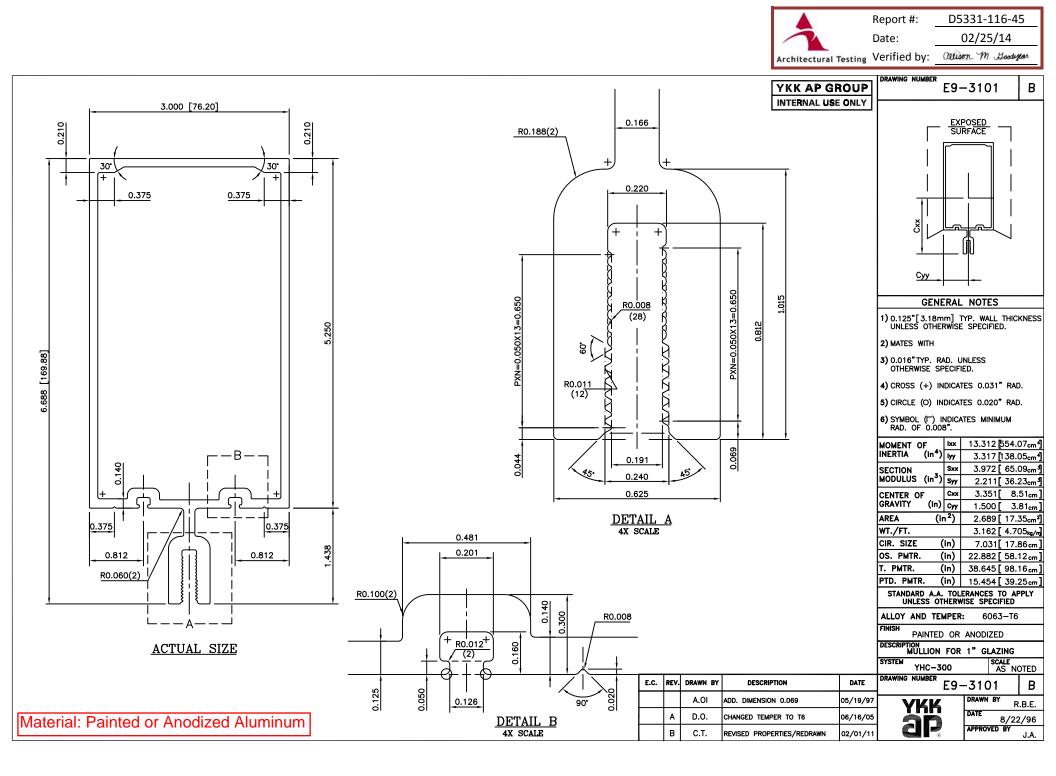
SIMULATED BY:

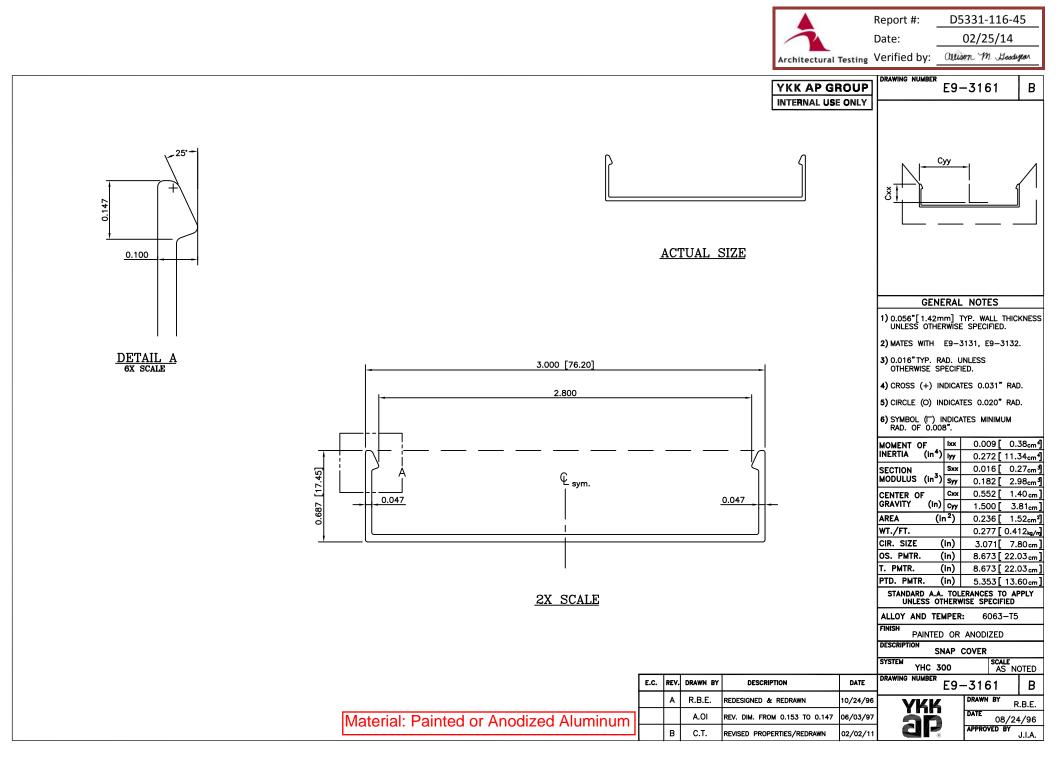
REVIEWED BY:

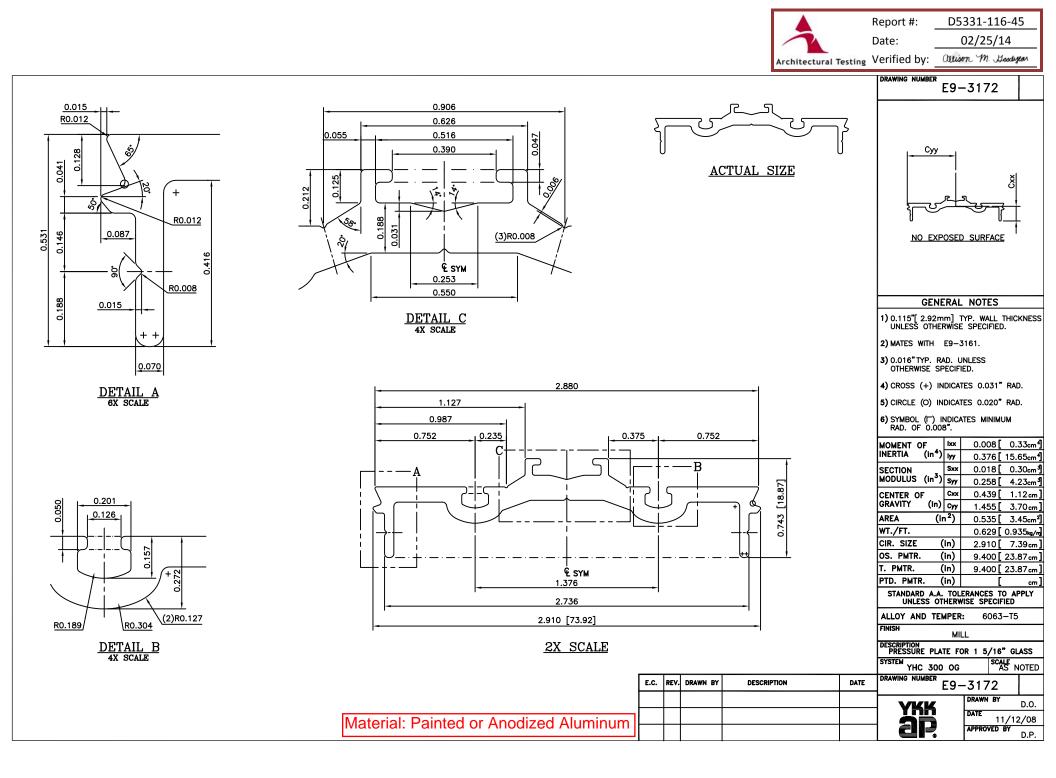
Allison M. Goodyear Simulation Technician Kevin S. Louder Project Engineer

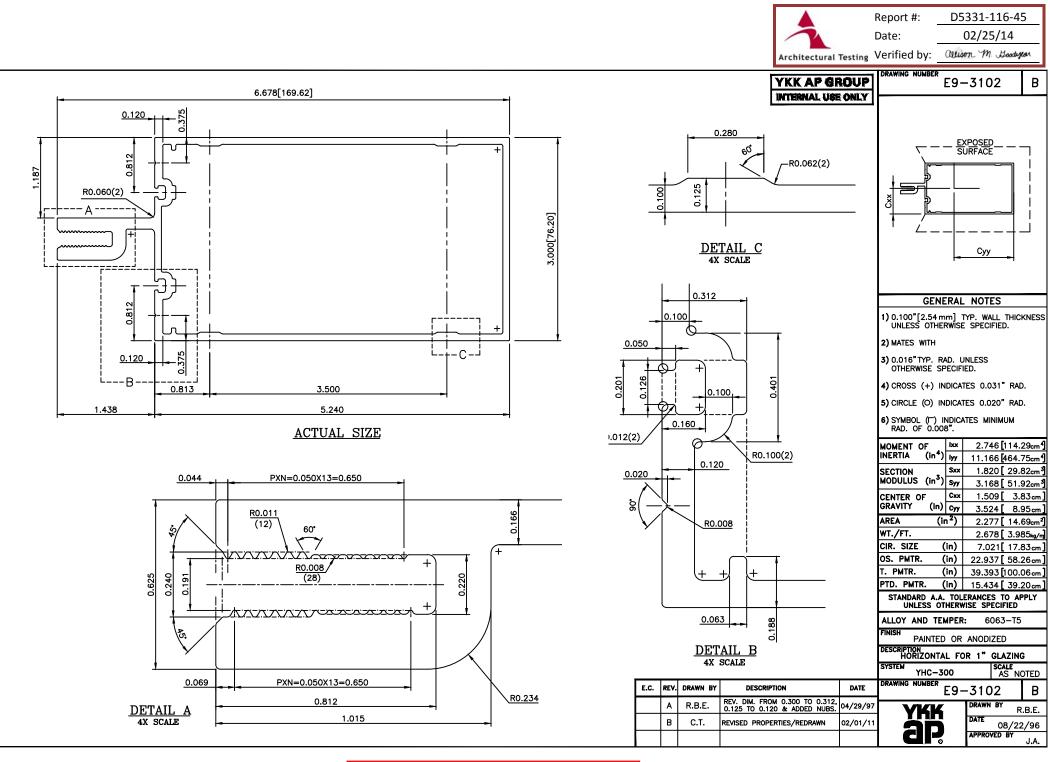
AMG:AMG D5331.01-116-45

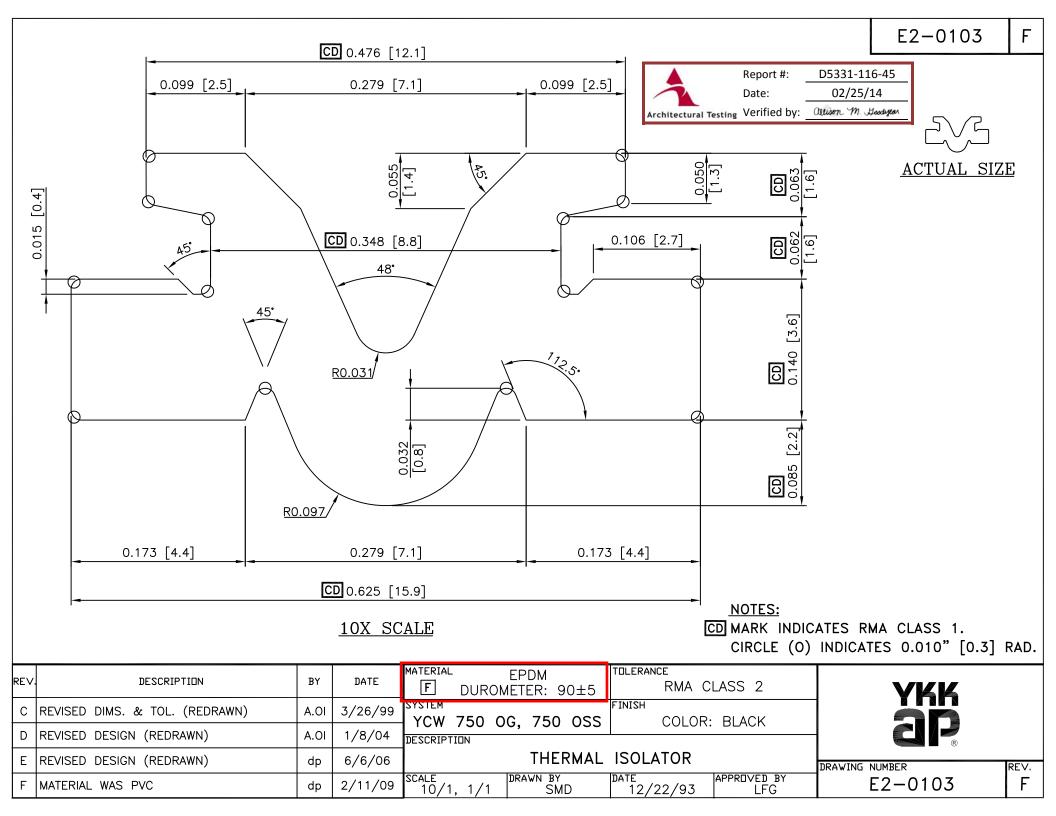
Attachments (pages): This report is complete only when all attachments listed are included. Appendix A: Drawings and Bills of Material (10)

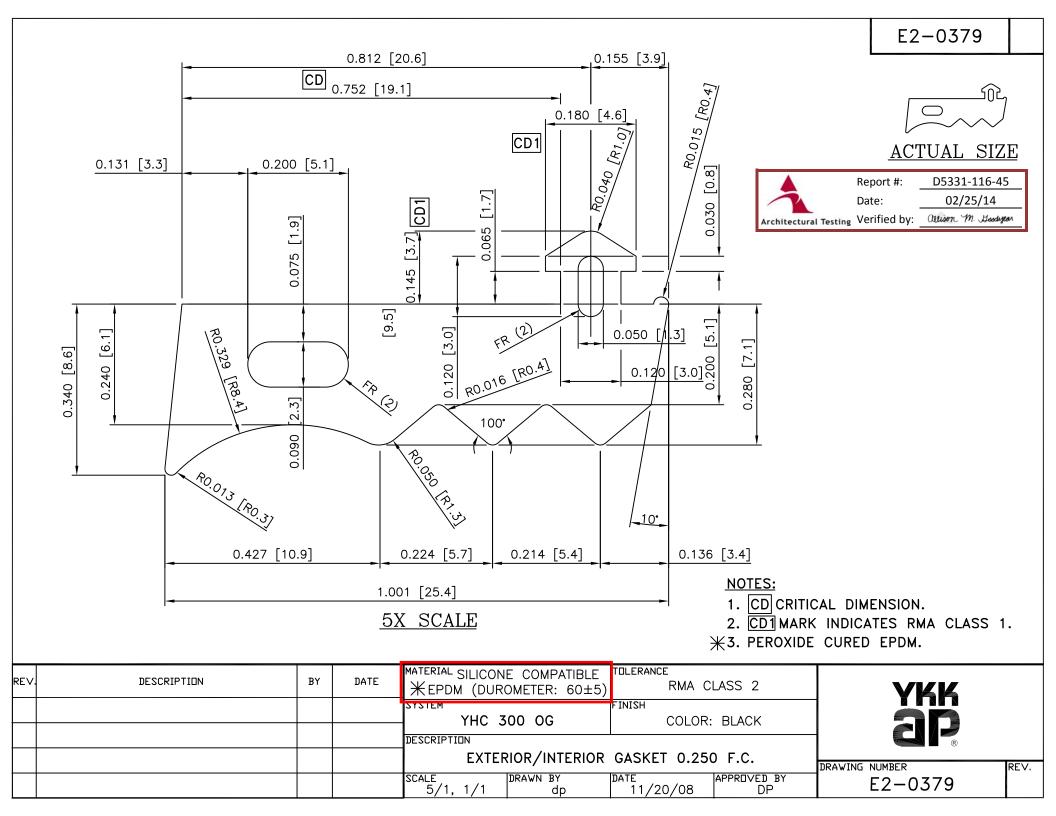

Revision Log

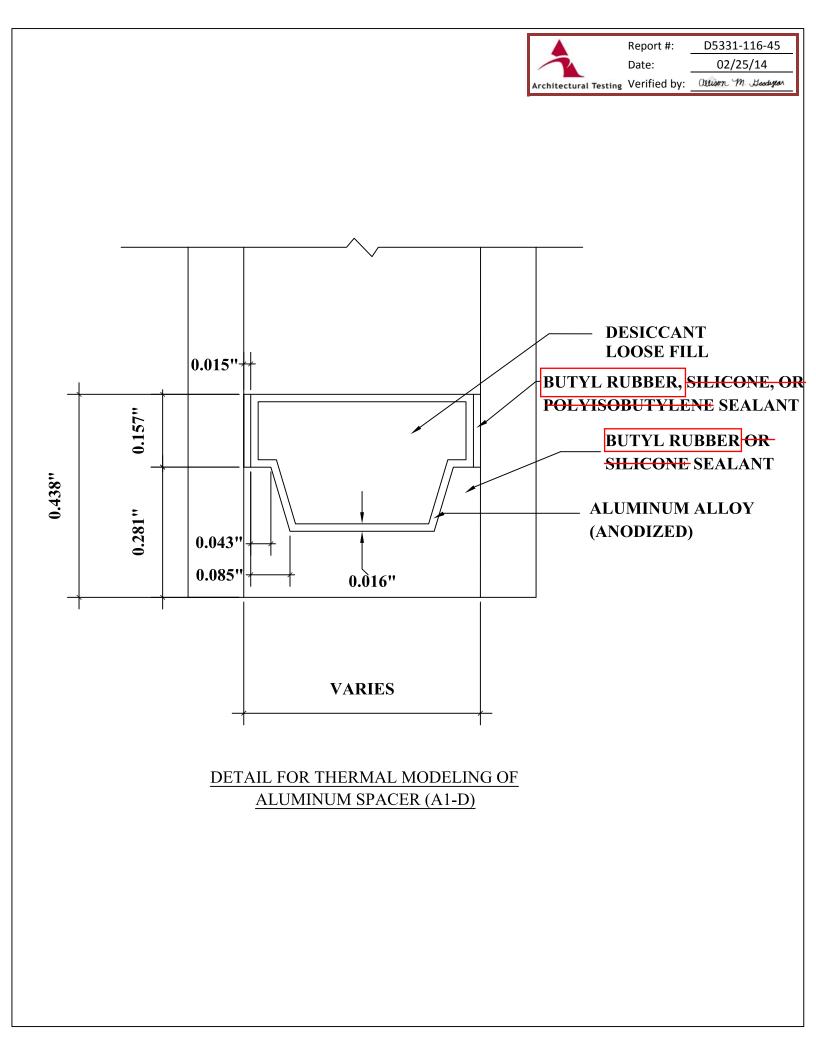

Rev. #	Date	Page(s)	Revision(s)
.01R0	03/10/14	All	Original Report Issued to YKK AP America

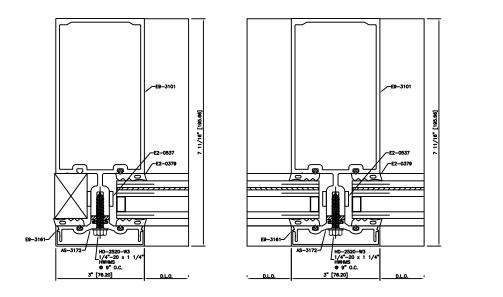


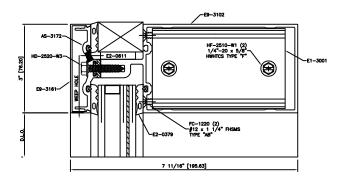

All drawings and Bills of Material used in simulating this product are enclosed in this Appendix.

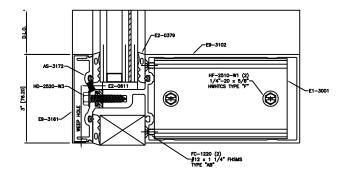


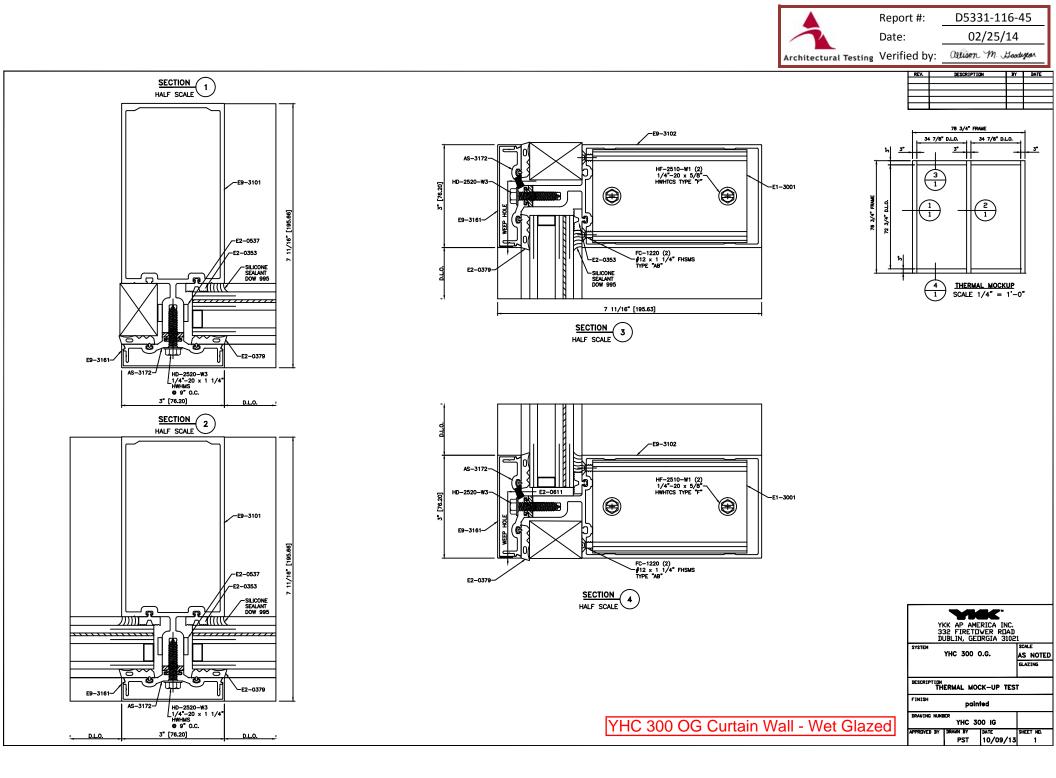





			E2-0353 Report #: D5331-116-45 Date: 02/25/14 Architectural Testing Verified by: M. Huddyton
R.03 R.015(2)	6(2)		
.060 .060	.204		<u>ACTUAL SIZE</u>
]: CRITICAL DIMENSION	CD .625[19		NOTE: 1) CD1 INDICATES RMA CLASS-1 2) VENDOR: TREMCO 3) COMPOUND: SCR-900
DESCRIPTION	BY DATE	MATERIAL EPDM (SILICONE COMPATIBLE) DUROMETER: 70±5 SYSTEM	
		YHC 300COLOR: BDESCRIPTIONGLAZING SPACER (1/4" F.C.SCALE5/1,1/15/1,1/1PRAWN BY R.B.E.SCALE06/16/97	A merica"


CD


REV.



AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

YKK AP AMERICA

SERIES/MODEL: YHC 300 OG Curtain Wall TYPE: Glazed Wall Systems (Site-built)

Summary of Results					
Thermal Trar	Thermal Transmittance (U-Factor) 0.43				
Condensation	Condensation Resistance Factor - Frame (CRF _f) 72				
Condensation Resistance Factor - Glass (CRF _g) 68					
Unit Size 78-3/4" x 78-3/4" (2000 mm x 2000 mm)					
Layer 1 1/4" AFG Comfort Ti-AC 40 (e=0.043*, #2) Tempered					
Gap 1 0.50" Gap, Stainless Steel Spacer (SS-D), Air-Filled*					
Layer 20.563 Clear Laminated (0.060 PVB)					

Reference must be made to Report No. 93842.02-116-46, dated 10/20/09 for complete test specimen description and data.

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

YKK AP AMERICA 7680 The Bluffs, Suite 100 Austell, Georgia 30168

93842.02-116-46
08/15/09
10/20/09
08/15/13

Test Sample Identification:

Series/Model: YHC 300 OG Curtain Wall

Type: Glazed Wall Systems (Site-built)

Test Sample Submitted by: Client

Test Procedure: The condensation resistance factor (CRF) and thermal transmittance (U) were determined in accordance with AAMA 1503-09, *Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections*

1. Average warm side ambient temperature	69.80 F
2. Average cold side ambient temperature	-0.39 F
3. 15 mph dynamic wind applied to test specimen exterior.	
4. 0.0" ± 0.04 " static pressure drop across specimen.	
Test Results Summary:	
	70

1. Condensation resistance factor - Frame (CRF _f)	72
Condensation resistance factor - Glass (CRFg)	68
2. Thermal transmittance due to conduction (U_c)	0.43
(U-factors expressed in Btu/hr·ft ² ·F)	

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

Test Sample Description:

CONSTRUCTION	Frame	
Size (in.) Non-Standard	78-3/4" x 78-3/4"	
Daylight Opening (in.)	34-7/8" x 72-3/4" (x2)	
CORNERS	Butt	
Fasteners	Screws	
Sealant	Yes	
MATERIAL	AU (0.13")	
Color Exterior	Brown	
Finish Exterior	Anodized	
Color Interior	White/Brown	
Finish Interior	Anodized	
GLAZING METHOD	Pressure	

Glazing Information:

Layer 11/4" AFG Comfort Ti-AC 40 (e=0.043*, #2) Tempered	
Gap 1	0.50" Gap, Stainless Steel Spacer (SS-D), Air-Filled*
Layer 2	0.563 Clear Laminated (0.060 PVB)
Gas Fill Method	N/A*
Desiccant	Yes

*Stated per Client/Manufacturer NA Non-Applicable See Description Table Abbreviations

Test Sample Description: (Continued)

COMPONENTS					
	Туре	Quantity	Location		
W	EATHERSTRIP		•		
	EPDM Pressure gasket	1 Row	Interior glazing perimeter, exterior glazing perimeter, and between		
H	ARDWARE				
	Aluminum pressure plates	7	4 Horizontal, 3 vertical at exterior glazing edges		
	Aluminum snap cover	7	4 Horizontal, 3 vertical at pressure plates		
D	RAINAGE				
	No visible weeps				

Test Duration:

- 1. The environmental systems were started at 12:27 hours, 08/14/09.
- 2. The thermal performance test results were derived from 03:59 hours, 08/15/09 to 07:59 hours, 08/15/09.

Condensation Resistance Factor (CRF):

The following information, condensed from the test data, was used to determine the condensation resistance factor:

T_h	=	Warm side ambient air temperature	69.80 F
T _c	=	Cold side ambient air temperature	-0.39 F
FT_p	=	Average of pre-specified frame temperatures (14)	50.73 F
FT _r	=	Average of roving thermocouples (4)	44.83 F
W	=	$(FT_p - FT_r) / [FT_p - (T_c + 10)] \ge 0.40$	0.057
FT	=	$FT_p(1-W) + W (FT_r) = Frame Temperature$	50.39 F
GT	=	Glass Temperature	47.47 F
CRF _g	=	Condensation resistance factor – Glass	68
		$CRF_{g} = (GT - T_{c}) / (T_{h} - T_{c}) \times 100$	
$CRF_{\rm f}$	=	Condensation resistance factor – Frame	72
		$CRF_{f} = (FT - T_{c}) / (T_{h} - T_{c}) \times 100$	

The CRF number was determined to be 68 (on the size as reported). When reviewing this test data, it should be noted that the glass temperature (GT) was colder than the frame temperature (FT) therefore controlling the CRF number. Refer to the 'CRF Report' page and the 'Thermocouple Location Diagram' page of this report.

Thermal Transmittance (U_c):

T_{h}	=	Average warm side ambient temperature	69.80 F	
T _c	=	Average cold side ambient temperature	-0.39 F	
Р	=	Static pressure difference across test specimen	0.00 psf	
		15 mph dynamic perpendicular wind at exterior		
Nominal sample area			43.07 ft ²	
Total measured input to calorimeter			1414.67 Btu/hr	
Calorimeter correction 106.30 Btu/hr				
Net specimen heat loss			1308.37 Btu/hr	
U_c = Thermal Transmittance 0.43 Btu/hr·ft ² ·F				

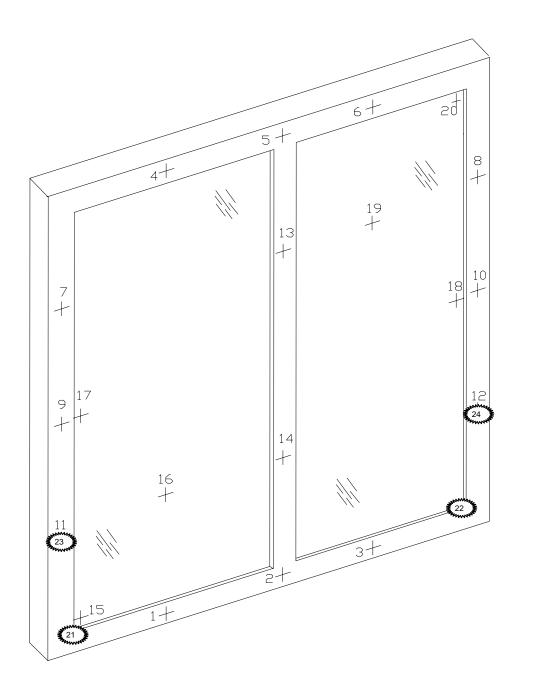
Glazing Deflection (in.):

	Left Glazing	Right Glazing
Edge Gap Width	0.50	0.50
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.44	0.44
Center gap width at laboratory ambient conditions on day of testing	0.44	0.44
Center gap width at test conditions	0.38	0.38

The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

A calibration of the Architectural Testing Inc. 'thermal test chamber' (ICN 000001) in York, Pennsylvania was conducted in April 2009 in accordance with Architectural Testing Inc. calibration procedure.

Prior to testing the specimen was sealed with silicone on the interior side and checked for air infiltration per Section 9.3.4.


93842.02-116-46 Page 6 of 9

CRF Report

Time:	05:59	06:29	06:59	07:29	07:59	AVERAGE		
Pre-specified Thermocouples - Frame								
1	47.43	47.41	47.42	47.43	47.42	47.42		
2	48.23	48.22	48.23	48.24	48.23	48.23		
3	47.72	47.74	47.71	47.72	47.74	47.72		
4	54.19	54.17	54.18	54.20	54.18	54.18		
5	53.95	53.97	53.97	53.98	53.98	53.97		
6	53.76	53.76	53.77	53.75	53.77	53.76		
7	52.16	52.16	52.15	52.15	52.18	52.16		
8	51.88	51.87	51.87	51.87	51.86	51.87		
9	49.93	49.93	49.93	49.93	49.94	49.93		
10	50.20	50.23	50.21	50.22	50.20	50.21		
11	46.13	46.17	46.17	46.16	46.14	46.15		
12	46.97	46.99	46.97	46.97	46.99	46.98		
13	55.45	55.45	55.45	55.45	55.47	55.45		
14	52.11	52.10	52.12	52.11	52.10	52.11		
FTP	50.72	50.73	50.72	50.73	50.73	50.73		
Pre-spec	ified Thermocou	ples - Glass						
15	38.71	38.58	38.67	38.64	38.61	38.64		
16	52.78	52.76	52.77	52.73	52.74	52.75		
17	46.19	46.24	46.21	46.19	46.22	46.21		
18	46.43	46.46	46.43	46.45	46.46	46.44		
19	54.05	54.07	54.05	54.03	54.05	54.05		
20	46.74	46.74	46.75	46.72	46.75	46.74		
GT	47.48	47.48	47.48	47.46	47.47	47.47		
	nt (Roving) The	-						
21	42.60	42.60	42.60	42.60	42.60	42.60		
22	43.50	43.50	43.50	43.50	43.50	43.50		
23	46.20	46.20	46.20	46.20	46.20	46.20		
24	47.00	47.00	47.00	47.00	47.00	47.00		
FT_R	44.83	44.83	44.83	44.83	44.83	44.83		
W	0.06	0.06	0.06	0.06	0.06	0.06		
FT	50.38	50.39	50.39	50.39	50.39	50.39		
Warm S	Warm Side - Room Ambient Air Temperature							
	69.80	69.81	69.80	69.80	69.80	69.80		
Cold Sid	e - Room Ambie	-				0.00		
	-0.37	-0.37	-0.45	-0.35	-0.35	-0.38		
CRF _f	72	72	72	72	72	72		
CRF _g	68	68	68	68	68	68		

Thermocouple Location Diagram

Cold Point Locations			
21 21	21. 42.60		
22 22	22. 43.50		
23 23	23. 46.20		
24	24. 47.00		

Detailed drawings, data sheets, representative samples of the test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. until 8/15/2013. At the end of this retention period such materials shall be discarded without notice and the service life of this report by Architectural Testing, Inc. will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Benjamin W. Green Technician Shon W. Einsig Senior Technician Individual-In-Responsible-Charge

BWG:kmm 93842.02-116-46

Attachments (pages):This report is complete only when all attachments listed are included.Appendix-A:Description Table Abbreviations (1)Appendix-B:Drawings (2)

Revision Log

Rev. #	Date	Page(s)	Revision(s)
.02R0	10/20/09	All	Original Report Issue. Work requested by Don Pangburn of YKK AP America.

This report produced from controlled document template ATI 00025, revised 10/08/08..

Appendix A: Description Table Abbreviations

CODE	Frame / Sash Types
AI	Aluminum w/ Vinyl Inserts (Caps)
AL	Aluminum
AP	Aluminum w/ Thermal Breaks - Partial
AS	Aluminum w/ Steel Reinforcement
AT	Aluminum w/ Thermal Breaks - All Members (≥ 0.21 ")
AU	Aluminum Thermally Improved - All Members (0.062" - 0.209")
AV	Aluminum / Vinyl Composite
AW	Aluminum-clad Wood
FG	Fiberglass
PA	ABS Plastic w/ All Members Reinforced
PC	ABS Plastic-clad Aluminum
PF	ABS Plastic w/ Foam-filled Insulation
PH	ABS Plastic w/ Horizontal Members Reinforced
PI	ABS Plastic w/ Reinforcement - Interlock
PL	ABS Plastic
PP	ABS Plastic w/ Reinforcement - Partial
PV	ABS Plastic w/ Vertical Members Reinforced
PW	ABS Plastic-clad Wood
ST	Steel
VA	Vinyl w/ All Members Reinforced
VC	Vinyl-clad Aluminum
VF	Vinyl w/ Foam-filled Insulation
VH	Vinyl w/ Horizontal Members Reinforced
VI	Vinyl w/ Reinforcement - Interlock
VP	Vinyl w/ Reinforcement - Partial
VV	Vinyl w/ Vertical Members Reinforced
VW	Vinyl-clad Wood
VY	Vinyl
WA	Aluminum / Wood composite
WD	Wood
WV	Vinyl / Wood composite
WF	Fiberglass/Wood Combination
WC	Composite/Wood Composite (Shaped vinyl/wood composite members)
CW	Copper Clad Wood
CO	Vinyl/Wood Composite Material

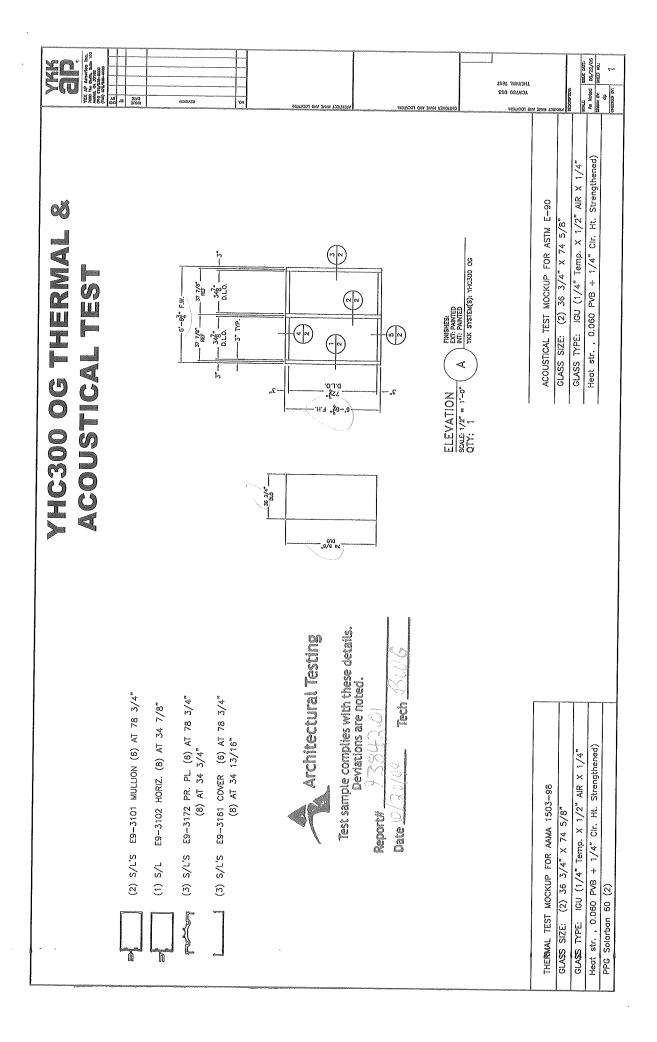
CODE	Spacer Types (See sealant)
A1	Aluminum
A2	Aluminum (Thermally-broken)
A3	Aluminum-reinforced Polymer
A4	Aluminum / Wood
A5	Aluminum-reinforced Butyl (Swiggle)
A6	Aluminum / Foam / Aluminum
A7	Aluminum U-shaped
A8	Aluminum-Butyl (Corrugated) (Duraseal)
ER	EPDM Reinforced Butyl
FG	Fiberglass
GL	Glass
OF	Organic Foam
P1	Duralite
PU	Polyurethane Foam
SU	Stainless Steel, U-shaped
CU	Coated Steel, U-shaped (Intercept)
S2	Steel (Thermally-broken)
S3	Steel / Foam / Steel
S5	Steel-reinforced Butyl
S6	Steel U-channel w/ Thermal Cap
SS	Stainless Steel
CS	Coated Steel
TP	Thermo-plastic
WD	Wood
ZE	Elastomeric Silicone Foam
ZF	Silicone Foam
ZS	Silicone / Steel
Ν	Not Applicable
TS	Thermo-plastic w/ stainless steel substrate

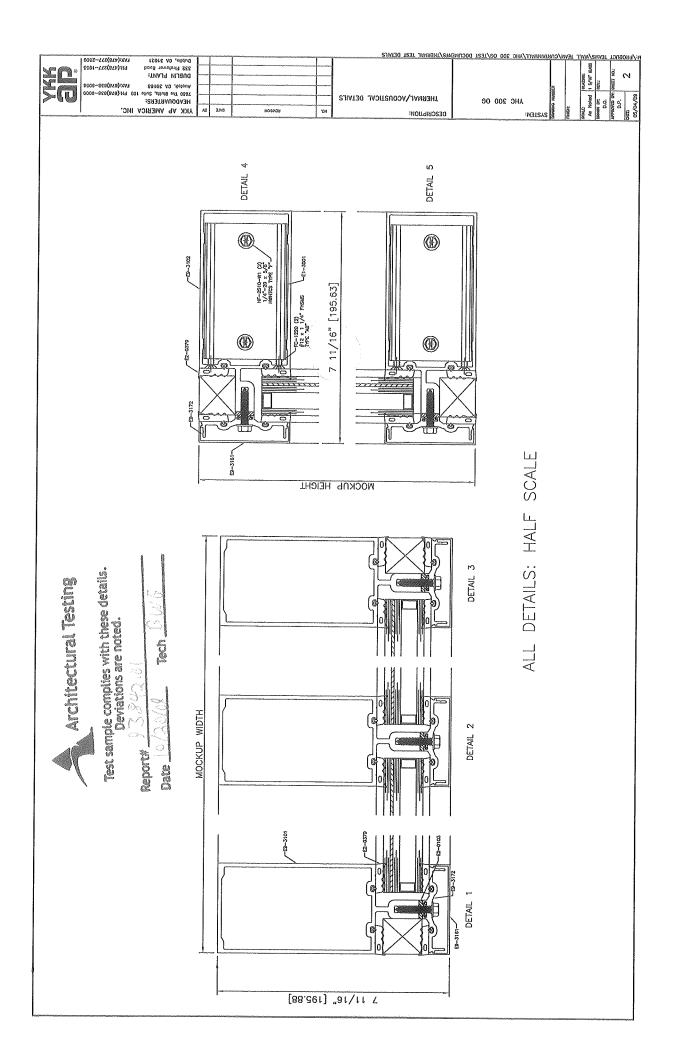
CODE	Tint Codes
AZ	Azurlite
BL	Blue
BZ	Bronze
CL	Clear
EV	Evergreen
GD	Gold
GR	Green
GY	Gray
LE	Low 'e' Coating
OT	Other (use comment field)
RC	Solar or Reflective Coating
RG	Roller Shades between glazing
RS	Silver (reflective coating)
SF	Suspended Polyester Film
SR	Silver
BG	Blinds between the Glazing
DV	Dynamic Glazing-Variable
DY	Dynamic Glazing-NonVariable

CODE	Gap Fill Codes
AIR	Air
AR2	Argon/Krypton Mixture
AR3	Argon / Krypton / Air
	Argon/Air
CO2	Carbon Dioxide
KRY	Krypton/Air
SF6	Sulfur Hexaflouride
XE2	Xenon/Krypton/Air
XE3	Xenon/Argon/Air
XEN	Xenon/Air
N	Not Applicable

0 AB

NE AI N P


Fiberglass Other


Not Applicable Polyamide

ABS Neoprene Air

ons	
	DOOR DETAILS
Ν	Not Applicable
11	Not Applicable
CODE	D T
EM	Embossed
FL	Flush
LF	Full Lite
LH	1/2 - Lite
LQ	1/4 - Lite
LT	3/4 - Lite
RP	Raised Panel
CODE	Skin
AL	Aluminum
FG	Fiberglass
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	
V 1	Vinyl
CODE	D1
CODE	
FG	Fiberglass
PL	Plastic
WP	Wood - Plywood
WS	Wood - Solid
CODE	Sub-Structure
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
	· myr
CODE	Core Fill
CH	Cellular - Honeycomb
EP	Expanded Polystyrene
PI	
PU	Polyisocyanurate
WP	Polyurethane
WP	Wood - Plywood
	Wood - Solid
XP	Extruded Polystyrene
	~ ~ .
	Spacer Sealant
D	Dual Seal Spacer System
S	Single Seal Spacer System
CODE	Grid Description
N	No Muntins
G	Grids between glass
S	Simulated Divided Lites
Т	True Muntins
CODE	Grid Size Codes
0022	Blank for no grids
0.75	Grids < 1"
15	Grids >= 1"
1.5	$Ouds \ge 1$
CODE	The same of Days 1
CODE	Thermal Breaks
F	Foam
U	Urethane
V	Vinyl
FB	Fiberglass

Appendix B: Drawings

NFRC U-FACTOR, SHGC, VT, & CONDENSATION RESISTANCE COMPUTER SIMULATION REPORT

Rendered to: YKK AP AMERICA

SERIES/MODEL: YHC 300 OG Curtain Wall

 Report Number:
 D5331.02-116-45

 Report Date:
 03/10/14

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

NFRC U-FACTOR, SHGC, VT, & CONDENSATION RESISTANCE <u>COMPUTER SIMULATION REPORT</u>

Rendered to: YKK AP AMERICA 1229 Highway 441 Bypass Dublin, Georgia 31021

Report Number:	D5331.02-116-45
Simulation Date:	03/10/14
Report Date:	03/10/14

Project Summary:

Architectural Testing, Inc. was contracted to perform U-Factor, Solar Heat Gain Coefficient, Visible Transmittance, and Condensation Resistance* computer simulations in accordance with the National Fenestration Rating Council (NFRC). The products were evaluated in full compliance with NFRC requirements to the standards listed below.

*NFRC's Condensation Resistance rating is NOT equivalent to a Condensation Resistance Factor (CRF) determined in accordance with AAMA 1503.

Standards:

NFRC 100-2010:	Procedure for Determining Fenestration Product U-Factors			
NFRC 200-2010:	Procedure for Determining Fenestration Product Solar Heat Gain			
	Coefficient and Visible Transmittance at Normal Incidence			
NFRC 500-2010:	Procedure for Determining Fenestration Product Condensation			
	Resistance Values			

Software:

Frame and Edge Modeling:	THERM 6.3.46	
Center-of-Glass Modeling:	WINDOW 6.3.74	
Total Product Calculations:	WINDOW 6.3.74	
Spectral Data Library:	IGDB 31.0	

Simulations Specimen Description:

Series/Model:	YHC 300 OG Curtain Wall		
Туре:	Glazed Wall System, Curtain Wall		
Frame Material:	AU	Thermally Improved	
Sash Material:	NA	Not Applicable	
Standard Size:	2000mm x 2000mm		

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

Modeling Assumptions/Technical Interpretations:

- 1) To prevent air infiltration, tape was applied to all interior sash crack locations.
- 2) This product is available in either a painted or anodized finish. These two finish types can be grouped in accordance with NFRC 100-2010, Section 4.2.1.L. The painted finish was simulated since it is the worst case (highest emissivity). The test sample was painted aluminum.
- 3) The center-line modeling approach was conducted using the horizontal intermediate for the head and sill models, and the vertical intermediate for the jambs. This procedure is outlined in the NFRC Simulation Manual, Section 8.10.
- 4) This product is available with a dry glazed or wet glazed sealant. These sealant variations were grouped for worst case performance in accordance with NFRC 100-2010, Section 4.2.1.M. The dry glazed version of this product was simulated as the group leader since it is the worst case (highest conductivity).

Specialty Products Table:

The specialty products method allow the manufacturer to determine the overall product SHGC and VT for any glazing option. The center of glass SHGC and/or VT must be determined using WINDOW 6.3.74. The method gives overall product SHGC and VT indexed on center of glass properties. All values used in the calculations are truncated to six decimal place precision.

	No Dividers	Dividers < 1	Dividers > 1
SHGC0	0.016260	0.019669	0.022865
SHGC1	0.899578	0.798804	0.704349
VT0	0.000000	0.000000	0.000000
VT1	0.883318	0.779135	0.681484

SHGC = SHGC0 + SHGCc (SHGC1 - SHGC0) VT = VT0 + VTc (VT1 - VT0)

Validation Matrix:

The following products are part of a validation matrix. Only one is required for validation testing.

Product Line	Report Number
None	-

Spacer Option Description

	Sealant		
Spacer Type	Primary	Secondary	Code
Aluminum Dual Seal Spacer	Butyl Rubber	Butyl Rubber	A1-D

Reinforcement Option Description

Location	Material
None	-

Gas Filling Technique Description

Fill Type	Method
44.70% Argon	Single Probe Timed
67.04% Krypton	Single Probe Timed
63.43% Krypton	Single Probe Timed
60.69% Krypton	Single Probe Timed
76.82% Krypton	Single Probe Timed
77.20% Argon	Single Probe Timed
79.35% Krypton	Single Probe Timed
67.85% Krypton	Single Probe Timed
86.88% Argon	Single Probe Timed
80.58% Krypton	Single Probe Timed
71.74% Krypton	Single Probe Timed
88.42% Krypton	Single Probe Timed
94.25% Xenon	Evacuated Chamber
59.50% Krypton	Single Probe Timed
76.46% Krypton	Single Probe Timed
87.96% Krypton	Single Probe Timed
76.00% Xenon	Evacuated Chamber
81.42% Xenon	Evacuated Chamber

Edge-of-Glass Construction

Interior Condition	EPDM Gasket Between Aluminum Frame and Glass
Exterior Condition	EPDM Gasket Between Aluminum Pressure Plate and Glass

Weatherstripping

Туре	Quantity	Location
None	-	-

Frame/Sash Materials Finish

Interior	Painted Aluminum				
Exterior	Painted Aluminum				

NFRC 100/200/500 Summary Sheet YHC 300 OG Curtain Wall

	<u>г</u>		-	r – –	-				l vvan			T	<u>г</u>	
Ð	Pane Thickness 1	Gap Width 1	Pane Thickness 2	Gap Width 2	Pane Thickness 3	Gap Width 3	Pane Thickness 4	Gap Fill	¥74-91	Low-e (Surface#)		Tint	Spacer	Grid Type
	U	-Facto	r	Solar		ids (None		nt (SHGC)	VISID	le Transmitt Grids (None / <1		(1)	Conder Resist	
1	COG=.	.4400												
	0.225	0.500	0.539					ARG45				CL	A1-D	Ν
	U-Factor	r	0.57	SHGC ((N)			0.60	VT (N)		0.68		CR	45
2	COG=.	.4200												
	0.230	0.500	0.539					KRY67		0.772(#2)		SR	A1-D	Ν
	U-Factor	r	0.55	SHGC ((N)			0.51	VT (N)		0.49		CR	46
3	COG=.	.4000												
	0.223	0.500	0.539					KRY63		0.640(#2)		CL	A1-D	Ν
	U-Factor	r	0.54	SHGC ((N)			0.25	VT (N)		0.19		CR	47
4	COG=.	.3800												
	0.223	0.500	0.539					KRY61		0.525(#2)		CL	A1-D	Ν
	U-Factor		0.52	SHGC ((N)			0.18	VT (N)		0.11		CR	48
5	COG=.		1	T	1				-			-		
	0.236	0.500	0.539					KRY77		0.465(#2)		RC	A1-D	N
	U-Factor		0.50	SHGC ((N)			0.19	VT (N)		0.13		CR	49
6	COG=.		1	1	1							1		
	0.223	0.500						ARG77		0.351(#2)		RC		N
	U-Factor		0.49	SHGC ((N)			0.13	VT (N)		0.04		CR	49
7	COG=.			1								~~		
	0.221							KRY79		0.302(#2)		CL	A1-D	N
8	U-Factor COG=.		0.47	SHGC ((N)			0.63	VT (N)		0.69		CR	51
0	0.221		0.520					VDV(0		0.20((#2))		ы		N
								KRY68		0.206(#2)	0.52	BL		N
9	U-Factor COG=.		0.46	SHGC ((14)			0.45	VT (N)		0.53		CR	52
-			0.539					ARG87		0.149(#2)		CL	A1-D	N
	U-Factor		0.44	SHGC ((N)			0.28	VT (N)	0.119(#2)	0.34		CR	53
10	COG=.				(-1)				· - (r ·)					
	0.221		0.539					KRY81		0.107(#2)		CL	A1-D	Ν
	U-Factor		0.42	SHGC ((N)			0.53	VT (N)		0.63		CR	55
L														

NFRC 100/200/500 Summary Sheet YHC 300 OG Curtain Wall

-					_								
Ð	Pane Thickness 1	Gap Width 1	Pane Thickness 2	Gap Width 2	Pane Thickness 3	Gap Width 3	Pane Thickness 4	Gap Fill	Low-e (Surface#)		Tint	Spacer	Grid Type
	τ	-Facto	or	Solar		bain Co ds (None)		nt (SHGC)	Visible Transmitta Grids (None / <1 /		Г)	Conder Resist	
11	COG=	.2400											
	0.222	0.500	0.539					KRY72	0.034(#2)	(CL	A1-D	Ν
	U-Facto		0.41	SHGC	(N)			0.32	VT (N)	0.56		CR	56
12	COG=	.2200											
	0.223	0.500	0.539					KRY88	0.018(#2)	(CL	A1-D	Ν
	U-Facto	r	0.39	SHGC	(N)			0.25	VT (N)	0.55		CR	57
13	COG=	.2000											
	0.223	0.500	0.539					XEN94	0.018(#2)	(CL	A1-D	Ν
	U-Facto	r	0.37	SHGC	(N)			0.25	VT (N)	0.55		CR	56
14	COG=	.1800											
	0.221	0.250	0.003	0.250	0.539			KRY77	0.302(#2)/0.76(#3)/0	0.11(#4)	CL	A1-D	Ν
	U-Facto	r	0.35	SHGC	(N)			0.47	VT (N)	0.61		CR	60
15	COG=	.1600											
	0.223	0.250	0.003	0.250	0.539			KRY76	0.087(#2)/0.76(#3)/0	0.11(#4)	CL	A1-D	Ν
	U-Facto		0.34	SHGC	(N)			0.41	VT (N)	0.58		CR	60
16	COG=			I	1				Г				
	0.223	0.250	0.003	0.250	0.539			KRY88	0.035(#2) / 0.76(#3) / 0	0.11(#4)	CL	A1-D	N
17	U-Facto		0.32	SHGC	(N)			0.31	VT (N)	0.53		CR	60
17	COG=		0.000	0.0.00			1				ar	11.5	
		0.250		0.250	<u> </u>			XEN76	0.018(#2) / 0.76(#3) / 0	× /	CL	A1-D	N
18	U-Facto		0.30	SHGC	(N)			0.23	VT (N)	0.48		CR	60
10	COG=		0.002	0.250	0.520			VENOC	0.019(#2) / 0.76(#2) / 6		CT		N
				0.250				XEN96	0.018(#2) / 0.76(#3) / 0		CL	A1-D	N
<u> </u>	U-Facto	r	0.29	SHGC ((N)			0.23	VT (N)	0.48		CR	61

The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation, and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening.

Ratings values included in this report are for submittals to an NFRC-licensed IA and are not meant to be used directly for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes. The ratings values were rounded in accordance to NFRC 601, NFRC Unit and Measurement Policy.

Architectural Testing, Inc. is an NFRC accredited simulation laboratory and all simulations were conducted in full compliance with NFRC approved procedures and specifications. The NFRC procedure requires that the computational results be verified through actual test results.

Architectural Testing will service this report for the entire test record retention period. Test records that are retained such as detailed drawings, datasheets, representative samples of test specimens, or other pertinent project documentation will be retained by Architectural Testing, Inc. for the entire test record retention period. The test record retention end date for this report is March 10, 2018.

Results obtained are simulated values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the product simulated. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.:

SIMULATED BY:

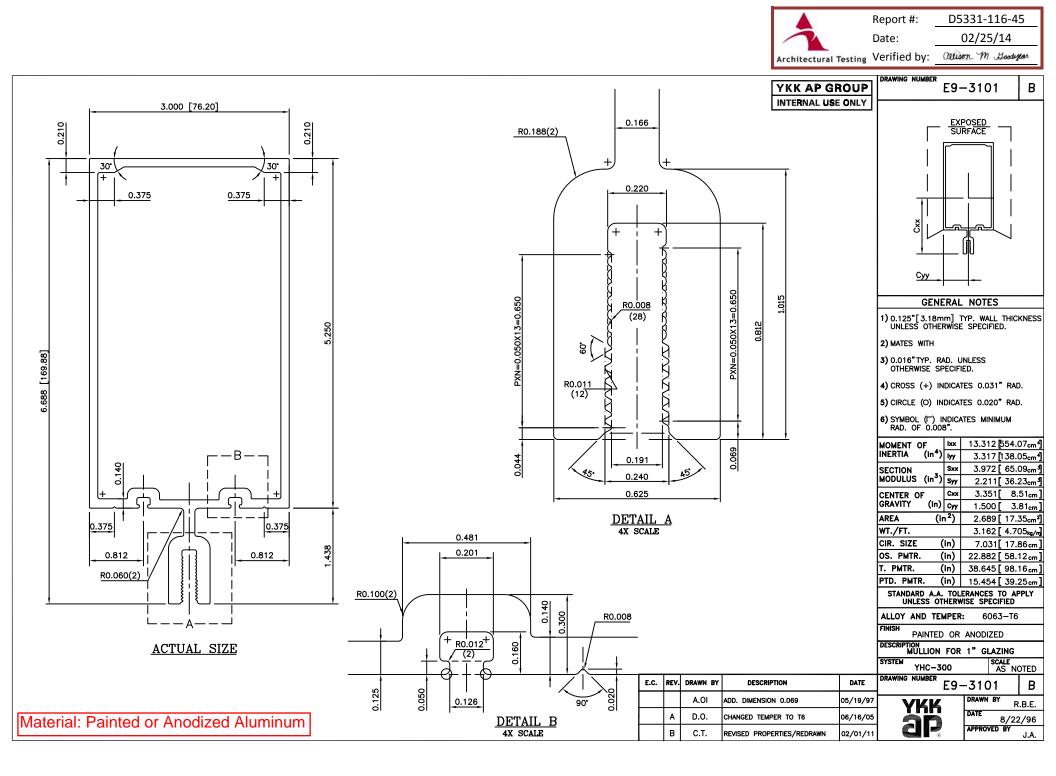
REVIEWED BY:

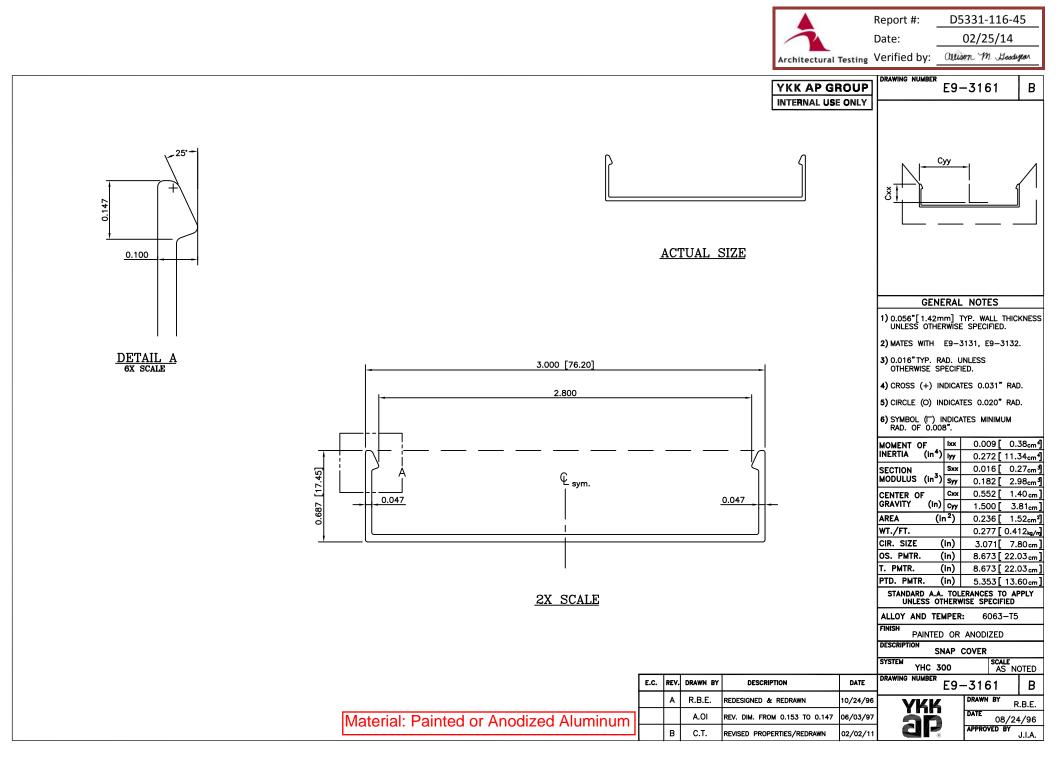
Allison M. Goodyear Simulation Technician Michael J. Thoman Director - Simulations and Thermal Testing Simulator-In-Responsible-Charge

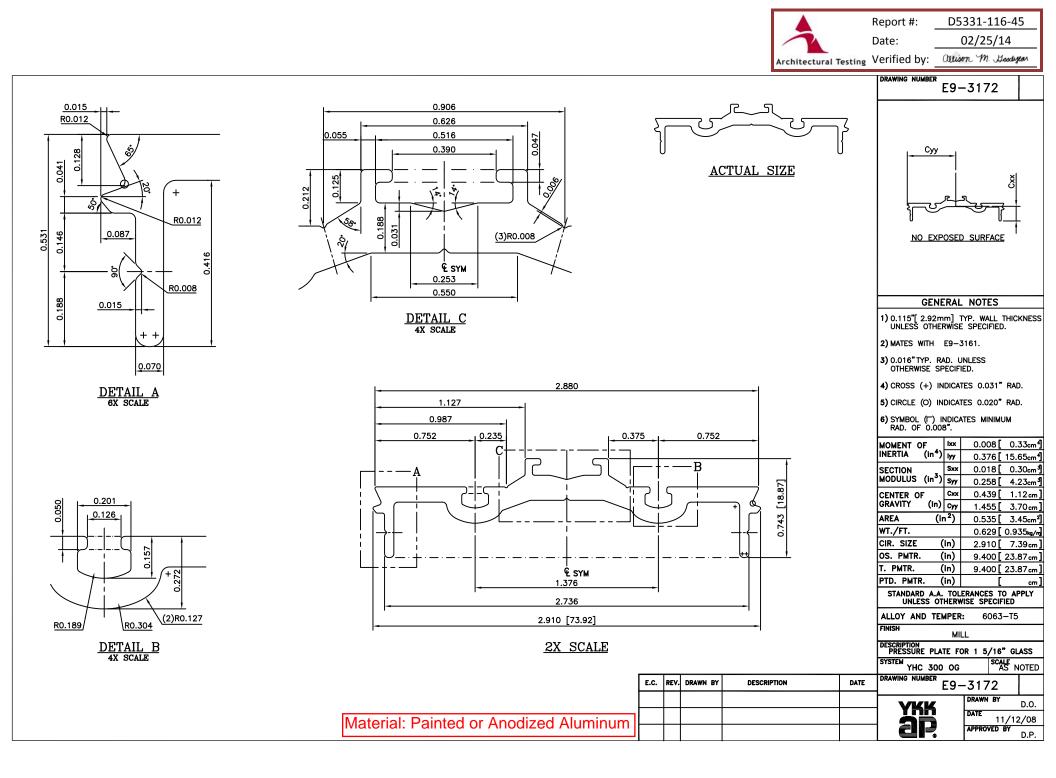
AMG:amg D5331.02-116-45

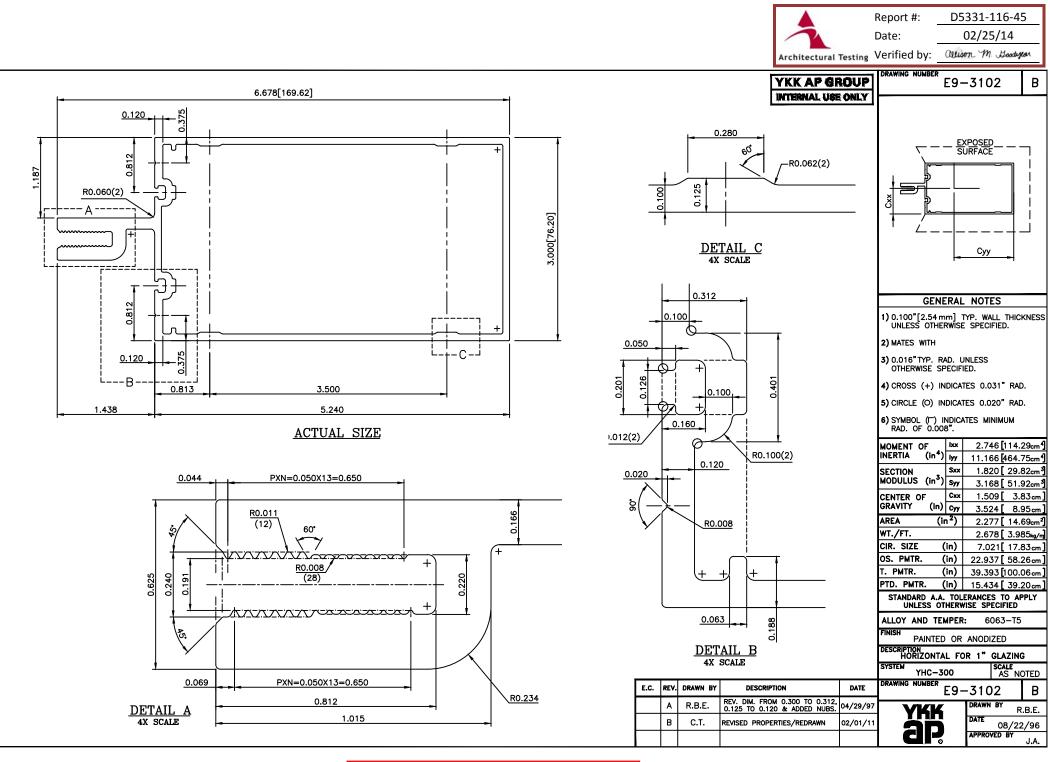
Attachments (pages): This report is complete only when all attachments listed are included. Appendix A: Drawings and Bills of Material (10)

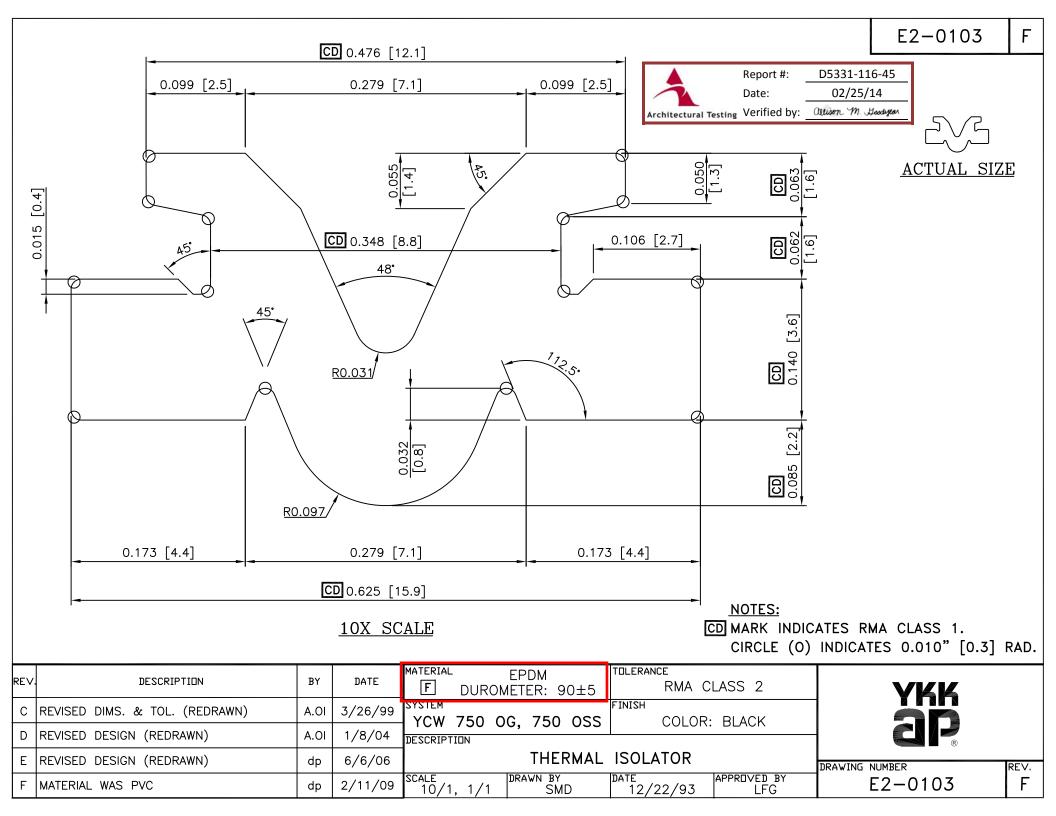
Revision Log

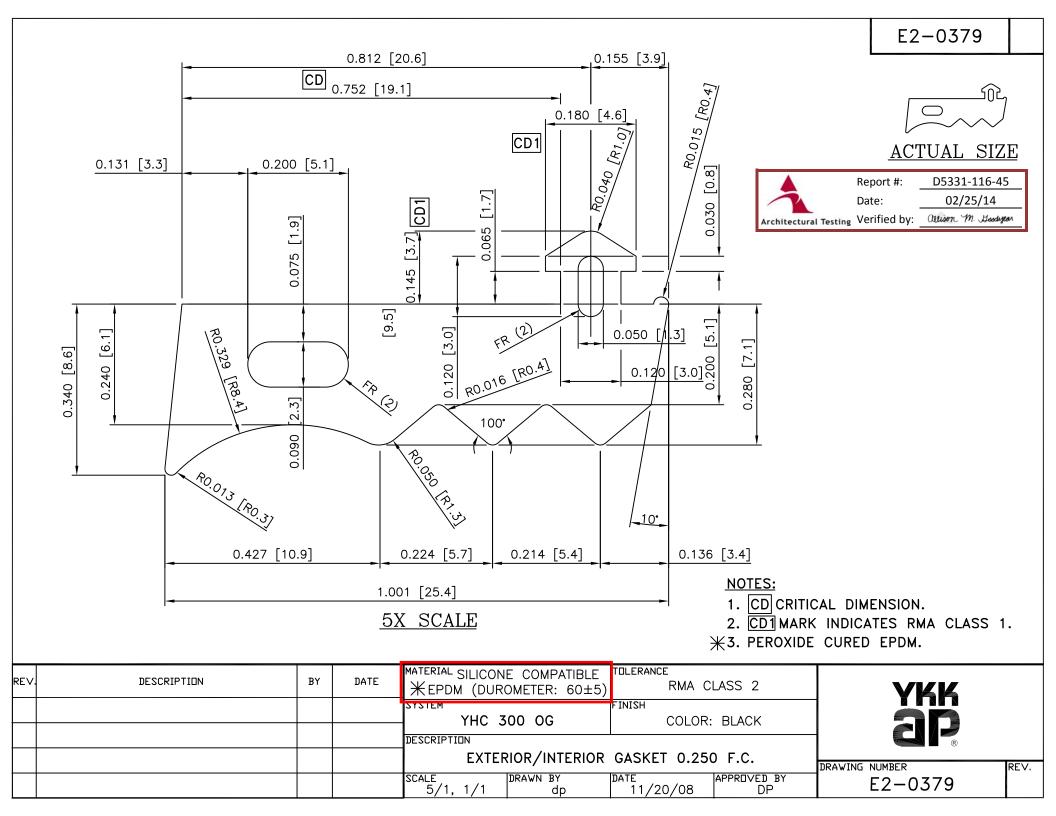

Rev. #	Date	Page(s)	Revision(s)
.02R0	03/10/14	All	Original Report Issued to YKK AP America.

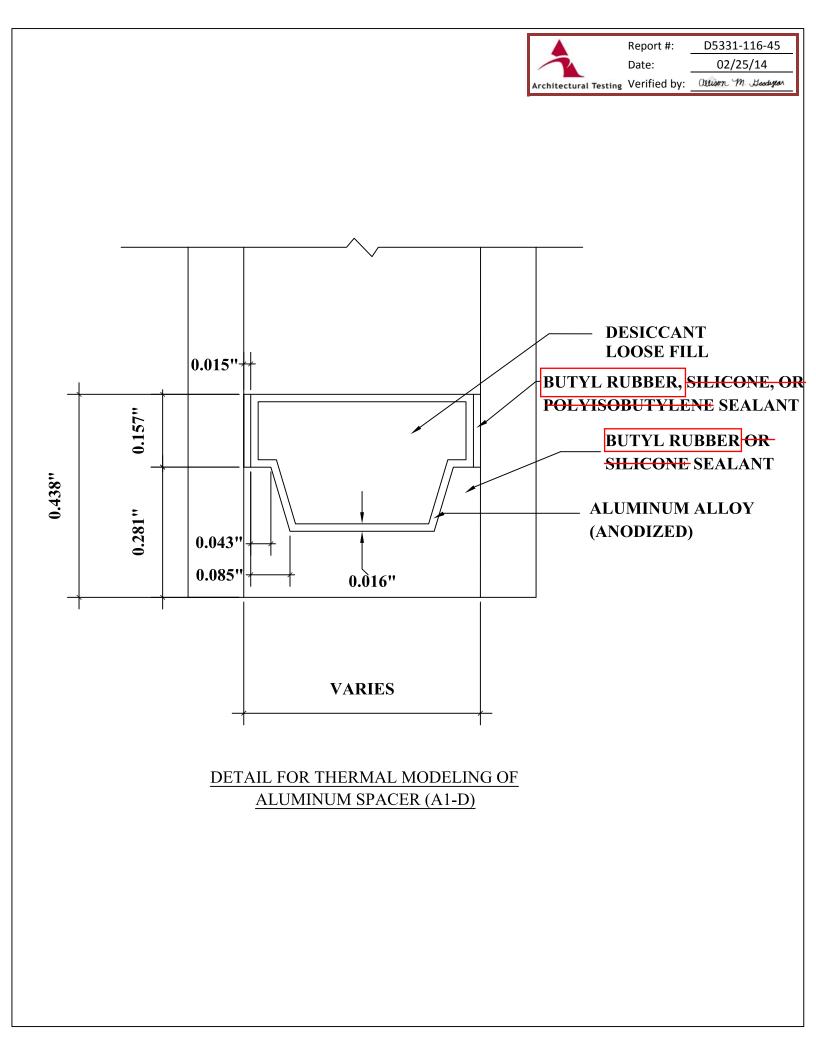

This report produced from controlled document template ATI 00037, Revised 10/2/2012.

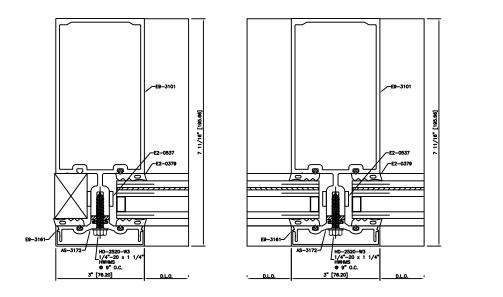


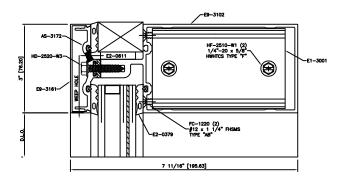

All drawings and Bills of Material used to simulate this product are enclosed in this Appendix

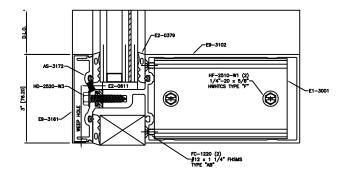


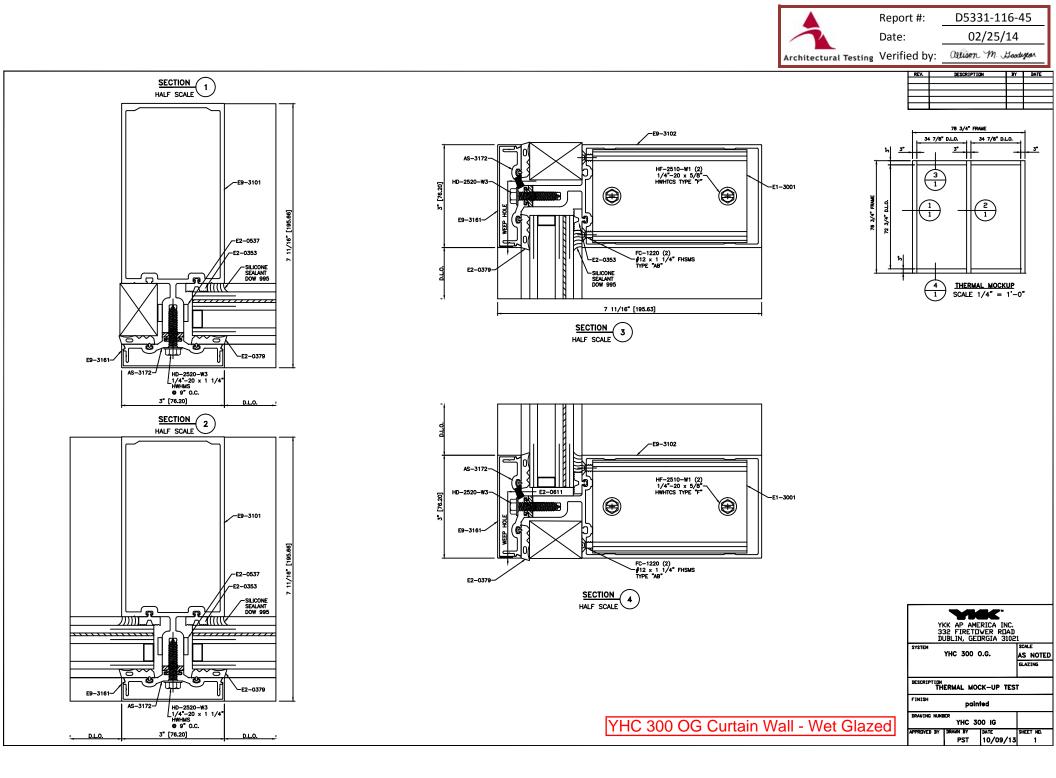





R.031 R.036(2) R.016(2) R.016(2) R.016(2) R.016(2) R.016(2) ACTUAL SIZE ACTUAL SIZE SX SCALE 1: CRITICAL DIMENSION DESCRIPTION PY DATE MULTICAL DIMENSION DESCRIPTION PY DESCRIPTION PY DESCRIPTION PY DESCRIPTION PY DESCRIPTION					E2-0353 Report #: D5331-116-45 Date: 02/25/14 Architectural Testing Verified by:
Image: Second state of the second s	0.4] CD1 .145[3.7] .083	R.015(2) R.016(2	.06	R.016(2) R.010(2)	
Image: State State NOTE: 1) CD1 INDICATES RMA CLASS-1 2) VENDOR: TREMCO 3) COMPOUND: SCR-900 Image: State Image: State		.060.06	.20	5 90°	<u>ACTUAL SIZE</u>
SYSTEM FINISH YHC 300 COLOR: BLACK DESCRIPTION CLAZING SPACER (1 / A" E C)]: CRITICAL DIMENSION		.020[1		1) CD1 INDICATES RMA CLASS-1 2) VENDOR: TREMCO
DESCRIPTION CLAZING SPACER (1/4" F C)	DESCRIPTION	BY	DATE	SYSTEM FINISH	
SCALE SCALE DRAWN BY R.B.E. DATE 06/16/97 APPROVED BY E2-0353				DESCRIPTION GLAZING SPACER (1/4" F.C.	A merica ^m DRAWING NUMBER REV.


CD


REV.



CERTIFICATE of COMPLIANCE

10.0 – Certificate of Compliance OVERALL RATING

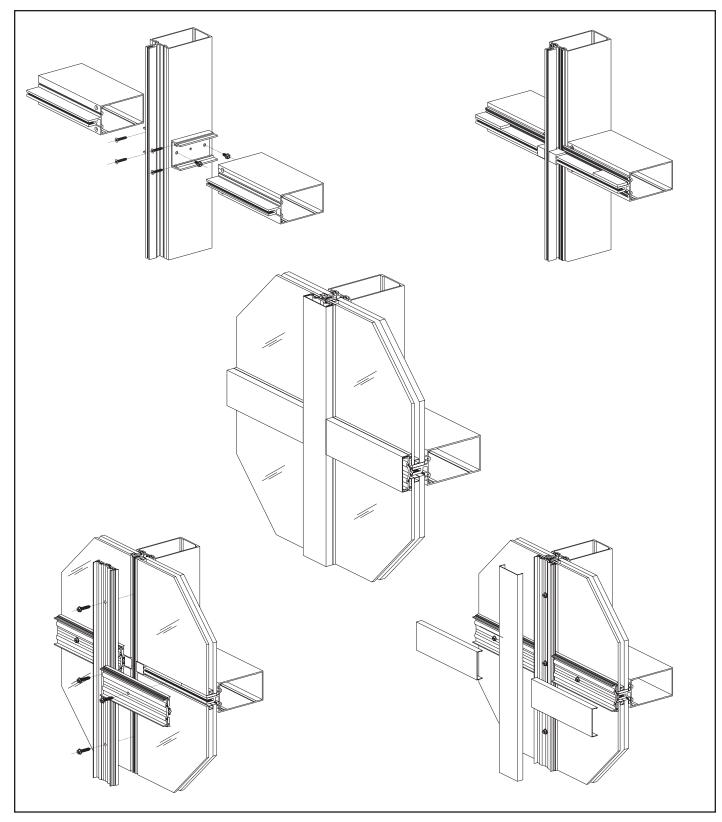
U-Factor:	
(Btu/h∙ft ² ∙°F)	
	Γ

SHGC:

Directions: Fill out form completely. Determine the Overall Rating for this project by using the C.O.G. U-Factor and C.O.G. SHGC from Table 1 and looking up the overall rating from Table 2. Indicate the Overall Rating in the space above. Linear interpolation is permitted.

Certificate Authorization

Name:


Signature:

Company: Date:

CERTIFIES THAT THE MATERIALS LISTED ON THIS CERTIFICATE WERE INSTALLED ON THE PROJECT IDENTIFIED BELOW.

PROJECT INFORMATION:	
Street Address:	
City: State:	Zip:
oity. State.	Ζφ.
GLAZING CONTRACTOR / INSTALLER: Contact Person:	
Street Address: Phone Number:	
City: State:	Zip:
GLAZING MATERIAL SUPPLIER: Contact Person:	
Street Address: Phone Number:	
City: State:	Zip:
Glass and Spacer Type:	
Street Address: Phone Number: City: State: Glass and Spacer Type:	
Center-of-glass (C.O.G.) U-factor: Center-of-glass (C.O.G.) SHGC:	
Btu/h∙ft²•°F	
FRAMING MATERIAL SUPPLIER: Contact Person:	
YKK AP America Inc. David Warden	
Street Address: Phone Number:	
270 Riverside Pkwy, Suite A 800-955-9551	
City: State:	Zip:
City: State: GA	Zip: 30168
City: State:	•
City: State: Austell GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix Product Line: OV/ERALL	30168
City: State: Austell GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix Product Line: OV/ERALL	30168
City: State: Austell GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix Product Line: OV/ERALL	30168 0 OG
City: State: Austell GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix Product Line: OV/ERALL	30168 0 OG HGC are based on a size of
City: State: Austell GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix Product Line: OV/ERALL	30168 0 OG HGC are based on a size of
City: State: Austell GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix U-factor OVERALL U-factor C.O.G. U-factor OVERALL SHGC Product Line: 0.48 0.60 0.75 0.68 0.48 0.60 0.75 0.63 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50	30168 0 OG HGC are based on a size of
City: Austell State: U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix GA U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix Product Line: C.O.G. OVERALL C.O.G. OVERALL U-factor U-factor SHGC SHGC 0.48 0.60 0.75 0.68 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.46	30168 0 OG HGC are based on a size of /4 in) as required in NFRC 100.
City: Austell State: U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix GA U-factor OVERALL U-factor C.O.G. U-factor OVERALL SHGC Product Line: 0.48 0.60 0.75 0.68 0.48 0.60 0.75 0.63 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.44 0.36 0.50 0.445 0.44	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100. Coefficients (SHGC) listed in
City: State: Austell U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix U-factor OVERALL U-factor C.O.G. U-factor OVERALL SHGC Product Line: 0.48 0.60 0.75 0.68 0.48 0.60 0.75 0.63 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.41 0.34 0.49 0.40 0.37	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100.
City: State: Austell U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix U-factor OVERALL U-factor C.O.G. U-factor OVERALL SHGC OVERALL SHGC 0.48 0.60 0.75 0.68 0.48 0.60 0.75 0.63 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.42 0.55 0.60 0.55 0.38 0.52 0.50 0.46 0.36 0.50 0.45 0.41 0.34 0.49 0.40 0.37 0.32 0.47 0.35 0.33	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100.
City: State: Austell U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix U-factor OVERALL U-factor C.O.G. U-factor OVERALL SHGC OVERALL SHGC 0.48 0.60 0.75 0.68 0.48 0.60 0.75 0.63 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.44 0.36 0.50 0.445 0.41 0.34 0.49 0.40 0.37 0.32 0.47 0.35 0.33 0.30 0.46 0.30 0.28	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100.
State: Austell U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix C.O.G. OVERALL C.O.G. OVERALL U-factor U-factor SHGC SHGC 0.48 0.60 0.75 0.68 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.42 0.55 0.60 0.55 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.46 0.33 0.40 0.337 0.30 0.46 0.32 0.47 0.35 0.33 0.28 0.30 0.46 0.30 0.28 0.44	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100.
City: State: Austell U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix C.O.G. OVERALL C.O.G. OVERALL U-factor U-factor SHGC SHGC 0.48 0.60 0.75 0.68 0.46 0.59 0.70 0.63 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.44 0.36 0.50 0.445 0.41 0.32 0.47 0.35 0.33 0.30 0.46 0.30 0.28 0.32 0.44 0.25 0.24 0.28 0.44 0.25 0.24 0.26 0.42 0.20 0.19	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100.
State: Austell U-factor Matrix (Btu/h•ft²•°F) SHGC Matrix C.O.G. OVERALL C.O.G. OVERALL U-factor U-factor SHGC SHGC 0.48 0.60 0.75 0.68 0.44 0.57 0.65 0.59 0.42 0.55 0.60 0.55 0.42 0.55 0.60 0.55 0.42 0.55 0.60 0.55 0.40 0.54 0.55 0.50 0.38 0.52 0.50 0.46 0.33 0.40 0.337 0.30 0.46 0.32 0.47 0.35 0.33 0.28 0.30 0.46 0.30 0.28 0.44	30168 0 OG HGC are based on a size of (4 in) as required in NFRC 100.

YHC 300 OG Outside Glazed Curtain Wall System

Installation Manual

TABLE OF CONTENTS

Installation Notes	Page ii to iii
	i ugo ii to iii

PARTS DESCRIPTION

YHC 300 OG Framing Members (45-55 PSF)	Pages 1 & 2
YHC 300 OG Accessories (45-55 PSF)	Pages 3 to 5
YHC 300 OG Framing Members (65-90 PSF)	Page 6
YHC 300 OG Accessories (65-90 PSF)	Pages 7 to 9
YHC 300 OG Framing Members (90-130 PSF)	Page 10
YHC 300 OG Accessories (90-130 PSF)	Pages 11 to 13

FRAME FABRICATION

Frame Types/Anchoring Methods	Pages 14 & 15
Fabricate Vertical Mullions	Pages 16 & 18
Fabricate Door Jamb Mullions	Page 19
Using Steel/Alternate Reinforcement	Pages 20 & 21
Shear Blocks for Horizontals	Page 22
"J" Anchors at Intermediate Mullions	Page 23
"J" Anchors at Jamb Conditions	Page 24
Fabricate Horizontal Members	Pages 25 to 27
Fabricate Horizontal & Mullion Pressure Plates	Pages 28 & 29
Fabricate Mullion Face Covers	Page 30
Fabricate Mullions for Splices	Page 31

FRAME INSTALLATION

Typical Mullion Splice	Page 32
Install Mullion End Caps	Page 33
Install Jamb & Mullions	Page 34 & 35
Install Wind Load/Dead Load Anchors	Pages 36 & 37
Attach Horizontal Members	Pages 38 & 39
90° Corner Assembly	Pages 40 & 41
Install Door Subframes	Page 42
Apply Perimeter Sealant	Page 43

GLAZING

Install 1/4" Glazing Adaptors	Page 44
Install Joint Plugs	Page 45
Install Interior Glazing Spacers/Gaskets	Pages 46 & 47
Install Glass	Page 48
Install Pressure Plates	Pages 49 & 50
Install Exterior Face Covers	Page 51
Apply Interior Silicone Sealant	Page 52

Installation Notes

1. Do not drop, roll or drag boxes of aluminum framing. Move and stack boxes with proper support to prevent distortion. If fork lifts are used be especially careful about striking the boxes when lifting or moving.

2. Store in a dry, out of the way area. If rain exposure, condensation or any water contact is likely, then all packaging material should be removed. Wet packaging materials will discolor and may stain aluminum finishes and paints.

3. All materials should be checked for quantity and quality upon receipt, YKK AP must be notified immediately of any discrepancies in shipment. Check to make sure that you have the required shims, sealants, supplies, and tools necessary for the installation.

4. Carefully check the openings and surrounding conditions that will receive your material. Remember, if the construction is not per the construction documents, it is your responsibility to notify the general contractor in writing. Any discrepancies must be brought to the general contractor's attention before you proceed with the installation.

5. All work must start from, and be referenced to bench marks, offset lines and/or column centerlines established by the architectural drawings and the general contractor.

6. All vertical mullions must be installed plumb, square, level, and true, and in accordance with approved shop drawings, these installation instructions and AAMA Book 8, installation of aluminum curtain walls.

7. Gather your shop drawings, materials, packing list, and this installation manual. Carefully review parts, location, the sequence it goes therein, when you glaze it and how you seal it. Installation instructions are of a general nature and may not cover every condition you will encounter. The shop drawings and/or installation manuals were prepared specifically for the product.

8. Any material substitutions must be of equal or greater quality.

9. Make certain that material samples have been sent for compatibility testing for all manufacturer's sealants involved. Make certain that sealants have been installed in strict accordance with the manufacturer's recommendations and specifications:

- A. Specified metal to metal joints use approved silicone sealant. Refer to test report for manufacturer.
- B. All metal to Large Missile Impact glazing, must use approved silicone sealant. Refer to test report for manufacturer.
- C. Perimeter caulk joints must use approved silicone sealant. Refer to test report for manufacturer.
- D. Outside of Florida, YKK AP recommends approved silicone sealant.

Florida product approved installation must always be items A, B, and C.

Installation Notes

10. Consult sealant manufacturer for proper backer rod selection.

11. Remember to isolate, in an approved manner, all aluminum from uncured masonry or other incompatible materials.

12. System-to-structure fasteners are not supplied by YKK AP. Fasteners called out on shop drawings are to indicate minimum sizes for design loading.

13. All substrates which the framing system is anchored to must be structurally sound.

14. Entrances are to be installed plumb, square, level, and true.

15. Please contact the YKK AP DirecTech application engineering department for any project specific condition not covered by these instructions.

16. YKK AP curtain wall framing is typically completed before drywall, flooring and other products which may still be in process. Take the extra time to wrap and protect the work produced.

17. Concrete, mortar, plaster, muriatic acid and other alkaline and acid based construction and cleaning materials may be very harmful to finishes and should be removed with water and mild soap immediately or permanent damage or staining of the finishes will occur. A spot test is recommended before any cleaning agent is used, and abrasive type cleaners must never be used.

18. YKK AP cutting tolerances are plus zero, minus one thirty second unless otherwise noted.

19. Glass and glazing building codes governing the design and use of products vary widely. YKK AP America Inc., does not control the selection of products, product configurations, operating hardware, and function, or glazing materials, and YKK AP assumes no responsibility for these design considerations. It is the responsibility of the design professional, owner, architect, specifier, general contractor, and the installer to make these selections in strict accordance with all applicable codes.

20. Check our website, www.ykkap.com, for the latest installation manual update prior to commencing work.

FRAMING MEMBERS (45-55 PSF)

	Head / Sill / Horizontal 3" x 5-1/4" For Monolithic Glazing	E9-3105	fretter f	Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3173
	Horizontal 3" x 3-3/16" For Monolithic Glazing	E9-8168	1 contract	Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3172
	Horizontal 3" x 3-3/16" For Monolithic Glazing	E9-8167	L may	Perimeter Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3178
	Mullion 3" x 5-1/4" For Monolithic Glazing	E9-3107		90° Corner Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3177
	Head / Sill / Horizontal 3" x 5-1/4" For Insulating Glazing	E9-3104		90° Corner Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3175
-	Horizontal 3" x 3-3/16" For Insulating Glazing	E9-3112	Ľ1	Face Cover	E9-3161
s (Horizontal 3" x 3-3/16" For Insulating Glazing	E9-3113		90° Outside Corner Interior Cover Use with E9-1280	E9-3165
	Mullion 3" x 5-1/4" For Insulating Glazing	E9-3111	<u></u>	90° Outside Corner Interior Cover Base	E9-1280
	Mullion 3" x 3-3/16" For Insulating Glazing	E9-3126	î	90° Outside Corner Face Cover For Monolithic Glazing	E9-3176
	Horizontal 3" x 3-3/16" For Insulating Glazing	E9-3127		90° Outside Corner J Face Cover For Insulating Glazing	E9-3174
,	Flush Filler Use With E9-3104 and E9-3105	E9-3162		Pocket Filler For Monolithic Glazing	E9-3109
,	Flush Filler Use With E9-3112 and E9-8168	E9-8169		Pocket Filler For Insulating Glazing	E9-3110

FRAMING MEMBERS (45-55 PSF)

1-1/2" x 1-1/2" Angle	E9-9303	1/4" Glazing Adaptor	E9-3141
Perimeter Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3179		

ACCESSORIES (45-55 PSF)

 1			
Shear Block Use With E9-3104 & E9-3105	E1-3001	Face Cover Splice Sleeve Use with E9-3161	E1-3009
Shear Block Use With E9-3112, E9-3113, E9-8167 & E9-8168	E1-3036	Solution End Cap For Monolithic Glazing	E1-3011
"J" Anchor	E1-3002	Solution End Cap For Insulating Glazing	E1-3010
Intermediate Vertical Mullion End Anchor Requires E1-3006 Anchor Sleeve	E1-3003	ر تعقرب Temporary Pressure Plate For Monolithic Glazing	E1-3026
Intermediate Vertical Mullion End Anchor For 3" x 3-3/16" Mullion	E1-3046	Temporary Pressure Plate For Insulating Glazing	E1-3025
Jamb Mullion End Anchor Requires E1-3006 Anchor Sleeve	E1-3004	Shear Block For 90° Corner Mullion	E1-3013
Jamb Mullion End Anchor For 3" x 3-3/16" Mullion	E1-3047	"J" Anchor (Right Hand) For 90° Corner Mullion	E1-3014
" T" Anchor Use at Door Jamb	E1-3039	"J" Anchor (Left Hand) For 90° Corner Mullion	E1-3015
Mullion Splice Sleeve	E1-3005	Shear Clip (Right Hand)	E1-3016
Mullion Anchor Sleeve	E1-3006	Shear Clip (Left Hand) For 90° Corner Mullion	E1-3017
Mullion Reinforcement Sleeve	E1-3007	Mullion End Anchor For 90° Corner Mullion	E1-3018
2-1/2" x 2-1/2" x 1/4" Steel Reinforcement Tube For 3" x 3-3/16" mullion	E1-0177	Setting Block For Monolithic Glazing	E2-0623

*Note: Exact size of anchors should be determined from loads calculated on each individual curtain wall.

ACCESSORIES (45-55 PSF)

	Setting Block For Insulating Glazing	E2-0611		Drill Fixture	H-7213
	Side Block	E2-0537		#8-32 x 1/2" FHTCS Type F Zinc Plated, For Attachment of Face Cover Splice Sleeve	FF-0808
	Joint Plug For Monolithic Glazing	E2-0358	Januaraanaanaa	#10 x 1" FHSMS Type AB Zinc Plated, For Attachment of Monolithic Glazing Adaptor	FC-1016
Ê	Joint Plug For Insulating Glazing	E2-0355	Jannanan	#12 x 3/4" FHSMS Type AB Zinc Plated, For Attachment of Mullion Splice Sleeve	FC-1212
	Isolator Tape 3/8" x 1/4" Use with Perimeter Pressure Plate	E2-0386		#12 x 1-1/4" FHSMS Type AB Zinc Plated, For Attachment of Horizontalto Shear Block	FC-1220
	Wind Load / Dead Load Anchor Slip Pad	E3-0103	Jannap	#14 x 5/8" FHSMS Type AB Zinc Plated, For Attachment of Mullion End Cap	FC-1410
	Wind Load Anchor* Refer to Shop Drawings for Anchor Dimensions	E1-1204	Januar	#10 x 5/8" PHSMS Type AB Zinc Plated, For Attachment of E1-3006 Anchor Sleeve	PC-1010
	Dead Load Anchor* Refer to Shop Drawings for Anchor Dimensions	E1-1205	5	1/4"-20 x 5/8" HWHTCS Type F , Zinc Plated For Attachment of Shear Block to Vertical	HF-2510-W1
	Interior/Exterior Glazing Gasket	E2-0379		1/4"-20 x 1" HWHMS Zinc Plated, For Attachment of Pressure Plate to Mullion at Interior Corner	HM-2516-W3
	Interior/Exterior Glazing Gasket For 1/4" Monolithic and 1" Insulating Glass	E2-0380		1/4"-20 x 1-1/4" HWHMS Zinc Plated, For Attachment of Pressure Plate to Mullion	HD-2520-W3
Fo Re	erior Glazing Silicone Spacer r Large Missile Glazing that equires an Interior Structural icone Seal - Up to 90PSF	E2-0353		3/8"-16 Nut HHMS Zinc Plated, For Attachment of "J" Anchor	HM-3800
ft Fo 只 Re	terior Glazing Silicone Spacer or Large Missile Glazing that equires an Interior Structural icone Seal - Above 90PSF	E2-0222	\bigcirc	3/8" Flat Washer Zinc Plated, For Attachment of "J" Anchor	WW-3800

ACCESSORIES (45-55 PSF)

	3/8"-16 x 1" HHMS Grade 5 Zinc Plated, For Attachment of "J" Anchor at Jamb	HM-3816	\bigcirc	1/2" Flat Washer Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	WW-5000
	3/8"-16 x 4" HHMS Grade 5 Zinc Plated, For Attachment of "J" Anchor at Intermediate Vertical	HM-3864		1/2"-13 x 4-1/2" HHMS Grade 5 Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	HM-5072
\bigcirc	3/8" Lock Washer Zinc Plated, For Attachment of "J" Anchor	WS-3800		1/2"-13 Nut HHMS Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	HM-5000
\bigcirc	1/2" Lock Washer Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	WS-5000			

FRAMING MEMBERS (65-90 PSF)

	Head / Sill / Horizontal 3" x 5-1/4" For Monolithic Glazing	E9-3105		90° Corner Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3177
	Horizontal 3" x 5-1/4" For Monolithic Glazing	E9-3106		90° Corner Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3175
	Mullion 3" x 5-1/4" For Monolithic Glazing	E9-3103	<u>[]</u>	Face Cover	E9-3161
	Head / Sill / Horizontal 3" x 5-1/4" For Insulating Glazing	E9-3104		90° Outside Corner Interior Cover Use with E9-1280	E9-3165
7	Intermediate Horizontal 3" x 5-1/4" For Insulating Glazing	E9-3102	<u>8</u> 8	90° Outside Corner Interior Cover Base	E9-1280
	Mullion 3" x 5-1/4" For Insulating Glazing	E9-3101	1	90° Outside Corner Face Cover For Monolithic Glazing	E9-3176
	Flush Filler Use With E9-3104 and E9-3105	E9-3162	î	90° Outside Corner Face Cover For Insulating Glazing	E9-3174
lagal.	Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3173		Pocket Filler For Monolithic Glazing	E9-3109
لمهما	Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3172		Pocket Filler For Insulating Glazing	E9-3110
	Perimeter Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3179		1-1/2" x 1-1/2" Angle	E9-9303
	Perimeter Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3178		1/4" Glazing Adaptor	E9-3141

ACCESSORIES (65-90 PSF)

	Shear Block Use With E9-3104 & E9-3105	E1-3001	Le age of the second	Temporary Pressure Plate For Insulating Glazing	E1-3025
	"J" Anchor	E1-3002		Shear Block For 90° Corner Mullion	E1-3013
	Intermediate Vertical Mullion End Anchor Requires E1-3006 Anchor Sleeve	E1-3003		" J" Anchor (Right Hand) For 90° Corner Mullion	E1-3014
	Jamb Mullion End Anchor Requires E1-3006 Anchor Sleeve	E1-3004		"J" Anchor (Left Hand) For 90° Corner Mullion	E1-3015
	" T" Anchor Use at Door Jamb	E1-3039	· · · · · · · · · · · · · · · · · · ·	Shear Clip (Right Hand) Solution	E1-3016
	Mullion Splice Sleeve	E1-3005	<u> </u>	Shear Clip (Left Hand) For 90° Corner Mullion	E1-3017
	Mullion Anchor Sleeve	E1-3006		Mullion End Anchor For 90° Corner Mullion	E1-3018
	Mullion Reinforcement Sleeve	E1-3007		Setting Block For Monolithic Glazing	E2-0623
	Face Cover Splice Sleeve	E1-3009		Setting Block For Insulating Glazing	E2-0611
$\langle \cdot \rangle$	Mullion End Cap For Monolithic Glazing	E1-3011		Side Block	E2-0537
$\langle \cdot \rangle$	Mullion End Cap For Insulating Glazing	E1-3010		Joint Plug For Monolithic Glazing	E2-0358
frærd	Temporary Pressure Plate For Monolithic Glazing	E1-3026	Ĥ	Joint Plug For Insulating Glazing	E2-0355

*Note: Exact size of anchors should be determined from loads calculated on each individual curtain wall.

ACCESSORIES (65-90 PSF)

	Isolator Tape 3/8" x 1/4" Use with Perimeter Pressure Plate	E2-0386	Jaacaaaaaaaa	#10 x 1" FHSMS Type AB Zinc Plated For Attachment of Monolithic Glazing Adaptor	FC-1016
	Wind Load / Dead Load Anchor Slip Pad	E3-0103	Jannaann-	#12 x 3/4" FHSMS Type AB Zinc Plated For Attachment of Mullion Splice Sleeve	FC-1212
	Wind Load Anchor* Refer to Shop Drawings for Anchor Dimensions	E1-1204	Jacaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	#12 x 1-1/4" FHSMS Type AB Zinc Plated For Attachment of Horizontal to Shear Block	FC-1220
	Dead Load Anchor* Refer to Shop Drawings for Anchor Dimensions	E1-1205	Statuar	#14 x 5/8" FHSMS Type AB Zinc Plated For Attachment of Mullion End Cap	FC-1410
	Steel Reinforcing 2-1/2" x 4-1/2" x 3/16" x 10'	E1-01751000	Jannaar	#10 x 5/8" PHSMS Type AB Zinc Plated For Attachment of E1-3006 Anchor Sleeve	PC-1010
	Steel Reinforcing 2-1/2" x 4-1/2" x 3/16" x 20'	E1-01752000		1/4"-20 x 5/8" HWHTCS Type F , Zinc Plated For Attachment of Shear Block to Vertical	HF-2510-W1
	Interior/Exterior Glazing Gasket	E2-0379	Į	1/4"-20 x 1" HWHTCS Type F Zinc Plated, For Attachment of Shear Block to Vertical with Steel Reinforcing	HF-2516-W1
	Interior/Exterior Glazing Gasket For 1/4" Monolithic and 1" Insulating Glass	E2-0380		1/4"-20 x 1" HWHMS Zinc Plated, For Attachment of Pressure Plate to Mullion at Interior Corner	HM-2516-W3
Free Free Free Free Free Free Free Free	terior Glazing Silicone Spacer or Large Missile Glazing that equires an Interior Structural ilicone Seal - Up to 90PSF	E2-0353		1/4"-20 x 1-1/4" HWHMS Zinc Plated, For Attachment of Pressure Plate to Mullion	HD-2520-W3
C 日 R	terior Glazing Silicone Spacer or Large Missile Glazing that equires an Interior Structural ilicone Seal - Above 90PSF	E2-0222		3/8"-16 Nut HHMS Zinc Plated, For Attachment of "J" Anchor	HM-3800
	• Drill Fixture	H-7213	\bigcirc	3/8" Flat Washer Zinc Plated, For Attachment of "J" Anchor	WW-3800
jum>	#8-32 x 1/2" FHTCS Type F Zinc Plated, For Attachment of Face Cover Splice Sleeve	FF-0808	Ö	3/8" Lock Washer Zinc Plated, For Attachment of "J" Anchor	WS-3800

ACCESSORIES (65-90 PSF)

	3/8"-16 x 1" HHMS Grade 5 Zinc Plated, For Attachment of "J" Anchor at Jamb	HM-3816	\bigcirc	1/2" Flat Washer Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	WW-5000
	3/8"-16 x 4" HHMS Grade 5 Zinc Plated, For Attachment of "J" Anchor at Intermediate Vertical	HM-3864	\bigcirc	1/2" Lock Washer Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	WS-5000
I A	1/2"-13 Nut HHMS Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	HM-5000		1/2"-13 x 4-1/2" HHMS Grade 5 Zinc Plated, For Attachment of Mid-Anchors (Wind Load / Dead Load)	HM-5072

FRAMING MEMBERS (90-130 PSF)

Head / Sill / Horizontal 3" x 8" For Monolithic Glazing	E9-3189		90° Corner Pressure Plate For Insulating Glazing Punched 9" o.c.	AS-3175
Horizontal 3" x 8" For Monolithic Glazing	E9-3190	Ľ1	Face Cover	E9-3161
Mullion 3" x 8" For Monolithic Glazing	E9-3182		90° Outside Corner Interior Cover Use with E9-1280	E9-3160
Head / Sill / Horizontal 3" x 8" For Insulating Glazing	E9-3187		Interior Cover Use with E9-3185 & E9-3190	E9-3186
Intermediate Horizontal 3" x 8" For Insulating Glazing	E9-3185	<u>8</u> 8	90° Outside Corner Interior Cover Base	E9-1280
Mullion 3" x 8" For Insulating Glazing	E9-3183	1	90° Outside Corner Face Cover For Monolithic Glazing	E9-3176
─────────────────────────────────────	E9-3188		90° Outside Corner Face Cover For Insulating Glazing	E9-3174
Pressure Plate جست For Monolithic Glazing Punched 9" o.c.	AS-3173		Pocket Filler For Monolithic Glazing	E9-3109
Pressure Plate جنگی For Insulating Glazing Punched 9" o.c.	AS-3172		Pocket Filler For Insulating Glazing	E9-3110
For Monolithic Glazing Punched 9" o.c.	AS-3179		1-1/2" x 1-1/2" Angle	E9-9303
For Insulating Glazing Punched 9" o.c.	AS-3178		1/4" Glazing Adaptor	E9-3141
90° Corner Pressure Plate For Monolithic Glazing Punched 9" o.c.	AS-3177			

ACCESSORIES (90-130 PSF)

	1				
	Shear Block Use With E9-3190 & E9-3185	E1-3032	J. J	Temporary Pressure Plate For Insulating Glazing	E1-3025
	Shear Block Use With E9-3189 & E9-3187	E1-3040		Shear Block For 90° Corner Mullion	E1-3027
	Intermediate Vertical Mullion End Anchor Requires E1-3033 Anchor Sleeve	E1-3034	· · ·	Shear Clip (Right Hand) For 90° Corner Mullion	E1-3028
	Jamb Mullion End Anchor Requires E1-3033 Anchor Sleeve	E1-3035	<u> </u>	Shear Clip (Left Hand) For 90° Corner Mullion	E1-3029
	" T" Anchor Use at Door Jamb	E1-3038		Setting Block For Monolithic Glazing	E2-0623
	Mullion Splice Sleeve	E1-3037		Setting Block For Insulating Glazing	E2-0611
	Mullion Anchor Sleeve	E1-3033		Side Block	E2-0537
	Mullion Reinforcement Sleeve	E1-3030		Joint Plug For Monolithic Glazing	E2-0358
	Face Cover Splice Sleeve	E1-3009	Ê	Joint Plug For Insulating Glazing	E2-0355
\sim	Mullion End Cap For Monolithic Glazing	E1-3011		Isolator Tape 3/8" x 1/4" Use with Perimeter Pressure Plate	E2-0386
$\langle \cdot \rangle$	Mullion End Cap For Insulating Glazing	E1-3010		Wind Load / Dead Load Anchor Slip Pad	E3-0103
fritting	Temporary Pressure Plate For Monolithic Glazing	E1-3026		Wind Load Anchor* Refer to Shop Drawings for Anchor Dimensions	E1-1204

*Note: Exact size of anchors should be determined from loads calculated on each individual curtain wall.

ACCESSORIES (90-130 PSF)

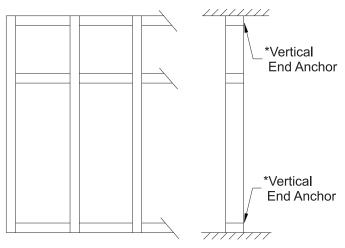
Re) Wind Load Anchor* efer to Shop Drawings • Anchor Dimensions	E1-1280		#10 x 1" FHSMS Type AB Zinc Plated Steel, For Attachment of Monolithic Glazing Adaptor	FC-1016
Ar Re	D Corner Wind Load hchor* efer to Shop Drawings r Anchor Dimensions	E1-1283	Janaanaa	#12 x 3/4" FHSMS Type AB Zinc Plated Steel, For Attachment of Mullion Splice Sleeve	FC-1212
Re	ead Load Anchor* efer to Shop Drawings Anchor Dimensions	E1-1205		#12 x 1-1/4" FHSMS Type AB Zinc Plated Steel, For Attachment of Horizontal to Shear Block	FC-1220
	D Dead Load Anchor* efer to Shop Drawings Anchor Dimensions	E1-1281		#14 x 5/8" FHSMS Type AB Zinc Plated Steel, For Attachment of Mullion End Cap	FC-1410
Ar Re	D Corner Dead Load achor* efer to Shop Drawings r Anchor Dimensions	E1-1282	Samaan	#10 x 5/8" PHSMS Type AB Zinc Plated Steel, For Attachment of E1-3006 Anchor Sleeve	PC-1010
	eel Reinforcing 1/2" x 7-1/4" x 3/16" x 10'	E1-30311000		1/4"-20 x 5/8" HWHTCS Type F , Zinc Plated Steel For Attachment of Shear Block to Vertical	HF-2510-W1
UC,	erior/Exterior azing Gasket	E2-0379		1/4"-20 x 1" HWHTCS Type F Zinc Plated Steel, For Attachment of Shear Block to Vertical with Steel Reinforcing	HF-2516-W1
Gla Gla For	erior/Exterior azing Gasket r 1/4" Monolithic and Insulating Glass	E2-0380		1/4"-20 x 1" HWHMS Zinc Plated Steel, For Attachment of Pressure Plate to Mullion at Interior Corner	HM-2516-W3
َ For La آرامی Requir	r Glazing Silicone Spacer rge Missile Glazing that es an Interior Structural e Seal - Up to 90PSF	E2-0353		1/4"-20 x 1-1/4" HWHMS Zinc Plated Steel, For Attachment of Pressure Plate to Mullion	HD-2520-W3
っ For La 「二 Requir	or Glazing Silicone Spacer rge Missile Glazing that res an Interior Structural le Seal - Above 90PSF	E2-0222		1/2"-13 Nut HHMS Zinc Plated Steel, For Attachment of Mid-Anchors (Wind Load / Dead Load)	HM-5000
	rill Fixture	H-7213	\bigcirc	1/2" Flat Washer Zinc Plated Steel, For Attachment of Mid-Anchors (Wind Load / Dead Load)	WW-5000
Zine Atta	32 x 1/2" FHTCS Type F c Plated Steel, For achment of Face Cover ice Sleeve	FF-0808	\bigcirc	1/2" Lock Washer Zinc Plated Steel, For Attachment of Mid-Anchors (Wind Load / Dead Load)	WS-5000

ACCESSORIES (90-130 PSF)

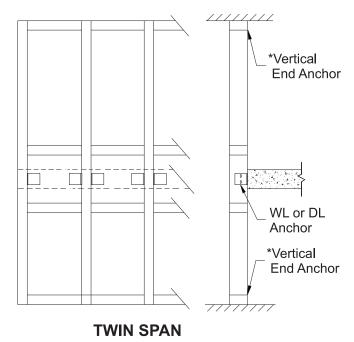
	5/8"-11 Nut HHMS Zinc Plated Steel, For Attachment of Heavy Duty Anchors	HM-5800	\bigcirc	5/8" Lock Washer Zinc Plated Steel, For Attachment of Heavy Duty Anchors	WS-5800
\bigcirc	5/8" Flat Washer Zinc Plated Steel, For Attachment of Heavy Duty Anchors	WW-5800		5/8"-11 x 5" HHMS Grade 5 Zinc Plated Steel, For Attachment of Heavy Duty Anchors	HM-5880
	1/2"-13 x 4-1/2" HHMS Grade 5 Zinc Plated Steel, For Attachment of Mid-Anchors (Wind Load / Dead Load)	HM-5072			

FOR FLORIDA PRODUCT APPROVAL APPLICATIONS

*Anchor	Supplier	Part No.	Qty.	Diameter	Edge Distance	Embedment
"F" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"
"F" Anchor	HILTI	KWIK BOLT III 256693	2	3/8"	7 1/2"	2 1/2"
		SUPER ROD ADHESIVE 68658	-	1/2"	6 3/4"	4 1/4"
"T" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"
"T" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"
"J" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"
"J" Anchor	HILTI	KWIK BOLT III 256693	2	3/8"	7 1/2"	2 1/2"
		SUPER ROD ADHESIVE 68658	-	1/2"	6 3/4"	4 1/4"
"J" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"
"J" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"
"J" Anchor	POWERS	WEDGE BOLT	2	1/2"	6"	4"


*Note: Anchor fasteners are not furnished by YKK AP.

All anchors are assumed in 3,000 PSI concrete.

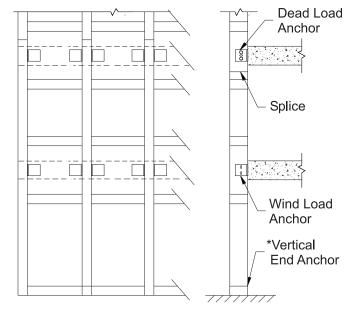

Anchor bolt size and location will vary according to engineering calculations.

FRAME TYPES / ANCHORING METHODS:

Note: The following is a guideline for types of frames. Refer to the shop drawings or consult YKK AP for exact layout of frames. These installation instructions are to be used in conjunction with approved shop drawings. Consult shop drawings for anchorage of mullions to structure.

Larger units require being stick assembled in place.

SINGLE SPAN


Smaller units may be assembled on the ground and lifted in place.

Note: If YKK AP does not prepare the shop drawings for the project, a qualified engineer must approve all anchors and mullions for wind load and dead load.

*Vertical end attachment will be "J", "F", and/or "T" mullion end anchors. Refer to shop drawings or consult YKK AP.

Note: Structure must be capable of resisting all loads imposed by anchor reactions.

Fabrication of YHC 300 OG Curtain Wall varies depending on which anchors are required for a given project.

MULTI-SPAN

Using mullion end anchors:

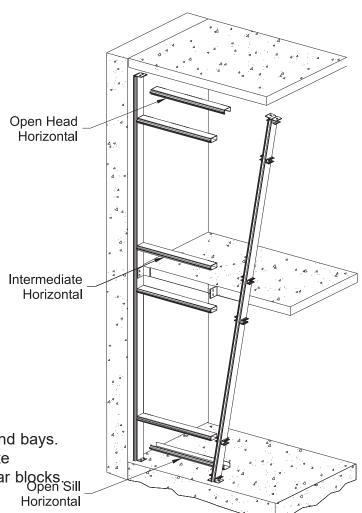
YHC 300 OG has three possible end anchoring conditions: "J", "T", and "F".

-"J" anchors are used with jambs and intermediate mullions at the sill only. -"T" anchors are used with intermediate

- mullions at the head and sill.
- -"F" anchors are used with jamb mullions at the head and sill.

-"Door Jamb" anchors are used with mullions at a door jamb and are specificed by the approved shop drawings or P.E. calcs. -Anchor usage depends on end reaction, stress, and attachment.

Mullions should be pre-assembled with shear blocks, end anchors, and steel or aluminum reinforcing if necessary.


Framing members:

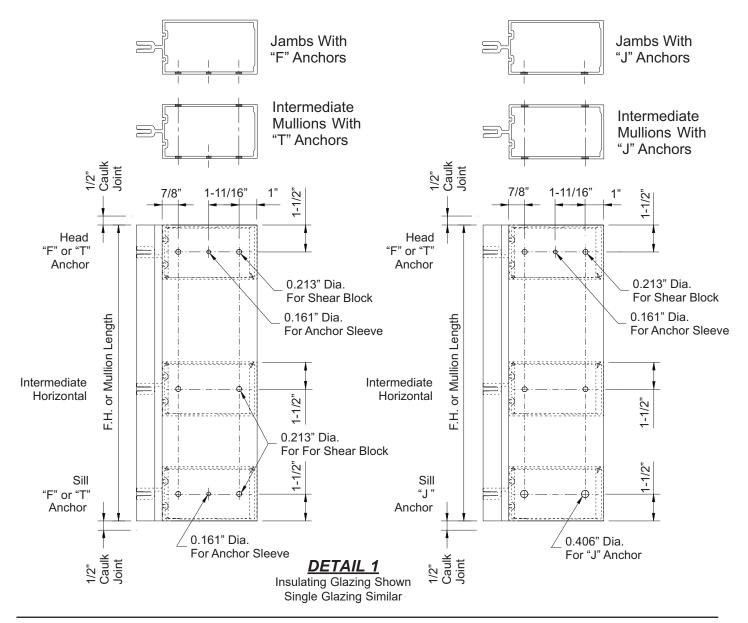
-Open back members are used for all head and sill applications.

-Closed horizontal members are used at all intermediate locations with the exception of end bays. -Open back members are used for intermediate

horizontals at end bays, to slide over the shear blocks

Note: When using stick built construction, check for plumb, level, and overall frame width every fifth mullion. This helps to avoid the build up of cumulative tolerance errors. Also check that all anchors are secure and firmly attached to the building structure.

FABRICATE MULLIONS (45-90 PSF)

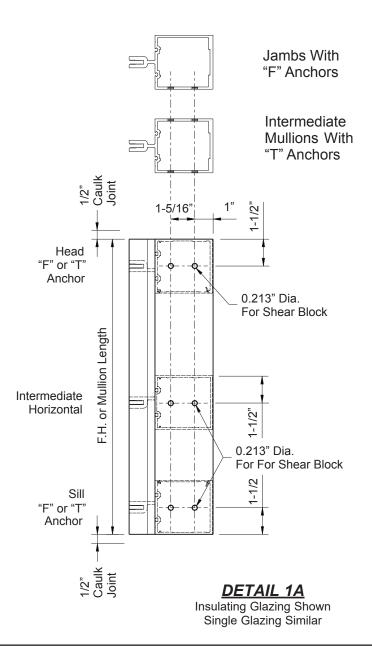

Step 1

-Cut all mullions to dimensions as shown on shop drawings. Allow 1/2" for splices and 1/2" caulk joint around the perimeter of the frame.

Step 2

Mullion hole locations for attachment of shear blocks, or "J" anchor are shown below: -Locate and drill holes in mullions at the locations shown in **Detail 1**.

Note: Mullion hole locations and diameters vary depending on shear block or "J" Anchor usage. For most applications, "J" Anchors are used at the sill only.



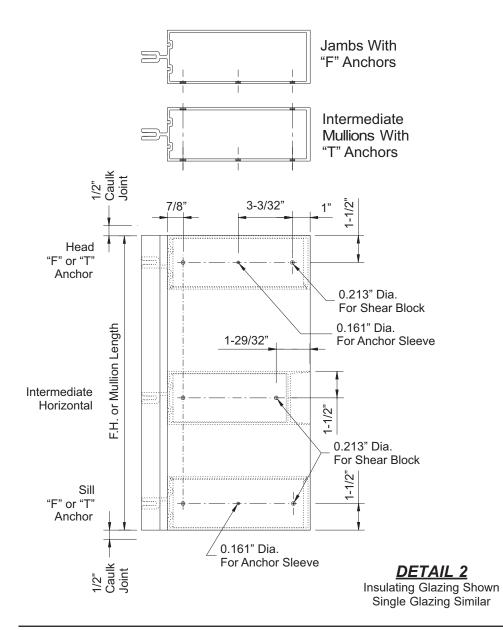
FABRICATE SHALLOW MULLIONS (45-55 PSF ONLY)

-Fabrication for 3" x 3-3/16" mullions is similar to that shown on the previous page except J-anchors, anchor sleeves, and splices are not used.

See Detail 1A.

FABRICATE MULLIONS (90-130 PSF)

Step 1


YKK

-Cut all mullions to dimensions as shown on shop drawings.

Allow 1/2" for splices and 1/2" minimum caulk joint around the perimeter of the frame.

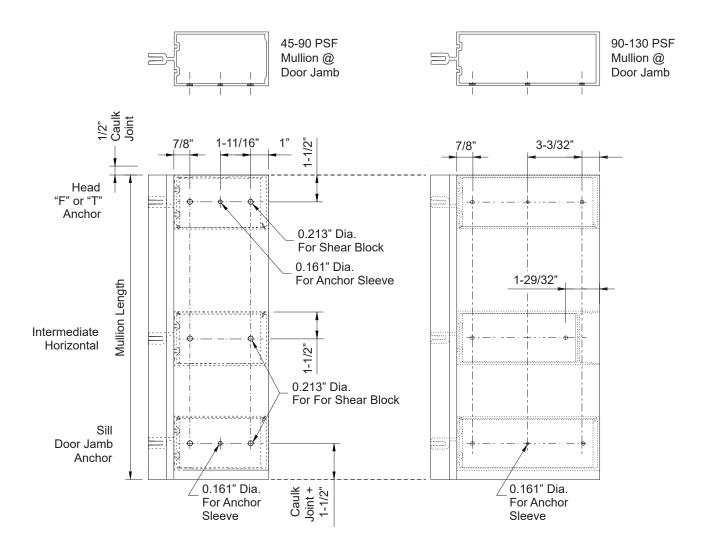
See Detail 2.

Note: Mullion hole locations and diameters vary depending on shear block or "J" Anchor usage. "J" Anchors are used at the sill only.

FABRICATE DOOR JAMB MULLIONS

Step 1

-Cut all mullions to dimensions as shown on shop drawings. Allow 1/2" for splices and 1/2" caulk joint at the top of the frame.

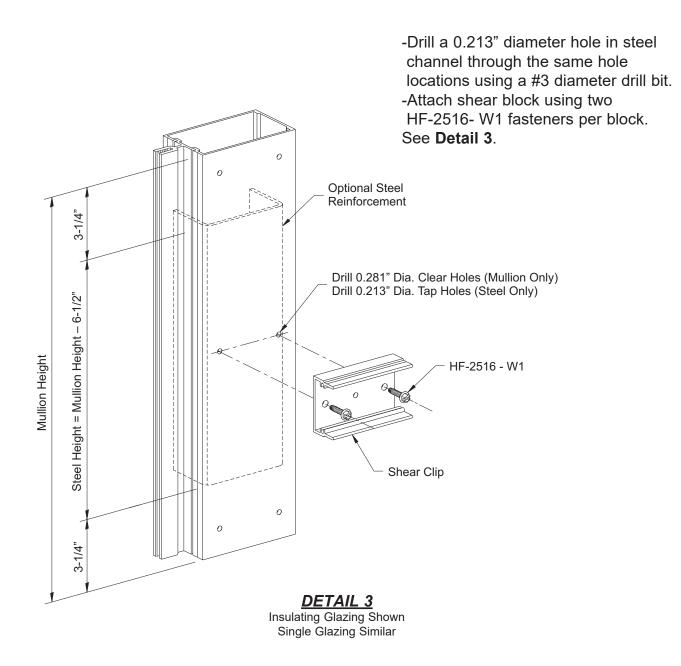

Step 2

Mullion hole locations for attachment of shear blocks are shown below:

-Locate and drill holes in mullions at the locations shown in **Detail 1**.

Note: Mullion hole locations and diameters vary depending on shear block usage.

"J" Anchors are not used at door jambs.

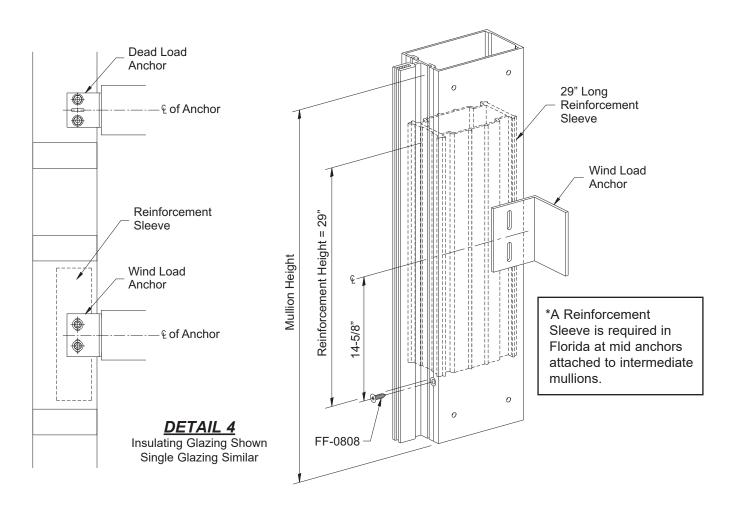

STEP 3 USING ALTERNATE REINFORCEMENT, STEEL CHANNEL

-Reference the shop drawings for the location of horizontals. The steel channel is always fastened through the shear clip.

-Drill a 0.281" diameter hole in the vertical mullion being careful to not drill a hole in steel channel. -Reinforcing must allow clearance for anchor sleeve; locate reinforcing a minimum of 3-1/4" from the end of the mullion.

See Detail 3.

үкк



STEP 3 (Continued) USING ALTERNATE REINFORCEMENT, REINFORCEMENT SLEEVE

-If the engineering calculations require the vertical mullions to be reinforced with additional aluminum, a reinforcement sleeve may be used.

-Checking stress levels at point load areas will require different anchors or possibly steel reinforcing.

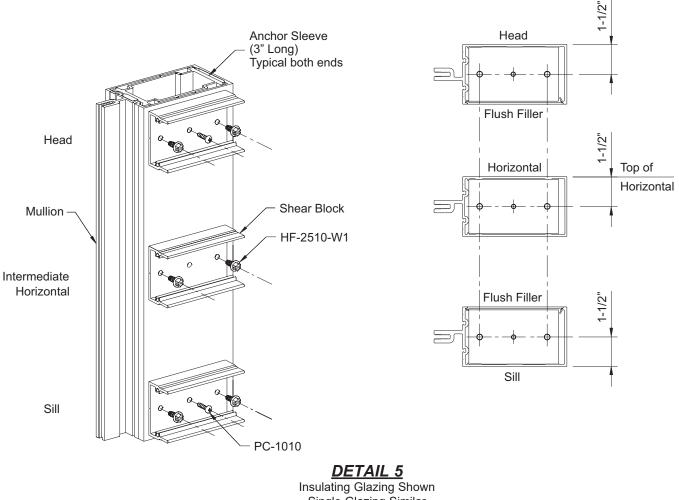
-A qualified professional engineer should do these calculations.

- -When locating reinforcement sleeve at wind load or dead load anchors see Detail 4.
- -Reference the shop drawings for the exact location of the centerline of the wind load / dead load anchors.
- -From the centerline measure down 14-5/8" along the "V"-groove of the vertical and locate hole for FF-0808 fastener as a stop for reinforcement sleeve.
- -Drill a 0.141" diameter hole into the V-Groove of vertical.
- -Countersink for #8 flat head screw and install FF-0808 fastener.
- See Detail 4.

Mullions with "F" or "T" Anchors at Head & Sill

STEP 4 SHEAR BLOCKS FOR HORIZONTALS

Shear blocks are used to attach horizontal members to the mullions.


-Fasten shear blocks to the mullion with two HF-2510-W1 fasteners per clip.

The anchor sleeve centers the "F" and "T" mullion end anchors and must be installed when using "T" and "F" anchors. Anchor sleeves are not required when using a "J" anchor.

-Attach the anchor sleeve to the mullion and shear blocks with one PC-1010 fastener.

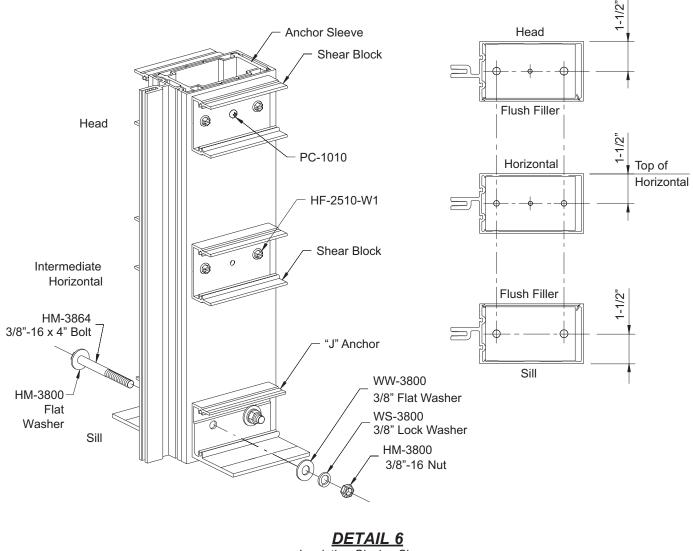
Anchor sleeves are attached only on one side of the mullion.

See Detail 5.

Single Glazing Similar

ap[®]

FRAME FABRICATION


Mullions with "T" Anchor at Head & "J" Anchor at Sill

STEP 5 "J" ANCHORS AT INTERMEDIATE MULLIONS

The "J" anchor is installed without the anchor sleeve and is designed to be attached to intermediate mullions and jambs using two through bolts as shown below.

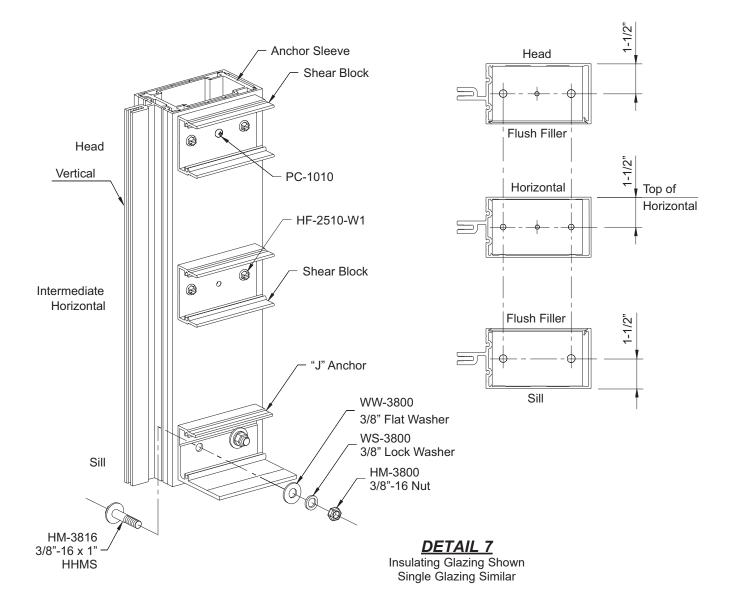
-Align the "J" anchors and insert the HM-3864 bolts through both anchors and the mullion. -Install 3/8" flat washers and 3/8" lock washers between the anchor and HM-3800 hex nuts.

See Detail 6.

Insulating Glazing Shown Single Glazing Similar

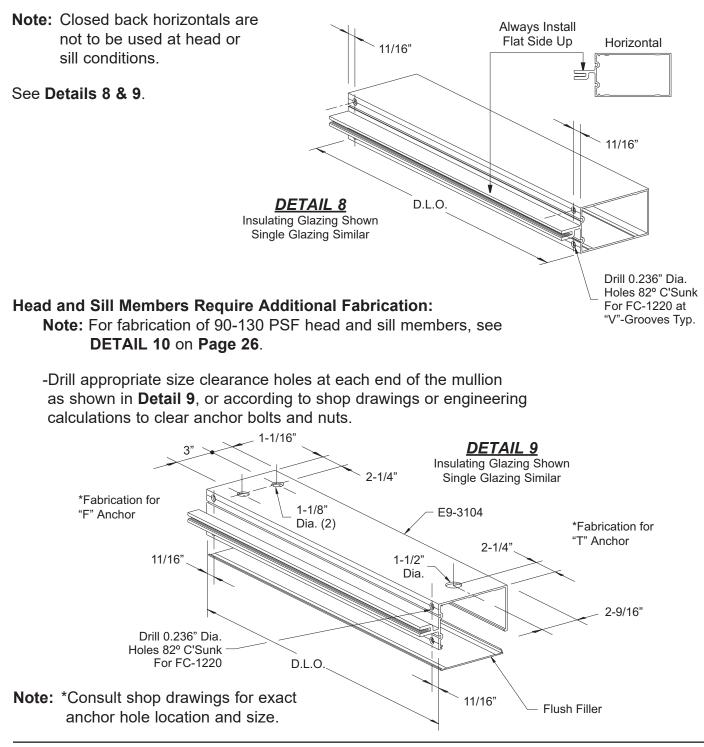
Mullions with "T" Anchor at Head & "J" Anchor at Sill

STEP 5 (Continued) "J" ANCHORS AT JAMB MULLIONS


A "J" anchor is installed without anchor sleeve, and is designed to be attached to jamb mullions using two 3/8" x 1" bolts as shown below.

Note: "J" anchors are not to be used with 90-130 PSF mullions.

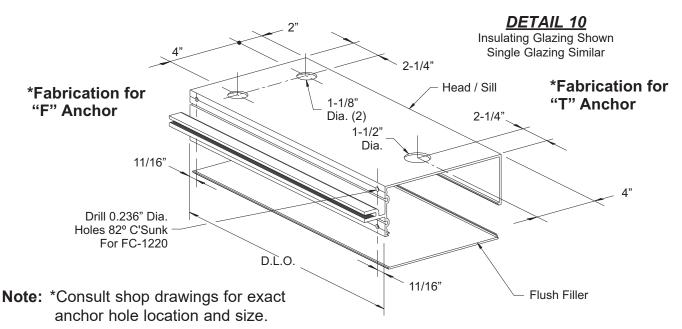
-Align the "J" anchor with the mullion and insert the HM-3816 bolts through the inside of the mullion and out the "J" anchor.


-Install 3/8" flat washers and 3/8" lock washers between the anchor and HM-3800 hex nuts.

See Detail 7.

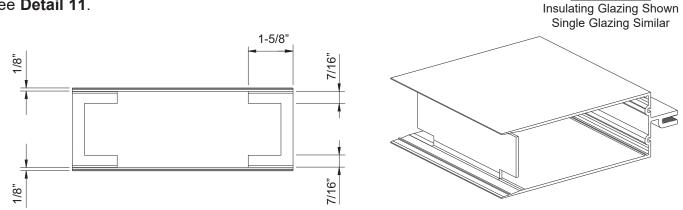
STEP 6 FABRICATE HORIZONTAL MEMBERS

-Cut all head, horizontal, sill members, and flush fillers to the daylight opening. -Drill two 0.236" (#B) dia. holes along the "V"-Grooves above and below the mullion tongue on both ends of the mullion to attach members to the shear bocks.



STEP 6 FABRICATE HORIZONTAL MEMBERS (Continued) For 90-130 PSF Mullions

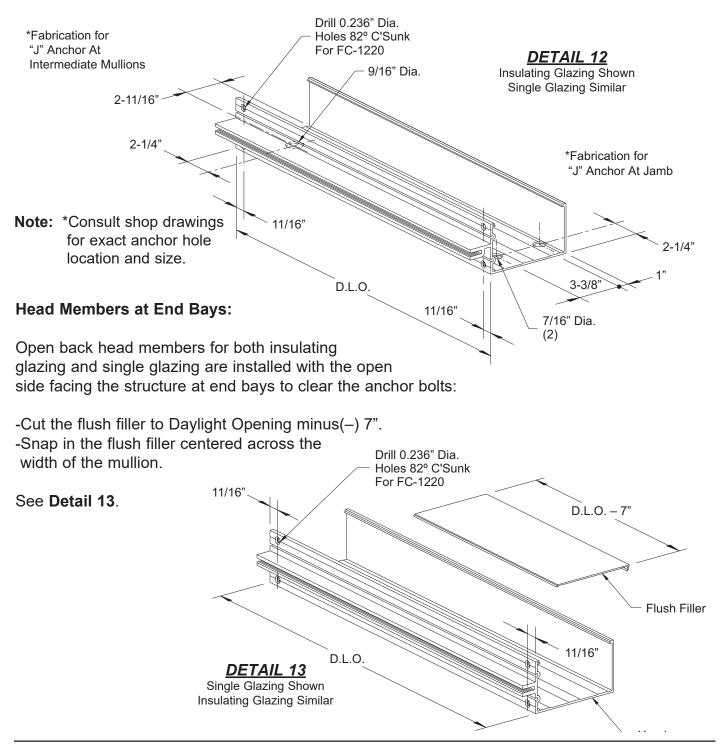
Head and Sill Members Require Additional Fabrication:


-Drill appropriate size clearance holes at each end of the mullion as shown in **Detail 10**, or according to shop drawings or engineering calculations to clear anchor bolts and nuts.

FABRICATE HORIZONTAL END BAYS For 90-130 PSF Mullions

-When using tubular horizontals at end bays, horizontals must slide in from the exterior. -In order to clear the shear blocks on the verticals, notch the rear faceof the

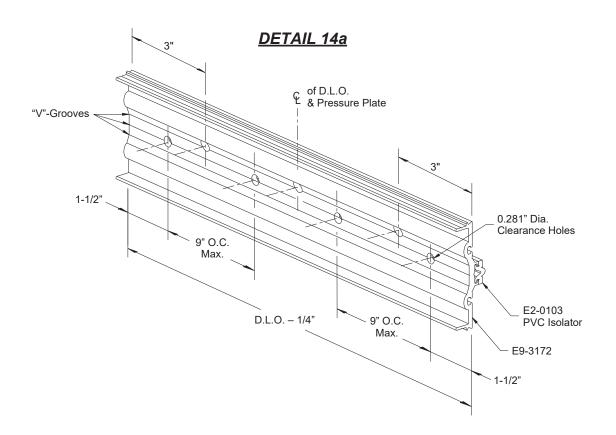
horizontal at both ends as shown below. See **Detail 11**.



DETAIL 11

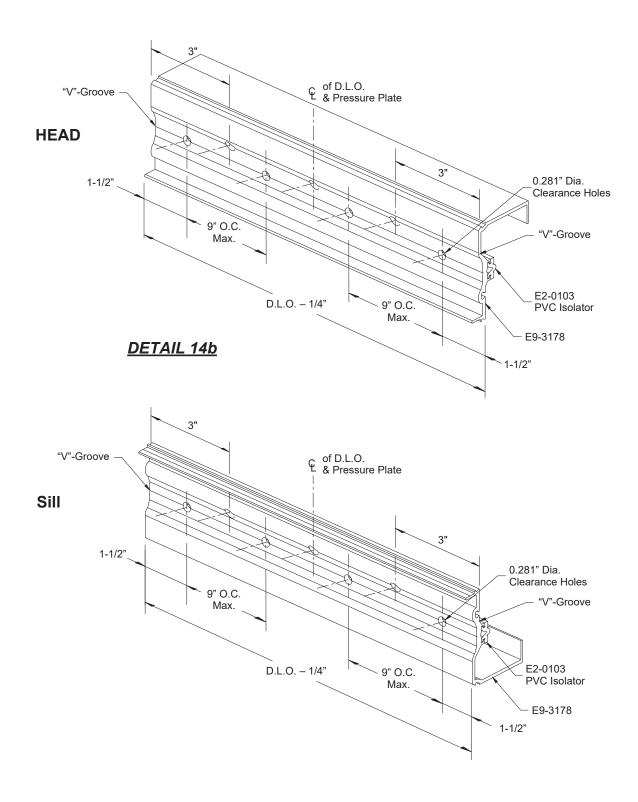
STEP 6 (Continued) FABRICATE HORIZONTAL MEMBERS

-When using "J" anchors, drill appropriate size clearance holes at each end of the sill member as shown in **Detail 12**, or according to shop drawings or engineering calculations to clear anchor bolts.



STEP 7 FABRICATE HEAD, SILL, AND HORIZONTAL PRESSURE PLATES

-Cut horizontal pressure plates to the daylight opening between verticals minus(–) 1/4". -Pressure plate stock lengths have 0.281" dia. holes factory punched every 9".

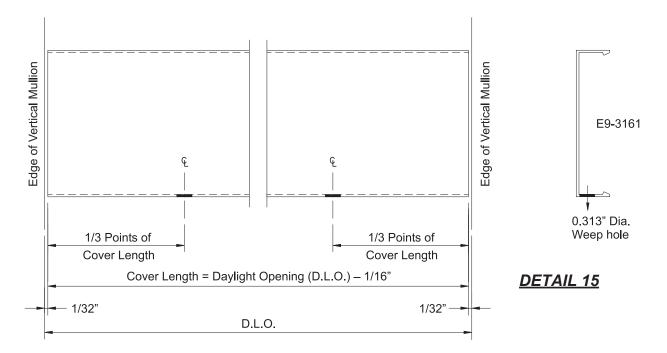

After cutting, drill additional holes if required to ensure that end holes are 1-1/2" from each end. -Drill two 0.313" (5/16") diameter weep holes 3" from each end and one at the centerline of the pressure plate.

See Detail 14a for Horizontal Pressure Plate Fabrication. See Details 14b on Page 29 for Head and Sill Perimeter Pressure Plate Fabrication.

STEP 7 (CONTINUED) FABRICATE HEAD, SILL, AND HORIZONTAL PRESSURE PLATES

STEP 8 FABRICATE VERTICAL PRESSURE PLATES

-Cut vertical and jamb pressure plates to the same length as the mullions unless mullions are spliced.


-If mullions are spliced, cut pressure plates to accommodate for 1/2" expansion joint as shown in **Detail 17** on **Page-32**.

-Drill additional attachment holes if required to ensure that end holes are 1-1/2" from each end.

STEP 9 FABRICATE HORIZONTAL FACE COVERS

-Cut horizontal face covers, E9-3161, to the daylight opening between verticals minus(–) 1/16". -Drill two 0.313" (5/16") diameter weep holes at 1/3 points of cover as shown.

See Detail 15.

STEP 10 FABRICATE VERTICAL FACE COVERS

-Cut vertical face covers to the same length as the mullions unless the mullions are spliced. -If mullions are spliced, cut vertical covers to accommodate for the 1/2" expansion joint as shown in **Detail 17** on **Page-32**.

STEP 11 FABRICATE MULLIONS FOR SPLICES

Splice locator screw:

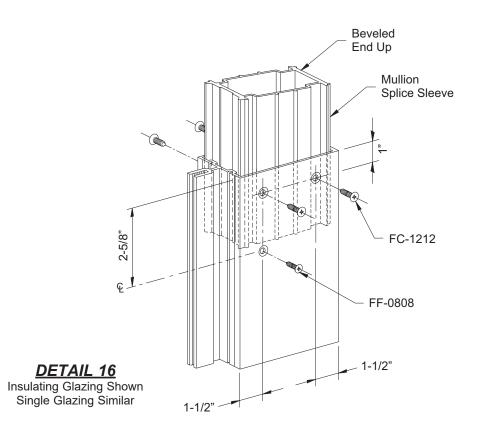
-Measure down 2-5/8" on the side of the mullion and mark the hole location. -Drill a 0.141" diameter (#28 drill bit) diameter hole and countersink for a #8 flat head fastener for the splice locator screw.

Splice sleeve attachment fasteners:

-Measure down from the top of the mullion 1" on both sides and draw a line parallel with the top of the mullion.

-Measure in from both, the front and the back of the mullion,1-1/2" and mark the hole locations on the previously drawn lines.

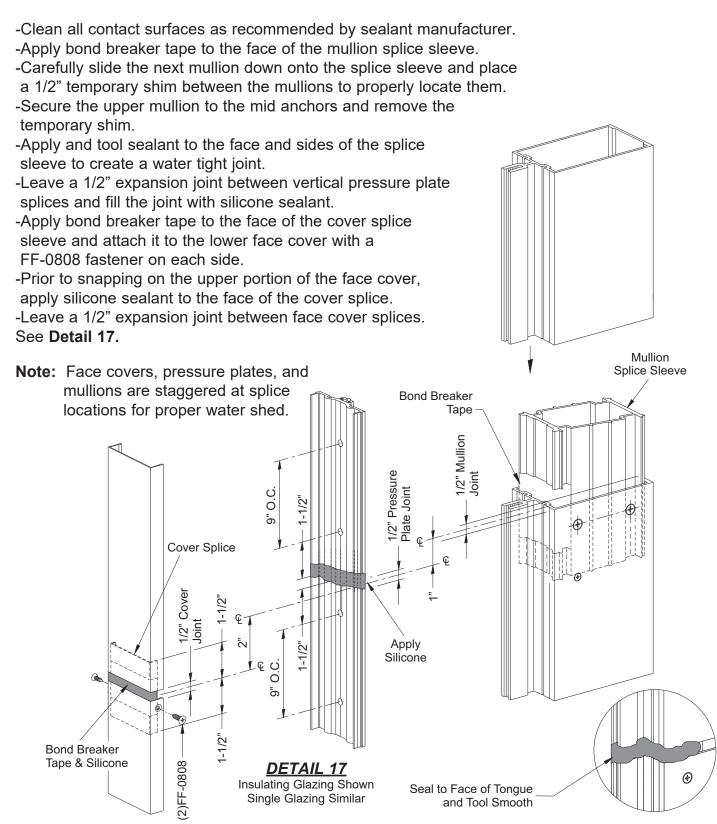
-Drill a 0.236" diameter (#B drill bit) diameter hole at each hole location and countersink for a #12 flat head fastener.


Install splice sleeve beveled end up:

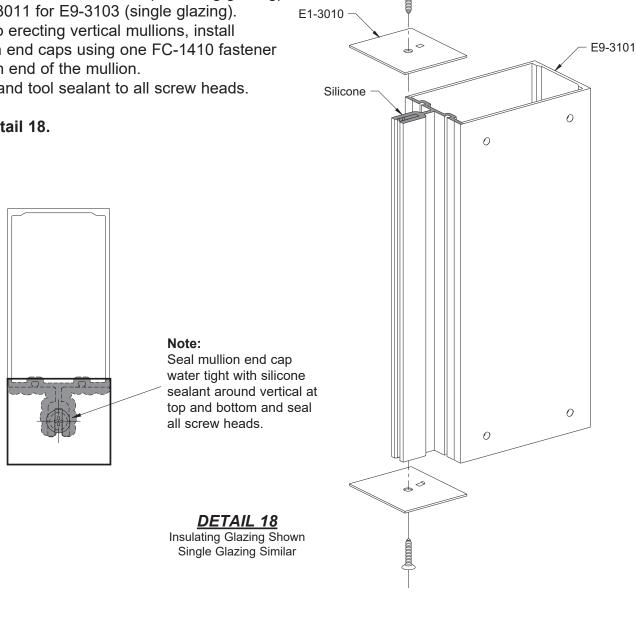
-Install one (1) FF-0808 fastener into the side of the mullion to properly locate the splice. -Carefully slide the splice sleeve down into the end of the mullion with the beveled end up (the beveled end will ease the stacking of the next mullion).

-Match drill 0.189" diameter (#12 drill bit) holes in the splice sleeve through the holes previously drilled in the mullion for the splice sleeve attachment fasteners.

-Attach the splice sleeve with two FC-1212 fasteners on each side of the mullion.


See Detail 16.

STEP 12 TYPICAL MULLION SPLICE


YKK

STEP 13 INSTALL MULLION END CAPS

-Clean all contact surfaces as recommended by the sealant manufacturer.
-Apply silicone sealant to screw raceway and edge of mullion prior to installing mullion end caps, E1-3010 for E9-3101 (insulating glazing) or E1-3011 for E9-3103 (single glazing).
-Prior to erecting vertical mullions, install mullion end caps using one FC-1410 fastener at each end of the mullion.
-Apply and tool sealant to all screw heads.

See Detail 18.

CAUTION: Make sure that mullion end cap location does not interfere with the installation of mullion end anchors.

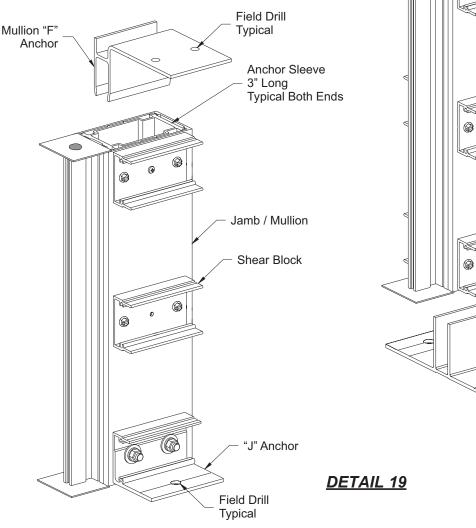
FC-1410

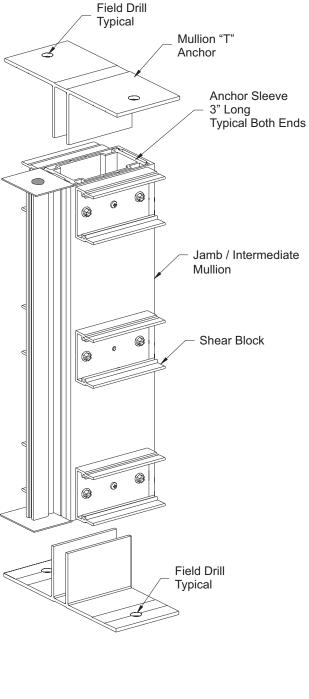
Seal All

Screw Heads

FRAME INSTALLATION

STEP 14 INSTALL JAMB AND INTERMEDIATE MULLIONS


-Insert mullion "T" anchors and "F" anchors into the top and bottom of the mullions before erecting them into the opening.


-Erect and locate the jamb and intermediate mullions and temporarily attach them to the structure.

Note: All mullions must be installed plumb and true.

-Field drill holes in "T", "F", and "J" anchors for appropriate anchor fasteners according to engineering calculations. Consult YKK AP if load requirements are in question.

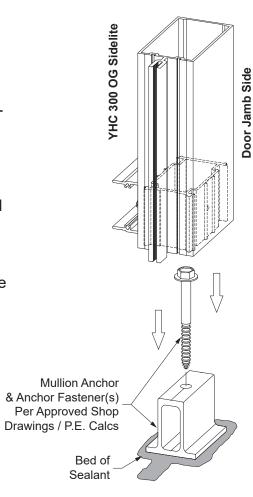
See Detail 19.

STEP 14A VERTICAL INSTALLATION AT DOOR JAMB END ANCHORS

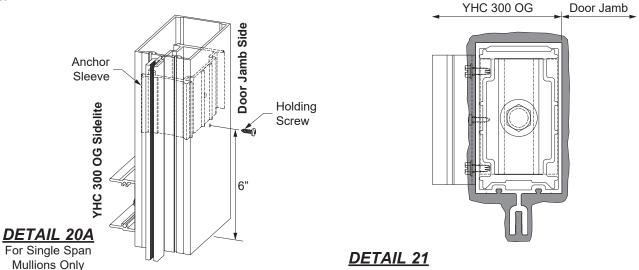
The mullions at the door jambs are set directly upon the sill substrate without any shims and are sealed against the substrate. The anchors to be used at this location are specified by the approved shop drawings and or P.E. calculations.

-Locate the mullion anchor for the door jamb and install it to the substrate according to the approved shop drawings and P.E. calculations.

-Clean all contact surfaces as recommended by sealant manufacturer.

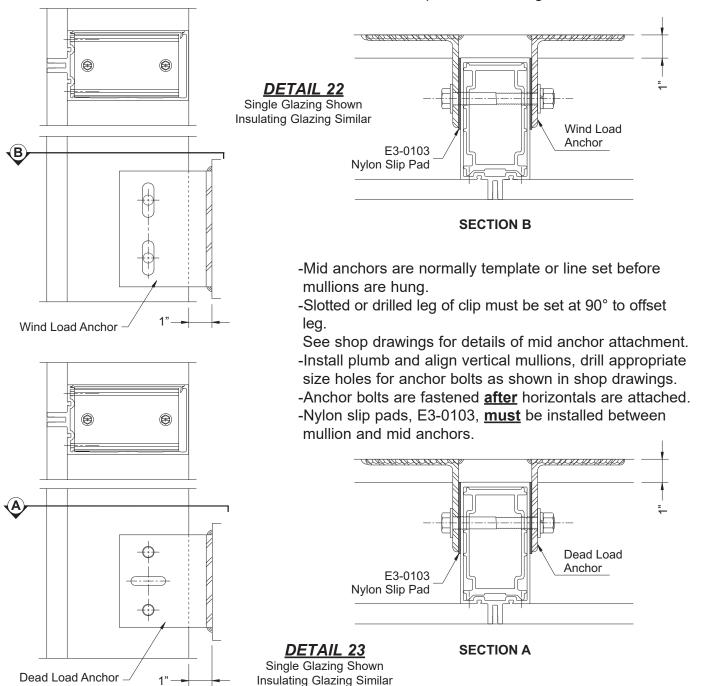

-Set the mullion on the anchor, directly onto the sill substrate in a bed of sealant. Avoid using shims at this location. See **Detail 20**.

Note: For single-span elevations, the anchor sleeve must be installed temporarily 6" up from the bottom of the mullion and dropped into place after the mullion is rotated over the side of the door anchor. See **Detail 20A**.


-Refer to the approved shop drawings for any additional fasteners required.

-Tool sealant at the bottom of the mullion at the sill substrate around the perimeter of the mullion.

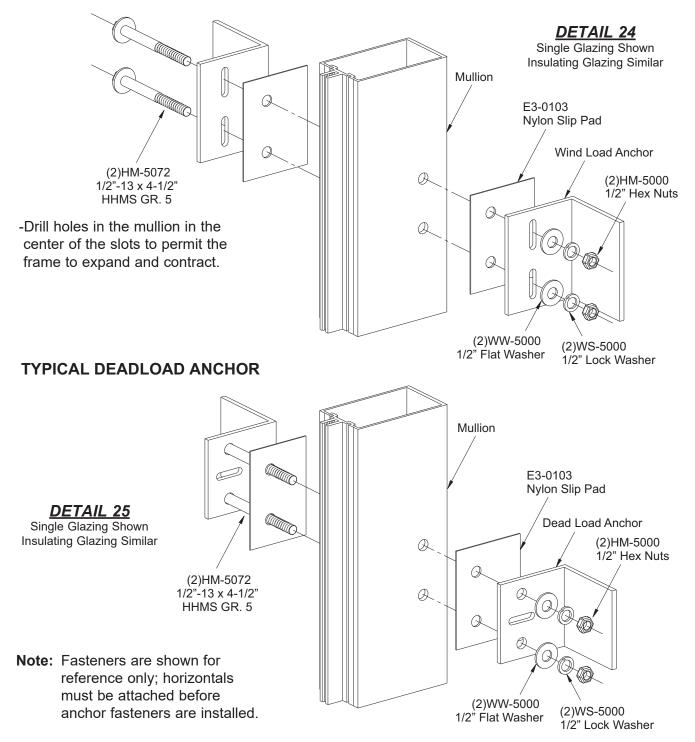
See Detail 21.


DETAIL 20

STEP 15 INSTALL WIND LOAD/DEAD LOAD ANCHORS

-Install steel mullion mid anchors: Wind Load Anchor. See **Detail 22.** Dead Load Anchor. See **Detail 23.**

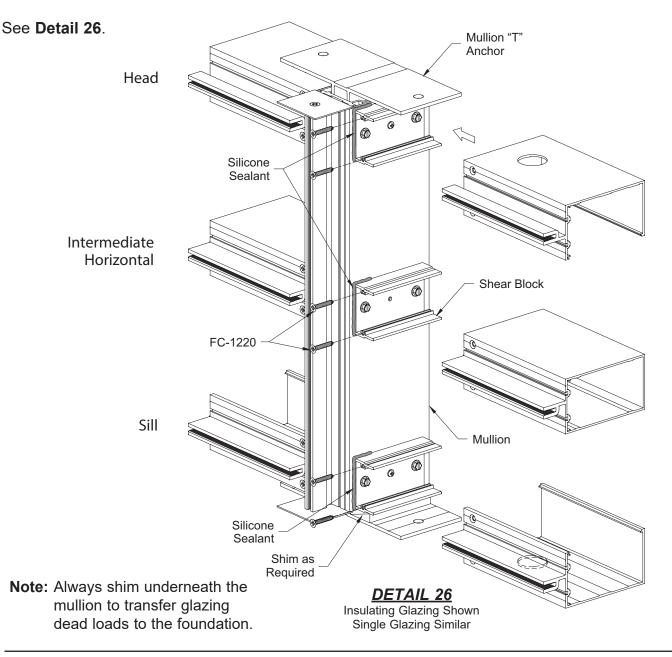
Note: Required anchors and bolt size will vary based on project requirements. Consult a qualified professional engineer or YKK AP.



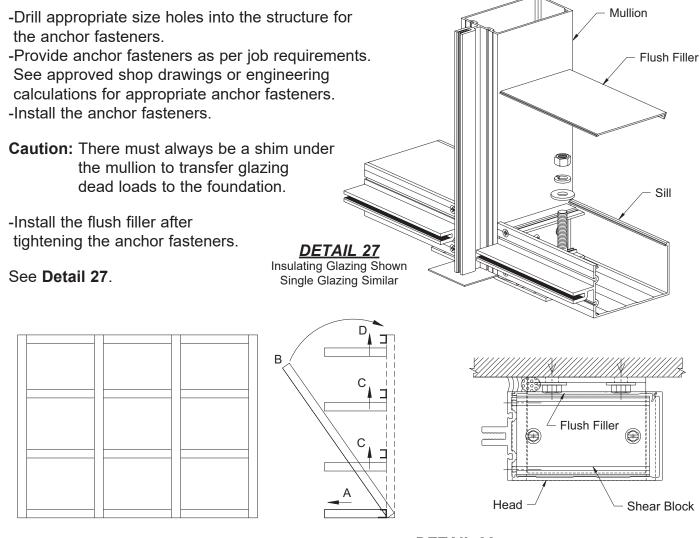
STEP 15 (CONTINUED) INSTALL WIND LOAD/DEAD LOAD ANCHORS

-Refer to shop drawings or engineering calculations for anchor requirements.

TYPICAL WINDLOAD ANCHOR


STEP 16 ATTACH HORIZONTAL MEMBERS

Note: Before applying any sealant, clean aluminum surfaces using cleaner and method approved by silicone sealant manufacturer.


-Just prior to attaching the horizontal members to the vertical, apply sealant to the front of the shear block as shown.

-Slide the horizontal members towards the shear blocks and attach them with two FC-1220 fasteners at each end.

-Tool and wipe away any excess sealant.

STEP 16 (Continued) ATTACH HORIZONTAL MEMBERS

Horizontal Attachment at End Bays:

- A: Bring the horizontal members into position and secure loosely.
- B: To install vertical jamb, engage bottom shear block or "J" anchor with the sill member. Pivot vertical jamb member into position and anchor loosely.
- C: Use open back horizontal members at intermediate locations, bring them from under the shear clips and lift into position. Fasten the horizontals to the shear blocks.
- D: Secure top and bottom end anchors permanently; then install the head member with the open side facing up to clear the shear blocks. Fasten the head member to the shear blocks.

See Detail 28.

STEP 17 90° OUTSIDE CORNER ASSEMBLY

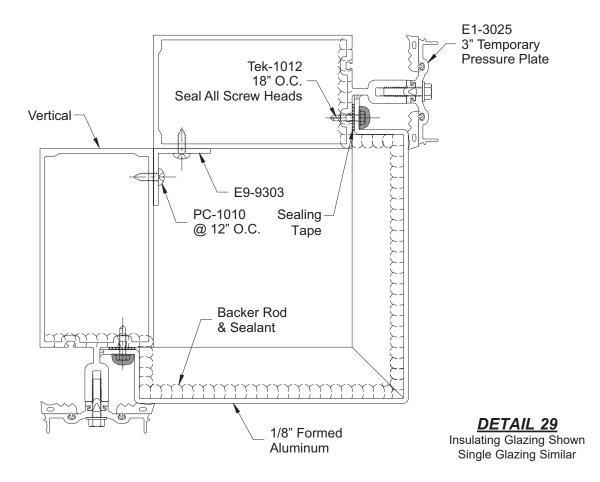
-Locate both vertical mullions perpendicular to each other as shown in **Detail 29**.

-Anchor head and sill ends with appropriate end anchors - "J", "F", or "T".

Refer to shop drawings for wind load / dead load anchors.

-Position angle E9-9303 into corner between the two vertical mullions and fasten both legs every 12" on center (o.c.) using PC-1010 fasteners.

-Position 1/8" formed aluminum cover between the verticals and install temporary pressure plates every two to three feet to hold the aluminum cover in place.


-Fasten the aluminum cover to the face of the mullion every 18" on center (o.c.) with 3/4" long #10 Tek screws.

-Seal all exposed screw heads and remove the temporary pressure plates.

-Do not span formed aluminum cover more than 12'-6"; leave 1/2" joint between spans of 12'-6". -Clean area around joint with isopropyl alcohol (50%) and wipe clean with lint free cotton cloths using the "two cloth method".

-Compress backer rod into the 1/2" joint. Apply and tool silicone sealant to the joint.

See Detail 29.

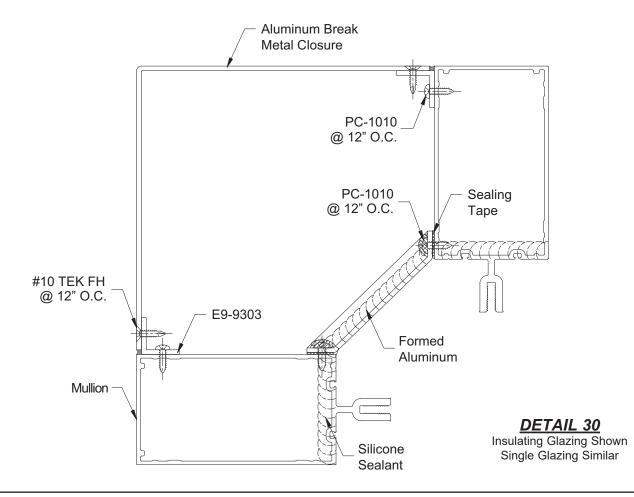
STEP 17 90° INSIDE CORNER ASSEMBLY

-Locate both vertical mullions as shown in **Detail 30**.

-Anchor head and sill ends with appropriate end anchors - "J", "F", or "T".

Refer to shop drawings for wind load / dead load anchors.

-Position 1/8" formed aluminum cover between the verticals and fasten to mullions with PC-1010 at 12" on center. Seal the screw heads.


-Position angle E9-9303 and at the end of the mullions as shown in **Detail 30**, and fasten with PC-1010 at 12" on center.

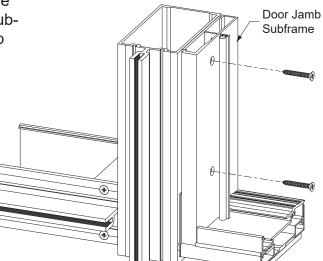
-Fasten the aluminum closure to angle E9-9303 every 18" on center (o.c.) with 3/4" long #10 Tek screws.

-Do not span formed aluminum cover more than 12'-6"; leave 1/2" joint between spans of 12'-6". -Clean area around joint with isopropyl alcohol (50%) and wipe clean with lint free cotton cloths using the "two cloth method".

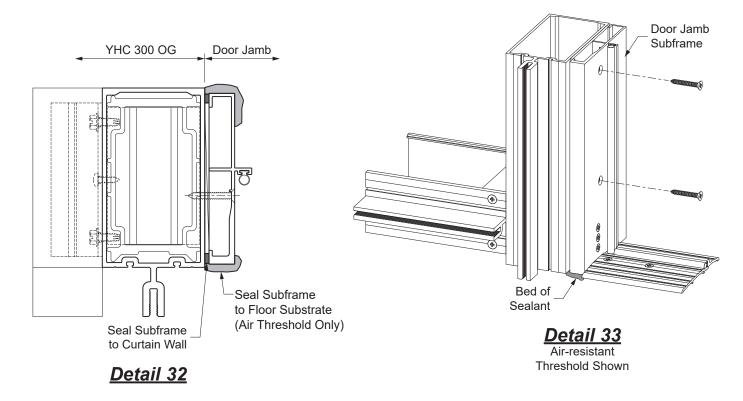
-Compress backer rod into the 1/2" joint. Apply and tool silicone sealant to the joint.

See Detail 30.

STEP 17 INSTALL DOOR SUBFRAMES


YKK

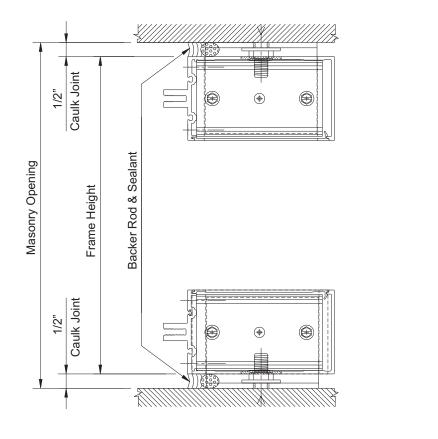
Refer to the **35H/50H Door Installation Manual** for assembly of the door subframes. These subframes are installed into the curtain wall framing members. The subframe members are determined by the approved shop drawings.

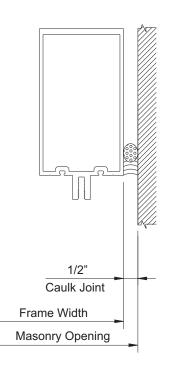

-Clean all sealant contact surfaces as recommended by the sealant manufacturer.

-Install the jamb subframe onto the mullion with fasteners according to the approved shop drawings and/or P.E. calculations. For airresistant thresholds, set the jamb subframes in a bed of sealant at the floor substrate.

-Apply and tool sealant between the door jamb subframe and the curtain wall framing. For air-resistant thresholds, apply and tool sealant to the bottom of the jamb subframe as shown in **Details 32 & 33**.

Detail 31 Water-resistant Threshold Shown

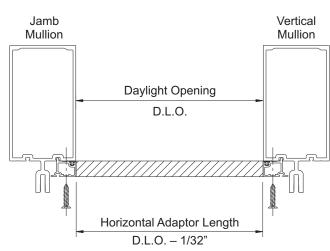

STEP 18 APPLY PERIMETER SEALANT


-Position backer rod around the perimeter of the frame.

-Clean area around the perimeter of the frame with isopropyl alcohol (50%) and wipe clean with lint free cotton cloths using the "two cloth method".

-Apply silicone sealant to the perimeter of the frame.

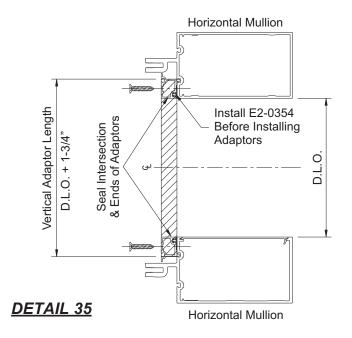
See Detail 34.

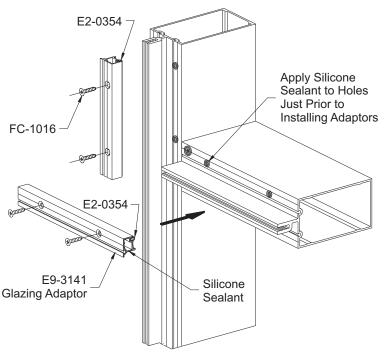


DETAIL 34 Single Glazing Shown Insulating Glazing Similar

STEP 19 INSTALL 1/4" GLAZING ADAPTORS (When Required)

YKK

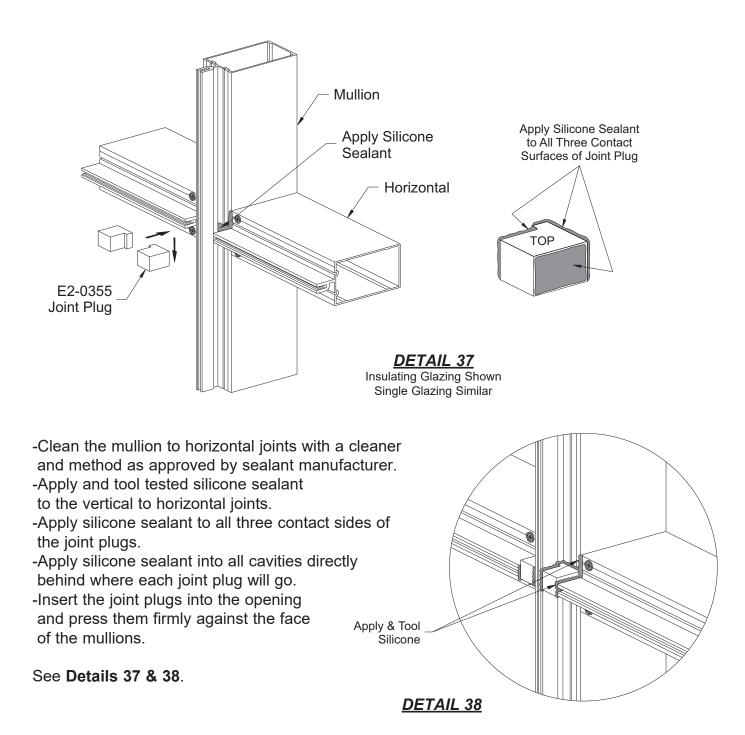



-Cut glazing adaptors for verticals: Cut Length = D.L.O. plus(+) 1-3/4".
-Cut glazing adaptors for horizontals: Cut Length = D.L.O. minus(-) 1/32".

-Slide bulb gasket, E2-0354, into the reglet at the back of the glazing adaptors. -Predrill 0.213" dia. holes countersunk for #10 fastener along the "V"-groove of each adaptor: 2" from each end and 18" on center or as directed by P.E. calculations.

- -Center the vertical glazing adaptors along the opening as shown.
- -Dry fit the glazing adaptors and match drill 0.161" dia. holes in the mullion.
- -Remove the glazing adaptors and apply silicone sealant over the drilled holes.
- -Reinsert the adaptors and secure them to the mullions with FC-1016 fasteners. -Install vertical adaptors first and butter
- each end of the horizontal adaptors with silicone sealant before installing them.

See Details 35 & 36.


DETAIL 36

STEP 20 INSTALL JOINT PLUGS

The tongue of all horizontals must be sealed to the tongue of the mullion.

The space between the two tongues is plugged with joint plugs, E2-0355 for insulating glazing or E2-0358 for single glazing.

YKK

GLAZING

5/8" Notch

STEP 21 INSTALL STRUCTURAL GLAZED INTERIOR GLAZING SPACERS

For applications below 90 PSF

-Cut interior vertical glazing spacers, E2-0353, to daylight opening plus(+) 2". -Cut the horizontal glazing spacers, E2-0353, to daylight opening plus(+) 1-1/4". -Trim off 5/8" of the glazing dart at each end of the horizontal glazing spacers. See Detail 39.

For applications above 90 PSF

-Install vertical glazing spacers first:

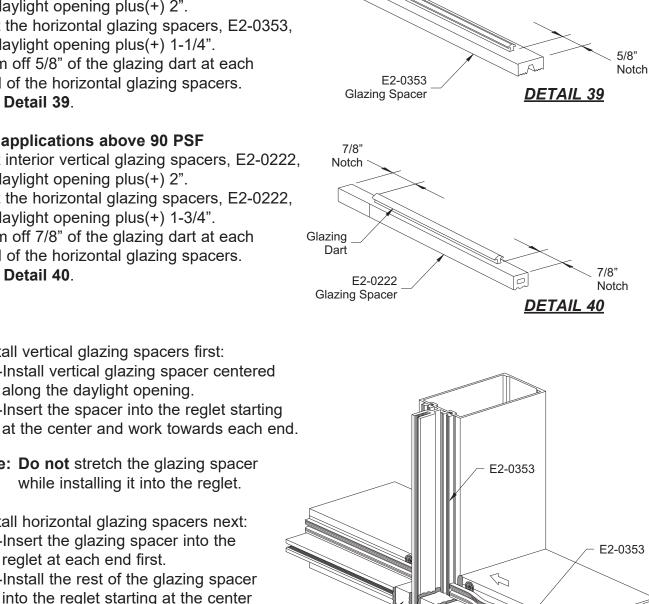
along the daylight opening.

Note: Do not stretch the glazing spacer

-Install horizontal glazing spacers next: -Insert the glazing spacer into the

and work towards each end.

reglet at each end first.


while installing it into the reglet.

-Install the rest of the glazing spacer into the reglet starting at the center

-Cut interior vertical glazing spacers, E2-0222, to daylight opening plus(+) 2". -Cut the horizontal glazing spacers, E2-0222, to daylight opening plus(+) 1-3/4". -Trim off 7/8" of the glazing dart at each end of the horizontal glazing spacers. See Detail 40.

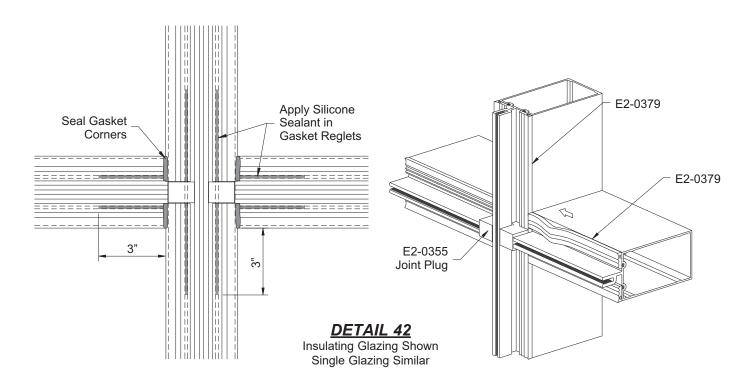
-Install vertical glazing spacer centered

-Insert the spacer into the reglet starting

Note: Horizontal spacer ends should always butt into the vertical spacer.

See Detail 41.

DETAIL 41 Insulating Glazing Shown Single Glazing Similar


E2-0355 Joint Plug

STEP 22 INSTALL INTERIOR DRY GLAZED GLAZING GASKETS

-Cut vertical glazing gaskets, E2-0379, to daylight opening plus(+) 2".

-Cut the horizontal glazing gaskets, E2-0379, to daylight opening plus(+) 3/16" for each foot of opening width.

-Just prior to installing the gaskets, apply silicone sealant to the gasket reglets at the horizontal / vertical intersections as shown in **Detail 42**.

-Install vertical glazing gaskets first:

-Install vertical glazing gasket centered along the daylight opening.

-Insert the gasket into the reglet starting at the center and work towards each end.

-Install horizontal glazing gaskets next:

-Apply silicone sealant to both ends of the horizontal glazing gasket.

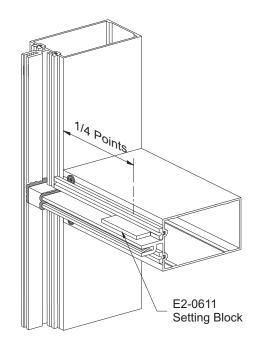
-Insert the glazing gasket into the reglet at each end first. Then install the rest of the glazing gasket into the reglet starting at the center and work towards each end.

-Tool the excess sealant at the gasket corners to ensure a watertight seal.

Note: Do not stretch the glazing gasket while installing it into the reglet.

See Detail 42.

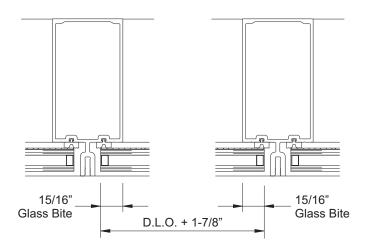
STEP 23 INSTALL GLASS

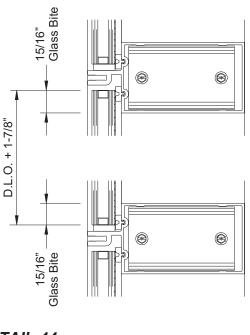

үкк

-Clean all glazing surfaces and joints of foreign matter and contaminants such as grease, oil, dust, frost, and surface dirt. Do not use water or soap to clean surfaces or to tool the sealant.

-Install setting blocks, E2-0611 for insulating glazing or E2-0623 for single glazing, at 1/4 points of horizontal. -Install side blocks, E2-0537, centered along the daylight opening on both sides of the glazing material.

See Detail 43.


DETAIL 43 Insulating Glazing Shown Single Glazing Similar



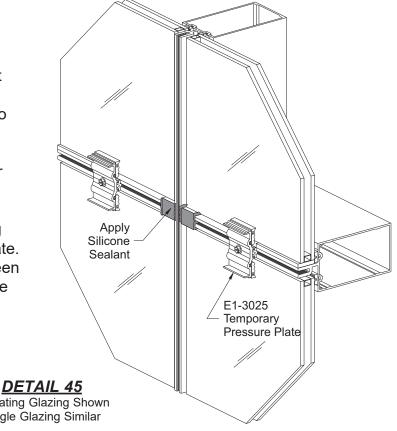
-Clean all silicone contact surfaces and joints with a cleaner and method as approved by sealant manufacturer.

-Carefully install glass into the frame. Make sure setting blocks and spacers are properly aligned with glass. -Install temporary pressure plates 18" on center both horizontally and vertically.

See Details 44 & 45.

DETAIL 44 Insulating Glazing Shown Single Glazing Similar

GLASS SIZE = D.L.O. + 1-7/8" (HORIZONTAL & VERTICAL)



STEP 24 INSTALL PRESSURE PLATES

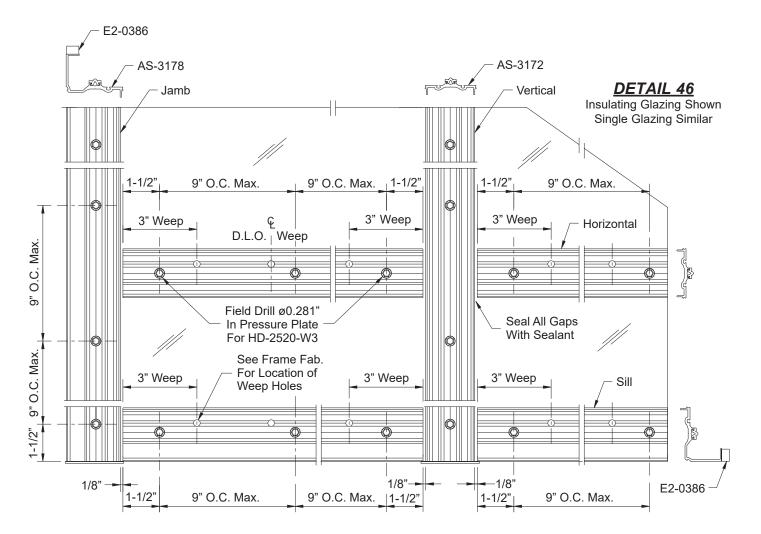
-Cut exterior vertical gaskets to the same length as the vertical pressure plates. -Cut exterior horizontal gaskets to daylight opening plus(+) 1/4" for shrinkage. -Install by pushing the exterior gaskets into the reglets of the pressure plates.

Note: See Glazing Table below for proper gasket usage.

-Apply silicone sealant to face of joint plug just prior to installing vertical pressure plate. Sealant must form a complete seal between the exterior gasket, the pressure plate, the thermal isolator, and the joint plugs.

See Detail 45.

Insulating Glazing Shown Single Glazing Similar


Glass Size		Exterior Gasket	Dry Glazed Interior Gasket	Wet Glazed Interior Spacer	Glazing Adaptor	Pressure Plate	Perimeter P. Plate
gle	1/4"	E2-0380	E2-0380	E2-0353*	—	AS-3173	AS-3179
Sin	9/16"	E2-0379	E2-0379	E2-0353*	—	AS-3173	AS-3179
ng	9/16"	E2-0379	E2-0379	E2-0353*	E9-3141	AS-3172	AS-3178
Insulati	1"	E2-0380	E2-0380	E2-0353*	_	AS-3172	AS-3178
	1-5/16"	E2-0379	E2-0379	E2-0353*	_	AS-3172	AS-3178

YHC 300 OG GLAZING TABLE

* Interior Spacer E2-0222 will be used for design pressures above 90 PSF.

STEP 24 (Continued) INSTALL PRESSURE PLATES

YKK

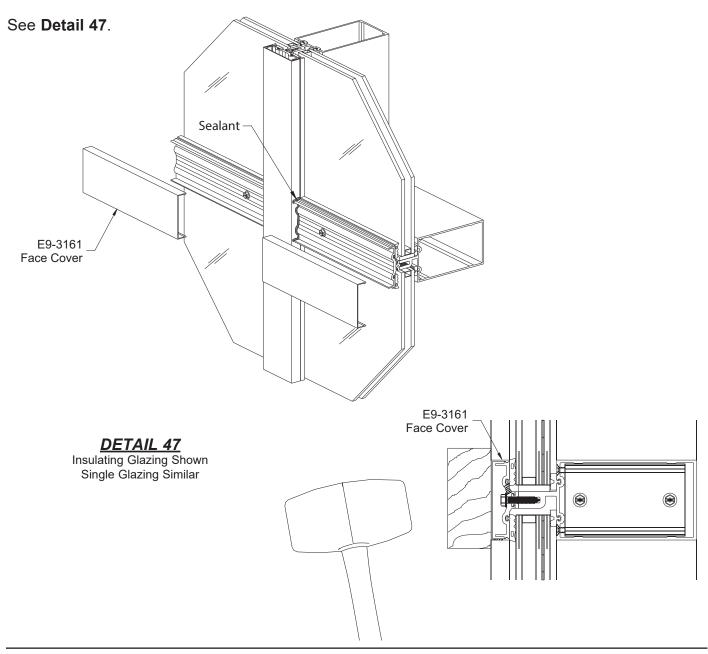
-Apply isolator tape, E2-0386, to the inside leg of all perimeter pressure plates.

-Install vertical pressure plates first: Fasten with HD-2520-W3 fasteners.

-Initially torque fasteners to 50 inch-pounds with a speed wrench or torque limiting screw gun. Work from the bottom up.

-Torque all fasteners to 75 inch-pounds.

See Detail 46.



STEP 25 INSTALL EXTERIOR FACE COVERS

-Snap on vertical exterior face covers using a mallet and a clean scrap piece of lumber, starting at the top and working down the vertical.

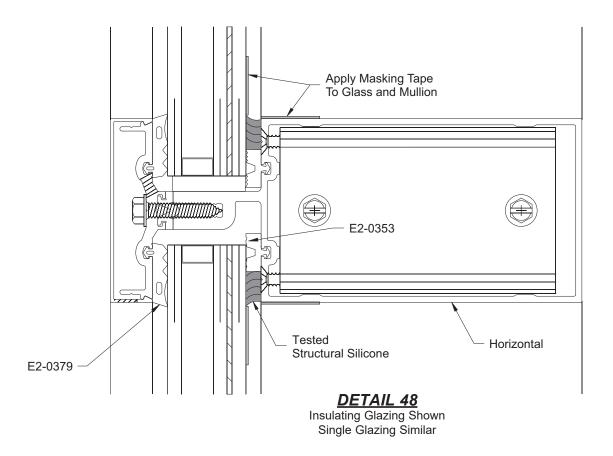
-Center and install horizontal pressure plates in the opening with HD-2520-W3 fasteners, leaving a 1/8" gap at the ends. Initially torque the fasteners to 50 inch-pounds; then tighten all of them to 75 inch-pounds.

-Apply and tool sealant to completely seal the gaps at horizontal pressure plate ends. -Snap on horizontal face covers, starting at one end and working block and mallet across the horizontal.

STEP 26 APPLY INTERIOR SILICONE SEALANT

-Make sure all silicone contact surfaces and joints have been cleaned with a cleaner and method as approved by sealant manufacturer.

-Apply masking tape to the mullion and glass as shown in Detail 48.


-Apply tested structural silicone sealant into the cavity between the mullion and glass starting from the bottom and work towards the top. Use positive pressure so that the silicone sealant completely fills the cavity.

-Using a nylon spatula or other non-scratching implement, tool the silicone sealant immediately after running the joint. Exert positive pressure while tooling to ensure that the silicone sealant makes complete contact with all surfaces.

Caution: Be careful not to remove too much silicone sealant.

-Remove masking tape immediately after tooling and before silicone skins over.

Caution: Do not permit the silicone sealant to skin over before it is tooled. Immediately remove masking tape after tooling silicone sealant.

YKK AP America Inc.

270 Riverside Parkway, Suite 100 Austell, Georgia 30168 www.ykkap.com

CSI MASTERFORMAT SECTION NUMBER CSI MASTERFORMAT SECTION TITLE YKK AP PRODUCT SERIES

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes: Aluminum Curtain Wall Systems:
 - 1. YKK AP Series YHC 300 OG (Outside Glazed) Impact Resistant Aluminum Curtain Wall System.
- **B.** Related Sections:
 - 1. Sealants: Dow Corning® 995 Structural Silicone Sealant.
 - 2. Glass and Glazing: Refer to Division 8 Glass and Glazing Section for glass and glazing requirements.
 - 3. Single Source Requirement: All products listed below shall be by the same manufacturer.
 - a. Section 08 32 13 Sliding Aluminum Framed Glass Doors.
 - b. Section 08 41 13 Aluminum Framed Entrances and Storefronts.
 - c. Section 08 51 13 Aluminum Windows.
 - d. Section 08 44 33 Sloped Glazing Assemblies.

1.02 SYSTEM PERFORMANCE DESCRIPTION

- A. All test unit sizes and configurations shall conform to the minimum sizes in accordance with; Florida High Velocity Hurricane Zone (HVHZ) Protocols, ASTM E 1886, ASTM E 1996, and meet all requirements of TAS 201, TAS 202, and TAS 203. They shall also comply with the following specific performance requirements indicated.
 - 1. Air Infiltration: Completed curtain wall systems shall have 0.06 CFM/FT² (1.10 m³/h·m²) maximum allowable infiltration when tested in accordance with ASTM E 283 at differential static pressure of 6.24 PSF (299 Pa).
 - 2. Water Infiltration: No uncontrolled water, other than condensation, on indoor face of any component when tested in accordance with ASTM E 331 at test pressure differential of 20 PSF (958 Pa). Water test to be performed immediately after design pressure test.
 - 3. Wind Loads: Completed curtain wall system shall withstand wind pressure loads normal to wall plane indicated:
 - a. Structural Performance:

 - Positive Pressure: ____psf.
 Negative Pressure: ____psf.
 - 4. Deflection: Maximum allowable deflection in any member when tested in accordance with ASTM E 330 with allowable stress in accordance with AA Specifications for Aluminum Structures:
 - a. Without Horizontals: L/175 or 3/4" (19.1mm) maximum.
 - b. With Horizontals: L/175 or L/240 + 1/4" (6.4mm) for spans greater than 13'-6" (4.1m) but less than 40'-0" (12.2m).
 - 5. Thermal Movement: Provide for thermal movement caused by 180 degrees F. (82.2 degrees C.) surface temperature, without causing buckling stresses on glass, joint seal failure, undue stress on structural elements, damaging loads on fasteners, reduction of performance, or detrimental effects.
 - 6. Thermal Performance: When tested in accordance with AAMA 1503.1 and NFRC 102:
 - a. Condensation Resistance Factor (CRF_f): A minimum of 72.
 - b. Thermal Transmittance U Value: .42 BTU/HR/FT²/°F or less.

Note: The CRF for the glazed system as a whole will be affected by the characteristics of the glass specified.

- 7. Acoustical Performance: Acoustical Performance: When tested in accordance with ASTM E 1425:
 - a. Sound Transmission Class (STC) shall not be less than 37.
 - b. Outdoor-Indoor Transmission Class (OITC) shall not be less than 32.

1.03 SUBMITTALS

- A. General: Prepare, review, approve, and submit specified submittals in accordance with "Conditions of the Contract" and Division 1 Submittals Sections. Product data, shop drawings, samples, and similar submittals are defined in "Conditions of the Contract."
- B. Product Data: Submit product data for each type curtain wall series specified.
- C. Substitutions: Whenever substitute products are to be considered, supporting technical data, samples and test reports must be submitted ten (10) working days prior to bid date in order to make a valid comparison.
- D. Shop Drawings: Submit shop drawings showing layout, profiles, and product components, including anchorage, accessories, finish colors and textures.
- E. Samples: Submit verification samples for colors on actual aluminum substrates indicating full color range expected in installed system.
- F. Quality Assurance / Control Submittals:

08 44 13 **GLAZED ALUMINUM CURTAIN WALL** YKK AP YHC 300 OG SERIES

- 1. Test Reports: Submit certified test reports showing compliance with specified performance characteristics and physical properties.
- 2. Installer Qualification Data: Submit installer qualification data.
- G. Closeout Submittals:
 - 1. Warranty: Submit warranty documents specified herein.
 - 2. Project Record Documents: Submit project record documents for installed materials in accordance with Division 1 Project Closeout (Project Record Documents) Section.

1.04 QUALITY ASSURANCE

- A. Qualifications:
 - 1. Installer Qualifications: Installer experienced (as determined by contractor) to perform work of this section who has specialized in the installation of work similar to that required for this project. If requested by Owner, submit reference list of completed projects.
 - 2. Manufacturer Qualifications: Manufacturer capable of providing field service representation during construction process.
- B. Mock-Ups (Field Constructed): Install at project site a job mock-up using acceptable products and manufacturer approved installation methods. Obtain Owner's and Architect's acceptance of finish color, and workmanship standard.
 - 1. Mock-Up Size:
 - 2. Maintenance: Maintain mock-up during construction for workmanship comparison; remove and legally dispose of mock-up when no longer required.
 - 3. Incorporation: Mock-up may be incorporated into final construction upon Owner's approval.
- C. Pre-Installation Meetings: Conduct pre-installation meeting to verify project requirements, substrate conditions, manufacturer's installation instructions, and manufacturer's warranty requirements.

1.05 PROJECT CONDITIONS / SITE CONDITIONS

A. Field Measurements: Verify actual measurements/openings by field measurements before fabrication; show recorded measurements on shop drawings. Coordinate field measurements, fabrication schedule with construction progress to avoid construction delays.

1.06 WARRANTY

- A. Project Warranty: Refer to "Conditions of the Contract" for project warranty provisions.
- B. Manufacturer's Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty document executed by an authorized company official.
 - 1. Warranty Period: Manufacturer's one (1) year standard warranty commencing on the substantial date of completion for the project provided that the warranty, in no event, shall start later than six (6) months from the date of shipment by YKK AP America Inc.

EDITOR NOTE: Longer warranty periods are available at additional cost.

PART 2 PRODUCTS

2.01 MANUFACTURERS (Acceptable Manufacturers/Products)

······································							
A. Acceptable Manufacturers:	YKK AP America Inc.						
	270 Riverside Parkway, Suite 100						
	Austell, GA 30168						
	Telephone: (678) 838-6000; Fax: (678) 838-6001						
1. Curtain Wall System: YKK AP YHC 300 O	G Curtain Wall System.						

B. Curtain Wall Framing System:

- 1. Description: Framing System shall be thermally improved. Horizontal and vertical members shall have a nominal face dimension of 3 inches, depth as indicated on the shop drawings. Framing system shall provide a flush glazed appearance on all sides with no protruding glass stops.
- 2. Glazing: Manufacturer's standard silicone compatible EPDM glazing gaskets to inhibit water infiltration at the exterior and Dow Corning® 995 Structural Silicone Sealant with fixed stops at the interior; interior spacers are to be silicone.

2.02 MATERIALS

- A. Extrusions: ASTM B 221 (ASTM B 221M), 6063-T5 Aluminum Alloy.
- B. Aluminum Sheet:

1. Anodized Finish: ASTM B 209 (ASTM B 209M), 5005-H14 Aluminum Alloy, 0.050" (1.27 mm) minimum thickness.

2. Painted Finish: ASTM B 209 (ASTM B 209M), 3003-H14 Aluminum Alloy, 0.080" (1.95 mm) minimum thickness.

2.03 ACCESSORIES

- A. Manufacturer's Standard Accessories:
 - 1. Fasteners: Zinc plated steel concealed fasteners; Hardened aluminum alloys or AISI 300 series stainless steel fasteners. Joint fasteners may be concealed.
 - 2. Sealant: Non-skinning type, AAMA 803.3
 - 3. Glazing: Setting blocks, edge blocks, and spacers in accordance with ASTM C 864, shore durometer hardness as recommended by manufacturer; exterior glazing silicone compatible EPDM gaskets, in accordance with ASTM C 864, designed to lock into gasket reglet, interior by means of silicone spacer and structural silicone adhesive.
 - 4. Glazing Adhesive: Dow Corning® 995 Structural Silicone.

2.04 RELATED MATERIALS (Specified In Other Sections)

A. Glass: Refer to Division 8 Glass and Glazing Section for glass materials.

2.05 FABRICATION

- A. Shop Assembly: Fabricate and assemble units with joints only at intersection of aluminum members with uniform hairline joints; rigidly secure, and sealed in accordance with manufacturer's recommendations.
 - 1. Hardware: Drill and cut to template for hardware. Reinforce frames and door stiles to receive hardware in accordance with manufacturer's recommendations.
 - 2. Welding: Conceal welds on aluminum members in accordance with AWS recommendations or methods recommended by manufacturer. Members showing welding bloom or discoloration on finish or material distortion will be rejected.

2.06 FINISHES AND COLORS

- A. YKK AP America Anodized Plus® Finish:
 - CODE DESCRIPTION
 - YS1N* Clear Anodized Plus®
 - YH3N Champagne Anodized Plus®
 - YB1N Medium Bronze Anodized Plus®
 - YB5N* Dark Bronze Anodized Plus®
 - YK1N* Black Anodized Plus®
 - YW3N White Anodized Plus®
 - M Mill Finish

* Indicates standard finish usually carried as inventory.

Anodized Plus® is an advanced sealing technology that completely seals the anodic film yielding

superior durability (See AAMA 612).

- B. Anodized Finishing: Prepare aluminum surfaces for specified finish; apply shop finish in accordance with the following:
 - 1. Anodic Coating: Electrolytic color coating followed by an organic seal applied in accordance with the requirements
 - of AAMA 612. Aluminum extrusions shall be produced from quality controlled billets meeting AA-6063-T5.
 - a. Exposed Surfaces shall be free of scratches and other serious blemishes.
 - b. Extrusions shall be given a caustic etch followed by an anodic oxide treatment and then sealed with an organic coating applied with an electrodeposition process.
 - c. The anodized coating shall comply with all of the requirements of AAMA 612: Voluntary Specifications, Performance Requirements and Test Procedures for Combined Coatings of Anodic Oxide and Transparent Organic Coatings on Architectural Aluminum. Testing shall demonstrate the ability of the finish to resist damage from mortar, salt spray, and chemicals commonly found on construction sites, and to resist the loss of color and gloss.
 - d. Overall coating thickness for finishes shall be a minimum of 0.7 mils.
- C. High Performance Organic Coating Finish:
 - 1. Type Factory applied two-coat 70% Kynar resin by Arkema or 70% Hylar resin by Solvay Solexis, fluoropolymer based coating system, Polyvinylidene Fluoride (PVF-2), applied in accordance with YKK AP procedures and meeting AAMA 2605 specifications.
 - 2. Colors: Selected by Architect from the following:
 - a. Standard coating color charts.
 - b. Custom coating color charts.
 - c. Color Name and Number:

D. Finishes Testing:

- 1. Apply 0.5% solution NaOh, sodium hydroxide, to small area of finished sample area; leave in place for sixty minutes; lightly wipe off NaOh; Do not clean area further.
- 2. Submit samples with test area noted on each sample.

PART 3 EXECUTION

3.01 MANUFACTURER'S INSTRUCTIONS / RECOMMENDATIONS

A. Compliance: Comply with manufacturer's product data, including product technical bulletins, installation instructions, and product carton instructions. The latest Installation Manual can be found at www.ykkap.com.

3.02 EXAMINATION

A. Site Verification of Conditions: Verify conditions (which have been previously installed under other sections) are acceptable for product installation in accordance with manufacturer's instructions.

3.03 PREPARATION

A. Adjacent Surfaces Protection: Protect adjacent work areas and finish surfaces from damage during product installation.

3.04 INSTALLATION

- A. General: Install manufacturer's system in accordance with shop drawings, and within specified tolerances.
 - 1. Protect aluminum members in contact with masonry, steel, concrete, or dissimilar materials using nylon pads or bituminous coating.
 - 2. Shim and brace aluminum system before anchoring to structure.
 - 3. Verify curtain wall system allows water entering system to be collected in gutters and wept to exterior. Verify weep holes are open, and metal joints are sealed in accordance with manufacturers installation instructions.
 - 4. Seal metal to metal curtain wall system joints using sealant recommended by system manufacturer.

3.05 FIELD QUALITY CONTROL

- A. Manufacturer's Field Services: Upon request, provide manufacturer's field service consisting of site visit for inspection of product installation in accordance with manufacturer's instructions.
- B. Field Test: Conduct field test to determine watertightness of curtain wall system. Conduct test in accordance with AAMA 501.2.

3.06 ADJUSTING AND CLEANING

- A. Adjusting: Adjust swing doors for operation in accordance with manufacturer's recommendations.
- B. Cleaning: The General Contractor shall clean installed products in accordance with manufacturer's instructions prior to owner's acceptance, and remove construction debris from project site. Legally dispose of debris.
- C. Protection: The General Contractor shall protect the installed product's finish surfaces from damage during construction.

END OF SECTION

04-3009-04

This document supersedes all previous versions.

YFW 400 TUH

YFW 400 TUH

Thermally Broken, Impact Resistant and Blast Mitigating Fixed Window

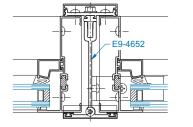
Integrated Superior Protection

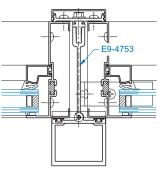
The YFW 400 TUH ProTek® thermally broken impact resistant and blast mitigating fixed windows have been designed and engineered to the highest of standards. The quality 4" frame depth fixed window is universal to our 4" depth impact resistant operable window systems. This fixed window system will easily integrate with our YVS 410 TUH Single Hung window system utilizing the same stacking mullions. Integral horizontal and vertical mullions provide greatly expanded configurations.

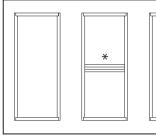
Superior air and water performance enhance this factory glazed product making it an excellent substitution for smaller storefront punched openings.

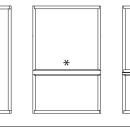
The YFW 400 TUH is a high performance window that is designed for the high velocity winds of south Florida. Additional benefit is provided by the labor savings when used as a factory glazed fixed window.

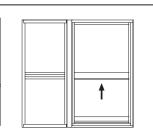
This window system not only provides additional security against burglary but also the minimal hazard level of ASTM F 1642 for blast mitigation.






SYSTEM	A SPECI	FICATION	S	YFW 400 TUH			
System Sightline	Base Depth	Glazing & Config	Glass	Air Infiltration	Water Infiltration	Thermal Performance	Acoustical Performance
2"	4"	Laminated Pre-Glazed & Fixed	1" IGU with Low-E (C.O.G. U-factor: 0.29)	0.30 CFM/FT ² (16.5 m³/h·m²)	Static: 15 PSF (719 Pa)	U-factor: 0.40 BTU/HR•FT2•°F* CRF: Minimum of 67 on frame**	Lam STC: 38 Lam OITC: 30
Testing Standards				ASTM E 283	ASTM E 331 & AAMA 501	* NFRC 102 & ** AAMA 1503	ASTM E 90 & 1425
Florida Product Approval				Large and Small Missle, HVHZ, ICC Compliant, AW Performance Grade 100 for Fixed Window			
Available Finishes				Factory Anodized (AAMA 612) and Organic Paints (AAMA 2605)			


MULLION OPTIONS



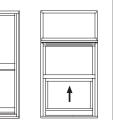
CONFIGURATIONS & FEATURES

FEATURES & BENEFITS

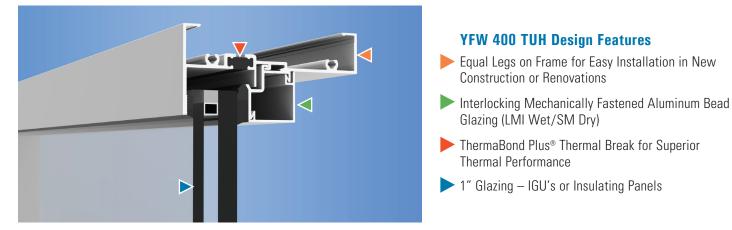
ThermaBond Plus[®] Thermal Break
 1" Insulating Glazing or Insulating Panels
 Vertical and Horizontal Stacking Mullion Options

Box Trim, Sill Flashing, Panning, and

Multiple Anchor Options

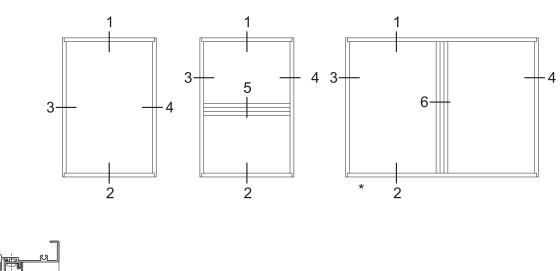

• Tested to +90psf/ -120psf

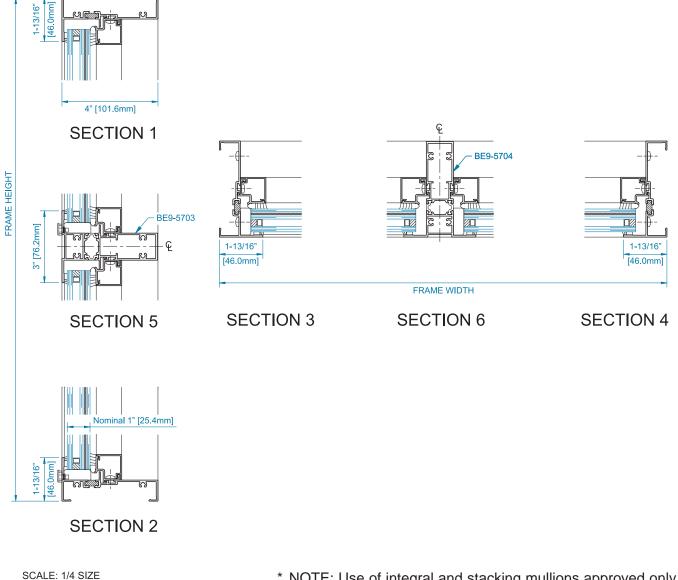
 Blast Mitigation; "Minimal Hazard" per ASTM F 1642 Test @ 6psi / 41 psi-ms


Certified AAMA Performance Grade: AW-PG100-FW

Large Missile is Wet Glazed, Small is Dry Glazed
 ASTM E 1886/1996, TAS 201, 202, & 203

 Meets ICC Requirements, Florida State-Wide Approval – High Velocity Hurricane Zone (HVHZ)




* Horizontal Mullion is non-impact resistant, blast mitigated.

Additional information including CAD details, CSI specifications, Test Reports and Installation instructions are available online at: www.ykkap.com/commercial/product/architectural-windows/yfw-400-tuh/

YFW 400 TUH FIXED

MANUFACTURER'S IDENTIFICATION 1.0

1.1 Name of Applicant:

YKK AP America, Inc. 332 Firetower Road Dublin, Georgia 31021 (478) 277-2549 Fax (478) 277-2545 Masanori Moriya

1.2 Contact Person:

2.0 LABORATORY IDENTIFICATION

2.1 HTL Lab Certifications:

Miami-Dade County (04-0806.02) Florida Building Code (TST3892) IAS (TL-338) HTLGA0922

2.2 Miami-Dade Test Notification #:

3.0 **SCOPE OF WORK**

3.1 Introduction

YKK AP America, Inc. retained HTL Georgia to conduct testing of their YFW-400-TUH Window system per the requirements of the Florida building Code (HVHZ) TAS 201, 202, 203, ASTM E283, E330, E331, E1886, and E1996.

3.2 **Report Information**

Table 3.1 provides the test dates and ratings for the units tested.

Table 3.1: Report Summary						
YKK designation Specimen # Test Date Performance Clas						
······································	1A	07/01/09 - 07/09/09				
YFW-400-TUH-01	FW-400-TUH-01 1B		+90/-120 psf			
	1D	07/09/09 - 07/10/09				

4.0	PRODUCT IDENTIFICATION	
4.1	Product Type:	Fixed Window
4.2	Model Designation:	YFW-400-TUH-01-Large
4.3	Overall Size:	52" (w) x 96" (h)
4.4	<u>Drawing</u> :	This test report is incomplete if not accompanied by YKK AP America, Inc. drawings labeled "YFW400TUH-01, thru -09 " (sheets 1-9) with bearing the ink stamp of Hurricane Test Laboratory, LLC.
4.5	<u>Sample Source</u> :	Sample provided by YKK AP America, Inc
4.6	Additional Information:	

4.6.1 Glazing Details:

4.6.1.1 Glazing:

Table 4.2 describes the type of glass used for testing.

REPORT WRITER

HTL Florida

Mark E Cor Cor Mark Creslein

ENGINEER OF RECORD

Vinu J. Abraham, P.E. FL Req. #53820 7/21/2009

Tabl	e 4.2:	Glazing	Schedule

Glass Type Overall Thickness		Makeup		
1	1″	3/16" heat strengthened glass (inboard) 0.075" Vanceva Interlayer 3/16" heat strengthened glass 5/16" air space 1/4" heat strengthened glass (outboard)		

4.6.1.2 Glazing Method:

Table 4.3 describes the glazing methods used for this test unit.

Table 4	.3 Glazing	Details
---------	------------	---------

Glass	057	Oty. DLO		Glazing Method		
Type Qty.			Bite	Interior	Exterior	
1	1	48-3/8″ (w) x 92-3/8″ (h)	1/2″	TREMCO Pro Glaze 2 Structural Silicone Sealant and Arrow Spacer (Part # E2-0359)	Glazing Tape PSA-2 (Part # E2-0670) and a cap bead of TREMCO Tremsil 600 Silicone Sealant	

4.6.2 Installation:

Table 4.7 describes the anchors used to install the test units into the test frame.

Table 4.7	: Installation
-----------	----------------

Location	Location Substrate Description				
Head, Jambs, & Sill	Wood	# ¼" x 2-1/4" Tapcons using a Strap Anchor (Part # E1-1921)	4" from the ends and 11" o.c. thereafter		

5.0 TEST RESULTS

5.1 Summary of Results

Table 5.1 summarizes the test results for this test specimen.

Table 5.1: Summary of Results

Specimen	Test Method	Test Conditions	Result
opeennen			i i couic
1A	Air Infiltration Test	1.57 & 6.24 psf	PASS
	(TAS 202 and ASTM E283)	1.57 & 0.21 p51	1,700
1A	Water Infiltration Test	1E pcf	PASS
	(TAS 202 and ASTM E331)	15 psf	PASS
1A	Uniform Static Load Test	+90/-120 psf Design	DACC
	(TAS 202 and ASTM E330)	Pressure	PASS
1A, 1B, 1D	Large Missile Impact Test	9-lb., 96-in. wood 2 x 4	
	(TAS 201 and ASTM		PASS
	(ASTM E1996 – Level D) E1886/E1996)		
1A, 1B, 1D	Cyclic Load test (TAS 203 and	+90/- 120 psf Design	DACC
	ASTM E1886/E1996)	Pressure	PASS

REPORT WRITER E Carley

ENGINEER OF RECORD 7/21/2009

5.2 <u>Air Infiltration Test</u>

5.2.1 <u>Results – Air Infiltration Test</u>

Table 8.1 provides the test results of the air infiltration test.

Specimen #	Test Pressure (psf)	Measured (cfm/ft ²)	Allowed (cfm/ft ²)
" 1A	+1.57	0.010	0.30
	+6.24	0.008	N/A

Table 8.1: Air Infiltration Test Results

5.2.2 Conclusion – Air Infiltration Test

HTL observed a measured air infiltration less than the allowed air infiltration through the test specimen; as such, this test specimen satisfies the requirements of ASTM E283-04.

5.3 Water Infiltration Test

5.3.1 Results – Water Infiltration Test

Table 8.2 provides the results for the water infiltration test per the requirements of STM E331-00. Table 8.2: Water Infiltration Test Results

Specimen	Test Pressure	Spray Rate	Test Duration	Conclusion
#	(psf)	(gph/ft ²)	(minutes)	
1A	15	5	15	Pass

5.3.2 <u>Conclusion – Water Infiltration Test</u>

HTL observed zero (0) water infiltration through the test specimen; as such, this test specimen satisfies the requirements of TAS 202- ASTM E331- ASTM E547.

5.4 Uniform Static Load Test

5.4.1 Deflection Gage Locations

Figure 5.3 shows the deflection gage locations for the uniform static load test.

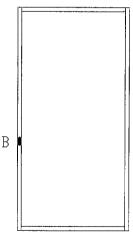



Figure 5.3: Deflection Gage Locations for the Uniform Static Load Test (longest fastener span)

REPORT WRITER Mark E. Co. O.

5.4.2 Positive Load Test Results

Table 5.3.1 provides the positive uniform static load test results for the deflection gage location shown in Figure 5.3.

	Gage	Load	Deflection (in.)		Permanent Set (in.)		Recovery (%)	
	Location	(psf)	Measured	Allowed	Measured	Allowed	Measured	Allowed
Ì		+67.5	0.029		0.001		96.55	90
	В	+90.0	0.053	N/A	0.001	0.048	99.06	90
		+135	0.067		.001		99.25	80

Table 5.3.1: Positive Uniform Static Load Test Results

5.4.3 <u>Negative Uniform Static Load Test Results</u> Table 5.3.2 provides the negative uniform static load test results for the locations presented in Figure 5.3.

Gage	Load	Deflectio	on (in.)	Permanent	Set (in.)	Recover	γ (%)	
Location	(psf)	Measured Allowe		Measured	Allowed	Measured	Allowed	
D	-90.0	0.020 0.		0.001		94.87 90		
D	-120.0	0.025	N/A	0.002	0.048	92.00	90	
	-180.0	0.071		0.008		89.36	80	

Table 5.3.2: Negative Uniform Static Load Test Results

5.4.3.1 Conclusion – Uniform Static Load Test

HTL observed no signs of failure in any area of this test specimen during the uniform static load test. In addition, the specimen met the deflection and percent recovery requirements; as such, this test specimen satisfies the uniform static load test requirements of ASTM E330 and TAS 202.

5.5 Large Missile Impact Test

5.5.1 Large Missile Impact Locations

Figures 5.5 & 5.6 show the impact location for the specimens tested.

 (\mathbf{I}) (2)

Figure 5.5: Large Missile Impact Locations Specimen 1A

REPORT WRITER Mark E Cale

HTL Florida

Figure 5.6: Large Missile Impact Locations Specimen 1B, 1D

5.5.2 Test Results – Large Missile Impact Test

Table 5.5 provides the large missile impact test results. Table 5.5: Large Missile Impact Test Results

	Import	Missile	Missile	Х	Y
Specimen	Impact #	Туре	Velocity	Coord.	Coord.
	#	туре	(ft/sec)	(in.)	(in.)
1A	1		49.80	26.50	47.00
14	2	LARGE	49.73	13.00	11.50
1B	1		49.85	28.50	51.00
TD	2	LANGE	49.98	41.25	88.00
1D	1		49.29	22.25	41.50
TD	2		49.38	43.00	84.00

5.5.3 Conclusion – Large Missile Impact Test

The large missiles impacted the intended targets and HTL carefully inspected each impact location. HTL observed no signs of penetration, rupture, or opening after the large missile impact test; as such, this test specimen satisfies the large missile requirements of the Florida Building Code TAS 201 and ASTM E1886/E1996.

5.6 Cyclic Load Test

5.6.1 Deflection Gage Locations - Cyclic Load Test

Figure 5.3 shows the deflection gage locations used in the cyclic load test.

5.6.2 Test Spectrum - Cyclic Load Test

Tables 5.5.1 and 5.5.2 provide the positive and negative test spectrum respectively.

Table 5.5.1: Positive Load Test Spectrum										
Stage	1	2	3	4						
Pressure Range (psf)	18 - 45	0 - 54	45 - 72	27 - 90						
Number of Cycles	3500	300	600	100						

REPORT WRITER E.C. Q.S

ENGINEER OF RECORD 7/21/2009

HTL Florida

Table 5.5.2:	Negativo	Load Test	Sportrum
Table 5.5.2;	weyduve	LUAU TESU	. Spectrum

Stage	5	6	7	8						
Pressure Range (psf)	36 - 120	60 - 96	0 - 72	24 - 60						
Number of Cycles	50	1050	50	3350						

5.6.3 Deflection Results – Cyclic Load Test

Table 5.5.3 shows the cyclic test results for each test specimen. Deflection gage locations shown on figure 5.3.

		Inward (Po	Outward (Negative Load)								
Specimen #	Location	Measured Permanent Set		Measured Permanent Set	Allowable						
		Permanent Set	Permanent Set (in.)		Permanent Set						
		(in.)	(0)	(in.)	(in.)						
1A		0.030		0.001							
1B	В 0.000		.048	0.012	.048						
1D		0.010		0.019							

Table 5.5.3: Cyclic Load Test Results

5.6.4 Conclusion - Cyclic Load Test

Upon completion of the cyclic load test, HTL carefully inspected the test specimen for failures. HTL observed no signs of failure; as such, this test specimen satisfies the cyclic load test requirements of Florida Building Code TAS 203 and ASTM E1996.

6.0 CERTIFICATION AND DISCLAIMER STATEMENT

All tests performed on these test specimens were conducted in accordance with the specifications of the applicable codes, standards and test methods listed below by HTL, LLC. HTL, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested at HTL. HTL is not owned, operated or controlled by any company manufacturing or distributing products it tests. This report is only intended for the use of the entity named in Section 1.0 of this report. Detailed assembly drawings showing wall thickness of all members, corner construction and hardware applications are on file and have been compared to the test specimens submitted. A copy of this test report along with representative sections of the test specimen will be retained at HTL for a period of ten (10) years. All results obtained apply only to the specimens tested and they do indicate compliance with the performance requirements of the test methods and specifications listed in the following section.

7.0 APPLICABLE CODES, STANDARDS, AND TEST METHODS

Florida Building Code TAS 201-94 – Impact Test Procedures

Florida Building Code TAS 202-94 – Criteria for Testing Impact & Nonimpact Resistant Building Envelope Components using Uniform Static Air Pressure

Florida Building Code TAS 203-94 – Criteria for Testing Products Subject to Cyclic Wind Pressure Loading

ASTM E283-04 – Standard Test Method for Determining Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E330-02 -Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference

REPORT WRITER Mark E Co Q.S

ENGINEER OF RECORD /21/2009

HTL Florida

ASTM E331-00 - Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

ASTM E1886-05 – Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials.
 ASTM E1996-08e2 – Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborne Debris in Hurricanes.

8.0 WITNESSES (ALL OR PARTIAL)

Vinu J. Abraham, P.E. José E. Colón, E.I. Ian McKenzie Kevin Gardner John Uhl CEO Operations Manager Lab Supervisor Test Team

HTL, LLC HTL, Georgia HTL, Georgia HTL, Georgia YKK AP America, Inc.

REPORT WRITER Mark ECO

ENGINEER OF RECORD

7/21/2009

HTL Florida

Test Report #: G231-0603-09 ADDENDUM REPORT

Specimen #: 1A Page: 1 of 2

CONFIDENTIAL

The information below is intended for use of the customer "YKK AP America, Inc." only, and is considered privileged and confidential. Copying or distribution in whole or in part without the prior written authorization of YKK AP America, Inc. is strictly prohibited.

1.0 MANUFACTURER'S IDENTIFICATION

1.1	Name of Applicant:	YKK AP America, Inc.
		332 Firetower Road
		Dublin, Georgia 31021
		(478) 277-2549
		Fax (478) 277-2545
1.2	Contact Person:	Masanori Moriya
		-

2.0 LABORATORY IDENTIFICATION

2.1 HTL Lab Certifications:

Miami-Dade County (04-0806.02) Florida Building Code (TST3892) IAS (TL-338) HTLGA0922

2.2 <u>Miami-Dade Test Notification #:</u>

3.0 SCOPE OF WORK

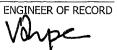
3.1 Introduction

YKK AP America, Inc. retained HTL Georgia to conduct testing of their YFW-400-TUH Window system per the requirements of the Florida building Code (HVHZ) TAS 201, 202, 203, ASTM E283, E330, E331, E1886, and E1996.

3.2 <u>Report Information</u>

Table 3.1 provides the test dates and ratings for the units tested.

Table 3.1: Report Summary										
YKK designation	Specimen #	Test Date	Performance Class							
YFW-400-TUH-01	1A	07/01/09 - 07/09/09	+90/-120 psf							


4.0 **PRODUCT IDENTIFICATION**

4.1	Product Type:	Fixed Window
4.2	Model Designation:	YFW-400-TUH-01-Large
4.3	Overall Size:	52" (w) x 96" (h)
4.4	<u>Drawing</u> :	This test report is incomplete if not accompanied by YKK AP America, Inc. drawings labeled "YFW400TUH-01, thru -09 " (sheets 1-9) with bearing the ink stamp of Hurricane Test
		Laboratory, LLC.
4.5	Sample Source:	Sample provided by YKK AP America, Inc

5.0 TEST RESULTS

5.1 Table 5.1 provides the test results for Specimen #1A

REPORT WRITER José E Colon E.I. TL Georgia

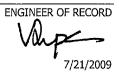
Vinu J. Abraham, P.E. FL Reg. #53820 7/21/2009

Page: 2 of 2

Table 5.1: Test Results									
Test Method	Test Conditions	Measured	Allowed						
Water Infiltration Test (ASTM E331)	20 psf	PASSED per ASTM E331 (no water found inside of the unit)							

6.0 CERTIFICATION AND DISCLAIMER STATEMENT

All tests performed on this test specimen were conducted in accordance with the specifications of the applicable codes, standards and test methods listed below by HTL, LLC. HTL, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested at HTL. HTL is not owned, operated or controlled by any company manufacturing or distributing products it ests. This report is only intended for the use of the entity named in Section 1.0 of this report. Detailed assembly drawings showing wall thickness of all members, corner construction and hardware applications are on file and have been compared to the test specimen submitted. A copy of this test report along with representative sections of the test specimen tested and they do indicate compliance with the performance requirements of the test methods and specifications listed in the following section.


7.0 APPLICABLE CODES, STANDARDS, AND TEST METHODS

ASTM E331-00 – Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

8.0 WITNESSES

Vinu J. Abraham, P.E. Jose Colon, E.I. Ian McKenzie Kevin Gardner John Uhl CEO Operations Manager Laboratory Foreman Test Team Design Engineer HTL, LLC HTL Georgia HTL Georgia HTL Georgia YKK AP America, Inc

REPORT WRITER

FLORIDA | GEORGIA | TEXAS

GEORGIA OFFICE 1701 Westfork Drive, Suite 106 Lithia Springs, Georgia 30122 H T L T E S T . C O M P: 888.477.2454 F: 770.941.2930

November 23, 2009

Mr. John Uhl YKK AP America, Inc. 7680 The Bluffs, Suite 100 Austell, Georgia 30168

Re: Addendum to HTL Test Report # G231-0501-09-1 and G231-0603-09

Dear Mr. Uhl;

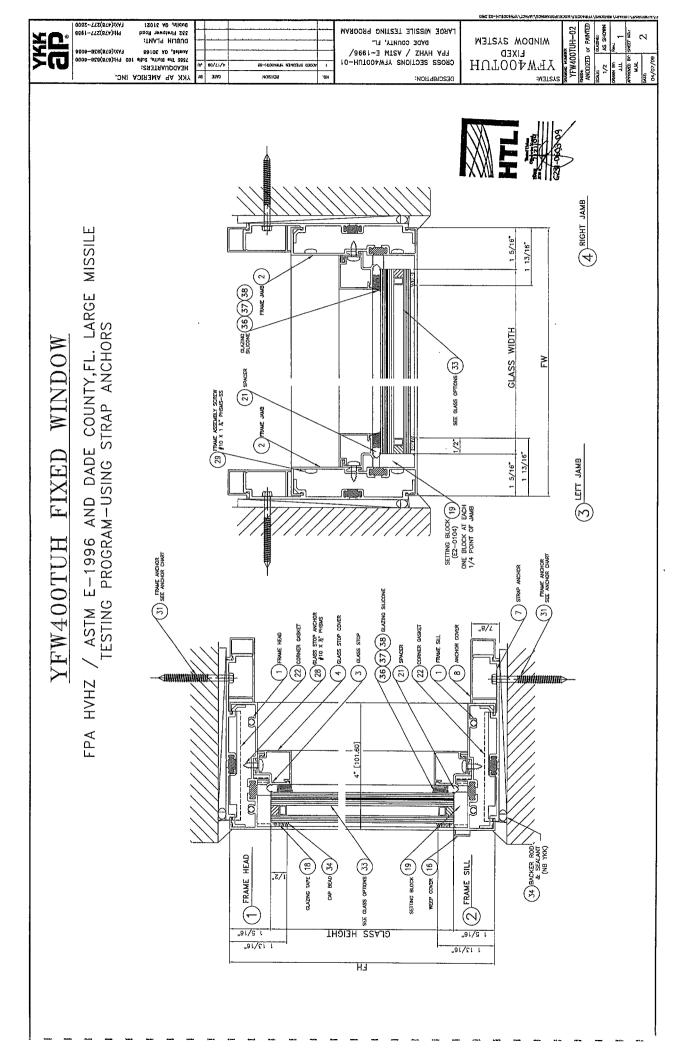
The reports issued for the above mentioned job numbers were for YKK's YFW-400TU and YFW-400TUH window systems. In these reports HTL failed to report that the windows were tested to ASTM F588-04. This was an error in our part; please accept the following table as an addendum to the issued test reports:

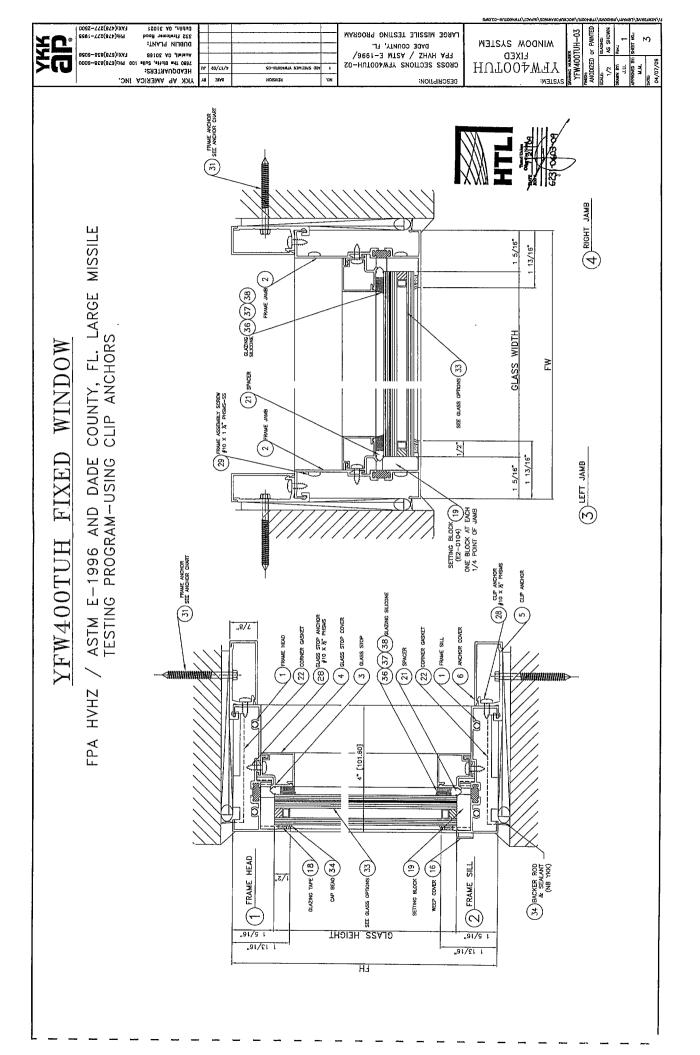
	HTL Job #	Test Method	Result
	G231-0501-09-1	Forced Entry Resistance Test	PASS
ſ	G231-0603-09	(ASTM F588-04)	PASS

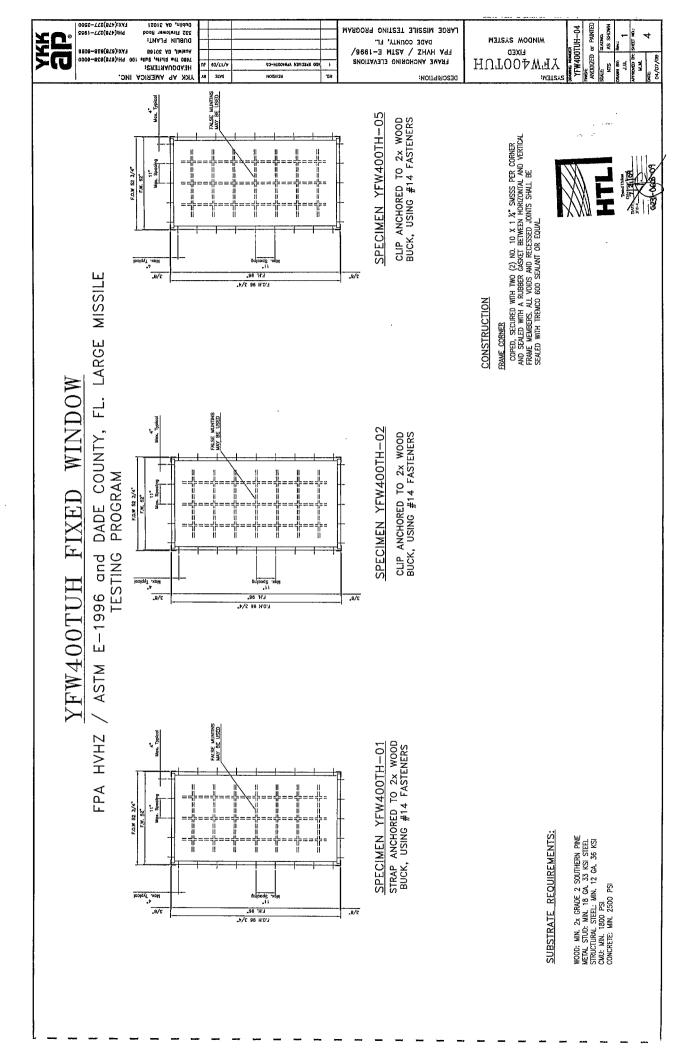
These fixed windows were tested to the disassembly and sash manipulation requirements of ASTM F588 and the technicians failed to gain entry through the window.

If you have any further questions regarding the above mentioned tests that were conducted, please contact out office.

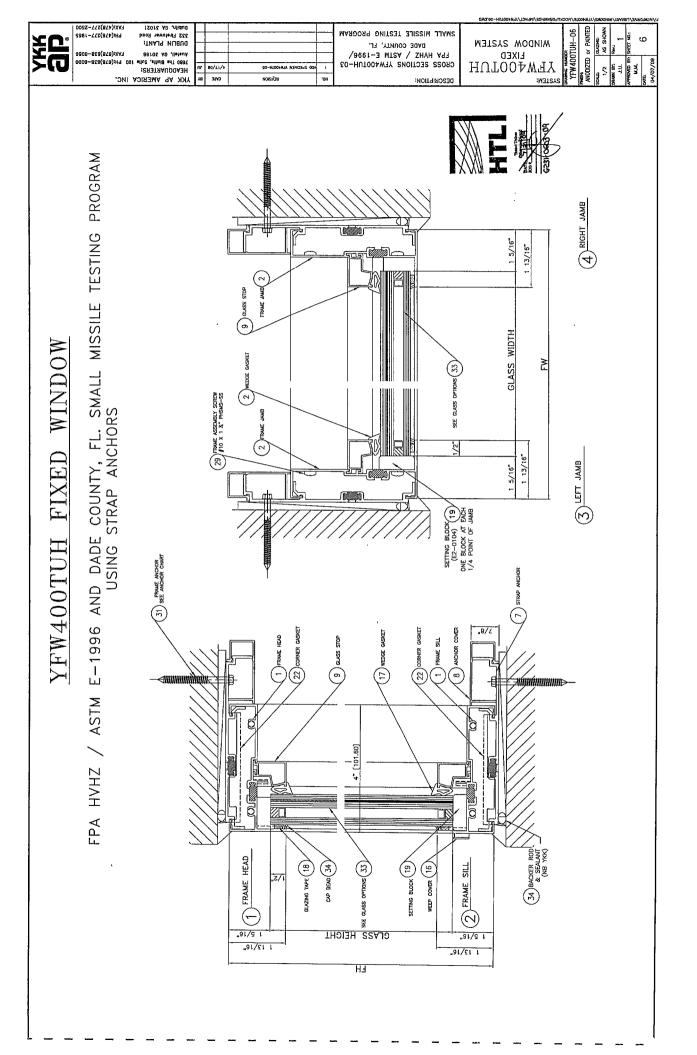
Sincerely,

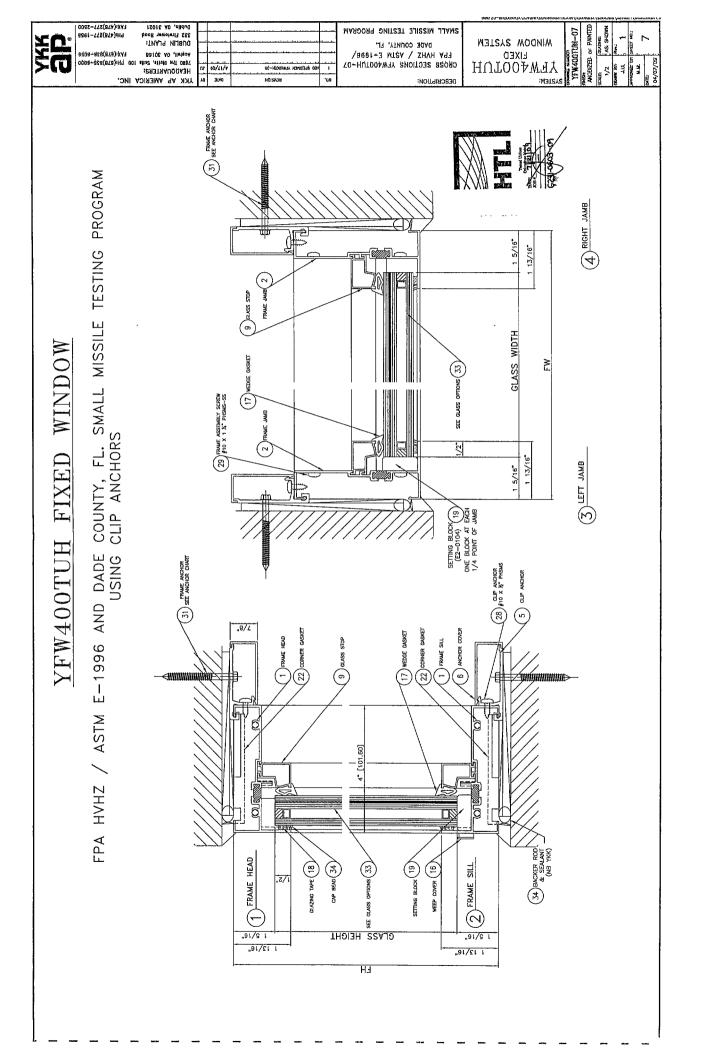

HURRICANE TEST LABORATORY, LLC

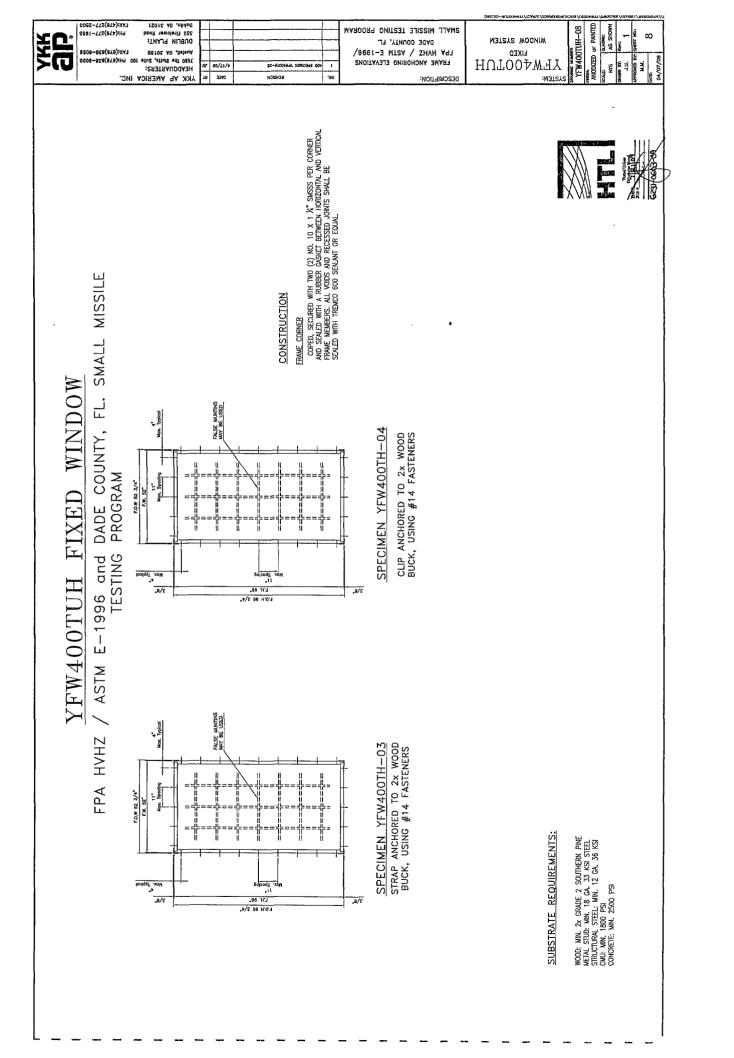

Jbsé 🗄. Colón, E.I. tions Manager


ENGINEER OF RECORD Vinu J! Abraham, P.E.

FL Reg. # 53820


ž	676)858-6000 676)858-6006 676)277-1955 876)277-1955):H9):XA3):KA3		966 I	ינרי נעני	со∩итк со∩итк	DESCRIPTION: NOTES ANI FPA HVHZ DADE DADE LARGE MISSILE	, H	Ul	ν εν xed 00	иром Ы ФМ,	MI TY IW	YFW400TUH-01	RNOSHE ANODIZED: of PAINT	SCHERE CALORING		NUM STORE AND	04/07/08
Λ	FL. LARGE MISSILE	GENERAL NOTES	 THIS PRODUCT HAS BEEN EVALUATED AND IS IN COMPLANCE WITH THE 2007 FLORIDA BUILDING CODE (FIBC) STRUCTURAL REQUIREMENTS INCLUDING THE "HIGH VELOCITY HURRICARE ZONE" (HANTZ). PRODUCT ANCHORS SHALL BE AS LISTED, SPACED AS SHOWN ON DETAILS, ANCHORS EMBEDMENT TO BASE MATERIAL SHALL BE BEYOND WALLDRESSING OR STUCCO. WHEN USED IN THE "HANT" THIS PRODUCT COMPLES WITH SECTION 1626 OF THE FLORIDA BUILDING CODE AND DOES NOT REQUIRE AN IMPACT RESISTANT COVERNG. WHEN USED IN AREAS OUTSIDE OF THE "HANT" REQUIRE AN IMPACT RESISTANT COVERNG. WHEN USED IN AREAS OUTSIDE OF THE "HANT" REQUIRE AN IMPACT RESISTANT COVERNG. WHEN USED IN AREAS OUTSIDE OF THE DATAIL RET REQUISION 1609.1.2 OF THE DEGRS PROTECTIONS THAT DEVINE AN IMPACT RESISTANT COVERNG. WHEN USED IN AREAS OUTSIDE OF THE DATAIL RETORNING REQUIRE AND DOES NOT REQUIRE AN IMPACT RESISTANT COVERNG. STIE CONDINGS THAT DEVINE AN UNDER RESISTANT COVERNG. STIET CONDINGS THAT DEVINE AN UNDER TRESSENANCE REQUIRE ACHTECT. MATERIZEDA DESTINATE REQUIRED AN UNDER TRESSENANCE REQUIRE AND CONTACT WITH OTHER DESTINATE AND ADDIG STRUCT RESISTANT OF RECOME REQUIREMENTS OF THE 2007 FLORIDA BLICS. CODE, DISSIMILAR MATERALS, REQUIREMENTS OF THE 2007 FLORIDA BLICS. CODE, DISSIMILAR MATERALS. 	SCUTION ZUUSIA.		<u>GLASS FORMULAS</u>	FIXED WINDOW (ONE LITE): GW=(FW-2.625") X GH=(FH-2.625")	TABLE OF CONTENTS	DES	E E	LARGE MISSILE HORIZONTAL AND VERTICAL CROSS SECTIONS - YFW400TUH-01 1 ADFE MISSILE HORIZONTAL AND VERTICAL CROSS SECTIONS - YFW400TUH-02	MISSILE FRAME ANCHORING	SMALL MISSILE TYPICAL ELEVATIONS, DESIGN PRESSURES & GENERAL NOTES	SWALL MISSILE HORIZONTAL AND VERTICAL CROSS SECTIONS - YFW400TUH-03	SMALL MISSILE HORIZONTAL AND VERTICAL CROSS SECTIONS - YFW400TUH-04	SMALL MISSILE FRAME ANCHORING	LARGE AND SMALL MISSILE BILL OF MATERIALS and COMPONENTS	
FIXED WINDOW	6 AND DADE COUNTY, FL. ESTING PROGRAM	YFW400TH-05	(010)	+90/-120	EXT :: CAP BEADING W/BACKER TAPE INT :: TREMCO SPECTREM 2 STRUCTURAL SILICONE	SEE GLAZING OPTIONS CHART	FPA HYHZ/ASTM E-1996 AND DADE COUNTY ANCHOR CLIP		SHEET	-	2	2 4				- mi milition 8	6	to company
YFW400TUH	66 66	YFW400TH-02	(11)	+90/-120	EXT.: CAP BEADING W/BACKER TAPE INT.: DOW 995 STRUCTURAL SILICONE	SEE GLAZING OPTIONS CHART	FPA HYALZ/ASTM E-1996 AND DADE COUNTY ANCHOR CLIP					Ace-outside lite, X" HS						
	FPA H	YFW400TH-01	(m) (m) (m) (m) (m) (m) (m) (m)	+90/-120	EXT.: CAP BEADING W/BACKER TAPE INT.: PROGLAZE 2 STRUCTURAL SILICONE	SEE GLAZING OPTIONS CHART	FPA HWHZ/ASTM E-1996 AND DADE COUNTY STRAP ANCHOR		<u>Esistant</u> – 1° insulated-laminated	1-01 is / 0.075 vanceva / ¾/," HS-¾/," airspace-dutiside 1.tte ½" HS	1-02	INSIDE LITE, $ m \%^{o}_{e}$ HS / 0.090 SAFLEX / $ m \%^{o}_{e}$ HS- $ m \%^{o}_{e}$ AIRSPACE-OUTSIDE LITE, $ m \chi^{o}_{e}$ HS		inside Lite, 76 HS / U.U90 SGP / 76 HS-76 AIRSPACE-OUISIDE LITE, 76 HS		רעטוירם	+90PSF -120PSF	
		TEST SPECIMEN	ELEVATION	DESIGN PRESSURE	CLAZING	GLASS	TESTS TO BE PERFORMED ANCHOR METHOD	GLAZING OPTIONS	LARGE MISSILE IMPACT RESISTANT	SPECIMEN YFW400TH-01 INSIDE LITE 34." HS /	(2) SPECIMEN YFW400TH-02		SPECIMEN YFW400TH-05	INSIDE LIE, 76 H	CHITTERS ARE NOT BEALINDED		DESIGN PRESSURES:	





2008-255(2008-255(2) 2008-255(2) 2008-255(2) 2008-255(2) 2008-255(2) 2008-255(2)	78):K9 001 1 78):X43 78):X43	RPIR AA YXY Ya Tradition RPIR AA Yu Yu Yu Yu RPIR AA Uu Yu Yu Yu RPIR AA Uu Yu Yu Yu RPIR AA Uu Yu Yu Yu RPIL AA Uu Uu Yu Yu RPIL AA Uu Uu Uu Yu Yu RPIL AA Uu Uu Uu Yu Yu	go-kudahka kanidarb og Noisuga		/966	TX, E	LE TEST 30 COUN 27 / AS' 27 / EST 20 COUN	HYH A	EE NO	wa Hſ	JT	л ал хер ОО	ирои 19 ФМ,	MI AH Sleen	PFW400TUH05	PARSE ANODIZED OF PAINT	NITE AS SHOWN		N.M. 5
FIXED WINDOW and dade county, fl. small missile ing program	GENERAL NOTES	 THIS PRODUCT HAS BEEN EANLATED AND IS IN COMPLANCE WITH THE 2007 FLOREN BUILDING CODE (FBC) STRUCTURAL REQUIREMENTS INCLUDING THE "HIGH VELOCITY HURRCANE ZONE" (ANHZ). PRODUCT ANCHORS SHALL BE AS LISTED, SPACED AS SHOWN ON DETALS, ANCHORS EMBEDMENT TO BASE MATERIAL SHALL BE BEYOND WALLDRESSING OR STUCCO. WHEN USED IN THE "ANHZ" THIS PRODUCT COMPLIES WITH SECTION 1626 OF THE FLOREN BUILDING CODE MON DEFAULT SHALL BE UNIT SCHOON 1626 OF COMPERING WHEN INSTALLED ABOVE 30 FEET. 	 WHEN USED IN AREAS OUTSIDE OF THE "H-WHZ" REQUIRING WIND BORNE DEBRIS PROTECTION THIS PRODUCT COMPLIES WITH SECTOR 1699.1.2 OF THE 2007 FBC AND DOES NOT RECUIRE AN MPACT RESISTANT COVENIN. SITE CONDITIONS THAT DEVINE FAN MPACT FROM THE DETAILS OF THIS DRAWING REQUIRE LIKTHERE INSURVERNIK ANALYSIS BY A LICENSED ENGINEER OR REGISTERED ARCHITECT. 	6. MATERIALS INCLUDING BUT NOT LIMITED TO STEEL/METAL SCREWS, THAT COME NITIO CONTACT WITH OTHER DISSINILAR MATERIALS SHALL MEET THE RECOLIREMANIS OF THE 2007 FOREIDA BLDG. CODE, DISSIMILAR MATERIALS,	SECTION 2003.8.4		GLASS FORMULAS	FIXED WINDOW (ONE LITE): $GW=(FW-2.625^{\circ}) \times GH=(FH-2.625^{\circ})$		TABLE OF CONTENTS	SHEET DESCRIPTION	1 LARCE MISSILE TYPICAL ELEVATIONS, DESIGN PRESSURES & GENERAL NOTES			ъ.	6 SMALL MISSILE HORIZONTAL AND VERTICAL CROSS SECTIONS - YFW400TUH-03	7 SWALL MISSILE HORIZONTAL AND VERTICAL CROSS SECTIONS - YFW400TUH-04	8 SWALL MISSILE FRAME ANCHORING	9 BILL OF MATERIALS and COMPONENTS
YFW400TUHFIXFPAHVHZ/ASTME-1996ANDTESTINGTESTING	YFW400TH-04	(1) 3/8, (010) 86, (H)		48 3/8" (PLO) 52" (FW)	+90/-120	EXT.: CAP BEADING W/BACKER TAPE INT.: WEDGE GASKET	SEE GLAZING OPTIONS CHART	FPA HVHZ/ASTM E-1996 AND DADE COUNTY	ANCHOR CLIP										75
FPA HVHZ /	YFW400TH-03	() () () () () () () () () ()		48.3/8" (PLO) 52" (FW)	+90/-120	EXT.: CAP BEADING W/BACKER TAPE INT.: WEDGE GASKET	SEE GLAZING OPTIONS CHART	FPA HVHZ/ASTM E-1996 AND DADE COUNTY	STRAP ANCHOR				T - 1" INSULATED-LAMINATED		INSIDE LITE, %6 HS / U.UDU SAFLEX / %6 HS-%6 AIKSPAUE-UUTSIDE LITE, /2 HS	specimen yfw400Th=04 inisinf ITE 34." HS / 0.060 BUTACITE / 34." HS-54." AIPSEDAGE-OUTSINE ITE 14" HS		SHUTTERS ARE NOT REQUIRED WHEN INSTALLED ABOVE 30 FEET	- 120PSF
	TEST SPECIMEN #		ELEVATION		DESIGN PRESSURE	erazing	GLASS	TESTS TO BE PERFORMED	ANCHOR METHOD			GI AZING OPTIONS	SMALL MISSILE IMPACT RESISTANT	SPECIMEN YFW400TH-03	INSIDE LITE, %6 HS / U.I.	SPECIMEN YFW400TH-04 INISIDE LITE 3, " HS / D C INISIDE LITE INISIDE LITE 3, " HS / D C INIS 3, " HS / D		SHULLERS ARE NUL REQUIRED	DESIGN PRESSURES: +90PSF

CERTIFICATE of COMPLIANCE

10.0 – Certificate of Compliance OVERALL RATING

U-Factor: (Btu/h•ft ² •°F)

SHGC:

Directions: Fill out form completely. Determine the Overall Rating for this project by using the C.O.G. U-Factor and C.O.G. SHGC from Table 1 and looking up the overall rating from Table 2. Indicate the Overall Rating in the space above. Linear interpolation is permitted.

Certificate Authorization

Name:

Signature:

Company: Date:

CERTIFIES THAT THE MATERIALS LISTED ON THIS CERTIFICATE WERE INSTALLED ON THE PROJECT IDENTIFIED BELOW.

F	PROJECT INFORMATI	ON:								
5	Street Address:									
_	City:				State:	Zip:				
	Gity.				State.	Ζιμ.				
(GLAZING CONTRACTO	OR / INSTALLER:			Contact Person:					
	Street Address:				Phone Number:					
(City:				State:	Zip:				
	1									
	GLAZING MATERIA	L SUPPLIER:			Contact Person:					
9	Street Address:				Phone Number:					
AZIN										
TABLE 1 – GLAZING	City:				State:	Zip:				
E 1.	Glass and Spacer Ty	no:								
[ABI		pc.								
	Center-of-glass (C.O	.G.) U-factor:			Center-of-glass (C.O.G.) SHGC:					
			Btu	u/h∙ft²∙°F						
	FRAMING MATERIA				Contact Person:					
	YKK AP Ar	nerica Inc.			David Warden					
	Street Address:				Phone Number:					
	270 Riversi	de Parkway	/, Suite A		800-955-9551					
	City:				State:					
	Austell					Zip: 30168				
	Austell U-factor Mat	rix (Btu/h∙ft²•°F)	SHGC	Matrix	GA	30168				
	U-factor Mat			Matrix	GA Product Line:	30168				
IING		rix (Btu/h∙ft ² •°F) OVERALL U-factor	C.O.G. SHGC	OVERALL SHGC	GA Product Line:	•				
RAMING	U-factor Mat C.O.G. U-factor 0.48	OVERALL U-factor 0.56	C.O.G. SHGC 0.75	OVERALL SHGC 0.65	GA Product Line: YFW 4	<u>30168</u>				
- FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46	OVERALL U-factor 0.56 0.55	C.O.G. SHGC 0.75 0.70	OVERALL SHGC 0.65 0.61	GA Product Line: YFW 4	30168				
E 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44	OVERALL U-factor 0.56 0.55 0.53	C.O.G. SHGC 0.75 0.70 0.65	OVERALL SHGC 0.65 0.61 0.57	GA Product Line: YFW 4 The overall ratings for U-factor	30168 00 TU/TUH and SHGC are based on a size of				
BLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42	OVERALL U-factor 0.56 0.55 0.53 0.52	C.O.G. SHGC 0.75 0.70 0.65 0.60	OVERALL SHGC 0.65 0.61 0.57 0.52	GA Product Line: YFW 4 The overall ratings for U-factor	<u>30168</u>				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40	OVERALL U-factor 0.56 0.55 0.53 0.52 0.50	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48	GA Product Line: YFW 4 The overall ratings for U-factor	30168 00 TU/TUH and SHGC are based on a size of				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.42 0.40 0.38	OVERALL U-factor 0.55 0.53 0.52 0.50 0.48	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He	30168 00 TU/TUH and SHGC are based on a size of a x 59 1/16 in) as required in NFRC 100.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40	OVERALL U-factor 0.56 0.55 0.53 0.52 0.50	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He the matrix were determined in	30168 00 TU/TUH and SHGC are based on a size of x 59 1/16 in) as required in NFRC 100.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40 0.38 0.36	OVERALL U-factor 0.55 0.53 0.52 0.50 0.48 0.47	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50 0.45	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44 0.44	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He	30168 00 TU/TUH and SHGC are based on a size of x 59 1/16 in) as required in NFRC 100.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34	OVERALL U-factor 0.55 0.53 0.52 0.50 0.48 0.47 0.45	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44 0.40 0.35	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He the matrix were determined in	30168 00 TU/TUH and SHGC are based on a size of x 59 1/16 in) as required in NFRC 100.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32	OVERALL U-factor 0.55 0.53 0.52 0.50 0.48 0.47 0.45 0.44	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44 0.40 0.35 0.31	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He the matrix were determined in 200 respectively by a NFRC ar ACCREDITED LABORATORY:	30168 OO TU/TUH and SHGC are based on a size of a x 59 1/16 in) as required in NFRC 100. Bat Gain Coefficients (SHGC) listed in accordance with NFRC 100 and NFRC coredited laboratory.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30	OVERALL U-factor 0.55 0.53 0.52 0.50 0.48 0.47 0.45 0.44 0.42	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44 0.40 0.35 0.31 0.27	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He the matrix were determined in 200 respectively by a NFRC ar	30168 OO TU/TUH and SHGC are based on a size of a x 59 1/16 in) as required in NFRC 100. Bat Gain Coefficients (SHGC) listed in accordance with NFRC 100 and NFRC coredited laboratory.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24	OVERALL U-factor 0.56 0.55 0.53 0.52 0.50 0.48 0.47 0.45 0.44 0.42 0.41	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44 0.40 0.35 0.31 0.27 0.23	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He the matrix were determined in 200 respectively by a NFRC ar ACCREDITED LABORATORY:	30168 OO TU/TUH and SHGC are based on a size of a x 59 1/16 in) as required in NFRC 100. Bat Gain Coefficients (SHGC) listed in accordance with NFRC 100 and NFRC coredited laboratory.				
TABLE 2 – FRAMING	U-factor Mat C.O.G. U-factor 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26	OVERALL U-factor 0.56 0.55 0.53 0.52 0.50 0.48 0.47 0.45 0.44 0.42 0.41 0.39	C.O.G. SHGC 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20	OVERALL SHGC 0.65 0.61 0.57 0.52 0.48 0.44 0.40 0.35 0.31 0.27 0.23 0.18	GA Product Line: YFW 4 The overall ratings for U-factor 1200 mm x 1500 mm(47 1/4 in Overall U-factors and Solar He the matrix were determined in 200 respectively by a NFRC ar ACCREDITED LABORATORY: Architectural Testin	30168 OO TU/TUH and SHGC are based on a size of a x 59 1/16 in) as required in NFRC 100. Bat Gain Coefficients (SHGC) listed in accordance with NFRC 100 and NFRC coredited laboratory.				

CSI MASTERFORMAT SECTION NUMBER CSI MASTERFORMAT SECTION TITLE YKK AP PRODUCT SERIES

08 51 13 ALUMINUM WINDOWS YKK AP YFW 400 TUH FIXED WINDOWS

PART 1 GENERAL

1.01 SUMMARY

- A. Section Includes: Furnish and install YKK AP Architectural Aluminum Windows, complete with hardware and accessories as shown on shop drawings and specified in this section.
 - 1. YKK AP Series YFW 400 TUH Aluminum ThermaBond Plus® Impact Resistant Fixed Windows.
- B. Related Sections:
 - 1. Sealants: Structural silicone sealant.
 - 2. Glass and Glazing:
 - a. Units shall be factory or shop glazed.
 - 3. Single Source Requirement: All products listed below shall be by the same manufacturer.
 - a. Section 08 32 13 Sliding Aluminum-Framed Glass Doors.
 - b. Section 08 41 13 Aluminum-Framed Entrances & Storefronts.
 - c. Section 08 44 13 Glazed Aluminum Curtain Wall.
 - d. Section 08 44 33 Sloped Glazing Assemblies.

1.02 TEST AND PERFORMANCE REQUIREMENTS

- A. Performance Requirements: Windows shall comply with the following specific performance requirements indicated.
 - Air Infiltration: Completed window systems shall have 0.30 CFM/FT² (16.5 m³/h·m²) maximum allowable infiltration when tested in accordance with ASTM E 283 and TAS 202 at a differential static pressure of 6.24 psf (299 Pa).
 - 2. Water Infiltration: There shall be no uncontrolled water leakage when tested in accordance with ASTM E 331 and TAS 202 at a static pressure of 15 psf (719 Pa).
 - 3. Static Load: There shall be no damage to fasteners, hardware, accessories, or any other damage that would render the window inoperable when tested in accordance with ASTM E 330 and TAS 202 at a differential static pressure of 90.0 psf positive and 120.0 psf negative.
 - 4. Large & Small Missile Impact: There shall be no signs of penetration, rupture, or opening after the impact test when tested in accordance with ASTM E 1886/1996 and TAS 201.
 - 5. Cyclic Load: Test to be done upon completion of missile impact test. There shall be no damage to fasteners, Hardware, accessories, or any other damage that would render the window inoperable when tested in accordance with ASTM E 1886/1996 and TAS 203.
 - 6. Thermal Performance: When tested in accordance with AAMA 1503 and NFRC 102:
 - a. Condensation Resistance Factor (CRF_f): A minimum of 67.
 - b. Thermal Transmittance U Value: 0.40 BTU/HR/FT²/°F or less.
 - 7. Acoustical Performance: Acoustical Performance: When tested in accordance with ASTM E 90:
 - a. Sound Transmission Class (STC) shall not be less than 38.
 - b. Outdoor-Indoor Transmission Class (OITC) shall not be less than 30.
 - 8. Forced Entry Resistance: Windows shall be tested in accordance with ASTM F 842 and TAS 202 and meet the requirements of performance grade 10.

Note: Performance based on lab testing and will vary by configuration and glass type; contact YKK AP engineering for job specific analysis at higher performance levels. [Acoustic performance achieved with 1" IG unit consisting of 1/4" heat strengthened exterior glass, 3/8" air space, and 3/8" laminated interior glass, at a temperature of 75°. **??**]

1.03 SUBMITTALS

- A. General: Prepare, review, approve, and submit specified submittals in accordance with "Conditions of the Contract" and Division 1 Submittals Sections. Product data, shop drawings, samples, and similar submittals are defined in "Conditions of the Contract."
- B. Quality Assurance/Control Submittals:
 - 1. Test Reports: Submit certified test reports showing compliance with specified performance characteristics and physical properties.
- C. Substitutions: Whenever substitute products are to be considered, supporting technical data, samples and test reports must be submitted ten (10) working days prior to bid date in order to make a valid comparison.

1.04 QUALITY ASSURANCE

A. Qualifications:

- 1. Installer Oualifications: Installer experienced (as determined by contractor) to perform work of this section who has specialized in the installation of work similar to that required for this project. If requested by Owner, submit reference list of completed projects.
- 2. Manufacturer Qualifications: Manufacturer capable of providing field service representation during construction process.
- B. Mock-Ups (Field Constructed): Install at project site a job mock-up using acceptable products and manufacturer approved installation methods. Obtain Owner's and Architect's acceptance of finish color, and workmanship standard.
 - 1. Mock-Up Size:
 - 2. Maintenance: Maintain mock-up during construction for workmanship comparison; remove and legally dispose of mock-up when no longer required.
 - 3. Incorporation: Mock-up may be incorporated into final construction upon Owner's approval.
- C. Pre-Installation Meetings: Conduct pre-installation meeting to verify project requirements, substrate conditions, manufacturer's installation instructions, and manufacturer's warranty requirements.

1.05 PROJECT CONDITIONS / SITE CONDITIONS

A. Field Measurements: Verify actual measurements/openings by field measurements before fabrication; show recorded measurements on shop drawings. Coordinate field measurements, fabrication schedule with construction progress to avoid construction delays.

1.06 WARRANTY

- A. Project Warranty: Refer to "Conditions of the Contract" for project warranty provisions.
- B. Manufacturer's Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty document executed by an authorized company official.
 - 1. Warranty Period: Manufacturer's one (1) year standard warranty commencing on the substantial date of completion for the project provided that the warranty, in no event, shall start later than six (6) months from the date of shipment by YKK AP America Inc.

EDITOR NOTE: Longer warranty periods are available at additional cost.

PART 2 PRODUCTS

2.01 MANUFACTURERS (Acceptable Manufacturers/Products)

A. Acceptable Manufacturers:	YKK AP America Inc.
	270 Riverside Parkway, Suite 100
	Austell, GA 30168
	Telephone: (678) 838-6000; Fax: (404) 838-6001
1. Operable Windows: YKK	AP YFW 400 TUH ThermaBond Plus [®] Impact Resistant Fixed Wind

1. Operable Windows: YKK AP YFW 400 TUH ThermaBond Plus® Impact Resistant Fixed Windows.

- B. Windows:
 - 1. AAMA Designation: AW-PG100-FW.
 - 2. Description: The windows shall be extruded aluminum; 4" frame depth; Horizontal frame members run through notched vertical members, butted and mechanically fastened with two stainless steel screws per joint; Factory assembled.
 - 3. Configuration: The windows shall be Fixed, Fixed by Fixed*, or Fixed over Fixed*.
 - 4. Glazing (Contact YKK AP for approved glass types):
 - a. Large Missile Impact: Exterior glazing tape with silicone cap bead; 1" (overall) insulating units; Interior EPDM (silicone compatible) spacer with structural silicone sealant; Removable, extruded aluminum interior glazing bead; Factory glazed.
 - b. Small Missile Impact: Exterior glazing tape with silicone cap bead; 1" (overall) insulating units; Interior EPDM (silicone compatible) spacer with structural silicone sealant; Removable, extruded aluminum interior glazing bead; Factory glazed.
 - 5. Thermal Barrier: Provide continuous thermal barrier by means of a poured and debridged pocket consisting of a two-part, chemically curing high density polyurethane which is bonded to the aluminum by YKK ThermaBond Plus®. Systems employing nonstructural type thermal barriers are not acceptable.

*NOTE: Currently approved for blast mitigation only.

2.02 MATERIALS

A. Extrusions: ASTM B 221 (ASTM B 221M), 6063-T5 Aluminum Alloy.

1. All members shall have minimum wall thickness sufficient to meet the specified structural requirements.

2.03 ACCESSORIES

- A. Manufacturer's Standard Accessories:
 - 1. Fasteners: All fasteners shall be AISI 300 series (except for self-drilling, which are to be series 400) stainless steel.
 - 2. Weather-stripping: All weather-stripping shall be Fin-Seal or equivalent.
 - 3. Glazing Materials: Setting blocks, edge blocks, and spacers in accordance with ASTM C 864, shore durometer hardness as recommended by manufacturer; glazing gaskets in accordance with ASTM C 864.
 - 4. Glazing Adhesive: Structural silicone sealant.

2.04 RELATED MATERIALS (Specified In Other Sections)

- A. Glass: All windows shall be factory glazed in accordance with manufacturer's standards.
 - 1. Insulated glass type and thickness shall be in accordance with manufacturer's recommendations for design pressure.

2.05 FABRICATION

A. Frame:

- 1. Horizontal frame members run through notched vertical members, butted and mechanically fastened with two screws per joint into integral screw splines; Meeting rail notched at each end, butted and mechanically fastened with two screws per end into integral screw splines.
- 2. All framing joints shall be sealed with quality grade sealant meeting AAMA 803.3 to ensure water tight joint.
- B. Exterior Panning & Trim:
 - 1. Exterior panning & trim shall be extruded aluminum of profile and dimensions as detailed on approved shop drawings.
 - 2. All joints shall be sealed with quality grade sealant meeting AAMA 803.3 to ensure water tight joint.
- C. Mullions:
 - 1. Mullions shall be of extruded aluminum of profile and dimensions as detailed on approved shop drawings.
 - 2. Mullions must provide adequate structural properties to resist wind pressure as specified herein.

2.06 FINISHES AND COLORS

- A. YKK AP America Anodized Plus® Finish:
 - CODE DESCRIPTION
 - YS1N* Clear Anodized Plus[®]
 - YH3N Champagne Anodized Plus®
 - YB1N Medium Bronze Anodized Plus®
 - YB5N* Dark Bronze Anodized Plus®
 - YK1N* Black Anodized Plus®
 - YW3N White Anodized Plus®
 - M Mill Finish

* Indicates standard finish usually carried as inventory.

Anodized Plus[®] is an advanced sealing technology that completely seals the anodic film yielding

- superior durability (See AAMA 612).
- B. Anodized Finishing: Prepare aluminum surfaces for specified finish; apply shop finish in accordance with the following:
 - 1. Anodic Coating: Electrolytic color coating followed by an organic seal applied in accordance with the requirements of AAMA 612-02. Aluminum extrusions shall be produced from quality controlled billets meeting AA-6063-T5.
 - a. Exposed Surfaces shall be free of scratches and other serious blemishes.
 - b. Extrusions shall be given a caustic etch followed by an anodic oxide treatment and then sealed with an organic coating applied with an electrodeposition process.
 - c. The anodized coating shall comply with all of the requirements of AAMA 612-02: Voluntary Specifications, Performance Requirements and Test Procedures for Combined Coatings of Anodic Oxide and Transparent Organic Coatings on Architectural Aluminum. Testing shall demonstrate the ability of the finish to resist damage from mortar, salt spray, and chemicals commonly found on construction sites, and to resist the loss of color and gloss.
 - d. Overall coating thickness for finishes shall be a minimum of 0.7 mils.
- C. High Performance Organic Coating Finish:
 - 1. Fluoropolymer Type: Factory applied two-coat 70% Kynar resin by Arkema or 70% Hylar resin by Solvay Solexis, fluoropolymer based coating system, Polyvinylidene Fluoride (PVF-2), applied in accordance with YKK AP

procedures and meeting AAMA 2605 specifications.

- 2. Colors: Selected by Architect from the following:
 - a. Standard coating color charts.
 - b. Custom coating color charts.
 - c. Color Name and Number:
- D. Finishes Testing:
 - 1. Apply 0.5% solution NaOh, sodium hydroxide, to small area of finished sample area; leave in place for sixty minutes; lightly wipe off NaOh; Do not clean area further.
 - 2. Submit samples with test area noted on each sample.

PART 3 EXECUTION

3.01 MANUFACTURER'S INSTRUCTIONS/RECOMMENDATIONS

A. Compliance: Comply with manufacturer's product data, including product technical bulletins, installation instructions, and product carton instructions. The latest installation instructions are available at www.ykkap.com.

3.02 EXAMINATION

A. Site Verification of Conditions: Verify substrate conditions (which have been previously installed under other sections) are acceptable for product installation in accordance with manufacturer's instructions.

3.03 PREPARATION

A. Adjacent Surfaces Protection: Protect adjacent work areas and finish surfaces from damage during product installation.

3.04 INSTALLATION

A. General: Install manufacturer's system in accordance with shop drawings, and within specified tolerances.

- 1. Protect aluminum members in contact with masonry, steel, concrete, or dissimilar materials.
- 2. Shim and brace aluminum system before anchoring to structure.
- 3. Completed windows must allow water to be wept to the exterior; Verify weep holes are open and weep caps are installed correctly.
- 4. Seal metal to metal window system joints using sealant recommended by system manufacturer.

3.05 FIELD QUALITY CONTROL

- A. Manufacturer's Field Services: Upon request, provide manufacturer's field service consisting of site visit for inspection of product installation in accordance with manufacturer's instructions.
- B. Field Test: Conduct field test to determine watertightness of window system. Conduct test in accordance with AAMA 502-02 at locations selected by Architect.

3.06 ADJUSTING AND CLEANING

- A. Adjusting: Adjust operating items as recommended by manufacturer.
- B. Cleaning: The General Contractor shall clean installed products in accordance with manufacturer's instructions prior to Owner's acceptance, and remove construction debris from project site. Legally dispose of debris.
- C. Protection: The General Contractor shall protect installed product's finish surfaces from damage during construction.

END OF SECTION

Document Number 05-3013-03

This document supersedes all previous versions.